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A novel chaotic adaptive butterfly mating optimization (CABMO) is proposed to be used in synthesizing the beam pattern. In
order to improve the optimization accuracy and avoid trapping in the local optimum, the homogeneous chaotic system and
adaptive movement mechanism are combined into the proposed algorithm, where the initialization and redistribution of
butterflies are chaotically dispersed with an adaptive movement closely related to the ultraviolet changes. After validating the
performance of CABMO through several benchmark functions with different dimensions, the improved algorithm outperforms
when compared to other state-of-the-art nature-inspired metaheuristic algorithms. The proposed algorithm is then used to
understand any linear array problems in terms of the sidelobe reduction. Finally, a CABMO strategy is utilized to optimize the
mutual coupling model of the closely spaced VLF umbrella arrays. Results show that the optimized structure has comfortably
outperformed the original structure. Full scanning of wave positions is realized from 15 to 30 kHz. The synthesis patterns are
close to the theoretical optimum. The optimized results of the radiation performance and synthesized patterns demonstrate
that the pattern synthesis and antenna structure optimization based on the CABMO algorithm provides a novel idea for
antenna array optimization.

1. Introduction

The capability of beamforming, which can be manipulated
by the phase shifts of antenna arrays, is one of the key
evaluations of antenna designs [1]. In the real world, many
advanced communication systems, such as massive MIMO
antennas and adaptive arrays, have been empowered by
using beamforming technology [2–4]. The main design
objective of beamforming technology is to improve commu-
nication quality, preventing a polluted wastage of power,
especially in high-power antenna systems.

Optimization algorithms designed on array geometries
have been popular in recent years because of the capability
of the pattern synthesis and other specific problems that do
not require considerable human intervention [5–9]. Singh
and Salgotra [10] applied an enhanced flower pollination
algorithm to a linear antenna array (LAA) for the pattern

synthesis with sidelobe level (SLL) suppression and null con-
trol. Wu et al. [11] proposed a chaotic adaptive invasive weed
optimization (CAIWO) to synthesize the planar nonuniform
circular arrays and compared it with a genetic algorithm
(GA) [12] and particle swarm optimization (PSO) [13, 14].
Panduro et al. [15] applied an evolutionary algorithm (EA)
to design the steerable linear arrays. Scannable linear
arrays are designed in reference [16] with amplitude and
phase optimization for maximum sidelobe level reduction.
The synthesis of an ultrawideband circular and sparse con-
centric ring array has been studied in references [17, 18]. Mit-
tal and Singh applied biogeography-based optimization
(BBO) in reference [19] to design a Yagi-Uda antenna where
gain and impedance are set as the optimization objective.
Reference [20] used an improved fruit fly optimization algo-
rithm to design a U-slot microstrip array antenna in order to
achieve a higher impedance bandwidth. Huang et al. [21]
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combined least-square active element pattern expansion
(LS-AEPE) and iterative Fourier transform. The patterns of
two microstrip antenna arrays including mutual coupling
are synthesized by the combined method. Liu et al. [22] pro-
posed a more generalized version to synthesize unequally
spaced arrays including mutual coupling. Sun et al. [23]
utilized a hybrid approach to suppress the maximum
SLL of a large concentric circular antenna array.

Among all intelligence algorithms, butterfly mating opti-
mization (BMO) [24], inspired by the wise communication
tools of heterosexual butterflies [25], has emerged as a new
practical concept to solve optimization problems. BMO has
been applied to thinning problems for a large antenna array
[26] and matching network optimization [27] with charac-
teristics of high practicality. BMO is a stochastic process with
a fixed step length; hence, obtaining a false or slow conver-
gence at a later time is unavoidable. In this paper, we propose
a novel powerful variant of a BMO denoted by CABMO and
investigate its attractive features. Adding an average chaos
initialization and an adaptive updated engine improves the
function of the BMO. Then, several benchmark functions
are introduced to test the performance of the CABMO. In
comparison with other powerful algorithms, such as
CAIWO [11], GA [12], PSO [13], glowworm swarm opti-
mization with changing step (CSGSO) [28], and standard
BMO, the search ability of this proposed algorithm has
been verified. To further illustrate the superiority of the
proposed algorithm, beam patterns of LAA with 10 and
16 elements are synthesized for maximum SLL minimiza-
tion, respectively. Finally, we apply the CABMO for
optimizing VLF umbrella antenna arrays with a mutual
coupling suppression. The electromagnetic (EM) simula-
tions are performed to evaluate the beamforming ability
in practical conditions. The results show that the proposed
approach achieves the best performance compared with
other algorithms for the decoupling problem of VLF
umbrella antenna arrays.

The rest of this paper is organized as follows. Section 2
briefly describes the basic theory of BMO and the modifica-
tion of the proposed CABMO algorithm. Section 3 formu-
lates performance analysis of the CABMO algorithm by
testing the benchmark functions. In Section 4, a pattern
synthesis formulation of the linear antenna arrays is dis-
cussed with multioptimized variables. In Section 5, the
proposed CABMO is utilized in optimizing a practical VLF
phased umbrella antenna array to obtain the maximum gains
with the mutual coupling reduction. The conclusion is drawn
in Section 6.

2. The BMO Algorithm and Its Modification

2.1. Description of BMO. The standard BMO algorithm was
initially presented by Jada et al. in the literature [24]. BMO
simulates the distributing behavior of ultraviolet (UV) and
the mating process of butterflies. In the BMO approach, a
certain number of butterflies are stochastically placed in the
search space. The absorbed and updated UV of each butterfly
dominates the election of local mate (l-mate) in each iterative
process. l-mate selection ensures that the best butterfly with

the most UVwith a distance quantization is saved. By attract-
ing the healthiest l-mate, all butterflies move to the optimal
solution. The BMO algorithm can be summarized in 4 steps:
(1) initialization, (2) UV distribution, (3) l-mate selection,
and (4) position update. Algorithm details can be found in
the literature [24].

2.2. The Specialties and Shortcomings of the BMO. The l-mate
selection scheme of the butterflies is in a core-like pattern
for the BMO algorithm. All the butterflies in the space
participate in the selection of the l-mate UV distribution,
as described in Section 2.1. In patrolling, each individual
has an equal right to absorb and reflect UV simulta-
neously in each iterative process. The l-mate utilizes more
UV searches in the search environment to distribute the
UV at a mutual distance, improving the local convergence
efficiency of the swarm algorithm. In contrast, most bio-
mimetic algorithms would not allow the signal propaga-
tion in the whole space, such as the PSO. Another
obvious advantage of BMO is that there is no additional
consumption for individuals. Less predetermined parame-
ters are required in the BMO, unlike other methods such
as CSGSO. CSGSO needs a volatilization factor, an updated
rate of fluorescein, an updated rate of decision domain, and
other parameters to fit different spaces that increase the
parameter sensitivity and search consumption during the
iterative process.

However, some shortcomings of the BMO limit the
optimization capability of this algorithm. The most obvious
one is the way that the individual butterfly is dispersed in
the search zone. The production of a pseudorandom distri-
bution generates a lack of individual diversification and
unequal opportunity in early patrolling. As mentioned above,
mutual distances are measured by the positions of butterflies,
determining the exploitation capability. In initial iterations, a
good dispersion will make the individual perceive the
surroundings as much as possible. However, this discipline
may fail in the uneven UV attraction. In some extreme cases,
a butterfly near the border would be confused about the
direction to the border as the UV increases with an increasing
distance. Then, the intensification of the individuals is
limited by an identical fixed step, which causes a lack of
convergence precision in later iterations. A step size control
mechanism is introduced by Yang et al. [27]. However, the
step control is monotonous and sensitive to the parameters.
It is not environment-related but manipulation-related, such
as the iteration number, the harmonic index, and the range of
the step size. Therefore, it is necessary for the BMO algorithm
to balance the diversification in the whole space and explora-
tion accuracy in the final solution.

2.3. Chaotic Adaptive Butterfly Mating Optimization. Aimed
at the shortcomings above, a homogenous chaotic dispersion
solution and adaptive movement mechanism are integrated
into the BMO. The proposed CABMO algorithm is modified
as follows:

2.3.1. Chaotic Dispersion Solution. A chaotic map exhibits
a typical nonlinear ergodic behavior, which can generate
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random parameters without repetition according to its own
law within a specific range of values. Therefore, the
CABMO algorithm has a powerful ability to free the local
optimum. Using a nonequiprobability distribution, many
chaotic sequences are generated, such as a logistic map.
We chose the homogeneous chaotic systems to enhance
the initialization and dispersion of the BMO. This modified
BMO is named Chaotic BMO (CBMO). The iterative model
based on the homogenized chaotic system is expressed as
follows [29]:

μ t + 1 = −4 56μ t 2 − 0 56μ t + 0 36,

X t + 1 =
1

π
arcsin

57

25
μ t + 1 +

7

25
,

1

where μ ∈ − 1/2 , 43/114 denotes the initialization sequence
and X ∈ − 1/2 , 1/2 denotes the chaotic search sequence.
Figure 1 shows the distribution of the chaotic sequence
X in the definition domain of μ with 1000 iterative points.
The chaotic distribution is humongous and stochastic in
the definition domain. Unlike pseudorandom sequences,
the chaotic sequence has the characteristics of ergodicity,
which is neither periodicity nor convergence in the map-
ping process. It is sensitive to the values of initialization
for the chaotic sequence. The linear complexity of the
chaotic distribution is N/2, which is much larger than that
of pseudorandom sequences. Hence, when the diversity of
the butterflies increases, the capability of global search
is improved.

2.3.2. Adaptive Movement Mechanism. In the iteration pro-
cess, the search range of the optimization variable is extended
to the subregion between the current variable and the l-mate
by introducing a UV-based factor. The movement update is
represented as follows:

Pi t + 1 = Pi t + ω t ⋅ Pl‐mate t − Pi t , 2

ω t = exp
−λ t

λ t − 1 + 1
,

λ t =
UVi t

UVi t − 1
,

3

where ω t denotes the adaptive inertia factor for the tth
iterations and Pi t and Pl‐mate t denote the position of the
butterfly i and l-mate in the tth iteration, respectively. When
the butterfly imoves to its l-mate, the increment value of the
UV is increased as the butterfly i moves closer to the global
optimum. The butterfly i will increase pace and expand the
search zone. In contrast, the butterfly i will adaptively move
closer to the l-mate and increase the global search ability as
the UV increment value decreases.

2.3.3. CABMO. The optimization objective is to minimize
f X1, X2,… , Xd subject to Xn

min < Xn < Xn
max, where n =

1, 2,… , d and d denotes the dimension of the search
space. X = X1, X2,… , Xd in practical problem represents

a set of solutions. The proposed CABMO can be described
as follows.

(1) Initialization. Candidate sequences are initialized in
the definition domain of the homogenized chaotic
system described in Section 2.3.1

(i) Transform variable X to μ in the range of
− 1/2 , 43/114 :

μ =
50 X − Xmin

57 Xmax − Xmin

−
1

2
4

(ii) Chaotically distribute μ to a novel X′ using the
homogenized chaotic system

(iii) Transform the chaotic variable X′ to the search
space in special optimization problem as follows:

X =
Xmax + Xmin

2 + X′ Xmax − Xmin

, 5

where Xmax and Xmin stand for the maximum
and minimum values of the spaces, respectively.

(2) UV Update. Evaluate the fitness of each individual in
the iteration and update the UV values based on their
fitness values

(3) l-mate Selection. Calculate the scatter values accord-
ing to the distance between the butterflies, sort them,
and select the l-mate

(4) Movement Update. Considering the position of the
l-mate, the velocity and position of each butterfly
are updated using equation (2). The adaptive
inertia factor is calculated for each butterfly by
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Figure 1: Distribution of the chaotic sequence X over the variables
in the definition domain with 1000 points.
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equation (3). The convergence velocity is much faster
because of the adaptive velocity changes

(5) Redistribution. Evaluate the position of each butterfly
according to the optimization range of variable. If
the butterfly is out of the border, redistribution is
implemented by using a chaotic search

(6) Repeat step (2) to step (5) until an ending criterion or
the maximum number of iterations is achieved

3. Performance Analysis

In order to verify the optimization performance of the
CABMO algorithm, the typical benchmark functions are
tested for comparison and optimization. The experimental
environment of this study is Windows 7 OS with Intel Xeon®
(2.2GHz CPU and 128GB RAM). Writing of algorithm
codes is performed in MATLAB 2014a.

3.1. The Benchmark Function Test. The benchmark functions
have been calculated in different dimensions. Each function
was simulated with the swarm size of 500. Because of the
randomness of the algorithms, the experiments are indepen-
dently performed 30 times. The obtained results using the
CABMO are compared with those using the PSO, GA,
CSGSO, and CAIWO. The configuring parameters of the
PSO [13] are globe factor wg = 1 49618, self-factor ws =

1 49618, and inertia factor wi = 0 7298. The GA parameters
[12] are set as mutation probability Pm = 0 05 and crossover
probability Pc = 0 95. The CSGSO parameters [28] are
volatile factor ρ = 0 6, fluorescein turnover rate γ = 0 6, and
update rate of the decision domain β = 0 08. The size of

the initial population P0 = 100 and maximum population
Pmax = 500 is taken for the CAIWO [11], respectively,
and for the maximum seed number, Smax is fixed to 4.

Rastrigen function f1 xi = 10d + 〠
d

i=1

x2i − 10 cos 2πxi ,

Griewank function f2 xi = 〠
d

i=1

x2i
4000

− Π
d

i=1
cos

xi

i
+ 1,

Equal peak function f3 x1, x2,… , xd = 〠
d

i=1

cos2 xi

6

The optimization results such as the best result, worst
result, average result, and standard deviation are presented
in Table 1. As shown in Table 1 by the average results and
standard deviation, the solution of the proposed CABMO
algorithm is more accurate and steady than that of the other
algorithms. By adding the mechanism of the adaptive move-
ment, each individual makes a step change based on the UV
update and becomes more purposeful under the guidance of
the l-mate. This adaptive mechanism promotes the conver-
gence speed and accuracy especially in the later iteration.
According to the peak capture rate of the function f3, the
randomness of the homogeneous chaotic system intensifies
the diversity of the butterflies, effectively enhancing the
capability of global search. As expected, we can see that
the CABMO with a lower average time has a faster conver-
gence speed. Compared with the BMO algorithm, the com-
puting consumption of the CABMO is mainly increased in

Table 1: The results of benchmark functions.

Benchmark function Algorithm Best result Worst result Average result (peak catching rate) Standard deviation

f1 d = 10

PSO 6 372E − 03 1.952 5 334E − 01 5 93E − 02

GA 2 351E − 02 2.293 7 941E − 01 6 42E − 01

CSGSO 1 273E − 02 7 291E − 01 2 812E − 02 4 24E − 03

CAIWO 4 283E − 05 2 836E − 01 3 772E − 03 1 32E − 02

BMO 4 972E − 02 1.532 9 340E − 01 2 93E − 02

CBMO 9 732E − 03 5 392E − 02 1 035E − 02 5 91E − 03

CABMO 6 981E − 06 8 735E − 05 4 673E − 05 4 20E − 04

f2 d = 10

PSO 3 621E − 02 2.317 1 231E − 01 5 57E − 01

GA 8 386E − 02 2.681 1 382E − 01 7 32E − 01

CSGSO 5 382E − 04 5 239E − 03 3 431E − 03 7 32E − 06

CAIWO 3 823E − 06 6 351E − 04 8 372E − 05 5 59E − 06

BMO 7 936E − 03 1.002 7 113E − 02 5 38E − 02

CBMO 7 173E − 03 1.791 7 031E − 02 9 42E − 02

CABMO 4 816E − 08 3 122E − 05 4 193E − 06 3 52E − 06

f3 d = 4

BMO 4 2.158 64.2% 2 44E − 02

CBMO 4 2.973 92.2% 1 58E − 02

CABMO 4 2.989 94.6% 3 57E − 04
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equation (4) and equation (5) chaotic initialization. How-
ever, the main factor of the proposed algorithm focuses
on the calculation, sorting, and selection of the l-mate
matrix in a standard BMO. According to the algorithm’s
progressive complexity theory, CABMO does not increase
the complexity of a standard BMO.

As shown in Figure 2, the butterflies have been success-
fully captured by a maximum of 100 points when patrolling
in the solution set of the function f1. The iterative trajectories
of butterflies by CABMO in Figure 2(a) clearly substantiate

that the diversified distribution of the butterflies converges
to the adjacent peak points without cross-region movement.
Figure 2(b) shows the superior convergence precision of
CABMO. The iterative trajectory and final distribution of
the function f2 are plotted in Figure 3. In Figure 3(a), we
can see that in the early phase of the adaptive iteration, the
individuals prefer to explore the search space globally.
As the number of iterations increases, the adaptive factor
changes the ability of the local optimization. There is no
precocity of the butterflies in the optimization process of
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Figure 2: Iterative trajectories and the final butterfly distribution of the function f1: (a) iterative trajectories of butterflies by CABMO and
(b) the final distribution of butterflies by CABMO.
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Figure 3: Iterative trajectories and the final distribution of butterflies of the function f2: (a) iterative trajectories of butterflies by CABMO and
(b) the final distribution of butterflies by CABMO.
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tending to the l-mate. Hence, the butterflies have a higher
convergence precision and do not get trapped into local
stagnations (Figure 3(b)). Figure 4 depicts the distribution
number of butterflies located on the 81 maximal points
of the function f3. It is noteworthy that the points captured
by the CABMO are more than those captured by the others.
Due to the homogenous chaotic system, the diversifica-
tion of the butterflies improves the global optimization
ability during the early iteration. Then, redistribution of
the individuals intensifies the vitality in the search space.
Using the benchmark function test, the improved CABMO
effectively balances the ability of global patrolling and
local exploitation, especially in the multimodal and high-
dimensional functions.

4. Linear Antenna Array Synthesis

In this section, the CABMO approach is employed to synthe-
size the beamforming patterns of the LAAs for peak SLL
minimization. The array factor (AF) for a LAA with 2N ele-
ments placed symmetrically along the x-axis is expressed as
follows [30]:

AF θ = 2〠
N

n=1

In cos kxn cos θ + ψn , 7

where In, xn, and ψn denote the current amplitude, the
location, and the phase of the nth element of array, respec-
tively, k denotes the wave number, and θ denotes the angle
between the array and the positive x-axis. In order to obtain

the peak SLL minimization, the fitness function is designed to
synthesize the LAA as follows:

fitness = min
θ∈θε

max 20 log AF θ , 8

where θε denotes the special directivity for the minimiza-
tion of SLL. To illustrate the effectiveness of the CABMO
algorithm, three instantiations of the LAA are introduced
for optimization of locations and current amplitudes,
respectively.

4.1. Case One: Location Optimization of the 10-Element LAA.
In the first example, the elements’ locations of a LAA with the
10 elements are synthesized by different algorithms while
maintaining uniform current amplitude and phase. The
design goal for this example is to obtain minimum SLL in
the regions, θ = −90°,−16° and θ = 16°, 90° . The optimiza-
tion processes are independently executed by 15 times. Using
the proposed approach, the values of the optimized locations
and the standard deviation of the maximum SLL are shown
in Table 2 and the beam pattern is depicted in Figure 5.
The maximum SLLs optimized by the proposed algorithm
and PSO [31], ACO [32], CSO [33], and BMO are listed
in Table 3.

In Figure 5, the beam pattern of the 10-element LAA
obtained by CABMO has the lowest peak SLL among the
various nature-inspired algorithms, which shows that the
CABMO achieves excellent outperformance. It is noteworthy
that the first null beam width (FNBW) is increased from
23° to 40.12° after the CABMO optimization. A lower
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Figure 4: Number of butterflies located at each peak of the function f3.
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SLL is achieved at the expense of the FNBW. From
Table 2, it is seen that CABMO has better accuracy per-
formance than the BMO from the perspective of the stan-
dard deviation of the maximum SLL. In Table 3, it can be
seen that the peak SLL obtained by BMO is -22.52 dB,
which has been lowered from -20.72 dB to -22.52 dB as
compared to the SLL of the LAA optimized by the PSO.
The CABMO algorithm presents a maximum SLL of
-23.65 dB, which is 10.68 dB lower than the peak SLL of
the uniform array, which is lower by 2.93 dB, 0.99 dB,
0.67 dB, and 1.13 dB than the SLL of the PSO-, ACO-,
CSO-, and BMO-optimized array, respectively.

4.2. Current Amplitude Optimization of the 16-Element LAA.
The CABMO is used to synthesize the current amplitude of a
16-element LAA for SLL minimization. The relationship
between AF and In is nonlinear. The values of xn and ψn

are taken as 0 5λ and 0, respectively, in the AF equation (7).

4.2.1. Case Two. For this optimization case, the fitness
function for this problem is mentioned in equation (8). The
butterfly size is set as 20. The iteration number is 200.
The optimized current amplitudes obtained by BMO and
CABMO are presented in Table 4. The peak SLLs optimized
by different nature-inspired algorithms are shown in Table 5.
The beam patterns of a 16-element LAA are shown in
Figure 6. In addition, the parameters and results used for
comparison are presented by reference [34].

In Figure 6, we can know that the normalized AF
synthesized by CABMO algorithms have the lowest SLL
(corresponding to the result of the 50 runs independently)
for a 16-element LAA. As expected, we clearly show that
CABMO is much better statistically than the other algo-
rithms. From Table 4, it can be seen from the results that
CABMO has a lower standard deviation of the peak SLLs
than BMO. CABMO offers a maximum SLL of -25.87 dB,
which is 12.72 dB lower as compared to the uniform array.
As compared to PSO, BBO, FA, and BMO, the proposed
method offers improvement of about 8.26 dB, 4.59 dB,
1.60 dB, and 4.62 dB in peak SLL (Table 5).

4.2.2. Case Three. The optimization objective for this exam-
ple is to obtain minimum SLL in the regions, θ = −90°,−16°

and θ = 16°, 90° . For illustration of convergence depth,
the butterfly size and iteration number are set as 40 and
1000, respectively, which are larger than the configuring
parameters in case two. The radiation patterns for this case
are depicted in Figure 6. The optimized amplitudes of the
BMO and CABMO arrays are illustrated in Table 6. The
benchmark results are summarized in Table 7.

In Figure 7, it can be observed that the beam pattern
optimized by the proposed algorithm (CABMO) offers the
lowest maximum SLL among the compared algorithms.
The results of standard deviation show that the performance
of the proposed algorithm keeps robustness to initialization
and is better than that of BMO (Table 6). From Table 7, the
maximum SLL obtained by the CABMO algorithm is
-35.80 dB, which is 22.65 dB lower than the SLL of the
uniform array and 5.17 dB lower than the SLL of the PSO
[14] array. The maximum SLL has been lowered from
-30.85 dB to -35.80 dB (by 4.95 dB) as compared to the SLL
of the ant lion optimization- (ALO)- [31] optimized array.

5. Closely Spaced Umbrella Antenna Arrays

As the optimization problems of antenna arrays become
more and more complex, many nonlinear problems are
ascribed to optimization models of discrete and continuous
variables, such as the pattern synthesis of CCAA in reference
[23]. To illustrate the practicality of the CABMO algorithm
in designing antenna arrays in the real world, the proposed
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Figure 5: Nominalized AF of the 10-element LAA for case one.

Table 3: The maximum SLL for the 10-element LAA for case one.

Algorithm Maximum SLL (dB)

Uniform -12.97

PSO [30] -20.72

ACO [31] -22.66

CSO [32] -22.98

BMO -22.52

CABMO -23.65

Table 2: The optimized results of the 10-element LAA for case one.

Algorithm Optimized locations Standard deviation

BMO 0 2190λ, 0 3623λ, 0 8072λ, 1 0919λ, 1 6836λ 1.0306

CABMO 0 1172λ, 0 3763λ, 0 7537λ, 0 9946λ, 1 5687λ 0.8647
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Table 4: The optimized results of the 16-element LAA for case two.

Algorithm Optimized current amplitudes Standard deviation

BMO 0.9011, 0.7008, 0.6233, 0.6212, 0.5637, 0.5224, 0.4996, 0.3981 1.3601

CABMO 0.8777, 0.8567, 0.8167, 0.6962, 0.5788, 0.5649, 0.3512, 0.3591 0.5347

Table 5: The maximum SLL of the 16-element LAA for case two.

Algorithm Maximum SLL (dB)

Uniform -13.15

PSO -17.61

BBO -21.28

FA -24.27

BMO -21.25

CABMO -25.87
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Figure 6: Nominalized AF of the 16-element LAA for case two.

algorithm will be applied to optimize the structure of the VLF
umbrella antenna array introduced in reference [35] by sup-
pressing the mutual coupling. The objective is to optimize the
structure of the closely spaced arrays to intensify the array
gains with a mutual coupling reduction. This optimization
case is a combination of sparse and continuous optimization.
Binary BMO (BBMO) [26] is applied to optimize the connec-
tion state of the down-lead wires. Further optimization of
this model is obtained by the CABMO.

5.1. Mathematical Model of Antenna Arrays. Figure 8 shows
the geometry model of the VLF umbrella antenna arrays,
which can be regarded as monopole antenna arrays on a
planar ground. The down-lead wires and the top wires are
the main radiators. The antenna screen is composed of sling
and multiple top wires. The coordinates of a single top wire
satisfy a catenary equation. Under the conditions of both
ζ = ζmax/l < 0 1 and h/l < 0 1, the catenary ab in Figure 9(a)

can be approximated by the parabola equation. Selecting N
points m1,m2,… ,mN at equal intervals in the horizontal
direction from the flat parabolic axis allows us to convert
the points into a three-dimensional Cartesian coordinate
system. The coordinates of these N points are redefined
as follows:

xi = xa − i ⋅
xa − xb
N

,

yi = ya − i ⋅
ya − yb
N

,

zi = hi + li ⋅ xi − ni
2,

9

li =
K

l ⋅ tan θ
,

ni =
xa + xb − za − zb / li ⋅ xa − li ⋅ xb

2
,

hi = za − li ⋅ xa − ni
2,

10

where xa, ya, za and xb, yb, zb denote the coordinates
of the fixed points a and b, respectively, i = 1, 2, 3,… ,N ,

l ⋅ tan θ = xa − xb
2 + ya − yb

2 + za − zb
2, and K > 0

denotes the sag coefficient. The average height of the top
load can be represented as

ht = 〠
M

j=1

〠
N

i=1

zij
M ⋅N

, 11

where M represents the number of top wires in one piece
of the antenna screen. Equations (9)–(11) show that as the
endpoints of the top load are fixed, K determines the sag
and the average height of the antenna screen.

5.2. Problem Formulation. As mentioned above, this work is
aimed at expanding the gain of the two-element phased
arrays with a mutual coupling reduction. The input resis-
tance of each array reflects the mutual coupling effect of
the tightly coupled VLF vertical antennas with the inter-
spacing d12 ≈ 1/8λ. Considering the antenna arrays as a
two-port network, the input resistance of each array can
be obtained as follows [35]:

R1 = R11 + Re mejψZ12 ,

R2 = R22 + Re
1

m
e−jψZ21 ,

8 International Journal of Antennas and Propagation



R22 = 160π2 he2
λ

2

,

R21 =
60he1he2

kd321
kd12 cos kd21 − 1 − k2d221 sin kd21 ,

12

where R11 and R22 is, respectively, the mutual impedance
of array 1 and array 2, ψ = −kd12 cos δ denotes the differ-
ence in the input current phase, m = I2/I1 denotes the
ratio of the current amplitude, he1 and he2 are the effective
height of array 1 and array 2, respectively, and k denotes
the wave number. Based on the transmission line theory,
the equivalent height of the vertical antenna without the
top load can be given as

h0 = ht + h′ = 〠
M

j=1

〠
N

i=1

zi
M ⋅N

+
1

k
ctg−1 1

Z0ωCh

, 13

where h′ is the equivalent antenna height contributed by
the top load.

As shown in Figure 9(b), the down-lead wires of each
array are synchronously excited by a power source. If the
number of the radiation down-lead wires of array 1 is
reduced, the current amplitude ratio m will be reduced and
correspond to the reduction area of the top load. Usually,
the connection state, height, radius, and sag coefficient of
the down-lead are all interacting parameters that influence
he1 and m. Assuming the phase of array 2 is ahead of that
of array 1, the optimization problem of the mutual coupling
suppression for two-element phased arrays can be described
as follows:

findDopt = d1, d2,… , dn
T , h, r, andK i,

d j j = 1,… , n ∈ 0, 1 , i = 1,… ,m,

max Gopt

s t R1, R2 > 0

mi2 > 1,

hmin ≤ h ≤ hmax,

rmin ≤ r ≤ rmax,

0 < K < Ks,

14

where h and r are the height and radius of the down-lead
wires, respectively, and di i = 1,… , n is the connection state

Table 6: The optimized results of the 16-element LAA for case three.

Algorithm Optimized current amplitudes Standard deviation

BMO 1.000, 0.9325, 0.8535, 0.6989, 0.5879, 0.3888, 0.3022, 0.1991 1.3067

CABMO 1.000, 0.9308, 0.8273, 0.6603, 0.5001, 0.3210, 0.2203, 0.1219 0.6538

Table 7: The maximum SLL of the 16-element LAA for case three.

Algorithm Maximum SLL (dB)

Uniform -13.15

PSO [14] -30.63

ALO [30] -30.85

BMO -31.88

CABMO -35.80
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of the ith feeder. di = 0 stands for the ith grounded down-lead
wire, and the corresponding feeder opens. di = 1 stands for
the ith down-lead wire in regular work. Ks is the maximum
sag coefficient. Gopt is the array gain. mi2 is the current ratio

between array i and array 2. hmin and hmax are the lower
and upper limits of the height of previous down-lead wires,
respectively. rmin and rmax are the lower and upper limits of
the radius of previous down-lead wires, respectively. The
desired goal for this optimization case is to obtain the
maximal array gains with a combination of sparse and
continuous optimization. BBMO is applied to optimize the
connection state of down-lead wires. The discrete position
of the ith butterfly in the BBMO approach is given as
follows:

xi,k t =
mod xi,k t − 1 , 2 , p ≤ ξ k ,

xi,k t − 1 , p ≥ ξ k ,

p = 0 9 ×
sum mod xi t + xl‐mate t , 2

∑j sum mod xj t + xl‐mate t , 2
+ 1,

15

where k and t denote the dimension of the butterfly and
iteration number, respectively, and ξ k denotes the ran-
dom parameter in the region of 0, 1 . Further optimization
of this model is obtained by CABMO. The fitness function
can be transformed into a minimum optimization model
as follows:

f = Gmax −Gopt , 16

where Gmax denotes the theoretical maximum gain. Con-
sidering the geometric symmetry of the two-element
arrays, the beam positions are set as ϕ = 0°, 60°, 90°. The
optimization ranges of the variables Dopt, h, r, and K are

{0, 1}, [220, 240] m, [90, 120] m, and [0.1, 0.5], respec-
tively. The butterfly size and the number of iterations have
been set to 20 and 200, respectively. In addition, a perfect
electrical conductor plane is used for reducing the cost of

the EM simulation. The simulation parameters of the
antenna arrays are shown in Table 8.

5.3. Numerical Results and Discussion. As shown in Table 9,
the optimization variables obtained by the CABMO satisfy
the constraint conditions mentioned in Section 5.2. The array
gains have been promoted by the structure optimization. The
maximum gain of the optimized arrays in the end-fire direc-
tion reaches 1.16 dB, which improves the radiation efficiency
of the closely spaced array by 30.62 dB at 0° beam position.
To verify the performance of the CABMO algorithm, it
is compared with the CAIWO [11] and CSGSO [28].
Figure 10 presents the normalized convergence curves when
these 3 algorithms have been applied to the problem.
CAIWO needs 120 iterations to reach the optimal values.
The convergence time of the CSGSO up to the suboptimal
value is 150. As expected, high convergence accuracy and
optimization efficiency are obtained by the CABMO algo-
rithm. The convergence speed of the CABMO is the fastest,
and the iteration reaches its best result when reaching 90
times around. The radiation resistance values of the optimi-
zation model are shown in Figure 11. It is noteworthy that
the positive and negative signs of the longitudinal coordi-
nates indicate the direction of the input current. Negative
signs indicate that the current direction is from the high-
voltage feeder to the tuning coil.

In Figure 11, the following conclusions can be drawn.
First, within the same frequency, the phase-shifted feeding
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Figure 9: Schematics of the top wires and the down-lead wires. (a) The plane schematic of the top wires. (b) The topology diagram of
down-lead wires.

Table 8: List of the parameters of the antenna arrays.

Parameters Values

Operating frequency (kHz) 25

Interspacing of the arrays (m) 1830

Conductor conductivity (S/m) 5 8E + 07

Relative permeability of the conductor 1

Horizontal scanning angles (°) 0-360

The mesh length of the nonradiators (m) λ/200

The mesh length of the radiators (m) λ/300
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has a greater effect on the radiation resistances of the antenna
arrays than the in-phase feeding. Figures 11(a) and 11(b)
clearly show that the radiation resistances in the original
structure are considerably influenced by the mutual coupling
between the elements at 0° (180°) and 60° (120°) wave posi-
tions, respectively. The radiation resistance increases with
the growth of the frequencies and is less than 1Ω. We assume
that electromagnetic waves cannot be effectively radiated in
most parts of the VLF band, which verifies the necessity of
optimization in this problem. After optimization, the radia-
tion resistances of array 2 at 0° (180°) and 60° (120°) wave
positions are improved obviously. At the 90° (270°) beam
position, the radiation resistances do not decrease obviously
by the thinning of the down-lead wires (Figure 11(c)). The
beam combination in the new structure can be achieved at
15-30 kHz. The effectiveness of the proposed method is
proven.

To further verify the performance of beamforming
obtained by the CABMO algorithm, Figure 12 depicts the
horizontal patterns of the optimized arrays at 25 kHz. In
contrast, the theoretical optimal patterns without the con-
sideration of the mutual coupling are also presented. In

Figure 12(a), the maximum gain of the arrays reaches
5.93 dB in the end-fire direction, which is 0.2 dB lower
than the array gain of the original antenna arrays. The
front-to-back ratios of the patterns reach 4.2 dB. In
Figure 12(b), due to the close interelement spacing, the
horizontal pattern lobe of the closely spaced arrays is wide.
Figure 12(c) illustrates that the optimization approach has
little effect on the side direction pattern when the in-phase
feeding is used. When the threshold of GRADE/SPREAD
[36] is set as 85%, the GRADE and SPREAD values of
the global difference measure are 4 and 1, respectively.
The consistency between the optimized and theoretical
optimal patterns verifies the correctness of the CABMO
algorithm for the closely spaced arrays.

6. Conclusions

In this paper, a modified BMO, entitled CABMO, is intro-
duced and applied to synthesize linear and umbrella antenna
arrays. The main advantage of the proposed algorithm over
the state-of-the-art metaheuristic algorithms is that the
CABMO has a powerful versatility to optimize different
kinds of antenna arrays with an adaptive movement mecha-
nism. The UV-based adaptive factor promotes exploitation
as the search space changes. A homogeneous chaotic search
assists the global exploration and fills a major gap in disper-
sion and redistribution of the butterflies. The performance
analysis from several benchmark functions is presented in
different dimensions. In addition, numerical results of LAA
synthesis problems demonstrate the superiority of the
improved algorithm to the other nature-inspired algorithms.
Optimized antenna structures of the closely spaced umbrella
antenna arrays were obtained using the CABMO for further
suppression of mutual coupling. Taking the array gain as
the fitness function, a nonlinear optimization model is
established. The optimal results are compared with the
arrays in the nonoptimized structure and with arrays pro-
duced by the other algorithms. The results verify the feasi-
bility of the CABMO to be applied in the electromagnetics
and antenna field for antenna array optimization. Future
work in this area will include synthesizing other array
geometries, further minimizing the maximum SLL of the
LAA with FNBW constraint, and applying the decoupling
method to other arrays.

Table 9: The optimization variables obtained by the CABMO algorithm in 25 kHz.

Algorithm ϕ
Dopt h (m) r (m) K Array gain (dB)

N21N22 …N26N11 …N16

Nonoptimized

0° 111111111111 230.33 117.43 0.20 —

60° 111111111111 230.33 117.43 0.20 0.44

90° 111111111111 230.33 117.43 0.20 0.21

CABMO

0° 111011011111 230.33 117.43 0.27 1.16

60° 111111011111 236.58 101.92 0.21 0.53

90° 111111111111 239.45 97.69 0.16 0.29
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Figure 10: Convergence curves of three algorithms of the model
in 25 kHz.
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