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We present a numerical study of an example of piecewise linear systems that constitute a class of hybrid systems. Precisely, we study
the chaotic dynamics of the voltage-mode controlled buck converter circuit in an open loop. By considering the voltage input as
a bifurcation parameter, we observe that the obtained simulations show that the buck converter is prone to have subharmonic
behavior and chaos. We also present the corresponding bifurcation diagram. Our modeling techniques are based on the new French
native modeler and simulator for hybrid systems called Scicos (Scilab connected object simulator) which is a Scilab (scientific
laboratory) package. The followed approach takes into account the hybrid nature of the circuit.
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1. Introduction

Hybrid dynamical systems (HDSs) have attracted consider-
able attention in recent years. HDS arise from the interaction
between continuous variable systems (i.e., systems that
can be described by a difference or differential equation)
and discrete event systems (i.e., systems where the state
transitions are initiated by events that occur at discrete time
instants). Switched piecewise linear systems are an important
class of hybrid systems that are simple and can have very
rich and typical nonlinear dynamics such as bifurcations
and chaos. As example, DC-DC switching converters are
switched piecewise linear systems [1]. The three basic power
electronic converters buck, boost, and buck-boost are vari-
able structure systems that are highly nonlinear. This kind of
piecewise model may present nonlinear phenomena such as
bifurcations and chaos. The study of nonlinear dynamics of
DC-DC converters started in 1984 by Brockett’s and Wood’s
research [2]. Since then, chaos and nonlinear phenomena
in power electronic circuits have stolen the spotlight and
have attracted the attention of different research groups.
Different nonlinear phenomena were investigated such as
flip bifurcation or period doubling and its related route
to chaos [3–5] or quasiperiodicity route to chaos [6, 7] as
well as border collision bifurcation [1–3, 6–16]. There are

many modeling techniques, programming languages, and
design toolsets for HDS. To model and simulate our HDS,
we use Scicos (Scilab connected object simulator) which is
a Scilab package for modeling and simulation of dynamical
systems including both continuous and discrete time sub-
systems [17, 18]. Scilab (scientific laboratory) is a scientific
software package for numerical computations that provides a
powerful open computing environment for engineering and
scientific applications [10]. It has been developed at INRIA
and ENPC and is freely available for download. This paper
aims to study and analyze some dynamic phenomena that
can occur in the voltage-mode controlled buck converter.
We also show from Scicos simulations that variation of the
voltage input can lead to a particular route to chaos. In
Section 2, the general equation of a hybrid dynamical system
is briefly recalled. In Section 3, we explain the operation
of the voltage-mode controlled buck converter. Then, we
introduce the state equations of the circuit in question. In
Section 4, we comment on the obtained Scicos simulations.
We end by some concluding remarks.

2. Hybrid Dynamical System

The evolution of an autonomous hybrid dynamical system
can be described by [19]
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Figure 1: Voltage-mode controlled buck converter.
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where x(t) is the continuous state vector, q(t) ∈ Q =

{1, . . . ,nq} denotes the discrete state, and q(t−) is the
previous discrete state. The state space is H = R

n × Q, and
the initial state is supposed belonging to the set of initial
conditions (x0, i0) ∈ H0 ⊆ H . The function e : Rn × Q→Q
describes the change of the discrete state. The change from
one distinct discrete state to another is called a transition
or a switch. A transition between two states i and j occurs
if x(·) reaches the switch set Si, j : Si, j = {x : e(x, i) =
j}. Among important classes of hybrid systems, there are
piecewise linear systems that are described by

ẋ(t) = fq(x) = A(q)x(t) + B(q), (2)

where A(q) ∈ Rn×m and B(q) ∈ Rn are matrices depending
on q.

3. Voltage-mode Controlled Buck Converter

3.1. Operation of Voltage-mode Controlled
Buck Converter

A voltage feedback buck converter is represented in Figure 1.
It consists of a basic RLC circuit, a diode, and a switching
element S. The aim of the circuit is to maintain a desired
voltage, across the load resistance R, lower than the input
voltage E. This can be realized by the relieve of feedback
PWM control. The PWM control of a switched converter is
achieved by obtaining a control voltage vcon(t), as a linear
combination of the output capacitor voltage vC(t) and a
reference signal Vref in the form of

vcon(t) = a
(

vC(t)−Vref

)

, (3)

where a is the gain of the error amplifier. The control voltage
is compared with an externally generated sawtooth wave
Vramp(t) given by

vramp(t) = VL +
(

VU −VL

) t

T
t ∈ [0,T]. (4)

The output of this comparator is used to determine the state
of the switch S, in such way that S is off when vcon(t) ≥
vramp(t) and S is on when vcon(t) < vramp(t).

3.2. State Equations

When operating in continuous conduction mode (CCM),
two switch states can be identified as follows:

(i) switch off and diode on;
(ii) switch on and diode off.

Whether the switch is on or off, the buck converter can always
be described as a second-order linear system, whose states are
the voltage vC across the capacitor, and the current iL along
the inductor. The general equation that models operation of
the buck converter takes the form

ẋ(t) = fq(x) = A(q)x(t) + B(q), with q ∈ Q = {1, 2}.
(5)

For q = 1 and q = 2, we obtain the following two systems of
differential equations:

Soff : ẋ(t) = f1(x) = Ax(t) + B1,

Son : ẋ(t) = f2(x) = Ax(t) + B2,
(6)

where
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and x = (
vc
iL ) is the vector of the state variables.

The border function is given by

β(x, t) = vcon(t)− vramp(t)

= avc(t)− aVref−VL−
(

VU−VL

) t

T
, for t ∈ [0,T].

(8)

Therefore, the switching sections of each subsystem Son and
Soff are given by

βon,off =
{

(x, t) ∈ R2 ×R : β(x, t) ≥ 0
}

,

βoff,on =
{

(x, t) ∈ R2 ×R : β(x, t) < 0
}

.
(9)

The buck converter in CCM switches between two systems
Son and Soff if the state reaches the switching sections βon,off

and βoff,on. Figures 2 and 3 show the corresponding Scicos
schematic diagram and the transition diagram, respectively.

3.3. Simulation Results and Comments

We choose the parameter values: L = 30 mH, T = 400
microseconds, R = 22Ω, C = 47 µF, a = 8.4, Vref = 11.3 V,
VL = 3.8 V, and VU = 8.2 V. We consider the input voltage
E = 30∼47 V as a parameter of bifurcation. By varying E, the
circuit changes its qualitative behavior from a stable periodic
system to another situation that exhibits chaos. At first, using
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Figure 2: Scicos schematic diagram.
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Figure 3: Transition diagram of the buck converter.
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Figure 4: Bifurcation diagram.

Scicos we draw the one-parameter bifurcation diagram given
in Figure 4 where the input voltage E is the bifurcation
parameter and the sampled vC is the variable. By increasing
E, we observe at first glance that the displayed diagram (see
Figure 4) shows a period doubling route to chaos. However,
after a clear 4-T periodic operation, instead of appearance
of an immediate 8-T periodic operation, the system follows
a 7-T periodic operation. This means that border collision
bifurcation comes into play and interrupts the normal
period doubling cascade. Here, this type of bifurcation is
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Figure 5: Fundamental periodic operation. (E = 30 V): time
waveform of the capacitor voltage.
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Figure 6: Fundamental periodic operation. (E = 30 V): phase
plane.

characterized by the intersection of the bifurcation diagram
with the upper border line defined by

vc = Vref +
VU

a
. (10)
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Figure 7: 2-T subharmonic operation. (E = 37.5 V): time
waveform of the capacitor voltage.
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Figure 8: 2-T subharmonic operation. (E = 37.5 V): phase plane.
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Figure 9: 4-T subharmonic operation. (E = 41 V): time waveform
of the capacitor voltage.

Figure 4 shows clearly the occurrence of this phenomenon at
around the critical value Ec = 41.45 V.

For different increasing values of E, we give the capacitor
voltage wave form vC and its corresponding phase plane
vC-iL.

By choosing E = 30 V, we get a fundamental periodic
operation. This periodic regime is possible just for small
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Figure 10: 4-T subharmonic operation. (E = 41 V): phase plane.
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Figure 11: Chaotic regime. (E = 46.5 V): time waveform of the
capacitor voltage.
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Figure 12: Chaotic regime. (E = 46.5 V): phase plane.

values of E. Figures 5 and 6 show the fundamental periodic
operation. Figure 5 displays the capacitor voltage wave form,
and Figure 6 gives the corresponding phase plane.

For E = 37.5 V and E = 41 V, subharmonic operation
has been found. Figures 7 and 8 present 2-T periodic
subharmonic operation, whereas Figures 9 and 10 illustrate
4-T periodic subharmonic operation.
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Table 1

E(V) λ

41 −0.0491

42 1.2341

43 0.9264

44 1.1942

45 1.1973

46 1.8422

47 3.8948

However, the chaotic operation is given for E = 46.5 V.
Figure 11 indicates a chaotic signal with infinite order, and
Figure 12 shows the phase plane vC-iL that corresponds to
a chaotic attractor. In order to qualify this chaotic behavior
for beyond E = 42 V, we have also computed the Lyapunov
exponents λ from time series for a voltage range 41–47 V (see
Table 1).

Actually, it was shown in [9] that most controlled DC-DC
converters like the voltage-mode controlled buck converter
can be represented by piecewise smooth maps and such
type of maps generates robust chaos, defined by the absence
of periodic windows and coexisting attractors in some
neighborhood of parameter space.

4. Conclusion

This article has illustrated a Scicos numerical study of the
voltage-mode controlled buck converter that is modeled by
a hybrid system. Variations of the voltage input can lead
to a particular route to chaos; the system pursues a period
doubling bifurcation that is interrupted by border collision
after a 4-T periodic operation.

The purpose of studying the hybrid aspect of this circuit
is to interest people working on hybrid dynamical systems
domain, which may have some applications, especially,
in information transmission. Also, the paper will attract
the attention of readers that work with Scilab/Scicos for
modeling and simulation of hybrid dynamical systems. It
is true that [18] given in this paper is a good reference on
this matter. However, our paper is concerned with another
computational view which is the numerical study of route to
chaos in a hybrid system that is different from the one studied
in [18]; displaying a bifurcation diagram, for instance, is a
more complex numerical study that is not included in [18].
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