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Abstract

Training a deep neural network model usually

requires multiple iterations, or epochs, over the

training data set, in order to better estimate the

parameters of the model. However, in continual

learning, this process results in catastrophic for-

getting which is one of the core issues of this

domain. Most proposed approaches for this issue

try to compensate for the effects of parameter up-

dates in the batch incremental setup in which the

training model visits a lot of samples for several

epochs. However, it is not realistic to expect train-

ing data will always be fed to model in a batch

incremental setup. This paper proposes a chaotic

stream learner that mimics the chaotic behavior

of biological neurons and does not updates net-

work parameters. In addition, it can work with

fewer samples compared to deep learning mod-

els on stream learning setup. Our experiments

on MNIST, CIFAR10, and Omniglot show that

the chaotic stream learner has less catastrophic

forgetting by its nature in comparison to a CNN

model in continual learning.

1. Introduction

Continual learning assumes that a learning agent is pre-

sented with a sequence of different ”tasks” (i.e., data coming

from different probability distributions), where each task is a

sequence of experiences from the same distribution (Riemer

et al., 2018). The human brain can continuously learn dif-

ferent tasks without any of them negatively interfering with

each other. However, learning a set of sequential tasks in the

neural networks degrades the performance of the models.

This is one of the biggest challenge in continual learning

which is known as catastrophic forgetting (McCloskey &

Cohen, 1989; Chen & Liu, 2018).
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Most approaches have been proposed to alleviate the catas-

trophic forgetting are categorized into one of three main

categories, including replay-based, regularization-based,

and parameters isolation based methods according to the

task-specific information that is stored and used through

sequential learning process (De Lange et al., 2019). Re-

play based methods store exemplars in the replay buffer

to alleviate the catastrophic forgetting while learning new

tasks (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017;

Chaudhry et al., 2018). Since it is not always possible to

keep exemplars, regularization-based methods propose ex-

tra regularization to consolidate previous knowledge when

learning new tasks (Kirkpatrick et al., 2017). In the third

approach, the capacity of the model is not restricted and

the model architecture can be expanded (Xu & Zhu, 2018;

Rusu et al., 2016), copied (Aljundi et al., 2017) or frozen to

alleviate catastrophic forgetting. Some of the solutions in

this approach mask out the parameters or even neurons that

are used for the previous tasks (Mallya & Lazebnik, 2018;

Fernando et al., 2017).

Backpropagation is the main reason for catastrophic forget-

ting in continual learning and most proposed approaches

alleviate this issue by reducing the negative effects of back-

propagation. In addition, in most real world scenarios a

learning agent receives a very limited number of training

samples in each task similar to a few-shot learning setup (An-

toniou et al., 2020). However, most proposed approaches in

continual learning needs to revisit training data for several

epochs while learning a new task. Inspired by the chaotic

firing behavior of biological neurons many approaches have

been proposed to avoid backpropagation. ChaosNet is one

of those approaches that proposed a 1D chaotic dynamic

using the Generalized Lurth Series (GLS) as a chaotic neu-

ron (Balakrishnan et al., 2019). However, ChaosNet can not

compete with the deep neural network model in an image

classification task since a deep learning model can visit train-

ing samples in several epochs. Adapting the GLS neuron

in the continual few-shot learning and stream learning can

be considered as an alternative approach since it suffers less

catastrophic forgetting. Following the ChoasNet, we used a

GLS neuron to simulate the chaotic behavior of a biological

neuron to encode images with chaotic dynamics. We pro-

pose a GLS stream learner that uses a linear 1D ChaosNet

neuron as a continual learner component. We also propose
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Figure 1. The chaotic GlS based stream learner process (left) and

the feature extraction summary for a pixel, xi,j , using skew-tent

dynamic mapping (right).

using some chaotic transformation as a data augmentation

technique. Our results demonstrate that our chaotic learner

has noticeable results in comparison to a CNN model in the

batch incremental and stream learning setups for the image

class incremental classification tasks.

2. GLS Stream Learner

In the human brain, dendrites are exquisitely specialized cel-

lular compartments that critically influence how neurons col-

lect and process information. Retinal ganglion cell (RGC)

dendrites receive synaptic inputs from bipolar and amacrine

cells, thus allowing cell-to-cell communication and flow of

visual information (Agostinone & Di Polo, 2015). Follow-

ing ChaosNet, GLS Stream Learner uses Generalized Lurth

Series (GLS) as a time-series that is defined as ft+1 = ft(q)
where q initializes the dynamic. The Generalized Lurth Se-

ries is used to simulate the firing and not firing behavior of

a biological neuron (Balakrishnan et al., 2019). To compute

GLS series, we use the following mapping:

f(x) =

{

x
b

0 ≤ x < b
a(x−c)
(1−b) b ≤ x < 1

(1)

where b controls the shape of the attractors. Setting (c =
1, a = −1) gives a tent shape attractors known as Skew-

Tent (fSkew−Tent). And, the mapping with (c = b, a = 1)
creates an attractors in the shape of two separated lines

known as Skew-Binary (fSkew−Binary). Skew-tent and

skew-binary have been used for encryption of information

in many domains (Li et al., 2019). Appendix A illustrates

the output of Skew-tent and skew-binary through the time

that simulates either firing or not firing responses of a neuron

corresponding to inputs.

2.1. Feature Extraction

GLS learner uses normalized images. So, the pixels are

scalar numbers in [0, 1]. The feature extractor process runs

several threads. And, each thread encodes the pixel j from

xi to a probability of firing rate count denoted as a Pi,j .

The feature extraction process creates the GLS time-series

with either skew-tent or skew-binary mapping. Then, the

GLS thread tries to find the first ǫ-neighborhood point in the

time-series to the pixel information. Then, it computes the

firing rate count for each pixel as follow:

Pi,j =
False count

length of frequency list
, (2)

The result is the decoded information vector P for xi. Since

we encode each pixel to a probability number, the size of P

will be the same as image size. Figure 1 shows the feature

extraction process in detail.

2.2. Training

At time T , set of samples of new classes arrive in either

batch incremental fashion or as a stream of data. In this

case, we have DT ⊆ Dtrain where T is the task time for N

samples from either i.i.d or non i.i.d observations of (xi, ci)
pairs where ci ∈ C. And, C is the set of classes that the

stream learner should learn at time T . For, each sample xi,

the stream learner creates the vector Pi that is the extracted

feature from xi. Then, the stream learner computes the

mean representation, MSL
ci

, for m samples of class ci that

have seen at time T as follow:

MSL
ci

=
1

m

[

m
∑

i=1

P ci
i1 ,

m
∑

i=1

P ci
i2 , . . . ,

m
∑

i=1

P ci
in

]

, (3)

The batch incremental learner visits samples in several

epochs. Therefore, GLS learner should compute a new

vector, M
bj
ci , for the epoch j and appends it to the batch

incremental representatives as follow:

MBSL
ci

=
[

M b1
ci
,M b2

ci
, . . . ,M bn

ci

]

, (4)

where n is the number of epochs and M
bj
ci is computed for

the epoch j using 3.

Replay Buffer: GLS stream learner keeps either MBSL
ci

or MSL
ci

for the batch incremental or stream learning setup,

respectively, in the replay buffer instead of keeping exem-

plars in the buffer.

2.3. Classification

Let assume ϕ(x) extracts features for a sample x ∈ Xtest

as described in 2.1. Then, GLS stream learner predicts the

target as follow:

y∗ = argmin
y=1,...,t

‖ϕ(x)−Mc‖ , (5)

Where c ∈ C (all classes have learned so far) and

‖ϕ(x)−Mc‖ is the cosine similarity distance of two ϕ(x)



Chaotic Continual Learning

Figure 2. Batch Incremental (left) v.s. Stream Learning (right).

and Mc vectors that can be either either MBSL
ci

or MSL
ci

for

the batch incremental or stream learning, respectively.

2.4. Chaotic Data Augmentation

Chaotic data augmentations can be applied on the train set

to improve the performance of the continual learner. In

this work, we proposed using ”baker’s” transformation that

resembles the process of repeatedly stretching a piece of

dough and folding it in two. Equation 6 depicts ”baker’s”

mapping where i and j are the row and column of each pixel

in an image.

fbaker’s(xi, xj) =

{

(2xi, λxj)
(

0 6 xi 6
1
2

)

(

2xi − 1, λxj +
1
2

) (

1
2 < xi 6 1

) (6)

The dynamics of Hnon map may be decomposed into an

area-preserving bend, followed by a contraction, followed

by a reflection in the line y = x. Hnon map f : R2 → R
2

as fHnon(xi, xj) =
(

xj + 1− ax2
i , bxi

)

. The solenoid dy-

namic mapping also can be used as a rotation transforma-

tion (Falconer, 2004).

3. Experiments

There are three different data paradigms of stream learning

for evaluating continual learning models based on the way

the training data is organized (Hayes et al., 2018; Antoniou

et al., 2020). The model visits a limited number of sam-

ples in only one epoch in either one of the following setups

in the stream learning context. In the first setup, the data

stream is completely unordered. In the second setup, the

data stream is ordered by the class and the models learns

classes incrementally which results in catastrophic forget-

ting. In the third setup, data is organized on batches from

specific instances of categories that can be revisited (Anto-

niou et al., 2020). diversely, the model incrementally learns

new classes and it is allowed to revisits samples for several

epochs while training a new task in the batch incremen-

tal setup. To evaluate our approach we follow the second

paradigm that is more aligned with real scenarios. Figure 2

shows the comparison of batch incremental learning and the

stream learning setups.

(a) Permuted-MNIST divided into 5 tasks with 2 classes per task.

(b) MNIST divided into 5 tasks with 2 classes per task.

(c) CIFAR-10 divided into 5 tasks with 2 classes per task.

(d) Omniglot divided into 10 tasks with 20 classes per task.

Figure 3. Performance comparison of the chaotic learner v.s. the

CNN model in the stream of data (left) and Chaotic learner per-

formance comparison with the CNN model in a batch incremental

learning setup (right). We repeated the experiment three times

to report except for the MNIST dataset that has the significant

marginal performance. The higher number is better.

3.1. Experiment Setup

We compared the performance of GLS stream learner with

a convolutional neural network (CNN) using three differ-

ent datasets including MNIST (LeCun & Cortes, 2010),

CIFAR-10 (Krizhevsky, 2009), Omniglot (Lake et al., 2015)

and Permuted-MNIST which is the same data as MNIST

dataset when every pixel is randomly permuted. Appendix

B explains the architecture of a CNN model that is used
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in our experiments. In addition, we have two different ex-

periment setups for each dataset. The first one is a batch

incremental setup for a CNN model that revisits samples for

50 epochs for each task. The second one is a stream learning

setup for the chaotic learner that uses a few samples to train

the model for each task. For each dataset, data is divided

into different tasks and each task has a certain number of

classes. We run three experiments for each dataset includ-

ing batch incremental for CNN model, stream setup for

GLS learner, and evaluating the CNN model performance

trained in a few-shot manner in the stream learning setup.

In our experiment, we observed that Skew-binary mapping

achieves 3% more accuracy performance at each task in

comparison to the Skew-tent. Therefore, all reported results

for GLS stream learner are based on Skew-binary mapping

with {b = 0.331, ǫ = 0.01, q = 0.336, time step = 20000}
for MNIST, Permuted-MNIST and Omniglot datasets And

{b = 0.331, ǫ = 0.008, q = 0.136, time step = 30000} for

CIFAR-10.

MNIST and Permuted-MNIST: We split the MNIST

and Permuted-MNIST samples into 5 tasks with two classes

per task. In the stream setup, we train models with 3 batches

and 32 samples per batch. Figures 3(b) and 3(a) illustrate the

comparison results for MNIST and Permuted-MNIST. They

show chaotic learner has significant marginal performance

in comparison to the CNN model in both setups.

CIFAR-10: Figures 3(c) illustrates the comparison results

on CIFAR-10. CIFAR-10 training data is split into the 5

tasks with two classes per each task. For stream learner

setup, we train models with 4 batches and 64 samples per

batch. Unlike MNIST, the CNN model has better perfor-

mance (figures 3(c) right) in batch incremental learning

setup on CIFAR-10. However, the chaotic learner still lead

to better performance in the stream setup approach.

Omniglot: To evaluate the performance on the Omniglot

dataset (Lake et al., 2015), we designed two experimental

setups. From 964 classes in the background TRUE set of

the Omniglot dataset, we only chose 200 classes for this

experiment. We split the selected data into 10, 20, and 40

tasks such that each task includes 20, 10, and 5 classes,

respectively. We have 20 samples per class in this setup.

We selected 60 percent of samples for training. Therefore,

we have a few samples for training in the batch incremen-

tal and stream learning setups (12 samples per class in the

training set). Figure 3(d) represents the result of the Om-

niglot dataset that is divided into 10 tasks. Appendix C

contains further comparison results on Omniglot for the 20

and 40 tasks. The chaotic stream learner shows better results

compared to the CNN model in both batch incremental and

stream learner setups on Omniglot.

Figure 4. The process of computing a higher-level abstraction for

each pixel using normalized correlated extracted features.

4. Future Work

To preserve the correlation between the extracted features,

we can use a moving feature extractor block on the sample

xi, and calculate the correlated features for each pixel that

lies in the moving block. Figure 4 briefly shows the process.

First, we extract features associated with each pixel using

the GLS feature extractor described in 2.1 for all pixels in

the block. Adding a zero padding to the extracted firing

rates helps to have the same size firing rate series. Applying

an element-wise sum and then normalize the vector of the

firing rates gives a higher-level abstraction of the correlated

feature extracted for the pixel, Pij , that is defined as follow:

Pij =
Pij

‖Pij‖2
, (7)

All extracted Pij have the same size but different angels.

The angels can represent the higher-level abstraction of the

correlated feature associated with each pixel and its neigh-

bors. Our next step in this direction is experimenting with

the effectiveness of using higher-level correlated abstraction

instead of considering a standalone extracted futures using

the GLS feature extractor in the stream learning setup.

5. Conclusion

In this work, GLS stream learner is proposed as a novel ap-

proach to alleviate the catastrophic forgetting in the context

of continual few-shot learning. This approach provides a

mechanism based on the chaotic structure of a biological

neuron that provides a different perspective from the most

continual learning approaches. According to our experi-

ment, this single chaotic neuron causes less forgetting in

comparison to a deep learning model that needs a lot of time

to train and more parameters to learn in batch incremen-

tal and stream learning setups. The deep learning model

achieved profound performance in the image classification

task. However, it suffers from catastrophic forgetting prob-
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lems because of the backpropagation mechanism to update

their parameters in the continual learning context. GLS

stream learner can show the importance of thinking to find

an alternative solution that more suitable for stream and

continual few-shot learning setups.
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Appendices

A. Skew-Tent and Skew-Binary

Figure 5 shows ten steps movement in the time-series using

skew-binary (left) and skew-tent (right). Repeating the pro-

cess for several steps shows that the tent shape attractor or

two separated lines attractor for skew-tent and skew-binary,

respectively. Red and blue colors in scatter plots illustrated

in figure 6 represents the active and passive status of a den-

drite. It mimics either firing or not firing the response of a

neuron corresponding to the input. Figure 7 shows this be-

havior through time. All points above the red line, where is

defined based on the ”b” hyperparameter, can be considered

as true (firing) and the bellow points as false (not firing).

Figure 5. The skew-binary (left) and skew-tent (right) movement

steps after applying ten-time steps in the time-series.

Figure 6. The Skew-Binary (left) and Skew-Tent (right) at tractors

after 1000 time steps.

Figure 7. The Skew-Binary (left) and Skew-Tent (right) outputs

for 100 time steps through time.

B. CNN Model Architecture

The CNN model that used in the experiments has the follow-

ing architecture. It has 4 convolutional and 4 fully connected

layers. In addition, the convolutional layers have 3, 10, 20

and 40 inputs and 10, 20, 40 and 64 output channels with

5, 5, 3, and 5 kernel size with stride of 1, respectively. The

feature extractor part is followed by two fully connected lay-

ers that contain 680 and 280 neurons followed by a softmax

module.

C. Omniglot Result

Figure 8 shows the further comparison on the Omniglot

dataset with 20 and 40 tasks setup with 10 and 5 classes per

task, respectively.

.

(a) Omniglot divided into 20 tasks with 10 classes per task.

(b) Omniglot divided into 40 tasks and 5 classes per task.

Figure 8. Performance comparison of the chaotic learner v.s. the

CNN model in the stream of data (left) and Chaotic learner per-

formance comparison with the CNN model in a batch incremental

learning setup (right). The higher number is better.


