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Abstract

Sufficient conditions are given for the chaotic behaviour of difference equations defined in terms of
continuous mappings in R". These conditions are applicable to both difference equations with
snap-back repellors and with saddle points. They are applied here to the twisted-horseshoe difference
equation of Guckenheimer, Oster and Ipaktchi.

1980 Mathematics subject classification (Amer. Math. Soc.): 39 A 10.

1. Introduction

Recently Marotto [5] proved that a difference equation in R" with a snap-back
repellor behaves chaotically. His proof is a generalization of the period 3 implies
chaos result of Li and Yorke [4] for difference equations in R1. It differs in that
the mappings defining the difference equations are required to be continuously
differentiable rather than continuous. This is so the inverse mapping theorem
and the Brouwer fixed point theorem can be used to obtain the existence of
continuous inverse functions and periodic points. Marotto's result is however
applicable only to difference equations with repellors and not to those with
saddle points. It thus cannot be used for difference equations involving the
horseshoe mappings of Smale [7] or the twisted-horseshoe mappings of
Guckenheimer, Oster and Ipaktchi [3].

Sufficient conditions for the chaotic behaviour of difference equations in R"
are given in this paper, which are applicable to difference equations with saddle
points as well as to those with repellors. These conditions are valid for difference
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218 P. E. Kloeden [21

equations defined in terms of continuous mappings and in the special case of a
difference equation with a snap-back repellor are more readily tested than those
listed by Marotto in [5; Remark 2.2]. The proof that they imply chaotic
behaviour is a modification of the proof used by Marotto in [5]. There are
however two important differences. Firstly the mappings in the difference
equations are assumed to be continuous rather than continuously differentiable.
The existence of continuous inverse mapping then follows from the fact that
continuous one-to-one mappings have continuous inverses on compact sets.
Using this result rather than the inverse mapping theorem considerably sim-
plifies the proof. Secondly the Brouwer fixed point theorem is used on a
homeomorph of an /-ball for some 1 < / < n rather than on a homeomorph of
an w-ball as in Marotto's proof. This allows saddle points to be considered as
well as repellors.

In the next section the sufficient conditions are stated and are proved to imply
chaotic behaviour. Then in Section 3 these conditions are used in two examples,
one of which is the twisted-horseshoe example of Guckenheimer, Oster and
Ipaktchi [3].

2. Sufficient conditions

Some definitions and preliminary results will be given first.
In the sequel / : R" —* R" will be a continuous mapping, and which is

associated the first order difference equations

(2-1) ** + ,=/(**)•

A point y0 £ R " is a periodic point of period p if the points >>o, f(y^),
f2(yo)< • • • >f '(.Vo) a r e pairwise different and if f(y^) = y0. Difference equa-
tion (2.1) is chaotic if there exists

(i) a positive integer N such that (2.1) has a periodic point of period p for each
P > N;

(ii) a scrambled set of (2.1) that is an uncountable set S containing no periodic
points of (2.1) such that:

(a)/(S) c S,
(b) for every xo,yo e 5 with x0 =£ ly0

l imsup| | /(xo)-/*(.yo) | |>O,

X—»00

(c) for every x0 e S and any periodic point y0 of (2.1)

limsup||/(xo)-/*O>o)| |>0;
k->ao
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[ 3 ] Chaotic difference equations in R" 219

(iii) an uncountable subset So of S such that for every XQ, y0 e So:

liminf||/*(xo)-/*(>>o)||=0.
k—>oo

An /-ball is a closed ball of finite radius in R' in terms of the euclidean
distance on R'. Such a ball of radius r centred on a point z0 e R' will be denoted
by B'(z0; r). A mapping/: R" - • R" is expanding on a set A c R" if there exists a
constant X > 1 such that
(2.2) M* - y\\ < \\f(x) - f(y)\\

for all x,y e A. Note that such a mapping is one-to-one on A.
The following two lemmas will be needed in the proof of the theorem below.

The proof of the first lemma is straightforward and will be omitted. A proof of
the second lemma can be found in Diamond [2].

LEMMA 1. Let f: R"—»R" be a continuous mapping which is one-to-one on a
compact subset K c R". Then there exists a continuous mapping g: f(K) -» K such
that g(f(x)) = x for all x e K.

The mapping g in Lemma 1 is a continuous inverse of mapping / on the
compact set K. It will be denoted by f%1 in the sequel.

LEMMA 2. Let f: R"—»R" be a continuous mapping and let {A)}J1O be a
sequence of compact sets in R" such that Ki+l C /(A,) for i = 0, 1, 2, . . . . Then
there exists a nonempty compact set K C Ko such that / ' (*o) e %i for °H xo e K
and all i > 0.

The following theorem is the principal result of this paper.

THEOREM. Let f: R" -* R" be a continuous mapping and suppose that there exist
nonempty compact sets A and B, and integers 1 < / < n and nx,n2> 1 such that:

(1) A is homeomorphic to an I-cell;
(2) A Qf(A);
(3)/ is expanding on A;
(4)B CA;
(5)f'(B) nA=0;
(6) A Cf' + a\By,
(7)f'+"2 is one-to-one on B.
Then difference equation (2.1) defined in terms of mapping f is chaotic.

PROOF. The proof here is similar to that used by Marotto in [5], except Lemma
1 is used instead of the inverse mapping theorem and the Brouwer fixed point
theorem is used on homeomorphisms of /-balls rather than n-balls.
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From the continuity of / and (6) there exists a nonempty, compact subset
C C B such that A = f'+n\C). By (7)/"1 + "2 is one-to-one on C, so by Lemma
1 there exists a continuous function g: A —» C such that g(/"'+n2(^)) = * for all
x G C. Note that by (5)/"'(C) n ^ = 0 .

From (3)/is one-to-one on A, so by Lemma 1 /has a continuous inverse £"':
/ ( ^ ) ^ ^ . B y ( 2 ) C c ^ C / O 0 , from which it follows tha t / / (C) C A for all
k > 0.

For each & > 0 the mapping /<"* ° g: A —> A is a continuous mapping from a
homeomorph of an /-ball into itself, so by the Brouwer fixed point theorem there
exists a point yk G A such that f^k{g{yk)) = >V In fact yk G/~*(C) and so
f"+k(yk) = /"'+*(£*(«O'*))) = / " ' U U ) ) e /"'(C) as g(>>,) e C. Hence
/"' + I*O'*) « ^ as/"'(C) n i4 = 0 . Also/"+"»+*(^t) =/n i +"2(?(^)) - J V

Now for k > «, + n2 the pointy is a periodic point of period/? = nt + n2 +
k. To see this note that p cannot be less than or equal to k because f(yk) G
/7*+7'(C) c A for 1 < j < k and then the whole cycle would belong to A in
contradiction to the fact that f"1+k(yk) £ A. Also/7 cannot lie between k and
AI, + «2 + k when k > n, + n2 because fni+n2+k(yk) = yk and so p would have
to divide n, + n2 + k exactly, which is impossible when k > n, + «2.

Hence difference equation (2.1) has a periodic point of period p for each
p > N = 2(«j + «2).

Let Z> = /"'(C) and /i = / " . Then y4 n Z) = 0

(2.3) A(Z>) = /N(£>) = fn' + n 2

in view of (2) and the definition of C. Also

(2.4) A O O -
by (2) and

(2.5) h(A) = f{A) D / ^ , + «2)(/-.-^(C)) = /"-(C) = D

as/^"'"^(C) c ^ , . Moreover as /I and D are nonempty, disjoint compact sets
it follows that

(2.6) inf{||;c -y\\;x(EA,y(E D) > 0.

The existence of a scrambled set S then follows exactly as in Marotto's proof
[5; page 208] or in Li and Yorke [4]. It will be briefly outlined here for
completeness.

Let E be the set of sequences S = (£'^}J'_1 where Ek is either A or D, and
Ek+l = Ek + 2 = A if Ek = D. Let r(&,k) be the number of sets Ej equal to D
for 1 < j < k and for each TJ G (0, 1) choose S" = {^}"_ 1 to be a sequence in
E satisfying
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[ 51 Chaot ic difference equations in R" 221

Let F = (S71; TJ G (0, 1)} c E. Then F is uncountable. Also from (2.3)-(2.5)
h(E£) D E£+, and so by Lemma 2 for each &v G F there is a point xv G A u D
with hk(xv) G E£ for all k > 1. Let Sh = {A *(*,,); A: > 0 and S71 G F}. Then
A(5A) c SA, 5A contains no periodic points of A, and there exists an infinite
number of k's such that hk(x) G A and A*(.y) e D for any ^ j e J, with
x ¥=y. Hence from (2.6) for any x,y G Sh with x ¥^y

L, = lim sup \\hk(x) - hk(y)\\ > 0.
fc-»oo

Thus letting S = {/*(*); x G Sh and k > 0} it follows that f(S) c S, S
contains no periodic points of / and for any x, y G S with x

This proves that the set S has properties (ii)a and (ii)b of a scrambled set. The
remaining property (ii)c can be proved similarly. See Li and Yorke [4] for further
details.

It remains now to establish the existence of an uncountable subset So of the
scrambled set S with the properties listed in part (iii) of the definition of chaotic
behaviour. In contrast with Marotto's proof this is the first place where assump-
tion (3) that/is expanding on A is required. Until now all that has been required
is that/ is one-to-one on A. From this, (2) and Lemma 1 follows the existence of
a continuous inverse /71: A -* A. Hence by the Brouwer fixed point theorem
there exists a point a G A such that/7'(a) = a, or equivalently/(a) = a.

Now because/is expanding on A it follows that/71 is contracting A, that is

\\JA\X) ~ f

for all x, y G A where X > 1 is the coefficient of expansion of/on A. Hence for
any k > 1 and all x, y G A

and in particular for any x G C c A and fory = a

(2.7) ||£*(x) - a\\ < X-k\\x - a\\,

so f^k(x) -» a as k -» 00 for all x G C. Consequently for any e > 0 there exists
an integer/ = j(x, e) such tha t / ^x ) G A n B"(a; e). Then by continuity there
exists a S = 8(x, e) > 0 such that fc\A n int B"(x; 8)) c A n B"(a; e). Now
the collection Q = {int B"(x; 8); x G C} constitutes an open cover of the
compact set C, so there exists a finite sub-collection (^ = {int 5"(JC,; 5,); / =
1, 2, . . . , L} which also covers C. Let T = r(e) = max{/(x,.; e); / =
1, 2, . . . , L). Then/7r(jc) G fi"(a; e) n A for all x G C and so by (2.7)//(C)
C fi"(a; e) n .4 for all A: > jT(e).
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Let Hk = h^k(C) for all k > 0 where h^1 is a continuous inverse of h = fs on
y4. Then for any e > 0 there exists a / = /(e) such that |jJC — a\\ < e/2 for all
x G Hk and all A; > J.

The remainder of the proof parallels that in Marotto [5; page 208] and in Li
and Yorke [4]. The sequences S ' = {£ t ' } " . , £ E will be further restricted as
follows: if E£ = D then k = m2 for some integer m and if E£ = D for both
k = m2 and k = (m + I)2 then Eg = -tf^-y f o r k = m2 + j for j =
1,2 , . . . , 2m. Finally for the remaining k's, Eg = A. Now these sequences still
satisfy h{EJI) D E^+l, so by Lemma 2 there exists a point xv with hk(x7l) G ££
for all k > 0. Let So = {*,,: TJ G (f, 1)}. Then So is uncountable, Soc Shc S
and for any j , / G ( | , 1) there exist infinitely many m's such that hk(xs) G Ek =
i/2m_, and hk(xt) G £ '̂ = H2ml_x where fc = m2 + 1. But from above, given
any e > 0, ||x - a\\ < e/2 for all x G H2m_1 provided m is sufficiently large.
Hence for any e > 0 there exists an integer m such that \\hk(xs) — hk(xt)\\ < e
where k = m2 + 1. As e > 0 is arbitrary it follows that

L2 = lim inf||**0O - **(*,)ll = 0.
k—>oo

Thus for any x, y G So

lim inf ||**0O - hk(x,)\\ < L2 = 0.

This completes the proof of the theorem.

For one-dimensional difference equations conditions (3) and (7) of the theo-
rem are superfluous as the intermediate value theorem can be used to show the
existence of periodic points. Without these two conditions, the theorem then
contains the sufficient conditions of Barna [1] and Sharkovsky [6] as special
cases. Indeed as can be seen from Sharkovsky [6; Lemma 1] the remaining
conditions are also necessary conditions for chaotic behaviour.

3. Examples

Two examples are given in this section to illustrate the application of the
preceding theorem. The first example is a one-dimensional difference equation
with a snap-back repellor. It forms one of the components of the second
example, which is a two-dimensional twisted-horseshoe difference equation
considered by Guckenheimer, Oster and Ipaktchi [3]. This second example has a
saddle point.
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[71 Chaotic difference equations in R" 223

EXAMPLE 1. Consider the difference equation on the unit interval / which is
defined in terms of the continuous mapping/where

f 2x forO < x <±

[2 - 2x for i <x < 1.

This mapping / maps / into itself and has two fixed points 0 and | , both of
which are easily seen to be snap-back repellors.

The conditions of the theorem are satisfied by A = [jg, ^], 2? = [f, f ], n = I
= 1 and n, = n2 = 1. To see this note that

so

f(A) D A, f(B) nA=0 and f(B) D A.

Also / is expanding on A because for x, y £ A

I/W - /(>0l = 1(2 - 2x) - (2 - 2>0| = 2\x - y\
and/2 is one-to-one on B because for all x e B

f\x) = 2(2 - 2x) = 4 - 4x.

Hence this difference equation exhibits chaotic behaviour.

EXAMPLE 2. Consider the difference equation on the unit square I2 in R2

which is defined in terms of the continuous mapping/ = (/ i , /^ where

M*,y) -

and

This mapping describes a twisted-horseshoe on I2 and has been investigated
in detail by Guckenheimer, Oster and Ipaktchi [3]. It has a fixed point
(3c, y) = (§, ^|), which is a saddle point with eigenvalues -2 and ^ . Conse-
quently Marotto's snap-back repellor theorem cannot be used here, but the
preceding theorem can.

Let L, be the line 90* + 378y = 305 and L2 the line 90* - 378y = -125.
Then (x,y) e L,. Also let

A = {(JCJOGL,; -jg < ̂  < | } and 5 = {(x,^) G L,; | < x < |
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Then

f(A)= { ( x ) ^ ) G J L 1 ; ^ < x < | } > f{B)

f \ B ) = {(*,>>) e L2; | < x <

Hence f(A) D A,f(B) nA=0 and f(B) D A, so conditions (2), (4), (5) and
(6) of the theorem are satisfied with nx = 1 and n2 = 2. Also A is homeomorphic
to a 1-ball and/is expanding on A because for (x,y) £ A

fi(x,y) = 2-2x, f2(x,y) = — - 2y

so for any two points (x',yr), (x",y") G A

\\f{x',y')-f(x",y")\\ = 2||(x',/) - (x",y")\\.

Finally for all (x, 7) G 5

/3(x,>-) = 2 - 2 ( 2 ( 2 - 2 x ) ) = 8 - 8 x

and

which gives the nonsingular Jacobian matrix

381
200*

+ 1
1000^

lan matrix

- 8
381
200

0
1

1000

249
400

Hence/3 is one-to-one on B.
All of the conditions of the theorem are thus satisfied, so this twisted-

horseshoe difference equation behaves chaotically.
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