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Abstract The most important fact in the field of theoretical ecology and evolutionary biology is the strat-
egy of predation for predators and the avoidance of prey from predator attack. A lot of experimental works
suggest that the reduction of prey depends on both direct predation and fear of predation. We explore the
impact of fear effect and mutual interference into a three-species food chain model. In this manuscript, we
have considered a tri-topic food web model with Beddington-DeAngelis functional response between inter-
acting species, incorporating the reduction of prey and intermediate predator growth because of the fear
of intermediate and top predator respectively. We have provided parametric conditions on the existence of
biologically feasible equilibria as well as their local and global stability also. We have established conditions
of transcritical, saddle-node and Hopf bifurcation in vicinity of different equilibria. Finally, we performed
some numerical investigations to justify analytical findings.

Mathematics Subject Classification : 39A30, 92D25, 92D50.

Keywords : Fear effect; Beddington-DeAngelis functional response; Global stability; Bifurcations; Di-
rection of Hopf bifurcation; Chaos.

1 Introduction

Analysis of dynamical activities of prey-predator interaction is one of the momentous themes for researchers
in mathematical biology and theoretical ecology. Uniform existence and universal importance make the
prey-predator interplay an attractive field of investigation. Prey-predator interplay becomes the focus of
theoretical ecologist and experimental biologist from the last few decades [1,2]. Many mathematical mod-
els of prey-predator interactions have been formulated and considered to investigate the consumption and
survival dynamics of species [3,4]. Prey-predator interactions may be governed by ordinary differential
equations [3,5], fractional differential equations [6,7], partial differential equations [4,8] and stochastic dif-
ferential equations [9], delay differential equations [10] and difference equations also. These mathematical
models are constructed and studied to identify different environmental effects such as the interaction be-
tween species, Allee effect, refuge of species, harvesting, pattern formation, environmental fluctuations etc.
In the early nineteenth century Malthus first formulated prey-predator interaction through mathemati-
cal models [11,12]. The celebrated Lotka-Volterra model was eventually enhanced by introducing logistic
growth function for prey species [13,14], incorporating various functional response and environmental effects
and these developments makes prey-predator interplay more and more realistic [15,16,17]. The dynamics of
prey-predator interaction can significantly be affected in presence of fear effect in the field of environmental
biology and ecology [18].
The presence of predator populations has the most impact on a prey-predator system through direct
predation as well as fear of predation. A large number of mathematical models have been concerned
about considering the direct predation only [19,20,21,22,23] and reference therein. Those models are con-
structed with only prey dependent, both monotone and non-monotone functional responses [15,16,20,24,
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25], both prey and predator dependent functional response like Cowley-Martin type functional response
[17], Beddington-DeAngelis type functional response [26,27], Monod-Haldane type functional response [28]
and ratio-dependent functional response [20,29]. In 2009, Takeuchi et al. studied the dissension along with
investing time on taking care of juvenile and searching for food/nutrients of mature prey in absence of
direct predation, while they assumed that matures accommodate their parental care time via learning [30].
Krivan (2007) investigated that exchange among foraging and predation based on classical Lotka-Volterra
prey-predator system where either prey or predator or both species were adaptive to maximize their inde-
pendent sturdiness [31].
The second one is that in presence of predator species, prey species may gently modify their behaviour
because of the fear of predation threat. Appearance of predator may influence prey species more effectively
than direct predation [32,33,34,35,36]. The birth rate of prey species has been subjected to modification
through the introduction of fear effect [18,37]. A lot of field observation suggests including the cost of fear
in a prey-predator system, not only direct predation [33,34,35,36]. It also may be the cause of anti-predator
behaviour for prey species which plays a significant responsibility on demography of prey species [38]. For
example, the reproduction physiology of elks (Cervus elaphus) influenced by wolves (Canis lupus) in Greate
Yellowstone Ecosystem [39].
Prey species may transform their habitat from higher-risk zone to lower risk zone, to reduce the predation
rate [35]. In 2011, Zanette et al. [36] observed during a whole breeding season that song sparrows (Melospiza
melodia) reduces their reproduction due to fear of predators in their offspring season. This reduction is
being occurred because of their anti-predator behaviour which persuades growth rate, in addition to their
offspring endurance rates since female song sparrows laid a few eggs. Only some of those eggs can survive
while most of the nestlings perished in a nest. They also observed that a variety of anti-predator behaviour
is responsible for this effect. For example, frightened parents suckled their nestlings less, their nestlings
were lighter and much more likely to perish. Correlational affirmation for birds [33,40,41,42], Elk [39],
Snowshoe hares [43] and dugongs [44] also display some indication that fear can interrupt prey-predator
interactions. Very recently Elliott et al., [45] studied some field experiments on Drosophila melanogaster as
prey and mantid as their predator species, to observe the effect of fear on populations robustness in relation
to species density. They explored that in presence of mantid, the reproductive rate of drasophila reduces
in both their breeding in addition to non-breeding seasons.
Depending on field experimental data, Wang et al., Zanette et al. [18,36] developed mathematical formula-
tion for prey-predator interaction by introducing the cost of fear for prey because of predator species, where
fear shows a crucial function on prey birth rate. They also observed that strong anti-predator behaviour or
correspondingly most important cost of fear may reduce the risk of the existence of oscillatory behaviours
and thus eliminate the scenarios “paradox of enrichment”. They also displayed that cost of fear can stabilize
the system by eliminating periodic behaviour as observed in prey-predator interactions. Also, periodic os-
cillations may arise, emerging from either sub-critical or supercritical Hopf bifurcation under comparatively
lower cost for fear [18]. Thus, the effect of fear can produce multi-stability in prey-predator interplays. In
2017, Wang and Zou formulate a stage-structured prey-predator interaction with adaptive avoidance for
predator species by including fear of predator for prey species [37]. They divided the prey population into
juvenile and mature stage and constitute a system of delay differential system with maturation delay. Das
and Samanta [46] analysed a stochastic prey-predator system with the effect of fear due to predator on
prey species and additional food is provided for a predator. Recently, Panday et al. [47] analysed a tri-topic
food web system considering the effect of fear of top predator and intermediate predator on reproduction
of intermediate predator and prey species respectively. Here, they study the cost of fear on the stability
dynamics of the model system.
In this paper, the Hastings–Powell model [48] has been modified incorporating fear of intermediate and top
predator to prey and intermediate predator respectively with Beddington–DeAngelis functional response
for both species. The organization of the manuscript is as follows: in the next segment, we have formulated
the model system. The basic dynamical results such as positivity, boundedness property and persistence
of model are provided in section 3. Biologically feasible equilibria of the model system and parametric
conditions of local and global stability are determined in section 4. Section 5 is dedicated to studying
transcritical bifurcation at an axial equilibrium point and conditions for the occurrence of saddle-node and
Hopf bifurcation around coexistence equilibrium point along with stability direction of Hopf bifurcation.
In Section 6, we perform some numerical simulations to justify our analytical findings, which also shows
the roles of fear effect on the dynamics of prey-predator interactions. Finally, in section 7, we summarize
some biological indications from our analytical observation and possible future scope for upcoming research
works.
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2 Model formulation

In this research article, our main objective is to investigate the change of basic dynamical behaviour of a
tri-topic food chain model in presence of fear due to the appearance of higher species. For this purpose, we
start by considering the Hestings-Powell model [48]. In 1991 Hestings and Powell proposed a continuous
tri-topic food chain model by considering more naturalist logistic growth function for prey species and
Holling type-II functional response in the form,

dX

dT
= R0X(1− X

K0
)− R1XY

A1X + C1
(1a)

dY

dT
=

E1R1XY

A1X + C1
−D1Y − R2Y Z

A2Y + C2
(1b)

dZ

dT
=

E2R2Y Z

A2Y + C2
−D2Z (1c)

with initial condition X(0) ≥ 0, Y (0) ≥ 0, Z(0) ≥ 0. X(T ), Y (T ) and Z(T ) are population densities of
prey, middle/intermediate predator and top predator population at any instant of time T respectively
and description of model parameters are given in Table 1. In 2018, Pandey et al. [47], incorporated effect
of fear in above considered tri-topic food chain model. They assumed that intrinsic growth rate of prey
population reduces due to appearance of intermediate predator and modified intrinsic growth rate of prey

population becomes φ1(K1, Y ) =
R1

1 +K1Y
, which is a monotonically decreasing function of both K1 and

Y . Similarly modified growth rate of intermediate predator population is φ2(K2, Z) =
R2

1 +K2Z
, which is

also a monotonically decreasing function of both K2 and Z. K1, K2 are level of fear parameters of prey and
middle predator population respectively. On behalf of above consideration they investigate the dynamics
of following modified tri-topic food chain model

dX

dT
=

R0X

1 +K1Y
(1− X

K0
)− R1XY

A1X + C1
(2a)

dY

dT
=

E1R1XY

(1 +K2Z)(A1X + C1)
−D1Y − R2Y Z

A2Y + C2
(2b)

dZ

dT
=

E2R2Y Z

A2Y + C2
−D2Z (2c)

Fear functions φ1(K1, Y ) and φ2(K2, z) satisfies following ecological hypothesis :
1. φ1(0, Y ) = 1 and φ2(0, Z) = 1 ; i.e., if there is no anti-predator behaviours of prey and middle predator
species, then there will be no reduction in the birth rate of prey and middle predator species.
2. φ1(K1, 0) = 1 and φ2(K2, 0) = 1; i.e., if middle or top predator species becomes zero, then there is no
reduction in the birth rate of prey and middle predator species.
3. limK1→∞ φ1(K1, Y ) = 0 and limK2→∞ φ2(K2, Z) = 0; i.e., if anti-predator behaviour is very large, then
prey an middle predator reproduction ultimately becomes zero.
4. limY →∞ φ1(K1, Y ) = 0 and limZ→∞ φ2(K2, Z) = 0; i.e., if middle predator and top predator species is
very large, then respectively prey and middle predator reproduction reduces and ultimately goes to zero,
due to large anti-predator behaviours.

5.
∂φ1

∂K1
< 0 and

∂φ2

∂K2
< 0; i.e., reproduction of prey and middle predator species decreases with increase

of anti-predator behaviours.

6.
∂φ1

∂Y
< 0 and

∂φ2

∂Z
< 0; i.e., reproduction of prey and middle species decreases with an increase of middle

predator and top predator species density respectively.
They discuss boundedness, positivity of system solutions and persistence of the considered model system.
Parametric conditions of local and global stability of different feasible equilibria are investigated by them
also. However, in the study by Pandey et al.[47], it was assumed that prey-predator interplay depends only
on prey density alone and it is of type-II functional response. A huge number of detailed critical inspection
on ecology and physiological evidence suggests that competition within predator species might be good for
predator population under certain conditions in a deterministic environment [49].
To take account of the above observation, we have modified the model of Pandey et al. [47] by considering
the Beddington-DeAngelis type function response, depending on both interacting species. Thus the modified
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Symbol Definition Dimension Non-dimensional representation
T Time time t = R0T

X Prey density biomass x =
X

K0

Y Intermediate predator density biomass y =
Y

K0E1

Z Top predator density biomass z =
Z

K0E1E2
R0 Prey intrinsic growth rate time−1 ...

R1 Maximum predation rate of intermediate predator time−1 ...

R2 Maximum predation rate of top predator time−1 ...

K0 Prey carrying capacity biomass ...

K1 Fear level of prey biomass k1 = K0K1E1

K2 Fear level of prey biomass k1 = K0K2E1E2

A1 Handling time of middle predator biomass−1 a1 =
R0A1

R1E1

A2 Handling time of top predator biomass−1 a2 =
R0A2

R2E2

B1 Mutual interference among middle predators biomass−1 b1 =
R0B1

R1

B2 Mutual interference among top predators biomass−1 b2 =
R0B2

R2

C1 Environmental protection for prey dimensionless c1 =
R0C1

K0E1R1

C2 Environmental protection for middle predator dimensionless c2 =
R0C2

K0E1E2R2

D1 Intermediate predator mortality rate time−1 d1 =
D1

r0

D2 Top predator mortality rate time−1 d2 =
D2

r0
E1 Conversion efficiency of intermediate predator dimensionless ...

E2 Conversion efficiency of top predator dimensionless ...

Table 1: Description of system variables and system parameters with their dimensions and non-dimensional representation.

shape of above-considered model with Beddington-DeAngelis type function response is as follows:

dX

dT
=

R0X

1 +K1Y
(1− X

K0
)− R1XY

A1X +B1Y + C1
(3a)

dY

dT
=

E1R1XY

(1 +K2Z)(A1X +B1Y + C1)
−D1Y − R2Y Z

A2Y +B2Z + C2
(3b)

dZ

dT
=

E2R2Y Z

A2Y +B2Z + C2
−D2Z (3c)

where B1, B2 represents mutual interference among middle predators and top predators respectively.
To reduce number of system parameters, we introduce following dimensionless variables x = X

K0

, y = Y
K0E1

,

z = Z
K0E1E2

and t = R0T . Then the above system reduces to following form:

dx

dt
=

x

1 + k1y
(1− x)− xy

a1x+ b1y + c1
:= F1(x, y, z), (4a)

dy

dt
=

xy

(1 + k2z)(a1x+ b1y + c1)
− d1y − yz

a2y + b2z + c2
:= F2(x, y, z), (4b)

dz

dt
=

yz

a2y + b2z + c2
− d2z := F3(x, y, z) (4c)

with the initial condition x(0) ≥ 0, y(0) ≥ 0 and z(0) ≥ 0 and we introduce dimensionless parameters

as k1 = K0K1E1, a1 =
A1R0

E1R1
, b1 =

B1R0

R1
, c1 =

C1R0

R1K0E1
, d1 =

D1

R0
, k2 = K0K2E1E2, a2 =

A2R0

E2R2
,

b2 =
B2R0

R2
, c2 =

C2R0

R2K0E1E2
and d2 =

D2

R0
.

In next segment of the manuscript, we shall establish boundedness, positivity of system solutions and
persistence of the system which will refer to that system is feasible, well-posed and exist for a long time.
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3 Positivity, boundedness and persistence of system solutions

In Theorem 1-3, we shall establish respectively positivity, boundedness and permanence of the model system
(4).

Theorem 1 All system solutions of the model system (4) are positively invariant.

Proof Right hand side of model system (4) are continuous functions of dependent variables x, y and z.
After integration of equations of system (4), we get

x(t) = x(0)exp

[
∫ t

0

{

y(s)

1 + k1y(s)
− y(s)

a1x(s) + b1y(s) + c1

}

ds

]

y(t) = y(0)exp

[
∫ t

0

{

x(s)

(1 + k2z(s))(a1x(s) + b1y(s) + c1)
− d1 −

z(s)

a2y(s) + b2z(s) + c2

}

ds

]

z(t) = z(0)exp

[
∫ t

0

{

z(s)

a2y(s) + b2z(s) + c2
− d2

}

ds

]

.

It is apparent from above expressions that x(t), y(t) and z(t) remain non-negative for future infinite time if
solution curve initiate from any interior point of R3

+ =
{

(x(t), y(t), z(t)) ∈ R
3 : x(t) ≥ 0, y(t) ≥ 0, z(t) ≥ 0

}

.

Hence R
3
+ is positively invariant set for the system (4).

Theorem 2 All solutions (x(t), y(t), z(t)) of model system (4) with positive initial conditions i.e., initiate
from R

3
+ − {0} are uniformly bounded.

Proof We consider the function L(t) as

L(t) = x(t) + y(t) + z(t).

Differentiating the above relation with respect to t and using system (4)

dL

dt
=
dx

dt
+

dy

dt
+

dz

dt

=
x

1 + k1y
(1− x)− xy

a1x+ b1y + c1

(

1− 1

1 + k2z

)

− d1y − d2z

Therefore, for any arbitrary constant γ we have

dL

dt
+ γL =

x

1 + k1y
(1− x) + γx− (d1 − γ)y − (d2 − γ)z − xy

a1x+ b1y + c1

(

1− 1

1 + k2z

)

or,
dL

dt
≤ x(1− x+ γ)− (d1 − γ)y − (d2 − γ)z ≤ (1 + γ)2

4
= M(say)

where γ ≤ min {d1, d2}. Using theory of differential inequality, we have following inequality

0 ≤ L ≤ M(1− e−dt)

d
+ L(x(0), y(0), z(0))e−dt

Hence, as t → ∞, above relation reduces to 0 ≤ L ≤ M
d
. Therefore, all system solutions (x(t), y(t), z(t)) of

model system (4) with positive initial conditions i.e., initiate from R
3
+ − {0} are uniformly bounded in the

region:
{

(x, y, z) ∈ R
3 : 0 < L ≤ M

d
+ ǫ, for any ǫ > 0

}

.

On the other hand persistence of a system mathematically implies that minimum population densities of
all three population are away from zero and bounded. Also, all populations can survive for a long time
range.
Dissipativeness: Biologically the dissipativeness refers upper boundedness of all population.

Theorem 3 The model system (4) is dissipative if
b2

1 + d1b2
< c1 <

1

d1
.
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Proof From the system of equations (4), we have

dx

dt
≤ x(1− x),

dy

dt
≤ y

(

x

c1
− d1 −

z

a2y + b2z + c2

)

,

dz

dt
≤ z

(

y

c2
− d2

)

Applying standard comparison theorem [20], we can write from above inequality that limt−∞ supx(t) ≤ S1,
limt−∞ supy(t) ≤ S2 and limt−∞ supz(t) ≤ S3 where S1, S2, S3 are positive real solutions of the system

of equations 1 − x = 0,
x

c1
− d1 − z

a2y + b2z + c2
= 0,

y

c2
− d2 = 0 for x, y, z respectively. Solving, we get

S1 = 1, S2 = c2d2 and S3 = c2(1−c1d1)(1+a2d2)
c1−b2(1−c1d1)

.
Here, S1, S2 are positive real numbers and S3 will be positive if conditions declared in the statement of the
theorem is satisfied.

Hence the system is dissipative if
b2

1 + d1b2
< c1 < 1

d1

.

Uniform Permanence : Biologically permanence means all three populations survive in future time.
Mathematically it says that system solutions are always away from zero.

Theorem 4 The model system (4) is permanent if c1 > s2(1 + k1s2) and d1(a1s1 + b1s2 + c1) < s1 holds.

Proof From the system of equations (4), we have

dx

dt
≥ x

[

1− x

1 + k1y
− y

c1

]

,

dy

dt
≥ y

[

x

(1 + k2z)(a1x+ b1y + c1)
− d1 −

z

c2

]

,

dz

dt
≥ z

[

y

a2S2 + b2S3 + c2
− d2

]

Applying standard comparison theorem [20], we can write from above inequality that limt−∞ infx(t) ≥ s1,
limt−∞ infy(t) ≥ s2 and limt−∞ infz(t) ≥ s3 where (s1, s2, s3) are positive real solution for (x, y, z) of the

system of equations:
1− x

1 + k1y
− y

c1
= 0,

x

(1 + k2z)(a1x+ b1y + c1)
−d1−

z

c2
= 0,

y

a2S2 + b2S3 + c2
−d2 = 0.

Solving, we obtain s1 = 1 − s2(1 + k1s2)

c1
, s2 = d2(a2S2 + b2S3 + c2) and s3 is positive real root of the

equation k2z
2 + (c2d1k2 + 1)z + c2d1 − c2s1

a1s1 + b1s2 + c1
= 0. Here, s2 is positive real number and s1, s3

will be positive real if c1 > s2(1 + k1s2) and d1(a1s1 + b1s2 + c1) < s1. Hence the system is permanent if
conditions stated in the statement of the theorem are satisfied.

4 Equilibria and their stability analysis

Here, we find equilibria of the model system (4) with their existence criterion and studied their local and
global stability.

4.1 Equilibria of the model system

As we are studying an ecological system, we are mainly interested to feasible equilibrium points only.
Feasible equilibria of the system (4) are summarized below:
(1) The trivial equilibria E0(0, 0, 0) and it is always exists.
(2) Predators-free axial equilibria E1(1, 0, 0), which also always exists.

(3) The top predator-free planer equilibria E2(x2, y2, 0), where y2 =
(1− a1d1)x2 − c1d1

b1d1
and x2 satisfies

the equation

C2x
2 + C1x+ C0 = 0 (5)

6



k1 k2 a1 a2 b1 b2 c1 c2 d1 d2
0.2 1.2 0.66 0.8 0.1 0.91 0.12 1.02 0.1 0.12

Table 2: Emperical values of system parameters of the model (4)

(a) (b) (c)

(d) (e) (f)

Fig. 1: Projection of interior equilibrium points in the x− z plane for different values of parameter k1 of the system (4) as
: (a) k1 = 0.02, (b) k1 = 0.09078075523, (c) k1 = 0.2, (d) k1 = 0.33, (e) k1 = 0.3840366382, (f) k1 = 0.5 and other system
parameters are fixed in Table 2.

with, C2 = a21d
2
1k1 − 2a1d1k1 + b21d1 + k1, C1 = 2a1c1d1k1 − a1b1d1 − b21 − 2c1k1 + b1, C0 = c21k1 − c1b1.

The above equation can have at most two positive real roots, hence the system may have at most two
planer equilibria.
(4) The interior equilibria E3(x

∗, y∗, z∗), where (x∗, y∗, z∗) is positive real solution of the system of equations

1− x

1 + k1y
− y

a1x+ b1y + c1
= 0

x

(1 + k2z)(a1x+ b1y + c1)
− d1 −

z

a2y + b2z + c2
= 0

y

a2y + b2z + c2
− d2 = 0

Eliminating x, y from above equations we have verified z satisfies a polynomial equation of degree five. If
z∗ be a root of that polynomial then one can write

x∗ =
(a1 − b1y

∗ − c1) +
√

(a1 − b1y∗ − c1)2 − 4a1 (k1y∗2 + (1− b1)y∗ − c1)

2a1
and y∗ =

d2(b2z
∗ + c2)

1− a2d2
.

It is obvious that if a2d2 < 1 then for positive value of z∗, y∗ will be positive.

In Fig. 1, we have presented the projection of various interior equilibria of model system (4) in x − z

plane with parametric restriction a2d2 < 1 for different values of parameter fear level of prey (k1) with other
parameters are taken from Table 2. Here trivial, axial and planer equilibrium points are always exist. The
system have one coexistence equilibrium point for the value of k1 = 0.02 (see Fig. 1(a)) and we represent it
by E31. For k1 = 0.09078075523 the system has two interior equilibria, namely E31 and coincident equilibria
point E3

′′ (see Fig. 1(b)). Increasing the fear level to k1 = 0.2, three interior equilibria arise (see Fig. 1(c)).
Equilibrium point with higher, moderate and lower population density of top predator are represented
by E31, E32 and E33 respectively. Then the interior equilibrium point E33 vanishes (see Fig. 1(d)) for
k1 = 0.33 and remaining two interior equilibrium points exists. For k1 = 0.3840366382 remaining two
interior equilibrium points E31, E32 coincide to interior equilibria E3

′ (see Fig. 1(e)). Fig. 1(f) represents
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the existence of no interior equilibrium point for value of k1 = 0.5. It is clear that the coincident interior
equilibria of E31, E32 and E32, E33 are E3

′ and E3
′′ respectively.

4.2 Local stability analysis of equilibria

The local stability of equilibria will be discussed by determining eigenvalues of the Jacobian matrix at
corresponding equilibrium points. We set up stability-instability conditions of equilibria in the following
theorems.

Theorem 5 The trivial equilibria E0(0, 0, 0) is always a saddle point.

Proof The Jacobian matrix of model system (4) at trivial equilibria E0 is

J(E0) =





1 0 0
0 −d1 0
0 0 −d2





Eigenvalues of J(E0) are 1,−d1 and −d2. Since, one eigenvalue is positive and other two are negative, hence
the equilibria E0 is always saddle. Solutions in the vicinity of this equilibrium point are unstable in nature.

Biologically this result is an evidence of the long survival of the system i.e. all three species will not go to
extinction concurrently.

Theorem 6 The axial equilibria E1(1, 0, 0) is locally asymptotically stable if d1 >
1

(a1 + c1)
.

Proof The Jacobian matrix of model system (4) at axial equilibrium point E1 is

J(E1) =











−1 − 1

a1 + c1
0

0
1

a1 + c1
− d1 0

0 0 −d2











Eigenvalues of J(E1) are −1,
1

a1 + c1
− d1 and −d2. It is clear from expressions of eigenvalues that the

system will be locally asymptotically stable if d1 >
1

(a1 + c1)
and unstable if d1 <

1

(a1 + c1)
.

Biologically the above result is most important because if the mortality rate of the intermediate predator

crosses the critical value
1

(a1 + c1)
= d

[TC]
1 (say), then the middle predator will go to extinction and as a

result top predator will also go to extinction and only prey population will survive in the system.

Theorem 7 The top predator-free planer equilibria E2(x2, y2, 0) is locally asymptotically stable if y2 <
c2d2

1− a2d2
, ξ1 > 0 and ξ2 > 0, where ξ1, ξ2 are defined in the proof.

Proof The Jacobian matrix of model system (4) at the planer equilibria E2(x2, y2, 0) is

J(E2) =





a11 a12 0
a21 a22 a23
0 0 a33





where a11 = − x2

1 + k1y2
+

a1x2y2

(a1x2 + b2y2 + c1)2
, a12 = −k1x2(1− x2)

(1 + k1y2)2
− x2(a1x2 + c1)

(a1x2 + b2y2 + c1)2
, a21 =

y2(b1y2 + c1)

(a1x2 + b1y2 + c1)2
,

a22 = − b1x2y2

(a1x2 + b1y2 + c1)2
, a23 = −y2(a2y2 + c2)

(a2y2 + c2)2
and a33 =

y2

a2y2 + c2
− d2.

The characteristic equation of above Jacobian matrix is

(λ− a33)(λ
2 + ξ1λ+ ξ2) = 0

with ξ1 = − (a11 + a22) and ξ2 = a11a22 − a21a12.

One eigenvalue of the Jacobian matrix J(E2) is
y2

a2y2 + c2
− d2 and this will be negative if y2 < c2d2

1−a2d2

.

Other two eigenvalues are negative or having negative real parts if ξ1 > 0 and ξ2 > 0.

Hence the planer equilibria E2(x2, y2, 0) is locally asymptotically stable if y2 <
c2d2

1− a2d2
, ξ1 > 0 and ξ2 > 0

holds.
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Theorem 8 The interior equilibria E∗(x∗, y∗, z∗) is locally asymptotically stable if C1 > 0, C3 > 0 and
C1C2 > C3 where C1, C2 and C3 are defined in the proof.

Proof The Jacobian matrix of model system (4) at interior equilibria E∗(x∗, y∗, z∗) is

J(E∗) =





b11 b12 0
b21 b22 b23
0 b32 b33





where b11 = − x∗

1 + k1y∗
+

a1x
∗y∗

(a1x∗ + b2y∗ + c1)2
, b12 = −k1x

∗(1− x∗)

(1 + k1y∗)2
− x∗(a1x

∗ + c1)

(a1x∗ + b2y∗ + c1)2
,

b21 =
y∗(b1y

∗ + c1)

(1 + k2z∗)(a1x∗ + b1y∗ + c1)2
, b22 = − b1x

∗y∗

(1 + k2z∗)(a1x∗ + b1y∗ + c1)2
+

b2y
∗z∗

(a2y∗ + b2z∗ + c2)2
, b23 =

− k2x
∗y∗

(1 + k2z∗)2(a1x∗ + b1y∗ + c1)
− y2(a2y

∗ + c2)

(a2y∗ + b2z∗ + c2)2
, b32 =

z∗(b2z
∗ + c2)

(a2y∗ + b2z∗ + c2)2
and b33 = − b2y

∗z∗

(a2y∗ + b2z∗ + c2)2
.

The characteristic equation of above Jacobian matrix is

λ
3 + C1λ

2 + C2λ+ C3 = 0 (6)

with C1 = −(b11 + b22 + b33), C2 = b11b22 + b22b33 + b33b11 − b12b21 − b23b32, and C3 = −(b11b22b33 −
b11b23b32 − b12b21b33).
According to the Routh-Hurwitz criterion [50], interior equilibria E∗ is locally asymptotically stable if
conditions stated in the statement of the theorem are satisfied.

If C1C2 = C3 then the system losses its stability at interior equilibria E∗(x∗, y∗, z∗) through Hopf bifurca-
tion if the tranversility condition is satisfied.

4.3 Global stability analysis of equilibria

Here, we shall establish conditions and domain of global stability of different equilibria. The global stability
of an equilibria implies the corresponding equilibria will follow the same nature irrespective of the initial
population size ever.

Theorem 9 The predator-free axial equilibria E1(1, 0, 0) is globally asymptotically stable if d1 > 2
a1

and

d2 > 1
a2

hold.

Proof To established the global stability of axial equilibria E1, we introduced the Lyapunov function V1 as
follows :

V1 =
1

2
(x− 1)2 +

1

2
y
2 +

1

2
z
2 + y

Then, time derivative of above expression is

dV1

dt
= (x− 1)

dx

dt
+ y

dy

dt
+ z

dz

dt
+

dy

dt

= −x(1− x)2

1 + k1y
− x2y

a1x+ b2y + c1
+

xy

a1x+ b2y + c1
+

xy2

(1 + k2z)(a1x+ b1y + c1)
− d1y

2

− y2z

a2y + b2z + c2
+

yz2

a2y + b2z + c2
− d2z

2 +
xy

(1 + k2z)(a1x+ b1y + c1)
− d1y − yz

a2y + b2z + c2

≤ −x(1− x)2

1 + k1y
− x2y

a1x+ b2y + c1
+

2y

a1
+

y2

a1
− d1y

2 − y2z

a2y + b2z + c2
+

z2

a2
− d2z

2 − d1y − yz

a2y + b2z + c2

≤ −x(1− x)2

1 + k1y
− x2y

a1x+ b2y + c1
+

(

2

a1
− d1

)

y +

(

1

a1
− d1

)

y
2 − y2z

a2y + b2z + c2
+

(

1

a2
− d2

)

z
2

− yz

a2y + b2z + c2

Therefore,
dV1

dt
≤ 0 if d1 >

2

a1
, d2 >

1

a2
and the equality sign occurs when (x, y, z) = (1, 0, 0).

Hence by using Lyapunov-Lasalle’s invariance principle [51] we can say that the axial equilibria E1(1, 0, 0)
is globally asymptotically stable.
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Theorem 10 The top predator-free planer equilibria E2(x2, y2, 0) is globally asymptotically stable if a1y2(k1y2+
1) < c1(a1x2 + b1y2 + c1) holds.

Proof To established the global stability of planer equilibrium point E2(x2, y2, 0), we construct the Lya-
punov function L∗ as follows :

V2 = (x− x2 − x2 log
x

x2
) + µ(y − y2 − y2 log

y

y2
)

Then, time derivative of above expression along solution curve of system (4) is

dV2

dt
=
x− x2

x

dx

dt
+ µ

y − y2

y

dy

dt

=(x− x2)

(

1− x

1 + k1y
− y

a1x+ b1y + c1

)

+ µ(y − y2)

(

x

a1x+ b1y + c1
− d1

)

Also we have, 1 = x2 +
y2(1 + k1y2)

a1x2 + b1y2 + c1
and d1 =

x2

a1x2 + b1y2 + c1
at the planer equilibrium point

E2(x2, y2, 0).
Then, using these relations the above equation reduces to

dV2

dt
=(x− x2)

(

− x− x2

1 + k1y
+

y2(1 + k1y2)

(1 + k1y)(a1x2 + b1y2 + c1)
− y

a1x+ b1y + c1

)

+ µ(y − y2)

(

x

a1x+ b1y + c1
− x2

a1x2 + b1y2 + c1

)

≤− (x− x2)
2

1 + k1y
+

a1k1y
2
2(x− x2)

2

(1 + k1y)(a1x+ b1y + c1)(a1x2 + b1y2 + c1)
+

a1y2(x− x2)
2

(1 + k1y)(a1x+ b1y + c1)(a1x2 + b1y2 + c1)

+
(x− x2)(y − y2)

(a1x+ b1y + c1)(a1x2 + b1y2 + c1)

(

µc1 + µb1y2 −
a1k1x2

1 + k1N
− a1x2

1 + k1N
− c1k1y2

1 + k1N
− c1

1 + k1N

)

Now, if we consider µ =
1

c1 + b1y2

(

a1k1x2

1 + k1N
+

a1x2

1 + k1N
+

c1k1y2

1 + k1N
+

c1

1 + k1N

)

then above relation re-

duces to

dV2

dt
≤− (x− x2)

2

1 + k1y
+

a1k1y
2
2(x− x2)

2

(1 + k1y)(a1x+ b1y + c1)(a1x2 + b1y2 + c1)
+

a1y2(x− x2)
2

(1 + k1y)(a1x+ b1y + c1)(a1x2 + b1y2 + c1)

≤− (x− x2)
2

1 + k1y

(

1− a1k1y
2
2

c1(a1x2 + b1y2 + c1)
− a1y2

c1(a1x2 + b1y2 + c1)

)

≤− (x− x2)
2

1 + k1N

(

1− a1k1y
2
2

c1(a1x2 + b1y2 + c1)
− a1y2

c1(a1x2 + b1y2 + c1)

)

Therefore,
dV2

dt
≤ 0 if

(

a1k1y
2
2

c1(a1x2 + b1y2 + c1)
+

a1y2

c1(a1x2 + b1y2 + c1)

)

< 1; i.e., if a1y2(k1y2 + 1) <

c1(a1x2 + b1y2 + c1) and
dV2

dt
= 0 when (x, y, z) = (x2, y2, 0).

Hence by using Lyapunov-Lasalle’s invariance principle [51] we can say that the planer equilibria E2(x2, y2, 0)
is globally asymptotically stable.

Theorem 11 The coexistence equilibria E∗(x∗, y∗, z∗) is globally asymptotically stable if

N

(

x
∗ + y

∗ +
1

a2

)

+ d1y
∗ + d2z

∗ +

(

1 + x∗

2

)2

<
µ1y

∗

(1 + k2N)(a1N + b1N + c1)
+

µ2z∗
a2N + b2N + c2

+
x∗

1 + k1N

holds.

Proof To established the global stability of coexistence equilibria E∗(x∗, y∗, z∗) we introduced the Lyapunov
function L∗ as follows :

V
∗ = (x− x

∗ − x
∗ log

x

x∗
) + (y − y

∗ − y
∗ log

y

y∗
) + (z − z

∗ − z
∗ log

z

z∗
)
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Then, time derivative of above expression is

dL∗

dt
=

(x− x∗)

x

dx

dt
+

(y − y∗)

y

dy

dt
+

(z − z∗)

z

dz

dt
(7)

Using the Theorem 1, we have considered that there exists a positive constant N =
M

d
satisfying relations

x(t), y(t), z(t) < N , where 0 < d ≤ min d1, d2 and M =
(1 + d)2

4
.

Hence, after some algebraic calculation equation (7) reduces to

dL∗

dt
≤ x− x2 − x∗ − xx∗

1 + k1y
+ x

∗
N − s1y

∗

(1 + k2N)(a1N + b1N + c1)
+Ny

∗ +
1

a2
N − s2z∗

a2N + b2N + c2
− d1y + d1y

∗

− d2z + d2z
∗

≤ − 1

1 + k1N

(

x− 1 + x∗

2

)2

+

(

1 + x∗

2

)2

− x∗

1 + k1N
+ x

∗
N − s1y

∗

(1 + k2N)(a1N + b1N + c1)
+Ny

∗ +
1

a2
N

− s2z
∗

a2N + b2N + c2
+ d1y

∗ + d2z
∗

From the above expression we can easily observed that dL∗

dt
≤ 0 if

(

1 + x∗

2

)2

− x∗

1 + k1N
+ x

∗
N − s1y

∗

(1 + k2N)(a1N + b1N + c1)
+Ny

∗ +
1

a2
N − s2z∗

a2N + b2N + c2
+ d1y

∗ + d2z
∗ ≤ 0

i.e., N

(

x
∗ + y

∗ +
1

a2

)

+ d1y
∗ + d2z

∗ +

(

1 + x∗

2

)2

≤ s1y
∗

(1 + k2N)(a1N + b1N + c1)
+

s2z∗
a2N + b2N + c2

+
x∗

1 + k1N
.

Also, we have dL∗

dt
= 0 if (x, y, z) = (x∗, y∗, z∗).

Hence by using Lyapunov-Lasalle’s invariance principle [51] we can conclude that the coexistence equilibria
(x∗, y∗, z∗) is globally asymptotically stable if

N

(

x
∗ + y

∗ +
1

a2

)

+ d1y
∗ + d2z

∗ +

(

1 + x∗

2

)2

<
s1y

∗

(1 + k2N)(a1N + b1N + c1)
+

s2z∗
a2N + b2N + c2

+
x∗

1 + k1N

The above condition of global stability of coexistence equilibria is too complicated in the sense of inferring
any ecological justification. So, we will verify the global behaviour of the interior equilibria numerically.

Considering values of system parameters k1 = 1, k2 = 1, a1 = 0.65, a2 = 20, b1 = 0.1, b2 = 0.91, c1 = 0.2,
c2 = 10, d1 = 0.4, d2 = 0.01, we see that system consist of non-interior equilibria E0(0, 0), E1(1, 0, 0),
E2(0.11982, 0.21670, 0) and only one interior equilibria E∗(0.78077, 0.13886, 1.21888). Trivial E0, axial E1

are saddle equilibria, planer E2 is unstable spiral without any limit cycle and coexistence E∗ is a stable
spiral. Solution trajectories with various starting points converges asymptotically to the stable coexistence
equilibria E∗ (see Fig. 2). This implies the global asymptotic stability of coexistence equilibria E∗.

5 Local bifurcation analysis

In this segment, we shall now identify some changes in structural behaviour of the model system (4).
Qualitative behaviour of system solutions depending upon a certain parameter change as the parameter
goes through a certain critical value and for changes in the value of parameter the vector field changes its
structural behaviour and hence the system goes through a bifurcation. A certain value of the significant
parameter at which the qualitative change of dynamics of our considered prey-predator model occur is
called bifurcation point. Now, we discuss the occurrence of transcritical bifurcation at the axial equilibria,
saddle-node bifurcation at the interior equilibrium point, Hopf bifurcation and direction of Hopf bifurcation
in vicinity of coexistence equilibria concerning some bifurcation parameter.
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Fig. 2: Solution trajectories of model system (4) with various starting points considering k1 = 1, k2 = 1, a1 = 0.65,
a2 = 20, b1 = 0.1, b2 = 0.91, c1 = 0.2, c2 = 10, d1 = 0.4, d2 = 0.01. Figure shows global asymptotic stability of interior
equilibria E∗(0.7807723516, 0.1388648586, 1.218888670).

5.1 Transcritical bifurcation analysis

We have seen that predator free axial equilibrium point E1(1, 0, 0) is stable if d1 > d1
[TC] and no planer

equilibrium point exists in this situation. The axial equilibria E1(1, 0, 0) becomes unstable and a stable

planer equilibria E2 creates as d1 < d
[TC]
1 . Thus axial and planer equilibrium points exchanges their

stability as the parameter d1 crosses threshold value d1 = d1
[TC]. The predator free axial equilibrium point

E1 becomes non-hyperbolic at d1 = d1
[TC] as one eigenvalue of Jacobian matrix at that point becomes

zero. Thus the system may goes through transcritical bifurcation at axial equilibria E1 considering d1 as
bifurcation parameter if transversility conditions of Sotomayor’s theorem are satisfied [52].

Theorem 12 The system experiences transcritical bifurcation about axial equilibrium point E1 at the crit-

ical value of d1 = d
[TC]
1 .

Proof We shall verify transversality conditions of the considered model system (4) at axial equilibrium
point E1 for the occurrence of transcritical bifurcation considering d1 as bifurcation parameter.
It is clear that Jacobian matrix J(E1) corresponding to axial equilibrium point E1 has two negative eigen-

values and a zero eigenvalue at d1 = d
[TC]
1 .

Jacobian matrix J(E1) and its transpose J(E1)
T has eigenvector V = (1,−(a1+c1), 0)

T and W = (0, 1, 0)T

corresponding to zero eigenvalue respectively. Now

W
T
Fd1

(E1, d
[TC]
1 ) = 0

W
T [DFd1

(E1, d
[TC]
1 )V ] = a1 + c1 6= 0

W
T [D2

F (E1, d
[TC]
1 )(V, V )] = −2b1 −

2c1
a1 + c1

6= 0

Hence all conditions of Sotomayer’s theorem are satisfied and system experiences transcritical bifurcation

as d1 crosses the critical value d1 = d
[TC]
1 .

To present transcritical bifurcation graphically we consider k1 = 0.5, c1 = 0.42, d1 = 0.75, d2 = 0.62 and
other parameters values as given in Table 2. The system contains one trivial, one axial and one planer
equilibria. The planer equilibria is a stable spiral, while others are saddle. Then increasing the value of
parameter d1 to d1 = 0.95, the planer equilibrium point loses its feasibility criterion and the axial equilibria
becomes a stable node. Thus, axial equilibrium point exchanges its stability with planer equilibrium point
through destruction of planer equilibrium point i.e., the system experiences transcritical bifurcation as the

parameter d1 goes through a critical value d
[TC]
1 = 0.92593 (see Fig. 3).

Ecologically, the above result has high significance on system dynamics since there is a critical value of
middle predator normal death rate d1, above which it goes to extinction and as a result, the top predator
also goes to extinction. Only the prey population survive in the system to its highest population density.
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Fig. 3: (a) One parametric bifurcation diagram with regard to the parameter d1, blue & red lines represent the stable &
unstable nature of the corresponding equilibria respectively and phase diagram of the model system (4) for: (a) d1 = 0.75,
(b) d1 = 0.95 with k1 = 0.5, c1 = 0.42, d2 = 0.62 considering other parameter values as given in Table 2.

5.2 Saddle-node bifurcation analysis

Suppose that for k1 = k
[SN ]
1 two interior equilibrium points of system (4) coincide. Now we investigate

condition, under which there are two coexistence equilibria for k1 > k
[SN ]
1 (or k1 < k

[SN ]
1 ) and among

them one is saddle point and other is a node. Also there is no interior equilibrium point for k1 < k
[SN ]
1 (or

k1 > k
[SN ]
1 ). Thus two coexistence equilibria collide and then annihilated. At the coincident coexistence

equilibria Ē∗ (x̄∗, ȳ∗, z̄∗), Jacobian matrix has a zero eigenvalue and consequently the equilibrium point
becomes non-hyperbolic. Thus the system can go through saddle-node bifurcation at interior equilibria E∗

as the parameter k1 passes through critical value k1 = k
[SN ]
1 if conditions of Sotomayor’s theorem are

satisfied [52].

Theorem 13 If η2 < 0, η3 = 0 at k1 = k
[SN ]
1 and φ1p1 + φ2p2 + φ3p3 6= 0, then the system (4) goes

through saddle-node bifurcation at k1 = k
[SN ]
1 in vicinity of coincident coexistence equilibria Ē∗(x̄∗, ȳ∗, z̄∗),

where pi, i = 1, 2, 3 are defined in the Appendix.

Proof First we rewrite the consider model system (4) into the form

Ẋ = F (X) where X = (x, y, z)T and F = (F1, F2, F3)

The Jacobian matrix of the system (4) at coincident coexistence equilibria Ē∗(x̄∗, ȳ∗, z̄∗) has characteristic
equation of the form

λ
3 + η1λ

2 + η2λ+ η3 = 0

where ηi is obtained from Ci (i = 1, 2, 3) through replacing (x∗, y∗, z∗) by (x̄∗, ȳ∗, z̄∗).
Here expressions of ηi, i = 1, 2, 3 depends on k1. Hence, det(J(Ē∗)) = −η3 is a function of k1 and we can

control sign of ηi, i = 1, 2, 3. Changing value of parameter k1, we can obtain critical value k1 = k
[SN ]
1 for

which η2 < 0, η3 = 0 and consequently eigenvalues of Jacobian matrix J(Ē∗) will be zero, one positive,
one negative in order to obtain saddle-node bifurcation at the equilibria Ē∗(x̄∗, ȳ∗, z̄∗).
Let θ and φ be eigenvectors of Jacobian matrix J(E∗) and its transpose corresponding to eigenvalue zero
respectively.

Then we obtain θ = (θ1, θ2, θ3)
T =

(

1,− b11
b12

, b11b32
b12b33

)T

, φ = (φ1, φ2, φ3)
T =

(

1,− b11
b21

, b11b23
b21b33

)T

.

Since

φ
T [Fk1

(Ē∗
, k

[SN ]
1 )] = −k

[SN ]
1 x̄∗(1− x̄∗)

(1 + k
[SN ]
1 ȳ∗)2

6= 0

φ
T [D2

F (Ē∗
, k

[SN ]
1 )(θ, θ)] = φ1p1 + φ2p2 + φ3p3 6= 0,

if φ1p1 + φ2p2 + φ3p3 6= 0.
Hence the system undergoes through saddle-node bifurcation about coincident interior equilibria Ē∗ (x̄∗, ȳ∗, z̄∗)

at k1 = k
[SN ]
1 .
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Fig. 4: One parametric bifurcation diagram with regard to bifurcation parameter k1 of top predator population considering
(a) a1 = 0.7, b2 = 0.4, c2 = 1.2 and other parameters (b) values of system parameters as given in Table 2. Black dot
represents the bifurcation point at k1 = 1.47433536957.

In Fig. 4 we have presented the one parametric bifurcation diagram with regard to k1 for (a) a1 = 0.7,
b2 = 0.4, c2 = 1.2 and (b) a1 = 0.66, b2 = 0.91, c2 = 1.02 and other parameters are taken from Table 2. It is
clear from the figures that the system shows more complex dynamics in second case that when the mutual
interference among the top predators is higher, environmental protection to the intermediate predator and
its prey handling times are comparatively lower. In the first figure one saddle-node bifurcation point and
in the second figure two saddle-node bifurcation point arises.
Considering values of system parameters as given in Table 2 with k1 = 1.3, a1 = 0.7, b2 = 0.4, c2 = 1.2
we have drawn one parametric bifurcation diagram of top predator with regard to k1 (see Fig. 4(a)). Then
the system (4) contain two interior equilibrium points along with one trivial, one axial and one planer
equilibrium point. Among the two coexistence equilibria, one is stable node and other is saddle. Then as

we increase value of parameter k1 to k
[SN ]
1 = 1.4743353695 both interior equilibrium points coincide into

one and finally diminishes from the system if we again increase the parameter k1.
It is observed from Fig. 4(b) that the system (4) contains one coexistence equilibria for k1 < 0.09078075523,
at k1 = 0.09078075523 the system contains two coexistence equilibria among them one is coincident, three
interior equilibrium points (among two new coexistence equilibria one is saddle and other is unstable spiral
with stable limit cycle) for 0.09078075523 < k1 < 0.3, two coexistence equilibria (one is saddle and other is
unstable spiral with stable limit cycle) for 0.3 ≤ k1 < 0.3840366382 and both the interior equilibrium point
coincide at k1 = 0.3840366382 then it diminishes. Here all the non-interior equilibrium points are always
exists. The system goes through saddle-node bifurcation two times with regard to bifurcation parameter
k1 at critical values k1 = 0.09078075523, k1 = 0.3840366382. Phase diagrams of model system (4) before
and after bifurcations values are similar as in Fig. 10((d), (a)) and 11((a), (c)).

It is clear from Fig. 4(a) that with the increase of fear parameter k1 the co-existence possibility of all
species decreases. In Fig. 5, we have drawn a phase portrait of the model system (4) for different values of
k1 in the left, right and at the critical value of parameter k1 with other parameters as considered above.
From the ecological point of view, we can say that as fear of middle predator to prey increases then the
prey population decreases as a result it creates food crisis for both the predators. Consequently, the growth
of both predators decreases and finally top predator population goes to extinction and population density
of prey and middle predator varies periodically with time.
It is clear from Fig. 4(b) that with the increase of b2 the co-existence region of all species with respect to
k1 decreases. Since with the increase of mutual interference among top predators, it becomes more busy in
their intra-specific competition and less fear of middle predator is sufficient for the decrease of population
density in top predator.

5.3 Hopf bifurcation analysis

In Hopf bifurcation, a periodic oscillatory solution of the model system appear or disappear throughout a
local change in stability of an equilibria. Now, we discuss the occurrence of Hopf bifurcation at coexistence
equilibria E∗ of model system (4) concerning some bifurcation parameter. We shall vary the parameter k1,
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Fig. 5: Phase diagram of model system (4) for different values of the parameter k1 like as : (a) k1 = 1.30, (b) k1 =
1.47433536957, (c) k1 = 1.55 with a1 = 0.7, b2 = 0.4, c2 = 1.2 and values of other system parameters as given in Table 2.
Green dots represent the stable equilibria and red dots represent the unstable equilibria.

so as to obtain a Hopf bifurcation about coexistence equilibria E∗(x∗, y∗, z∗).
The characteristic equation of Jacobian matrix of model system (4) at the coexistence equilibria E∗(x∗, y∗, z∗)
is given in (6). Expressions of Ci; i = 1, 2, 3 and C1C2 −C3 are depends on k1 if we fix other parameters at
constants. Values as well as sign of Ci; i = 1, 2, 3 and C1C2 − C3 can be controlled by changing values of
parameter k1. A Hopf bifurcation of the system (4) at coexistence equilibria E∗(x∗, y∗, z∗) can be expected
for a certain value k1 = k∗

1 , when Ci > 0; i = 1, 2, 3 and C1C2 −C3 = 0. Then, from characteristic equation
(6), we have

(λ2 + C2)(λ+ C1) = 0.

Solving above equation, we have roots as λ1,2 = ±i
√
C2, and λ3 = −C1.

Thus for any k1 ∈ (k∗

1 − ǫ, k∗

1 + ǫ), where ǫ is a pre assign positive number, roots of above equation are in
general of the form : λ1,2(k1) = α0(k1) + ±iβ0(k1) and λ3(k1) = −C1(k1). To occur Hopf bifurcation the

transversality condition
d

dk1
(Reλi(k1))|k1=k∗

1
6= 0, i = 1, 2 must be satisfied.

Since λ1 is a root of equation (6), hence

λ
3
1(k1) + C1λ

2
1(k1) + C2λ1(k1) + C3 = 0.

Comparing real and imaginary parts, we have

α
3
0(k1)− 3α0(k1)β

2
0(k1) + C1(k1)α

2
0(k1)− C1(k1)β

2
0(k1) + C2(k1)α0(k1) + C3(k1) = 0,

− β
3
0(k1) + 3α2

0(k1)β0(k1) + 2C1(k1)α0(k1)β0(k1) + C2(k1)β0(k1) = 0.

Taking derivative of above equations with respect to k1, we get

A(k1)α
′

0(k1)−B(k1)β
′

0(k1) + C(k1) = 0 (8)

B(k1)α
′

0(k1) +A(k1)β
′

0(k1) +D(k1) = 0 (9)

whereA(k1) = 3α2
0(k1)+2C1(k1)α0(k1)+C2(k1)−3β2

0(k1), B(k1) = 6α0(k1)β0(k1)+2C1(k1)β0(k1), C(k1) =
C′

1(k1)α
2
0(k1) +C′

2(k1)α0(k1) +C′

3(k1)−C′

1(k1)β
2
0(k1) and D(k1) = 2C′

1(k1)α0(k1)β0(k1) +C′

2(k1)β0(k1).

From equation (8) and (9), we get α′

0(k1) = −B(k1)D(k1) +A(k1)C(k1)

A2(k1) +B2(k1)
and hence using results α0(k

∗

1) =

0, β0(k
∗

1) =
√

C2(k∗

1), we have

d

dk1
(Reλi(k1))|k1=k∗

1
=
B(k∗

1)D(k∗

1) +A(k∗

1)C(k∗

1)

A2(k∗

1) +B2(k∗

1)

=[2C2(k
∗

1)(C1(k
∗

1)C
′

2(k
∗

1) + C
′

1(k
∗

1)C2(k
∗

1)− C
′

3(k
∗

1))]k1=k∗

1
6= 0

where C′

i denotes derivative of Ci with respect to k1.
Now, we summarise the above discussion in the form of following theorem :

Theorem 14 If C1, C2, C3 > 0; and C1C2 − C3 = 0 at k1 = k∗

1 with (C1C
′

2 + C′

1C2 − C′

3)|k1=k∗

1
6= 0,

then the system (4) exhibit a Hopf bifurcation, leading to a family of periodic solutions that bifurcates from
E∗(x∗, y∗, z∗) in vicinity of k1 = k∗

1 , where C1, C2, C3 are defined above.
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5.3.1 Stability direction of Hopf bifurcating periodic solution

We find the direction of Hopf bifurcation by using the theorem of normal form. We also derive the stability
property of bifurcating periodic solutions of model system (4) as discuss in the literature [53].
We have, eigenvectors v1, v2 of Jacobian matrix J(E∗) corresponding to eigenvalues λ1 = iω, λ3 = −C1

respectively at k1 = k∗

1 are given by

v1 =





p11 − ip12
p21 − ip22
p31 − ip32



 and v3 =





p13
p23
p33





where p11 =
b22b33 − b23b32 − ω2

b21b32
, p12 = −ω(b22 + b33)

b21b32
, p13 =

b12(b33 + C1)

b32(b11 + C1)
, p21 = −b33

b32
, p22 =

ω

b32
,

p23 = −b33 + C1

b32
, p31 = 1, p32 = 0, p33 = 1. Using transformation x = x∗ + p11x1 + p12y1 + p13z1, y =

y∗ + p21x1 + p22y1 + p23z1, z = z∗ + p31x1 + p32y1 + p33z1 the model system (4) reduces to

dx1

dt
= P1 (10a)

dy1

dt
= P2 (10b)

dz1

dt
= P3 (10c)

where, P1 =
p22L1 − p12L2 + (p12p23 − p22p13)L3

D
, P2 =

p23L1 + (p11 − p13)L2 − p11p23L3

D
,

P3 =
−p22L1 + p12L2 + p11p22L3

D
with

D = (p11p22 − p13p22 + p23p12), L1 =
(x∗ + p11x1 + p12y1 + p13z1)[1− (x∗ + p11x1 + p12y1 + p13z1)]

1 + k1(y∗ + p21x1 + p22y1 + p23z1)

− (x∗ + p11x1 + p12y1 + p13z1)(y
∗ + p21x1 + p22y1 + p23z1)

a1(x∗ + p11x1 + p12y1 + p13z1) + b1(y∗ + p21x1 + p22y1 + p23z1) + c1

L2 =
(x∗ + p11x1 + p12y1 + p13z1)(y

∗ + p21x1 + p22y1 + p23z1)

[1 + k2(z∗ + p31x1 + p32y1 + p33z1)][a1(x∗ + p11x1 + p12y1 + p13z1) + b1(y∗ + p21x1 + p22y1 + p23z1) + c1]

− d1(y
∗ + p21x1 + p22y1 + p23z1)−

(y∗ + p21x1 + p22y1 + p23z1)(z
∗ + p31x1 + p32y1 + p33z1)

a2(y∗ + p21x1 + p22y1 + p23z1) + b2(z∗ + p31x1 + p32y1 + p33z1) + c2

L3 =
(y∗ + p21x1 + p22y1 + p23z1)z

a2(y∗ + p21x1 + p22y1 + p23z1) + b2(z∗ + p31x1 + p32y1 + p33z1) + c2
− d2(z

∗ + p31x1 + p32y1 + p33z1).

Here it is clear that system (10) has an equilibria at E(0, 0, 0). Jacobian matrix of system (10) at equilibria

E(0, 0, 0) is J(E) =















∂P1

∂x1

∂P1

∂y1

∂P1

∂z1
∂P2

∂x1

∂P2

∂y1

∂P2

∂z1
∂P3

∂x1

∂P3

∂y1

∂P3

∂z1















where
∂P1

∂x1
=

∂P2

∂y1
=

∂P1

∂z1
=

∂P2

∂z1
=

∂P3

∂x1
=

∂P3

∂y1
= 0, −∂P1

∂y1
=

∂P2

∂x1
= ω and

∂P3

∂z1
= C1.

We calculate values of h11, h02, h20, H101, H110, H21, g11, g20, ω, w20, w11 and h21 by using following
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relations :

h11 =
1

4

[(

∂2P1

∂x2
1

+
∂2P2

∂y21

)

+ i

(

∂2P2

∂x2
1

+
∂2P1

∂y21

)]

,

h02 =
1

4

[(

∂2P1

∂x2
1

− ∂2P1

∂y21
− 2

∂2P2

∂x1∂y1

)

+ i

(

∂2P2

∂x2
1

− ∂2P2

∂y21
+ 2

∂2P1

∂x1∂y1

)]

,

h20 =
1

4

[(

∂2P1

∂x2
1

− ∂2P1

∂y21
+ 2

∂2P2

∂x1∂y1

)

+ i

(

∂2P2

∂x2
1

− ∂2P2

∂y21
− 2

∂2P1

∂x1∂y1

)]

,

G21 =
1

8

[(

∂3P1

∂x3
1

+
∂3P1

∂x1∂y21
+

∂3P2

∂x2
1∂y1

+
∂3P2

∂y31

)

+ i

(

∂3P2

∂x3
1

+
∂3P2

∂x1∂y21
− ∂3P1

∂x2
1∂y1

+
∂3P1

∂y31

)]

,

ω =− ∂P1

∂y1
, g11 =

1

4

(

∂2P3

∂x2
1

+
∂2P3

∂y21

)

, g20 =
1

4

(

∂2P3

∂x2
1

− ∂2P3

∂y21
− 2i

∂2P3

∂x1∂y1

)

.

We find out the constants w11 and w20 solving two equations : C1w11 = −h11, (D − 2iω)w20 = −h20.
Also,

H110 =
1

2

[(

∂2P1

∂x1∂z1
+

∂2P2

∂y1∂z1

)

+ i

(

∂2P2

∂x1∂z1
− ∂2P1

∂y1∂z1

)]

,

H101 =
1

2

[(

∂2P1

∂x1∂z1
− ∂2P2

∂y1∂z1

)

+ i

(

∂2P2

∂x1∂z1
+

∂2P1

∂y1∂z1

)]

,

g21 =G21 + 2H110w11 +H101w20.

Another discriminant quantities which will determine the direction of Hopf bifurcation are listed below :

D1(0) =
i

2ω

(

h20h11 − 2|h11|2 −
1

3
|h02|2

)

+
1

2
g21,

σ =− Re {D1(0)}
α′(0)

,

δ =2Re {D1(0)} ,

T =− Im {D1(0)}+ σω′(0)

ω

where α′(0) =
d

dk1
(Re {λ1(k1)})|k1=k∗

1
and ω′(0) =

d

dk1
(Im {λ1(k1)})|k1=k∗

1
.

Here, the sign of σ determines the direction Hopf-bifurcation. The direction of Hopf-bifurcation is super-
critical (or sub-critical) if σ > 0 (or σ < 0); δ determines stability of periodic solutions according as if
δ < 0 (or δ > 0) then solutions are stable (or unstable); and the period of bifurcating periodic solutions is
determined by T according as the period increases (or decreases) if T > 0 (or T < 0).
Considering values of system parameters as given in Table 2, the system contains three interior equilibrium
point along with three unstable non-interior equilibria. Among three coexistence equilibria, one is a stable
spiral and the others are unstable spiral. With the increase of parameter k1, the stable coexistence equilib-
ria looses its stability and becomes center for the critical value of parameter k1 at k∗

1 = 0.30198352. If we
further increase the parameter k1, then the equilibrium point becomes an unstable spiral and any solution
trajectory starting in the vicinity of the equilibria goes to a stable limit cycle around it. Thus the system
goes through Hopf bifurcation with respect bifurcation parameter k1 at critical value k1 = k∗

1 . In Fig. 6,
we have drawn phase portrait of the model system for k1 < k∗

1 and k1 > k∗

1 with other parameters as given
in Table 2. We have evaluated the first Lyapunov number σ of Hopf bifurcation at Hopf bifurcation point
and the value is σ = 0.7349. Thus the from above discussion, we can say that the system (4) goes through
supercritical Hopf bifurcation concerning the parameter k1.

Again the system goes through sub-critical Hopf bifurcation with respect to bifurcation parameter k2
at critical value k∗

2 = 1.073028. We have drawn phase portrait of model system (4) for k2 < k∗

2 and k2 > k∗

2

in Figure 7 with other parameters as given in Table 2.

From the ecological point of view, we can say that parameters k1, k2 play a key role in the existence of
all system population. With an increase of middle predator fear to prey k1, the density of prey decreases,
consequently the system loses its stability and the top predator population goes to extinction while prey and
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Fig. 6: Phase diagram of the model system (4) for different values of parameter k1 like as : (a) k1 = 0.10, (b) k1 = 0.35
with values of other system parameters as given in Table 2. Green dot represents the stable equilibria and red dots represent
unstable equilibria.
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Fig. 7: Phase diagram of the model system (4) for different values of the parameter k2 like as : (a) k2 = 1.0, (b) k2 = 1.5
with values of other system parameters as given in Table 2. Green dot represents the stable and red dots represent unstable
equilibria.

middle predator population density vary periodically with time. Again with an increase of fear parameter
k2, a less number of middle predator are accessible in the system by a top predator. As a result, the
consumption of prey by the middle predator will decrease and prey will be available for the top predators
and the survival possibility of all three species in the system will increase.

6 Numerical illustration

In this segment of the paper using numerical simulations the theoretical finding of the previous sections will
be justified. As the fear of top predator and intermediate predator reduces the growth rate of intermediate
predator and prey population respectively, it will change the dynamics of the food chain model abruptly.
We observed the significance of different system parameters through the graphical representation. For this
purpose, we draw different bifurcation diagram and phase portrait of the system in the following figure.

(a) Dynamics of the system for different values of k1 and k2

To study the effect of fear of both the predators on the dynamics of the proposed food chain model
different bifurcation curves in k1 − k2 parametric plane are drawn (see Fig. 8) with values of other param-
eters as given in Table 2. To discuss the existence and stability dynamics of different equilibria we have
drawn saddle-node and Hopf bifurcation curve for coexistence equilibria in the k2 − k1 parametric plane
considering values of other parameters as given Table 2 in Fig. 8.
In Fig. 8, the blue line is the creation or distraction of one interior equilibrium point and red, magenta lines
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are saddle-node, Hopf bifurcation curves for coexistence equilibria respectively. Thus k2 − k1 parametric
plane divided into seven distinct subregion (D1, D2, D3, D4, D5, D6 and D7) with different number or
nature of equilibria. The trivial, axial and one planer equilibrium points always exist throughout the plane
where the trivial, axial equilibrium points are saddle and the planer equilibrium point is an unstable spiral
for the considered values of the parameters.

In the sub-region D1 only one coexistence equilibria exists and it is an unstable spiral. A stable limit
cycle arises in the phase space and all solution curve starting from anywhere in the phase space goes to
the stable limit cycle (see Fig. 9((a), (b))). Then increasing k2 enter in sub-region D2, two new interior
equilibria (one is saddle and other is unstable spiral) arise. All the three interior equilibrium points are un-
stable spiral here, a stable limit cycle arises around one of them (see Fig. 9((c), (d))). But if we increase k1
instead of k2 in the sub-region D7, no coexistence equilibria exist i.e., the coexistence equilibria diminishes
here and only the non-interior equilibrium points are exist here (see Fig. 11((c), (d))).

Then if we enter into the sub-region D4 from D2 crossing the Hopf bifurcation curve, the number of
interior equilibria remain the same but the coexistence equilibria with the highest top predator population
density becomes a stable spiral. Here the phase space divided into two distinct basin of attractor where
solution curve starting from any basins either goes to the stable coexistence equilibria or goes to the stable
limit cycle i.e., bi-stability occurs here (see Fig. 10((a), (b), (c))).
From sub-region D4, if we decrease the parameter k1 and enter into the subregion D3, we observe that
both the unstable interior equilibrium points are vanishes here but the bi-stability nature remains unal-
tered as previous. Thus one stable coexistence equilibria and a stable limit cycle exist here (see Fig. 10((d),
(e), (f))). But if increase the parameter k1 and enter into the subregion D5, only one unstable interior
equilibria vanishes and the remaining two coexistence equilibria has the same nature as in the sub-region
D4. Bi-stability also occurs here and the phase space divided into two distinct attractor (see Fig. 10((g),
(h), (i))). The bi-stability has high significance from the biological point of view. Survival of populations
not only depends on the parameter values but also on population density at the initial time. Next, if we
decrease the parameter k2 and enter into the subregion D6 from D5 crossing the Hopf bifurcation curve,
we observe that the stable coexistence equilibria become an unstable spiral with a stable limit cycle and
the other one remain same. Thus both interior equilibrium points are unstable and any solution curve goes
to the stable limit cycle (see Fig. 11((a), (b))).
Thus from the above discussion one can conclude that both fear parameters (consequently fear effects) can
regulate the co-existence of all three species for moderate values of system parameters. If the fear of top
predator to intermediate predator increases the system goes to stable situation from periodic oscillatory
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Fig. 9: Phase diagram and time series solution of different species of the model system (4) in different sub-region like as :
(a), (b) in sub-region D1, (c), (d) in sub-region D2, with values of other system parameters as given in Table 2. Red dots
represent the unstable equilibria.

behaviour. But if the fear of intermediate predator to prey increases the system enter into oscillatory be-
haviour from a stable situation.

(b) Chaotic dynamics of the system

In this segment we are interested to investigate the chaotic dynamics and its control strategies with
respect to some important model parameters. For this purpose consider values of system parameters as
k1 = 0.02, k2 = 0.001, a1 = 0.65, a2 = 20, b1 = 0.01, b2 = 0.005, c1 = 0.2, c2 = 10, d1 = 0.4, d2 = 0.01 taken
from [47], the system consist of only one coexistence equilibrium point E∗ (0.830088, 0.125558, 8.922137)
with one trivial, one axial, one planer equilibrium points and all equilibrium points are unstable here. With
initial population density (0.6, 0.52, 4.2), the solution trajectory shows higher periodic behaviour i.e., the
model system (4) exhibits chaotic behaviour.

(I) Chaos control dynamics of the control parameter b1

Now, we explore the impact of mutual interference among middle predator on controlling chaotic dy-
namics of model system (4). With the increase of parameter b1, the system enters into stable situation
from its chaotic state through the period-halving bifurcation (see Fig. 12 and Fig. 13). We show that
system has chaotic, higher periodic oscillations in b1 < 0.0811; then two periodic oscillations in the in-
terval (0.0811, 0.1703); limit cycle oscillations in the interval (0.1703, 0.3867), and stable behaviour for
b1 ≥ 0.3867. Therefore, for lower values of mutual interference among middle predator, the system shows
chaotic behaviour. Then with the increase of values of mutual interference, the system becomes the stable
focus from chaos.
In Fig. 12 and Fig. 13, we have drawn phase portrait and time series solution of the system (4) for dif-
ferent values of the parameter b1. The first row of Fig. 12 shows the chaotic behaviour for b1 = 0.01,
second row of Fig. 12 exhibits the two periodic limit cycle oscillation for b1 = 0.08. Then first row of Fig. 13
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Fig. 10: Phase diagram and time series solution at stable and unstable equilibrium point respectively of different species
of the model system (4) in different sub-region like as : (a), (b), (c) in sub-region D4, (d), (e), (f) in sub-region D3, and
(g), (h), (i) in sub-region D5 with values of other system parameters as given in Table 2. Green dot represents the stable
equilibria and red dots represent the unstable equilibria.

shows one limit cycle oscillation for b1 = 0.20 and second row of Fig. 13 shows stable behaviour for b1 = 0.41.
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Fig. 11: Phase diagram and time series solution of different species of the model system (4) in different sub-region like as
: (a), (b) in sub-region D6, (c), (d) in sub-region D7, with values of other system parameters as given in Table 2. Red dots
represent the unstable equilibria.
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Fig. 12: Phase diagram and time series solution of all the three species of the system (4) for different values of b1 like
as : (a), (b) for b1 = 0.01 and (c), (d) for b1 = 0.08 with other parameters value as considered above. Red dot represent
unstable equilibrium point. 22
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Fig. 13: Phase diagram and time series solution of all the three species of the system (4) for different values of b1 like
as : (a), (b) for b1 = 0.20 and (c), (d) for b1 = 0.41 with other parameters value as considered above. Green dot, red dot
represent stable, unstable equilibrium points.

(II) Chaos control dynamics of the control parameter b2

Similarly, the mutual interference among top predator b2 can also control the chaotic dynamics of model
system (4). With the increase of parameter b2, the system enters into stable situation from its chaotic state
through period-halving bifurcation (see Fig. 14 and Fig. 15). System shows chaotic, higher periodic oscil-
lations in b2 < 0.1319; then two periodic oscillations in the interval (0.1319, 0.2213); limit cycle oscillations
in the interval (0.2213, 0.3119), and stable behaviour for b2 ≥ 0.3119.
In Fig. 14 and Fig. 15, we have drawn phase portrait and time series solution of the system (4) for different
values of parameter b2. The first row of Fig. 14 shows the chaotic behaviour for b2 = 0.005, second row of
Fig. 14 exhibits the two periodic limit cycle oscillation for b2 = 0.15. Then first row of Fig. 15 shows one
periodic limit cycle oscillation for b2 = 0.26 and second row of Fig. 15 shows stable behaviour for b2 = 0.40.
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Fig. 14: Phase diagram and time series solution of all the three species of the system (4) for different values of b2 like as :
(a), (b) for b2 = b2 = 0.005 and (c), (d) for b2 = 0.15 with other parameters value as considered above. Red dot represent
unstable equilibrium point.

These phenomena of the system are significant from the ecological point of view. If the mutual interfer-
ence among predator (middle or top) increase, predators become busy in their intra-specific collision and
hence growth rate of predator decreases. As a result, less number of prey or middle predator are consumed
by a middle predator or top predator. Consequently, the system becomes stable and all three populations
can survive in the system with a positive density level. Mutual interference among middle predators and
top predators both has a stabilizing effect on the system dynamics (see Fig. 20(a)).

(III) Chaos control dynamics of the control parameter k1

Similarly, the fear of intermediate predator on prey k1 can also control the chaotic dynamics of model
system (4). With the increase of parameter k1, the system enters into stable situation from its chaotic state
through period-halving bifurcation (see Fig. 16 and Fig. 17). System shows chaotic, higher periodic oscil-
lations in k1 < 0.8477; then two periodic oscillations in the interval (0.8477, 1.559); limit cycle oscillations
in the interval (1.559, 2.178), and stable behaviour for k1 ≥ 2.178.
In Fig. 16 and Fig. 17, we have drawn phase portrait and time series solution of the system (4) for different
values of parameter k1. The first row of Fig. 16 shows the chaotic behaviour for k1 = 0.02, second row
of Fig. 16 exhibits the two periodic limit cycle oscillation for k1 = 1.0. Then first row of Fig. 17 shows
one periodic limit cycle oscillation for k1 = 1.8 and second row of Fig. 17 shows stable behaviour for k1 = 6.0.
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Fig. 15: Phase diagram and time series solution of all the three species of the system (4) for different values of b2 like
as : (a), (b) for b2 = 0.26 and (c), (d) for b2 = 0.40 with other parameters value as considered above. Green dot, red dot
represent stable, unstable equilibrium points.
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Fig. 16: Phase diagram and time series solution of all the three species of the system (4) for different values of k1 like
as : (a), (b) for k1 = 0.02 and (c), (d) for k1 = 1.0 with other parameters value as considered above. Red dot represent
unstable equilibrium point. 25
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Fig. 17: Phase diagram and time series solution of all the three species of the system (4) for different values of k1 like
as : (a), (b) for k1 = 1.8 and (c), (d) for k1 = 6.0 with other parameters value as considered above. Green dot, red dot
represent stable, unstable equilibrium points.

(IV) Chaos control dynamics of the control parameter k2

Similarly, the middle predator on prey k2 can also control the chaotic dynamics of model system (4).
With the increase of parameter k2, the system enters into stable situation from its chaotic dynamics through
period-halving bifurcation (see Fig. 18 and Fig. 19). System shows chaotic, higher periodic oscillations in
k2 < 0.0198; then two periodic oscillations in the interval (0.0198, 0.0593); limit cycle oscillations in the
interval (0.0593, 0.3931), and stable behaviour for k2 ≥ 0.3931.
In Fig. 18 and Fig. 19, we have drawn phase portrait and time series solution of the system (4) for different
values of parameter k2. The first row of Fig. 18 shows the chaotic behaviour for k2 = 0.001, second row
of Fig. 18 exhibits the two periodic limit cycle oscillation for k2 = 0.04. Then first row of Fig. 19 shows
one periodic limit cycle oscillation for k2 = 0.1 and second row of Fig. 19 shows stable behaviour for k2 = 2.0.
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Fig. 18: Phase diagram and time series solution of all the three species of the system (4) for different values of k2 like as
: (a), (b) for k2 = 0.001 and (c), (d) for k2 = 0.04 with other parameters value as considered above. Red dot represent
unstable equilibrium point.

Ecologically fear parameters k1, k2 are highly significant since these two parameters can control the
chaotic dynamics of the system and turn into a stable one. With the increase of fear parameter k1, k2,
growth rate of prey, intermediate predator decrease respectively and less number of prey, middle predators
are captured by middle, top predator respectively in the system. Thus all three species survive in the sys-
tem a with positive density level. Also, fear of intermediate predator on prey and fear of top predator on
intermediate predator both has stabilizing effect on the system dynamics (see Fig. 20(b)).

7 Conclusion

In this investigation we have explored the dynamics of a tri-topic Hasting-Powell food web model incorpo-
rating the fear effect of the intermediate predator on growth function of prey, fear the effect of top predator
on growth function of intermediate predator and replacing the prey dependent type II functional response
by the ratio-dependent Beddington-DeAngelis functional response. In previous sections, we have shown that
cost of fear can influence local and global dynamics of the system. Positivity, boundedness and persistence
of the system solution imply that any feasible solution is always away from zero and remains bounded.
We find all possible feasible equilibria and their feasibility condition in expressions of system parameters.
Local asymptotical stability of different equilibrium points are determined. We also discuss the global sta-
bility of non-trivial equilibria. Transcritical bifurcation at axial equilibria concerning the middle predator
death rate as bifurcation parameter and saddle-node, Hopf bifurcation at coexistence equilibria concerning
the fear effect of the intermediate predator on prey population as bifurcation parameter are investigated.
We also find the stability direction of Hopf bifurcating periodic solution concerning the fear effect of the
middle predator as the bifurcation parameter. Finally, we justify theoretical findings and the significance
of different system parameters numerically considering hypothetical values of system parameters.
Considering moderate values (see Table 2) of system parameters, we see that the system has three coex-
istence equilibria. With the increase of fear parameter k1, the system becomes unstable from the stable
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Fig. 19: Phase diagram and time series solution of all the three species of the system (4) for different values of k2 like
as : (a), (b) for k2 = 0.1 and (c), (d) for k2 = 2.0 with other parameters value as considered above. Green dot, red dot
represent stable, unstable equilibrium points.
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Fig. 20: Stability region in (a) b1 − b2, (b) k1 − k2 parametric plane of the system (4). The system exhibits chaotic or
higher periodic, two periodic, one periodic oscillation and stable spiral in red, violet, magenta, green regions respectively.
Both parameters have a stabilizing effect on the system dynamics.
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situation but with the increase of fear parameter k2 the system enters into a stable situation from unstable.
There exists a set of values of the parameters k1, k2 for which bi-stability arises with one stable interior
equilibria and another stable limit cycle around the top predator-free planer equilibria. Thus co-existence
of all species or extinction of top predator depends not only on parametric restriction but also on initial
population density size.
Again if the handling time of top predator, environmental protection for intermediate predator are high
and mutual interference among intermediate, top predators are low, then the system shows highly complex
dynamics like chaotic or higher periodic state, two periodic, one periodic and stable spiral situation.
Panday et al. [47] modified the three species Hasting-Powell food web model considering fear effect in
growth function of prey and intermediate predator. They show that the cost of fear can stabilize the system
from a chaotic situation through the period halving bifurcation. They also show that if the cost of fear
increases top predator population goes to extinction. They claimed that the fear effect can regulate the
stability of the system. The existence of prey and predator species depends on the cost of fear.
But we observe that not only fear parameters, mutual interference among middle and top predators can
also regulate the system dynamics. Mutual interference among predator can also reduce the chaotic be-
haviour of the system through a period of halving bifurcation and the system becomes stable. Thus along
with the increase of fear parameter and mutual interference among predator the system goes to the stable
situation from chaotic one. Hence we have more options to reduce the chaotic situation of the modified
Hasting-Powell food chain model and we will feel more relax to consider values of system parameters for a
stable solution of the system.
It is important to note that most of the research work considering the fear effect are two species prey-
predator model and there are only a nominal number of work considering three species prey-predator
model. Middle predator foraging behaviour suppressed by the top predator and the impacts of overcon-
sumption of intermediate predator by prey is thereby investigated. We showed this scenario by considering
tri-topic food web model. We observe that fear and mutual interference among predators can make the
system stable from the chaotic situation. Thus fear and mutual interference among predators enhances the
persistence and stability of the tri-topic food web model. Therefore to conserve biodiversity and maintain-
ing the ecosystems we can manipulate fear and mutual interference by artificial vocalization.
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3 ,

m23 = − k2x̄
∗

(1 + k2z̄∗)
2 (a1x̄∗ + b1ȳ∗ + c1)
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Figures

Figure 1

Projection of interior equilibrium points in the x-z plane for different values of parameter k1 of the system
(4) as : (a) k1 = 0:02, (b) k1 = 0:09078075523, (c) k1 = 0:2, (d) k1 = 0:33, (e) k1 = 0:3840366382, (f) k1 =
0:5 and other system parameters are � xed in Table 2.



Figure 2

Solution trajectories of model system (4) with various starting points considering k1 = 1, k2 = 1, a1 = 0:65,
a2 = 20, b1 = 0:1, b2 = 0:91, c1 = 0:2, c2 = 10, d1 = 0:4, d2 = 0:01. Figure shows global asymptotic stability
of interior equilibria E*(0:7807723516; 0:1388648586; 1:218888670).

Figure 3



(a) One parametric bifurcation diagram with regard to the parameter d1, blue & red lines represent the
stable & unstable nature of the corresponding equilibria respectively and phase diagram of the model
system (4) for: (a) d1 = 0:75, (b) d1 = 0:95 with k1 = 0:5, c1 = 0:42, d2 = 0:62 considering other parameter
values as given in Table 2.

Figure 4

One parametric bifurcation diagram with regard to bifurcation parameter k1 of top predator population
considering (a) a1 = 0:7, b2 = 0:4, c2 = 1:2 and other parameters (b) values of system parameters as
given in Table 2. Black dot represents the bifurcation point at k1 = 1:47433536957.

Figure 5

Phase diagram of model system (4) for different values of the parameter k1 like as : (a) k1 = 1:30, (b) k1
= 1:47433536957, (c) k1 = 1:55 with a1 = 0:7, b2 = 0:4, c2 = 1:2 and values of other system parameters as
given in Table 2. Green dots represent the stable equilibria and red dots represent the unstable equilibria.



Figure 6

Phase diagram of the model system (4) for different values of parameter k1 like as : (a) k1 = 0:10, (b) k1
= 0:35 with values of other system parameters as given in Table 2. Green dot represents the stable
equilibria and red dots represent unstable equilibria.

Figure 7

Phase diagram of the model system (4) for different values of the parameter k2 like as : (a) k2 = 1:0, (b)
k2 = 1:5 with values of other system parameters as given in Table 2. Green dot represents the stable and
red dots represent unstable equilibria.



Figure 8

Schematic bifurcation diagram of system (4) in k2 - k1 parametric plane considering values of other
parameters as given in Table 2. Here blue, red and magenta lines are the creation or distraction of one
interior equilibrium point, saddle-node and Hopf bifurcation curve for coexistence equilibria respectively.



Figure 9

Phase diagram and time series solution of different species of the model system (4) in different sub-
region like as : (a), (b) in sub-region D1, (c), (d) in sub-region D2, with values of other system parameters
as given in Table 2. Red dots represent the unstable equilibria.



Figure 10

Phase diagram and time series solution at stable and unstable equilibrium point respectively of different
species of the model system (4) in different sub-region like as : (a), (b), (c) in sub-region D4, (d), (e), (f) in
sub-region D3, and (g), (h), (i) in sub-region D5 with values of other system parameters as given in Table
2. Green dot represents the stable equilibria and red dots represent the unstable equilibria.



Figure 11

Phase diagram and time series solution of different species of the model system (4) in different sub-
region like as : (a), (b) in sub-region D6, (c), (d) in sub-region D7, with values of other system parameters
as given in Table 2. Red dots represent the unstable equilibria.



Figure 12

Phase diagram and time series solution of all the three species of the system (4) for different values of
b1 like as : (a), (b) for b1 = 0:01 and (c), (d) for b1 = 0:08 with other parameters value as considered
above. Red dot represent unstable equilibrium point.



Figure 13

Phase diagram and time series solution of all the three species of the system (4) for different values of
b1 like as : (a), (b) for b1 = 0:20 and (c), (d) for b1 = 0:41 with other parameters value as considered
above. Green dot, red dot represent stable, unstable equilibrium points.



Figure 14

Phase diagram and time series solution of all the three species of the system (4) for different values of
b2 like as : (a), (b) for b2 = b2 = 0:005 and (c), (d) for b2 = 0:15 with other parameters value as considered
above. Red dot represent unstable equilibrium point.



Figure 15

Phase diagram and time series solution of all the three species of the system (4) for different values of
b2 like as : (a), (b) for b2 = 0:26 and (c), (d) for b2 = 0:40 with other parameters value as considered
above. Green dot, red dot represent stable, unstable equilibrium points.



Figure 16

Phase diagram and time series solution of all the three species of the system (4) for different values of
k1 like as : (a), (b) for k1 = 0:02 and (c), (d) for k1 = 1:0 with other parameters value as considered above.
Red dot represent unstable equilibrium point.



Figure 17

Phase diagram and time series solution of all the three species of the system (4) for different values of
k1 like as : (a), (b) for k1 = 1:8 and (c), (d) for k1 = 6:0 with other parameters value as considered above.
Green dot, red dot represent stable, unstable equilibrium points.



Figure 18

Phase diagram and time series solution of all the three species of the system (4) for different values of
k2 like as : (a), (b) for k2 = 0:001 and (c), (d) for k2 = 0:04 with other parameters value as considered
above. Red dot represent unstable equilibrium point.



Figure 19

Phase diagram and time series solution of all the three species of the system (4) for different values of
k2 like as : (a), (b) for k2 = 0:1 and (c), (d) for k2 = 2:0 with other parameters value as considered above.
Green dot, red dot represent stable, unstable equilibrium points.



Figure 20

Stability region in (a) b1 - b2, (b) k1 - k2 parametric plane of the system (4). The system exhibits chaotic
or higher periodic, two periodic, one periodic oscillation and stable spiral in red, violet, magenta, green
regions respectively. Both parameters have a stabilizing effect on the system dynamics.




