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Chaotic dynamics of an impact oscillator

J. M. T. Thompson and R. Ghaffari
Department of Civil Engineering, University College London, London, England

(Received 11 August 1982)

An impact oscillator is shown to exhibit complex dynamics. Its resonance response contains
regions where, after an infinite cascade of period-doubling bifurcations, chaotic motion typical of
a strange attractor is observed. The regions are bounded on both sides by subharmonic reso-
nances. Quantitative agreements are obtained with the Feigenbaum scenario of chaos. This
novel feature of a substantial marine technology program may be of general cross-disciplinary
interest to mathematicians and physicists.

There is much current interest in physics in chaotic
motions governed by strange attractors. We present
a new example of a system exhibiting such phenom-
ena, and make quantitative comparisons with a
scenario of period doubling as a route to chaos. '~
There is good agreement, supporting the hope that
the behavior of many nonlinear dynamical systems
can be understood by means of a universal model.

The present work arose in marine engineering,
where the slackening of a mooring can introduce a
discontinuity in stiffness of, for example, an articulat-
ed oil-loading tower. ' Such systems can sometimes
be modeled as an impact oscillator, that rebounds
elastically whenever the displacement Xdrops to
zero, subjected to sinusoidal forcing. This simple
system is of wide interest beyond marine technology.

The nondimensionalized equation of motion of our
impact oscillator can be written as'

X+—X+
2
X=—2sinr, X &0

4q

where a dot denotes differentiation with respect to
time r, i; is the damping ratio defined with respect to
the effective natural frequency of the unforced and
undamped rebounding system, and q is the ratio of
the forcing frequency to this effective frequency.
Defining y as half the maximum value of X, the reso-
nance response curve has been determined as y(7i)
in Fig. 1 for the fixed damping ratio shown. Well-
defined resonant peaks are seen, corresponding to a
fundamental response ( n = 1) at q = l and subhar-
monic resonances of order n =2, 3, 4, . . . at q = n.

The areas shown in Fig. 1 correspond to solutions
with one impact per response cycle, but between the
peaks more than one impact is observed. A precise
digital computer program' has been used to explore
carefully the region between two adjacent peaks, us-

ing the Poincare mapping points (X,X) at r equal to
multiples of 2n. A cascade of period-doubling bifur-
cations is observed (Fig. 2) leading to a chaotic solu-
tion at q =4.5. Notice that the chaos is located
between an n =4 cascade deriving from the n =4
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FIG. 1. Resonance response curve for the impact oscilla-
tor.

resonance, and an n = 5 cascade originating from the
n =5 resonance.

This approach to chaos via period doubling is in
line with the Feigenbaum scenario which draws on
the behavior of a universal quadratic map. The bi-
furcations of this map have the property that the con-
secutive control parameter intervals tend to a fixed
ratio of 5 =4.6692. . . as an accummulation point is
approached.

In our problem, we define q„asthe range of q
over which the subharmonic of order n is observed.
We then find from a refined version of Fig. 2 that
qs/gi6=4 56, g&6/q32 469 and 7i32/q64=4. 64.
These agree very well with Feigenbaum's number,
which relates strictly to the limit as n tends to
infinity,

A standard test for the chaotic motions of a strange
attractor is that solutions from adjacent starts should
diverge exponentially until they become completely
uncorrelated. This behavior for the impact oscillator
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FIG. 2. Sequence of steady-state Poincare maps showing period-d bl' b'fri - ou ing i urcations leading to chaos at g=4.5.

is shown in Fig. 3 for three starting separations on a
plot of —log1o 8 against steps of Ar =2m. . The noisy
straight lines confirm that 8 varies as AoN', where i
is the number of steps and N is the Liapunov
number.

From a set of graphs similar to Fig. 3, we estimate
the value of N =1.17 for our impact oscillator. This
compares with N =1.26 for regions of the quadratic
map, and N =1.52 for the Henon strange attrac-
tor 7 11

We note, finally, that we have observed the co-
existence of an n =10 subharmonic with a presumed

strange attractor at a value of q =4.55 as shown in

Fig. 4. The solution obtained here depends only on
the starting conditions of the time integration.

This discovery of period-doubling bifurcations,
chaos, and strange attractors in the resonance of a
simple impact oscillator may be of interest to en-
gineers, physicists, and mathematicians alike. Full
details of the marine study are planned to be pub-
lished elsewhere. '
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FIG. 3. Divergence study showing a noisy exponential
growth of the separation between close starts.

FIG. 4. Attractors of two coexisting multiple solutions for
a fixed system. The attractor observed depends on the
starting conditions.
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