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Nomenclature

ajn,ajn Generalized tube displacement and velocity in x direction

bjn, bjn Generalized tube displacement and velocity in y direction

D Tube diameter

E Young's modulus

e Wall thickness of tube

el, e2  Tube-support gaps

f Oscillation frequency

fn Natural frequency of n-th mode

I Moment of inertia of tube cross section

Ke Equivalent stiffness

kn Eigenvalues for tube vibration

1 Tube length

mj Mass per unit length of j-th tube

N Number of tubes in array or row

n Number of modes

P Pitch

R Radius of tube

t Time

ts Time when tube strikes TSP

td Time when tube leaves TSP

U Flow velocity

Um Mean flow velocity

vi



Ur Reduced flow velocity (= US/fD or U/fD)

uj, ij Displacement aid velocity of j-th tube in x direction

vj, 4j Displacement and velocity of j-th tube in y direction

x, y, z Cartesian coordinates

ajk, Pjk, Added-mass coefficients

Gjk, tjk

a k4 3 Jk, Fluid damping coefficients

ajk'Tjk

a k kFluid stiffness coefficients

ajk'jk

Dimensionless coordinates

(j, j Damping ratio in vacuum

Yj Mass ratio (= piR2 /mj) of j-th tube

p Fluid density

W Circular frequency

0j, Snj Natural frequency in radian of j-th tube in vacuum

(Pn(z) Orthonormal function of n-th mode

yr(z) Flow velocity distribution function

Subscripts

j,k Tube number j,k (j,k = 1 to N)

n n-th modes

1 For Model 1 (TSP-inactive mode)

2 For Model 2 (TSP-active mode)

vu



Chaotic Dynamics of Loosely Supported Tubes

in Crossflow

by

Y. Cai and S. S. Chen

Abstract

By means of the unsteady-flow theory and a bilinear mathematical model, a

theoretical study was conducted of the chaotic dynamics associated with the

fluidelastic instability of loosely supported tubes. Calculations were performed for

the RMS of tube displacement, bifurcation diagram, phase portrait, power

spectral density, and Poincare map. Analytical results show the existence of

chaotic, quasiperiodic, and periodic regions when flow velocity exceeds a

threshold value.

1 Introduction

The supports for heat exchanger tubes are usually plates with drilled holes.
To facilitate manufacture and to allow for thermal expansion of the tubes, small

clearances are used between tubes and tube supports. When the clearance is
relatively large, a tube may rattle inside some of its support holes with small-

amplitude oscillations. This type of mode, in which some supports do not provide

effective support, is called tube-support-plate (TSP)-inactive mode.

Extensive experimental and analytical studies have been performed on the

dynamic response of loosely held tubes and how the tube response is related to
wear. 1-25 Chen et al.1 investigated the fluidelastic behavior of loosely held tubes
in the laboratory. They observed that as the flow velocity is increased to a

threshold value, instability in the TSP-inactive mode may occur. Then, for a
range of flow velocities higher than the threshold flow velocity, the tube vibrates

predominantly in the TSP-inactive mode, with the response amplitude limited by
the clearance between the tube and the TSP. With a further increase in flow

velocity, a second threshold, or critical flow velocity, is reached, at which point
instability in the TSP-active mode begins. In this case, large-amplitude

oscillations occur and, in many cases, tubes may impact one another. Additional

experimental studies to determine the response of loosely supported tubes in the
TSP-inactive mode under some specific flow conditions have recently been

published.7 -1 1
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On the other hand, for analyzing tube responses and impacting behavior of
loosely supported tubes, many nonlinear methods- have been developed in recent

years. 1 2 - 2 6 Numerical simulations have been performed by Axisa et al.,20
Fricker, 14 and Rao et al.;1 5 all used quasistatic or quasisteady-flow theories,
which are applicable in specific parameter ranges. Chen and Chandra2 3

developed the unsteady-flow model on fluidelastic instability of tubes in

nonuniform flow. Cai et al.2 6 presented a bilinear model, based on the unsteady-
flow theory. The simulations in Ref. 26 agreed reasonably well with the
experimental data of Chen et al.1 and demonstrated that the unsteady-flow theory
and the bilinear model are adequate to describe the nonlinear behavior of
fluidelastic instability associated with TSP-inactive modes of loosely supported

tubes in crossflow.

With the recent interest in chaotic motions of nonlinear systems2 7 -30 and the
relationship of chaotic vibration to tube wear, it is appropriate to look into the

possible existence of chaos in tube arrays in crossflow. Related systems without

flow have been studied experimentally by several investigators. Moon, Shaw, and
Holmes 3 1 -3 4 studied forced oscillation of beams with motion constraints; chaos

was found to exist. A case study of chaos in a marine application, involving
impacting modeled via bilinear springs, was discussed by Thompson and

Stewart. 2 9 Recently, it was realized that flow-induced vibration of loosely
supported tubes, which is one of the systems with motion constraints, can display

a wide variety of dynamic behavior. For example, chaotic fluidelastic vibrations of
a constrained pipe conveying fluid were examined by Paidcussis and Moon both
experimentally and theoretically, 3 5 ,3 6 with the use of a two-degree of freedom

system. And a study on chaotic and periodic motions of a nonlinear oscillator in

order to model flow-induced vibration of loosely supported tubes was conducted by

Langre et al.3 7

The objective of the work presented in this report is to apply the theory of

fluidelastic instability of TSP-inactive modes, developed in Ref. 26, to predict the

complex periodic/chaotic dynamics of loosely supported tubes in crossflow. The
focus is on possible chaotic motions and a route to chaos in the instability region of

the TSP-inactive mode.

Several techniques, including root-mean-square (RMS) of tube displace-

ment, bifurcation diagrams, phase portraits, power spectral density, and

Poincar6 map, which are considered to be effective tools for distinguishing
periodic and chaotic motions, were utilized in this study. Many calculations have

been carried out to thoroughly confirm the existence of chaotic motion and the

route to chaos with change of control parameters (in this study, the only control
parameter is flow velocity). The results of various techniques indicate the
existence of chaotic motion in the instability region of the TSP-inactive mode.
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2 Equations of Motion

An unsteady flow theory for fluidelastic instability of tubes in crossflow has

been described in detail by Chen2 2 and by Chen and Chandra.2 3 For

completeness, the unsteady flow model for fluidelastic instability of loosely

supported tubes is briefly described here.

Consider a row of N tubes oscillating in a crossflow (Fig. 1). The tube axes
are parallel to the z axis. The subscript j is used to denote variables associated

with a tube j. Tube displacement components in the x and y directions are uj and

vj, respectively. The orthonormal modal function of the tube vibrating in vacuum

and in fluid is qn(z):

(1)fP(z)dz =1,

where l is the length of the tubes. Let

uj(z,t)= $aja(t)<pn(z),
n=1

and (2)

vj (z,t) = Ibin(t)pn (z),
n=1

~II

U(z)

I
4

Tube

/

z

y

Tubes

x

y

Fig. 1. Tube row oscillating in nonuniform crossflow; U(z) is
flow velocity distribution
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where ajn(t) and bjn(t) are functions of time only. Assume that the flow velocity

distribution is given by

U(z) = Umry(z), (3)

where Ur is mean flow velocity and N(z) is the flow velocity distribution function.

The equations of motion for the tubes are

d2a*

dt2
d a+ + 2a + p 1R+jk d2am+ jk d2bkn

2jiO r t n jn 'I k dt2  
ik dt2  

)

- d + ad db pU2S a ak+=ikm m (ekn
k J k=1

(4)

d +2n db + Nbjr +Pk d2 a d2bkn
dt2t j~lmJ k_1 dt2 'dt)

- U dakn
dm dt

+kdbkn l U ( 

+

1 'jkfm dt m-k 'riaim + 3bm=O

where p is fluid density; R is tube radius; o is the radian frequency; jn and TIjn

are damping ratios in vacuum; wjn and Dja are natural frequencies in the radian

of the j-th cylinder in vacuum; mj is cylinder mass per unit length of cylinder j,
and

a = f ajkPl(z)y2 (z)dz,

l = J~a6k (z)(z)dz,

kn = ojkn(z)(z)dz,

'3jkn = tJ;kn (z)y2 (z d,

ajkn = ".Jk9(z) 2 (z)dz,

a~kf = tJ'ajkP(z)y2(z)dz,

ti = jtcjken (z)' 2 (z)dz,

jk = JfoJ ik9n (Z)V2 (z)dz.

and

(5)
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Note that ajk, ajk, rjk, and a djk are added-mass coefficients; a' kk- nd
k3 are fluid-damping coefficients; and " i k"ik and 13' are flui-s'ifne'

coefficients. All these force coefficients are based on the experimental data of

Tanaka2 4 and have been compiled and evaluated by Chen and Chandra2 3 and

Chen and Jendrzejczyk.2 5

Equations 4 and 5 are applicable to tube arrays in which all tubes have the

same length and same type of boundary conditions. For a group of N tubes,

corresponding to each n-th mode for a single tube, there are 2N coupled modes.
Based on Eqs. 4, different types of instability can be analyzed, including coupled-

and single-mode flutter, or velocity- and displacement-controlled mechanisms.

Consider the case of fluidelastic instability in which a velocity-controlled,

negative damping mechanism is dominant. The stability of the tube row may be

analyzed approximately by considering only one flexible tube among other rigid

tubes and neglecting the couplng in the two directions. For this case, Eqs. 4 can

be written as

Yyja)d 2  + 2Ujndodjn - a + o - UaO jn =0,
dt2  n 3 oaij-t- Rj3 rjjFn

and (6)

(1+Yj )d + 2lijn~jn 3 o)i + 2 2 1 U n=Vin0,(y~)dt2  i dn db3I nu~l~

j =1, 2, 3,... N, n =1, 2, 3,... w,

where

pR2(7)

Yj= 

7mj

Ur ="U , (8)
OR'

and
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wM2  YU2cae

nrj.(9)

1+yjaj

Notice that co depends on the coefficients ae., which depend on the reduced

flow velocity Ur (= Ura/fD = Um-2n/oD). Therefore, an iterated method is required

to calculate co.

3 A Bilinear Model for Loosely Supported Tubes

A two-span flexible tube with one intermediate support in a row of rigid

tubes, schematically shown in Fig. 2, was tested by Chen et al.1 When the right

end (C3) of the tube does not strike the stop, it is a pinned-pinned-free model

(Model 1, Fig. 3a). When the right end strikes the stop, it becomes a pinned-

pinned-spring-supported model (Model 2, Fig. 3b), where a spring at C3 is used
to represent tube/support interaction when the tube strikes the stop. Because the

effects of impact force are represented by the spring at C3 in Model 2, the vibratory

system is autonomous, as described in Eq. 6.

Vibration of the tube can be represented by a bilinear model consisting of
Models 1 and 2. In Model 1, as the displacement of the tube increases, its right

end may strike the stop; when this ocurs, Model 1 becomes Model 2. Due to

increased system stiffness, tube motion is stabilized and its right end leaves the
stop and returns to Model 1.

Yt xz

Flow

Gep

C1 C2 C3

9mm

b914 mm 375 mm

Fig. 2. Schematic of tube and supports (Cl and C2) in crossflow
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y x

v~z
Flow

C3

Cl 2259mm

KX14 mm 375 mm ]
Fig. 3a. Schematic of tube with supports Cl and C2, and right end free

y X

Flow

Cl

259 mrm

I. 914 mm

v vvv vvA

C2

1 375 mm

-

Fig. 3b. Schematic of tube with supports Cl and C2, and
supported by a spring

1I

right end

i I
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These two models of tube vibration can be analyzed in two different time

regions. For Model 1, if we assume that during the time interval 0 t ts, tube
displacements at C3 are within the stop limits -e2 < u(1,t) < ei. The solutions of

tube vibration (here considered only in the x direction) by the normal-mode

method can be described as

u( , t)= aIn (t)pn(4)
n=1

- 0 < t<ts, (10)

u(4,t)= I ain (t)q in (4)

n=1

where 93n(() are the normal modes of Model 1 (see Appendix), and 4 = z/1. At

time t = ts, the right end of the tube strikes the stop and it becomes Model 2, the
solutions of the tube vibration of Model 2 by the normal-mode method are

u(4, t) = a2 n (t)92n (4) + u(t, t)It
n=1

-tR< t< td, (11)

t)= :a2n(t)92 n (4)

n=1

where P2n(() are the normal modes of Model 2 (see Appendix).

The flow-velocity distribution in Fig. 2 can be defined as

0 0<4 <a

y()= 1 4a < 4 <4b (12)

0 4b <4t<1

4a =a/ , 5b = b/1 

.

Therefore, the force coefficients a4 and a will be

ad = Ja e2()2(4)d = a s 2(t)2(4)d4

(13)

a = a:'2(4)=2(4)d4 =a" j2(4)y2(4)d4,
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() 0 < t < t

{(4)= (14)

92n ( ) t, < t < td,

where a and a are fluid-damping and fluid-stiffness coefficients, which are

functions of reduced flow velocity Ur.

4 Numerical Results and Discussion

A two-span flexible tube with one intermediate support and one end baffle

plate (TSP), schematically shown in Fig. 2, is considered in the simulations. This
was the tube row tested by Chen et al.1 The tube in Fig. 2 is brass, with a 1.59 cm
outside diameter, 1.59 mm wall thickness, and 131.8 cm length. The span
between C1 and C2 is 91.4 cm. The overhung portion of the tube between C2 and
C3 is 37.5 cm. The tube is submerged in fluid but subjected to flow at the middle
portion only. The portion subjected to flow is 25.9 cm in length and lies between
C1 and C2.

The diametral clearance (gap) between the tube and the TSP at C3 is 2.54 mm
in all of the simulations, in order to study the specific phenomenon of symmetric
clearance. It is noted that a symmetric clearance makes it easier to interpret the
possible chaotic tube motion induced by fluidelastic instability.

Impact stiffness is an important parameter when considering the chaotic
motion with a bilinear model of loosely supported tubes. It is expected that
response characteristics depend on the impact stiffness, which is a function of
support geometries and surrounding fluid. A study will be performed to
understand the detailed characteristics. In this study, a reasonable value, K =
107 N/m, was used in the normal modes of Model 2 (see Eq. 11 in Section 3, and
also Eq. 18 in Ref. 26) throughout our simulation.

The loosely supported tube shown in Fig. 2 is a multiple-degree-of-freedom
system. The natural frequency of the n-th mode for a uniformly submerged tube
in water can be expressed as

f kn EIfkf= El , (15)
n=2n12 m.(1+y ajj) (5

where E is the modulus of elasticity (in our case, E = 15.786 x 10-6 lb/in.2); I is the
area moment of inertia of the cross section about the neutral axis (tube
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parameters: R = 0.016 m, e = 0.00159 m); I is tube length; mj is the mass per unit

length; Yj = piR2/mj; p is the density of water; aj is the added-mass coefficient

(in our case, P/D = 1.33, j = 1, all = 1.113); and kn is a dimensionless parameter

that is related to the mode numbers and boundary conditions. In our case kn can

be calculated from the characteristic equations according to Models 1 and 2

described in Section 3 and in Ref. 26.

Table 1 shows the calculated natural frequencies of the first 10 modes for both
Models 1 and 2 in water and the suggested time-integration steps required

during simulations. As verified in a previous study,2 6 10 modes (covering a

frequency range of 0-1700 Hz) give sufficient accuracy for our case. Therefore, 10
modes were used throughout, and the time-integration step for 10 modes was

taken to be At = 0.0001 s to ensure the accuracy of simulations.

The computations were carried out on a Sun workstation computer.

Integration of the equations of motion was done using closed-form solution. The

initial conditions of tube motion in our case were taken as follows: aii(0) = 0;

a11(0) = 0.065; and ain(0) = in(0) = 0, n 2. Numerical integrations were run for

a relatively long fixed time to ensure that transient effects have died out before the

outputs are examined. In our case, this took less than 0.1 s. Then, time histories,

phase portraits, Poincard maps, and bifurcation diagrams were recorded and

drawn.

4.1 Critical Flow Velocity

The relation of the reduced flow velocity and the mean flow velocity, as

described in Eq. 8, is dependent on oscillation frequency CO, which depends on the

reduced flow velocity Ur and the coefficients ay (see Eq. 9). Consider Model 1,

which domains the tube motion: co can be iterated from Eqs. 8 and 9, and then,

the relation of the reduced flow velocity and the mean flow velocity can be obtained

as shown in Fig. 4, which is almost linear.

The critical flow velocity can be determined by setting the damping term

equal to zero, i.e.,
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Table 1. Cakuated natural frequencies of a tube

Models a

1

2

3

4

5

6

7
8

9

10

1

2

3

4

5

6

7

8

9

10

MMW

Ur n
fD-)

-4n o.5 , 0.5 27rjm 0.5

1 L J ip'2

( \0.5 0.5
_4n "i 80.5,=1 a (00)I 

g9 is'
(16)

where SS is mass-damping parameter, in this case SS = 0.3. The critical flow
velocities are given in Fig. 5, where they are plotted as a function of S8. The stable

and unstable regions can readily be observed in Fig. 5. It should be noted that
when the flow velocity is increased to the critical value Ur = 4.15, instability of tube

motion occurs. As the flow velocity is increased further, the tube executes large-
amplitude oscillations in the unstable zone. When the flow velocity reaches the
second critical value Ur = 8.42, the tube enters the stable zone; however, the tube
may not regain stability because of nonlinear effects.

Model 1:

TSP-

inactive

Model 2:
TSP-

active

kn

3.904

5.868

9.456

13.035

15.20

18.41

22.52

25.43

27.53

31.53

5.079

9.206

11.99

14.20

18.23
21.96

23.67

27.22

31.29
33.75

oh (radian)

166

377

979

1950
2528
3708

5548
7075

8291

10876

282

926

1562
2200

3628

5194
6011

8070

10520

116w

fn (Hertz)

26.54

59.98

155.8

310.5

402.5

590.7

883.4

1126

1320

1732

44.95

147.6

250.6

351.0

578.8

840.3

975.7

1291

1706

1985

At (second)

0.0094

0.0042

0.0016

0.0008

0.0006
0.0004

0.0003

0.0002

0.0002

0.0001

0.0056

0.0017

0.0010

0.0007

0.0004

0.0003

0.0003

0.0002

0.0001

0.0001
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Fig. 4. Relationship of reduced flow velocity and mean flow velocity

when mass-damping parameter is equal to 0.3 in Model 1
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According to Eqs. 6, system damping depends on flow velocity and fluid force

coefficients, namely

= 2(joj -kU oxzJ(2w) (17)

or

= [2oj - i 2 Urnad}/2w), (1 

)

where fluid force coefficients are also functions of flow velocity and co. When the
flow velocity is high enough, system damping may become negative and tube
motion becomes unstable. Figures 6 and 7 show system damping as functions of

reduced flow velocity and mean flow velocity for Model 1. We can find that the
critical reduced flow velocity Ur = 4.15 and the critical mean flow velocity Um =

1.52 m/s, at which damping is equal to zero.

Figure 8 shows a plot of the ratio of RMS tube displacement to tube diameter

vs. flow velocity. Tube response characteristics here include regions of low-

amplitude oscillation and instability of the TSP-inactive mode. In the low-

amplitude-oscillation region (for flow velocity lower than the critical flow velocity,
namely, Um < 1.52 m/s), tube motion is small and the tube responds in the TSP-
inactive mode. This is a stable region and because the system damping is
positive, the simulated tube oscillation will die out when the run time is adequate.

In the instability region of the TSP-inactive mode, as the flow velocity
increases to the critical flow velocity, the TSP-inactive mode becomes unstable.

Once the tube loses its stability, large-amplitude oscillations occur and the tube
impacts the TSP. Obviously, the number of impacts during a fixed time interval

will increase with the flow velocity in this instability region. When the flow
velocity reaches a certain value (Um = 1.8 m/s), the tube impacts the TSP in every
oscillation cycle. Therefore, the maximum peak-to-peak displacement at the
TSP is that of the diametral clearance. In this range of flow velocity, tube
displacement is almost independent of flow velocity because the motion shifts into

a stable TSP-active mode when a tube regularly impacts the TSP and the number
of tubes impacting the TSP per cycle o! oscillation is equal to 2; it appears to be a

periodic oscillation. We should note that the most interesting range is from

where the tube begins to lose its instability (Um = 1.52 m/s) to where it reaches a

periodic oscillation with regular impacting (Urn = 1.8 m/s). In this range, the
number of impacts is a function of flow velocity and initial conditions. Any
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o Experiments

4 Calculations

" 6Eo * 

-

o O

0 o 
Gap = 2.54 mm

~S 4

2
Gap = 1.02 mm

Gap - 0.51 mm

0

0 1 2 3 4

Flow Velocity, m/s

Fig. 8. RMS tube displacement as a function of flow velocity for various

diametral gaps

possible chaotic motion will occur in this range. We note that this range is very

sensitive to geometry of clearances at the TSP and contact stiffness between tube

and TSP. Because the effects of those parameters are extremely complicated, we

will not discuss them in this report. A fixed and symmetric clearance (e =
2.54 mm) and a fixed impact stiffness (Ke = 107 N/m) were applied in our
simulation in this work.

From Fig. 8 we see that the results from the simulation by the bilinear

fluidelastic model agree reasonably well with the experimental data of Chen et
al.1 We also note that in Fig. 8, flow velocity in both experiment and simulation is

up to 3 m/s because once flow velocity exceeds some values, a TSP-active mode
becomes unstable and other nonlinear effects become important. Therefore, the

bilinear model, which does not include those nonlinear effects, is not applicable to

the instability region associated with the TSP-active mode. This means that even

when the flow velocity is increased to the second critical flow velocity (see Fig. 5),

the tube will not regain stability. In fact, it was observed in the previous

experiments that with further increase in flow velocity, the tube becomes unstable
in the TSP-active mode, and oscillation amplitude can increase significantly.
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In summary, when flow velocity is lower than critical flow velocity, tube
motion is stable; when flow velocity exceeds critical flow velocity, the tube will lose

its stability and begin an amplified oscillation, namely, it will yield a Hopf
bifurcation. If the tube impacts the TSP irregularly in the instability region, tube
motion depends on flow velocity and other parameters and chaotic motion may

occur. If the tube impacts the TSP regularly after flow velocity exceeds some
value in the instability region, tube motion is almost independent of flow velocity

and a periodic oscillation will occur with a fixed amplitude equal to the diametral
clearance. When flow velocity is increased further, the TSP-active mode becomes

unstable and a significant large-amplitude tube oscillation may occur. We will

not discuss the effects of this range in this report.

4.2 Bifurcation Diagram

A widely used technique for examining the prechaotic or postchaotic changes
in a dynamic system under parameter variations is the bifurcation diagram,

from which we may find a route to chaos, namely a route from periodic to chaotic
motions through parameter changes. With fast computers available, it is easy

and helpful to vary the control parameter to obtain a bifurcation diagram. From
this diagram, we can see if the system has steady or periodic or chaotic behavior
for some continuous range of flow velocity in order to obtain a full understanding
of system dynamics, In this way, we can have confidence in deciding more
definitely whether the system becomes chaotic. Also, we can observe and pinpoint
sudden changes in system behavior. Both the control parameter and the output
signal must be carefully chosen to ensure that they can provide sufficient

information.

In our case, flow velocity was chosen as the control parameter and tube
displacement as the output signal. The difficulty is in determining the locations
of the triggering signal and output signal to produce an easily interpreted

bifurcation diagram. On examining many run results, the velocity of tube motion
at location C3 (4 = 1.0) is taken as the triggering signal, and the displacement at
locations 4 = 1.0 and 4 = 0.9 is taken as output signal. When the triggering signal
is equal to zero, u(1.0,t) =0, and tube displacement at y = 1.0 is positive, u(1.0,t)> 0,

the values of u(1.0,t) and u(0.9,t) are recorded. By slow variation of flow velocity,
the bifurcation diagrams are produced as shown in Figs. 9 and 10, corresponding
to 4 = 0.9 and 4 = 1.0. In calculating various flow velocities, the initial conditions
aii(0) = 0, kii(0) = 0.065 and ain(0) = Uin = 0, n 2 2 were utilized, as stated
previously. With this specific system and parameters, it has been proved in our

calculations that those initial conditions can reduce the transient time of tube
motion in the calculations.
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In Figs. 9 and 10, it is clear that for flow velocity less than the critical flow
velocity (Um = 1.52 m/s), all oscillations die out as time increases; when flow
velocity reaches the critical value, there is a jump of displacement (i.e., the Hopf
bifurcation occurs). When the tube loses its stability and the tube impacts the
TSP, a chaotic motion occurs (see Figs. 9 and 10). As flow velocity increases (Urn
1.67 m/s), the number of impacts increase in what appears to be quasiperiodic
vibration. As flow velocity further increases to Um = 1.78 m/s, the tube impacts
the TSP regularly in a harmonic periodic vibration. This periodic region contin-
ues as flow velocity increases until the TSP-active mode becomes unstable.
Therefore, in the instability region (where system damping is negative), the route
to chaos can be described as that when the flow velocity is larger than Um = 1.78
m/s, there is a typical. periodic vibration; when flow velocity is lower than Um =
1.78 m/s but higher than 1.67 m/s, there is a quasiperiodic vibration; when flow
velocity is lower than Ur = 1.67 m/s, the vibrations become chaotic. Obviously, the
route to chaos in our system is through a sequence of periodic, quasiperiodic, and
chaotic regions within instability of the TSP-inactive mode. It is also noted that
in the chaotic region, the motion appears only as a limited-band chaos.

4.3 Phase Portraits

From the bifurcation diagram (Figs. 9 and 10) we note that there are several
meaningful values of flow velocity in the instability region of the TSP-inactive
mode; these correspond to chaos, quasiperiodic, and periodic regions. Therefore,
we calculated the time histories and phase flow diagrams at those different flow
velocities.

Figure 11 shows displacements, velocity, and phase portraits of tube motion
at location of . = 1.0 (C3) with flow velocities of 1.55, 1.6, 1.7, and 1.8 m/s. In those
time histories and phase flow diagrams of tube motion, the transient has been
eliminated for clarity; only the dynamics of the "steady state" are shown. Because
the tube support span is asymmetric and the system is considered as a multiple-
degree-of-freedom system, 10 modes are utilized to obtain accurate simulations.
In Fig. 11a-3, the phase portrait at flow velocity Um = 1.8 rn/s (periodic region) is
not an ellipse (as is that calculated by 1 mode), but a complicated closed circle. At
this flow velocity, the tube impacts the TSP twice each cycle (Figs. 11a-1 and a-2),
in what appears to be a periodic oscillation that repeats very well. When flow
velocity decreases to Um = 1.7 m/s, the tube impacts the TSP once every two cycles
(Figs. 11b-1 and b-2); the phase portrait (Fig. 11b-3) indicates that a period-
doubling bifurcation has occurred, and the motion is clearly of period 2. As flow
velocity decreases further, the number of impacts is reduced and the impact
period appears to be irregular (see Figs. 11-1 and c-2 with Um = 1.6 m/s, and
Figs. lid-1 and d-2 with Um = 1.55 m/s). During this flow ronge, phase portraits
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(Figs. 11c-3 and 11d-3) appear chaotic-a kind of limited-band chaos. These

chaotic motions apparently depend on the number of impacts during certain
cycles, while impacts depend on the flow velocity (values of negative system
damping), initial conditions, and other parameters such as clearance and contact
stiffness.

Figure 12 shows time histories of tube displacement and velocity, and phase

portraits at the location of 4 = 0.8 with flow velocities equal to 1.55, 1.6, 1.7, and
1.8 m/s. If Fig. 12 is compared with Fig. 11 at the same flow velocity, the phase

portraits appear quite different at different locations. In Fig. 12 ( = 0.8), phase
portraits show a small loop that may be a special characteristic of the motion.
When the end of tube (C3) strikes one side of the TSP, the other part of tube (for
example, 4 = 0.8) vibrates slightly once before it leaves the TSP and moves to the
other side, creating a small cycle.

Figure 13 shows time histories of tube displacement and velocity, together

with phase portraits at the location of , = 0.4. Because this location is far from the
end of the tube and almost midway between C1 and C2, higher modes excited by
impacting have less influence on time histories, especially velocity of tube motion,

than those at overhung parts of tube (comparing with Fig. 11 [ = 1.0] and Fig. 12
[ = 0.8]). However, no matter what the location, periodic, doubling periodic, and
chaotic motion associated with various flow velocities are almost the same in

Figs. 11112, and 13.

4.4 Power Spectral Density

Power spectra make it possible to distinguish between periodic and chaotic
responses. It is known that for a periodic motion, discrete frequencies dominate

in the power spectral density, while for a chaotic motion, the power spectrum is a
continuous process, although peaks can be observed in this process. Figure 14
shows the power spectral density (PSD) of tube displacements at different flow
velocities. It is observed that the fundamental oscillation frequencies at different
flow velocities are approximately the same, i.e., f1 = 22.28 Hz; therefore, a

nondimensional frequency f/f1 is adopted in Fig. 14.

Figure 14a shows the PSD of tube displacement at Um = 1.8 m/s, which

appears to be periodic with superharmonic components, f/f1  1, 3, 5, .... This is
caused by tube impacting (see Fig. 11-la; there is a small flat-top of displacement
when the tube impacts the TSP and Model 2 is applied).

According to the bifurcation diagrams in Figs. 9 and 10, from Um = 1.78 m/s
to Um = 1.65 m/s, there exists a quasiperiodic motion region. Figures 14b-14e give
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PSDs of tube motions within the quasiperiodic region for flow velocities Urn:: 1.75,
1.7, 1.67, 1.65 m/s, respectively. A few well-pronounced peaks could be found in
these PSDs. It is known that the quasiperiodic motion presents two simultaneous
periodic oscillations, namely the two incommensurate fundamental frequencies

cu and w2. Hence the frequencies appearing in the spectrum of quasiperiodic

motion can be a combination of these two incommensurate frequencies, i.e.,

Omn = mo 1 + nC02. (19)

Table 2 shows the indexing of the peaks in Figs. 14b-14d. We noted that the first

fundamental frequency remains the same no matter how the flow velocity
changes. However, the second frequency changes with flow velocity. Physically,

the change of the second frequency is related to the number of impacts during
certain cycles. From Fig. 14 and Table 2, it seems to be difficult to say with
certainty that the motions are clearly of period 2 or of period 4 as described by
Paidoussis and Moon.3 5 But there is no doubt that this motion is quasiperiodic.

These effects, caused b, nonlinear instability of the TSP-inactive mode, were also
found by Antunes, et al., but those authors did not point this out even though clear
quasiperiodic peaks existed in Figs. 5 and 6 of their paper.11

Figures 14f-14h, for flow velocities Um = 1.62, 1.6, and 1.57, show the P)SD of
tube displacements. These PSDs are characteristic of limited-band chaos,
although the fundamental frequency and superharmonic frequencies are still

discernible.

4.5 Poincard Map

The Poincar6 map is a powerful technique for distinguishing chaotic
responses from periodic responses or random noise. The map represents a

discretization of a continuous flow in the phase space of a dynamic system.
Discrete points are selected in response to some trigger; for forced vibration with a

periodic input, for instance, the time variable at some identifiable point of the
period usually serves as the triggering signal. For an autonomous system,
however, one must choose some plane in the phase space, transverse to the flow,
and then obtain a Poincare section.2 8

A more general concept of the Pcincar6 map, valid for autonomous systems,
has been given by Dowell.3 8 The strobed points in the Poincar6 map give an
immediate answer about the periodicity of the response. The Poincard map of a

harmonic motion is a single point in the phase plane. A subharmonic motion of

order N has a Poincard map comprising N points (its period is N times the period

of excitation), while in the case of chaos, the map has a complex fractal



Table 2. Indexing of peaks of Fig. 14

(a) Fig. 14b, Ur = 1.75 m/s, f1 = 22.28 Hz,

f2 =31.13Hz

f(mn) (Hz)

4.578
13.4
22.28

31.13
39.67
48.52

57.37
66.22
74.77
83.62
92.47

101.3
109.9
118.7

mfi + nf2 (Hz)

4.580
13.43
22.28

31.13
39.98
49.14

57.99
66.22
75.69
84.54

93.70
102.6

109.9
120.3

(b) Fig. 14c, Urn = 1.7 m/s, f1 =22.28 Hz,

f2 =33.26 Hz

f(m,n) (Hz)

11.29
22.28

33.26
44.25

55.24
66.22
77.21

88.20
98.88

109.9
120.8

mfi + nf2 (Hz)

11.30
22.28

33.26
44.24
55.86
66.22
77.82
88.80

100.4
109.9

122.4

(c) Fig. 14d, Urn = 1.67 m/s, f1 = 22.28 Hz,

f2= 36.93 Hz

(m,n) f(m,n) (Hz) mfi + nf2 (Hz)

(2,-1) 7.629 7.630
(1,0) 22.28 22.28
(0,1) 36.93 36.93
(4,-1) 51.57 52.19
(3,0) .2 66.22
(2,1) 81.67 81.49
(6,-1) 95.21 96.75
(5,0) 109.9 109.9
(4,1) 124.5 126.1

(m,n)

(3,-2)

(2,-1)
(1,0)
(0,1)
(-1,2)

(5,-2)
(4,-1)

(3,0)
(2,1)
(1,2)
(7,-2)

(6,-1)

(5,0)

(4.1)

(m,n)

(2,-1)

(1,0)

(0,1)

(-1,2)

(4,-1)
(3,0)

(2,1)

(1,2)

(6,-1)

(5,0)

(4.1)

,

v v

--- m
Alb



structure.2 8 In our case, it is an autonomous system. The problem in generating

a Poincar6 map is that there are many possibilities for choosing a plane. After
numerous trial runs, we chose the triggering signal, say when n(1,t) = 0 and

u(1,t) > 0, at which point the values of u(0.2,t) and n(0.2,t) would be saved.

Figures 15a-15g show such Poincar6 maps, corresponding to flow velocities

Um = 1.8, 1.75, 1.7, 1.67, 1.65, 1.6, and 1.55 m/s, respectively. In Fig. 15a, the flow

velocity Um = 1.8 m/s, which presents a periodic motion; there, only one basin of

attraction exists. In Fig. 15c, however, Ur = 1.7 m/s, which presents a typical
period-2 motion (see Fig. 11b-3); hence two basins of attraction exis in the

Poincare map. Figures 15b, 15d, and 15e, with flow velocities Um = 1.75, 1.67, and
1.65 m/s, present quasiperiodic motion, but we could not say exactly what their

periods are (see Figs. 14b, 14d, 14e, and Table 2); therefore, there are two more-

scattered basins in these Poincard maps, which is still characteristic of
quasiperiodic motion and agrees well with the PSD results in Fig. 14. On the

other hand, in Figs. 15f and 15g, with flow velocities Urn = 1.6 and 1.55 m/s, the
motions are limited-band chaotic with points scattered over wide ranges. In that

case, although the Poincard maps do not display artistic merits because the

motion may be a limited chaotic or because the maps require much longer

computation time, they nevertheless do seem to have some structure.

It is satisfying for us to observe that the results from the Poincar6 maps are

in good agreement with those obtained from the bifurcation diagram, phase

portraits, and power spectral density.

5 Conclusions

A mathematical methodology based on the unsteady flow theory and linear

modal analysis is presented in this report for fluidelastic instability of loosely

supported tubes subjected to nonuniform crossflow. An extensive study on the

characteristics of fluidelastic instability of tubes in the unstable region associated

with the TSP-inactive mode, has been conducted, with particular attention given

to the possible existence of chaotic oscillation.

Based on a bilinear model described in Section 3, the fluidelastic instability of

loosely supported tubes can be expressed by an autonomous mechanical system,

and the closed-form solution is obtained to investigate the fluidelastic instability

and possible chaotic motion. The importance of this, to our best knowledge, is that

this is the first application of the closed-form solution of an autonomous system

in exploring the chaotic motion of loosely supported tubes that is induced by

fluidelastic instability.
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For simplification when we began the investigation of chaotic motion, we

chose only a single tube with fixed symmetric clearance at the end of the TSP;
other parameters, such as contact stiffness and mass-damping, were given as

specific values according to previous experiments and other available literature.

Also, we did not consider the instability region associated with the TSP-active

mode, even though there is a high probability of chaotic motion, because once a

TSP-active mode becomes unstable, other nonlinear effects become important and

those effects are not included in this model.

As suggested in most investigations on chaotic motions,3 5 it is important to

use more than one measurement in deciding on the existence of chaos. Thus we

carried out the calculations of RMS displacement of tube motion, bifurcation

diagram, phase flow portraits, power spectral density, and Poincar6 maps to

confirm the different instability regions.

As shown in RMS displacement of tube motion, when flow velocity is lower
than the threshold value of critical flow velocity, tube motion is in a stable region

and its vibration will die out as time increases.

When a tube becomes unstable in the TSP-inactive mode and the flow velocity

exceeds a certain value, the tube will impact the TSP regularly (twice per cycle).

Because of the support constraints, large tube oscillations do not occur and with

flow velocity increased further, tube displacement remains almost constant. This

region is periodic, with superharmonics (see PSD in Fig. 14a). Its phase portrait

is a repeated circle (Fig. 11c-1) and the Poincar6 map shows one basin of

attraction.

However, when flow velocity just exceeds critical flow velocity, the tube will
impact the TSP irregularly. Construction of a bifurcation diagram has shown

that chaotic motions do indeed arise (Figs. 9 and 10). In this region, phase

portraits show a band circle, which indicates a limited-band chaotic motion
(Fig. 11). PSD results have confirmed these findings, by showing that the spectra

seem to be a continuous broad response (see Figs. 14f-14h). The Poincar6 map

gives a scattered structure (Figs. 15f and 15g) in the chaotic region.

Between the regions of periodic and chaotic motions is a quasiperiodic region

that shows the characteristics of doubling periodicity. It is clearly observed in

power spectral density that, except for the fundamental frequency, there are other

distinct peaks that are definitely a combination of the two fundamental

frequencies. The second fundamental frequency will vary with flow velocity (see

Figs. 14b-14e and Table 2).



Indeed, chaotic motion is demonstrated as possible for such an autonomous
system when simulated by a bilinear model. Furthermore, this chaotic motion is
through a route from periodic and quasiperiodic to chaotic as flow velocity
decreases in the instability region of the TSP-inactive mode.

Obviously, further research on the fluidelastic instability of loosely supported
tubes is still needed. Chaotic motion will be measured with new tools, including
the probability density function, the autocorrelation function, and Lyapunov
exponents. Also, additional extensive parametric analyses will be conducted to
explore chaotic behavior in more detail. Various diametric clearances, including
asymmetric, will be applied to the current system. Various contact stiffnesses
and mass-damping parameters will also be tested. Furthermore, a row of
multitubes and excitation forces will be considered with modified mathematical
models to investigate instability and chaos for practical applications.
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Appendix:
Modal Analysis of a Bilinear Model

For Model 1, if we assume that during the time interval 0 t ts, the tube
displacements at C3 are within the stop limits -e2 < u(t,t) < el, the boundary
conditions at Cl and C3 (Fig. 3) are

u(4i~t)4 =0,

2u0,

1 0O

(20)

a 2 2 t =0,

3 u
(42 ,t) =0,

and the continuous conditions at the intermediate point C2 are

u(41t)|1 =u(42,t)2=v =0,

dep ( ) do (v)
=- in(21)

d2 j(5l) _d 2

d291(4)-~ dY(()

where 41, 42, , and v are dimensionless distances

z 1/t , 42 =z2/ 

,

(22)

=11/1 , v = 2 /.

The functions qp andpe are normal modes of Model 1

insink1(
9(1(41) = sink n1 1-hksnk sh kn 41, 0 <41 <s , n1=1,2,3,..., (23)

shkn 1



cps (2) = (cosk 1 p - sinknls cth knl 

)

[(sinkn i v + shkn1v)(cos k 1i 2 +chkn 1t 2 )-(coskniv+ chkn1 v)(sinkn 142 +shkn 1 42)]

2(1+ coskn 1 v chkniv)

(24)

0 <t2 <v, n = 1, 2, 3,...,

where the eigenvalues k 1 are the solutions of the characteristic equation

sinkn1 p coskvshkn 1 v-sinkn1 vchknlv -o

coskn p - sinkn1 p cthkn1 p 2(1+ coskn 1 vchkn 1 v)

Let

Ci1n ()4)<=

Cinefn 2 (1- ,) p< <1,

(26)

=z/t,

where

Cin = 1(27)

e( 1 )]d 1 + fv[(p(2) (2)]d4 2

Assume that the initial conditions of Model 1 are

u(4,t)| =u1(4),

(28)

(tt) =nu(,t) =nu( ).
att=o

Then the solutions of tube vibration (here considered only in the x direction) by the

normal-mode method can be described as



u(4, t)= I ai(t)91n

n=1

n(4,t)=1Y g(t)91n (4)
n=1

0< t <ts, (29)

where amn and am(t) are the normal coordinates, which are the solutions of

following equations:

-Yj al n=O,U2--~c

A (O) 1
Sin (0)= onf1(ein (44d.

(30)

(31)

(32)

When t = ts, the right end of the tube strikes the stop and it becomes Model 2,
i.e.,

u(4, t _ = e ,or u(4,t_ =-e 2 , ts < t < td, (33)

where td is the time when the tube leaves the stop at C3.

The displacement and velocity of the tube at ts are taken as the initial

conditions of Model 2, hence,

u(4, t j

n(4,tS

= ain(ts)ePin(t)=u2(4),

n=1

00

= 1 n(t)pk(t)=n2(4)-
n=1

The boundary conditions of Model 2 for t$ < t < td are

u(41,t)41= 0,

(34)

U 
2

(1+ 7ja a + 24jn1wjn1-y 3 woc d fin + uu 2

n

1
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=0,

(35)

=0,

Z)2(4 l,t)

a2 u(,t1

2 42=0

42,)
342 42=0

where Kc is the equivalent stiffness,

of inertia.

E is Young's modulus, and I is the moment

he continuous conditions at the intermediate point C2 are

u(4i,t)| 1= u(t2,t) 2=v =0'

dq (i) -dq4(v)

di) d4 24(

d2) ds) _ d2

dpi ~ d42

The functions 21 and p) are normal modes of Model 2

P2n(41)=sinkn2 1 i sh shkn241,
skn2

and

922n(-2)=DinD 2 n(sinkn2 42 + sh k22)+ D3 n(coskn 2 2 + ch k22)

+D4 n sinkn242 + D5nsh kn242], 0 <2 <v, n2 =1,2,3,...,

where

E u(42,t)2

(36)

(37)

(38)

S<41< , n2 =1,2,3,...,
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Dmn = coskn2W -sinkn2 cth kn2

-

2(1+coskn2 v ch kn 2v)+ k1 (coskn 2v sh kn 2 v -sinkn 2 v ch kn2 v)
Ekn2

D 2n = coskn2 v+ ch kn2 v,

Dan = -(sin kn2 v + sh kn2v),

2K_ 1sh vD4n = - 2EC sh kn2v,

Ekn2

D5n = -4 sinkn 2v,

n2 = 1, 2, 3, ...

,

where kn2 are the solutions of the characteristic equation.

sinkn2 p sinkn 2 =(

coskn 2 p-sinkn2 pcthkn2 p coskn22v-sirskn2 v cthkn2

Let

[C2 nqP((4) 0<4<

9P2n(4) = (40)

1C2nP(1-4) < 4< 1,

C2n = 1(41)

I %(1 (41)]d41i+ ( (2)d

The solutions of the tube vibration by the normal-mode method are
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