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CHAOTIC FUNCTIONS WITH ZERO TOPOLOGICAL ENTROPY

J. SMÍTAL

Abstract. Recently Li and Yorke introduced the notion of chaos for mappings
from the class C°(/, /), where / is a compact real interval. In the present paper we
give a characterization of the class M c C°(7, /) of mappings chaotic in this sense.
As is well known, M contains the mappings of positive topological entropy. We
show that M contains also certain (but not all) mappings that have both zero
topological entropy and infinite attractors. Moreover, we show that the complement
of M consists of maps that have only trajectories approximate by cycles. Finally, it
turns out that the original Li and Yorke notion of chaos can be replaced by (an
equivalent notion of) S-chaos, distinguishable on a certain level S > 0.

1. Introduction. Let 7 denote a compact real interval and C°(7, 7) denote the set
of continuous maps of 7 into itself. Let / g C°(7, 7), S > 0, and let 5 c 7 be a set
such that for any x, y g S, x i= y, and any periodic point p of /:

(1.1) hmsup|/',(x)-/'I(v)|>Ô,
n—* oo

(1.2) liminf \f(x)-f(y)\=0,
n—*■ oo

(1.3) limsup|/"(x)-/"(/>) |> S.
«—»00

Here /"is the nth iterate of /. Then S is called a scrambled set of /, or (when
8 > 0) a S-scrambled set. The function / is chaotic in the sense of Li and Yorke [11]
if / has an uncountable scrambled set. Any map with a cycle of order ¥= 2" for
n = 0,1,2,... is chaotic in this sense (cf. [5]).

Recall that if / has no cycles of order not a power of 2, then by Sarkovskii's
theorem [14] (cf. also [24]) either / has cycles of finitely many different orders, i.e.,
of orders 1,2,...,2 for some k, or / has a cycle of any of the orders
1,2,22,..., 2",_In the last case / is referred to as a function of type 2X.

Functions With cycles of order not a power of 2 are often considered as the chaotic
functions since they share a number of properties not possessed by other maps and
since in some sense they behave more wildly. An extensive survey of the correspond-
ing properties can be found, e.g., in [19 or 4]. Here we recall only some of them; they
will be useful in the sequel.

1.1. Theorem. Le//g C°(7, 7). The following conditions are equivalent:
(i) fhas a cycle of order not a power of 2;
(ii) for some x G 7, the attractor Ly(x) of x is infinite and contains a periodic point

(Sarkovskii [16, p. 71]; see also [17 or 19]);
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270 J. SMITAL

(iii) the topological entropy of f is positive (Misiurewicz [12]);
(iv) there are closed intervals J, K c 7 having at most one point in common, and

positive integers m, n such that J U K c fr"(J) Df(K).

The equivalence of (i) and (iv) follows easily from [15 or 1] (see also [3]) where
certain modifications of (iv) equivalent to (i) are given. However, (iv) seems to be
more suitable in apphcation.

The main aim of this paper is to show that functions chaotic in the sense of Li and
Yorke need not have cycles of order not a power of 2 (Theorem 2.7 below).
Moreover, we give a characterization of functions chaotic in this sense (Theorem
2.2). It turns out that the class C°(7, 7) can be decomposed into two disjoint sets:
Functions chaotic in the sense of Li and Yorke, and functions that have only
trajectories approximable by cycles (Theorem 2.4). This shows that the Li and Yorke
concept of chaos is a good and appropriate tool in considering maps of type 2°°.

Since the proof of the above-quoted results is complicated, we first state in the
next section the main results and in §3 we prove some properties of functions of type
200. Finally, in §4 we prove the main results, except for Theorem 2.7; its proof is
given in §5.

2. Main results. Let / g C°(7, 7); Recall that the trajectory of x g 7 under / is
the sequence {x„ }x=0, where x0 = x and xn + l = f(x„). The attractor Lf(x) of x is
the set of limit points of the trajectory of x. An interval O c 7 is /-periodic of order
k if J, f(J),..., fk~x(J) are pairwise disjoint intervals and fk(J) = J. For any set
A cz I denote Orbf(A) = U°l0/'(/l). For x g 7 we write Orb^x) instead of
Orb^fx}). The Lebesgue measure is always denoted by p.

2.1. Definition. Let /g C°(7, 7). Then u, v g 7 are /-separable points if there
are disjoint /-periodic intervals Ju, Jv c I with u g Ju, v g Jv. Otherwise u, v are
/-nonseparable.

2.2. Theorem. Let f e C°(I,I). Assume f has zero topological entropy. Then the
following conditions are equivalent:

(i) There is an infinite attractor LAx) for some x G 7 containing two f-nonseparable
points.

(ii) For some S > 0, fhas a nonempty perfect S-scrambledset.

2.3. Remark. Condition 2.2(h) implies that / is topologically conjugate to a
function g g C°(7, 7), which has a scrambled set of positive Lebesgue measure. To
see it, let 5 be a perfect scrambled set for /, and let cp be a homeomorphism of 7
such that p(q>(S)) > 0. Then clearly S* = <p(S) is a scrambled set for g = <p ° / ° qp_1.
Moreover, when S is ô-scrambled, then also S* can be made to be 5-scrambled.
Thus we have a result generalizing recent results from [13, 7, 21 and 22]. Note that in
all these papers the corresponding chaotic functions have positive topological
entropy.

2.4. Theorem. Let /g C°(7, 7) be of type 2X and let no infinite attractor of f
contain two f-nonseparable points. Then for any x g 7 and e > 0 there is a periodic
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CHAOTIC FUNCTIONS WITH ZERO TOPOLOGICAL ENTROPY 271

point p off with

(2.1) limsup \f(x)-f(p)\<e.
n —* oo

2.5. Remark. Condition l.l(iv) allows us to prove that any /g C°(7, 7) with
positive topological entropy has a nonempty perfect 5-scrambled set for certain
8 > 0. The argument uses some ideas from Misiurewicz's paper [13] and can be
found in [23]. Thus by Theorem 2.4, condition 2.2(h) gives a characterization of
maps from C°(7, 7), chaotic in the sense of Li and Yorke.

2.6. Remark. An arbitrarily small perturbation of a nonchaotic mapping can
provide a chaotic map, but in certain cases, the chaos can only be small, cf. [20, 25].
The result is as follows: If / G C°(7, 7) has zero topological entropy, and the set of
periodic points is closed and nowhere dense, then for any given e > 0, every
g g C°(I, I) sufficiently near to / has only trajectories e-approximable by cycles. In
connection with the above results, we conjecture that this condition can be extended
to nonchaotic maps / g C°(I, I), whose periodic points form a nowhere dense set,
i.e. also for certain maps with infinite attractors (the set of periodic points of any
such mapping cannot be closed, cf. e.g. [15]).

2.7. Theorem, (i) There is a function /g C°([0,1],[0,1]) of type 2°° which is
chaotic in the sense of Li and Yorke.

(ii) There is a map g G C°([0,1], [0,1]) of type 2X which has an infinite attractor,
but is not chaotic in the sense of Li and Yorke.

3. Properties of functions of type 2°°. The following theorem summarizing certain
known results will be useful in the sequel.

3.1. Theorem. Assume f g C°(7, 7) is of type 2X and w is its infinite attractor.
Then

(i)/(«)««;
(ii) any neighborhood of an arbitrary nonisolated point x G co contains a periodic

point off;
(iii) co = A U R, where A # 0 is nowhere dense and perfect and B is countable with

the property that every interval contiguous to A contains at most two points from B.

Property (i) is well known and easily provable for any / g C°(I, I), (iii) is proved
in [18]. Condition (ii) is proved under more general assumptions in [8]; however,
since [8] is not generally available, we later give an independent proof (Remark 3.6).

For simplicity, we now state some standard assumptions and notation that we will
use in this section.

3.2. Assumptions. Let / g C°(7, 7) be of type 2X. Let w = Lf(x) be an infinite
attractor and let {x¡}x=0 be the trajectory of x. Put a = minw, b = maxw, and let
c G (a, b) be a fixed point of /, i.e., c = f(c); the existence of c follows from 3.1(i)
since by l.l(ii)

(3.1) f(y) ^ y    IOT every y g co.
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3.3. Lemma. Let Assumptions 3.2 be satisfied. Then for any sufficiently large i,
x, < ciffxi+f > c.

Proof. By (3.1) and 3.1(i) there is an interval J = [u, v] c (a, b) with c g J and
f2(J) z> [a, b). (If f(a) = b, take aY, a2 g co with f(a2) = a,, /(a,) = a and put
J = conv{a,, a2,c}, the convex hull of {ax, a2,c}.)

Denote f2([a,c]) = J0, f2([c, b]) = Jx. We show that for some m, n there are
xm g JQ and x„ g Jx. Indeed, if xi G [a, c] for every /', then (a, c) n co = 0; so
f(a), f2(a) > c (see 3.1(i)) and since by (3.1) f(a) ¥= f2(a), we have either (c,f(a))
n co * 0 or (c,/2(a)) n co * 0. In any case, xm g f((c,f(a)))<z f2([a,c]) = /0
for some m. Similarly for /x.

Now assume the lemma is not true. Then there is a k > m + n with
Xk'Xk+l  < C < Xk + 2      0r      Xk + 2 < C < ** ' -^A: + 1 •

A simple verification shows that in any case, for some 5 g {1,2},

(3.2) fs(conv{e,xk}) D conv{xk+l,xk + 2}.

Moreover, there is an r > 0 with

(3.3) f(conv{xk + 1,xk+2})z) [u,v].

To see it assume, e.g., xk + 1 < c < xk+2. If u < xk + l, choose p > 0 such that
xk+ + f < u. If xk + l < u, then clearly there are p > 0 and t with xk+x < x, < c and
xl+p < min{x,,u} (note that a = mineo < u). In any case, fr"([xk + 1,c]) z> [u,c]
for every /' > 0. Similarly, there is some q > 0 such that fqJ([c, xk+2]) z> [c, v] for
any j > 0. Put r = pq.

By (3.2) and (3.3) we now have
f2 + k-m+s+r+2([a,c])zifr+'+2(Conv{xk,c})zif2([u,v]) = [a,b].

Similarly, f2 + k~" + s+r+2([c, b]) d [a, b] and Theorem 1.1 (see (iv)) gives a con-
tradiction.    □

3.4. Lemma. Let Assumptions 3.2 be satisfied. Then there is an f-periodic interval
J c 7 of order 2 such that

J n co # 0 * f(J) n co    £2«í7    Orb//) d co.

Proof. Put co0={xGco;x<c} and co, = {x g co; tc > c}. By (3.1), co = co0 U
cot. Moreover, /(co0) c co,, since otherwise f(y) g co0 for some v g co0, and by the
continuity of / we have xk,xk + l < c for a certain fc, contrary to Lemma 3.3.
Similarly, /(coj c co0, and by 3.1(i)

(3.4) /(co0) = co,    and    /(co,) = co0.

Let y = U°lff2'(con\u0), K = \JfLxf2i(con\Uf). Since /2(convco,) D convco,
for / = 0,1, we have

(3.5) f\J) = J   and    f2(K) = K.
Moreover, by (3.4),

00 00

/(■/) = U /2,(/(convco0)) z> IJ /^(convco,) = Jf
i=i i=i

and similarly, /(AT) 3 7. Now (3.5) implies f(J) = K and f(K) = J.
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To finish the proof it suffices to show that c G J U K (this would imply
J n K = 0 ). Assume, e.g., that c g J. Let d g co0 be the point nearest to c, and put
7! = conv{co0,c}, 72 = convco0, 73 = conv{d,c). Since c g/j(72) for some s, we
have fk(I2) z> 7, for some k. Moreover, since f2(d) < d (see (3.1) and (3.4)),
f2(I3) contains some x, and, similarly, as in the proof of the preceding lemma we
show that /;(conv{x„c}) D [a,c] for some /. Thus fk(I2) z¡ 7, and fj+2(I3) D 7^
and Theorem 1.1 (see (iv)) gives a contradiction.   D

Now we are able to give one of the most important results in this section. It is
implicitly contained in several Sarkovskii papers, but no correct reference can be
given.

3.5. Theorem. Letf G C°(7, 7) be of type 2X and let co be an infinite attractor off.
Then there is a sequence {Jk}x=f off-periodic intervals with the following properties:
For any k,

(i) Jk has period 2k;
(ii)Jk + fUf2\jk + 1)czJk;
(iii) co c Orb//,);
(iv) co n f'(Jk) =*= 0 for every /'.

The proof is induction from Lemma 3.4.   D
3.6. Remark. Theorem 3.5 implies 3.1(h). Indeed, let U c 7 be a maximal interval

containing no periodic points of /, and such that U n co is infinite. Then at least one
of the endpoints of U, say point u, lies in Int(convco). Hence u is periodic of period
2k for some k. Now using Theorem 3.5 find an /-periodic interval J of order m > 2k
with J <z lnt(U), where /denotes the closure of /. Clearly fr"(J) = J, so lnt(U)
contains a periodic point—a contradiction.   D

3.7. Lemma. Let Assumptions 3.2 be satisfied and let J be an interval with co n /
infinite. Then for some k there is an f-periodic interval K of order 2k with K <z J and
co c Orb/ZCT).

Proof. By Theorem 3.1(h) and (iii) there are periodic points p, q g /of order < 2s,
p < q, such that (p,q) Ci u J= 0. Let U be any periodic interval of order > 2s with
co c Orb/i/). Then clearly p, q G Orbf(U) and hence K = f'(U) c / for some /'.
□

3.8. Lemma. Let Assumptions 3.2 be satisfied, and let u < v be f-nonseparable
points from co. Then (u, v) n co = 0.

Proof. By Lemma 3.7, (u,v)C\w is finite (see also Theorem 3.5). Assume
z e (i/,o) n u, and let L be the maximal closed interval with z g L and L C\ u>
finite (see 3.1(iii)). Clearly u,v G L. Let xn G (u, v). By Theorem 1.1 (see (ii)) there
is fk({u, v}) n L = 0 and xn+k G (u,v) for some k. Put U = con\{fk(u),xn+k},
V = conv{ fk(v), xn+k}. Then both U n co and V n co are infinite and by Lemma
3.7 there are /-periodic intervals /, c t/ and J2 c Vof certain order with Orb//,)
n Orb//,) D to. Choose p,<? such that u, v g /p(/,) C\fr>(J2). Then

/*+'([«,*-])n/*+«([*1,,P])3[«,i;].
and Theorem 1.1 (see (iv)) gives a contradiction.   D
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274 J. smital

The following result is the main tool in the proof of Theorem 2.2.

3.9. Lemma. Let fG C°(I, I) be of type 200, and let co be an infinite attractor off
containing f-nonseparable points u < v. Let U, V be disjoint connected neighborhoods
of u and v, respectively, such that conv(t7 n V) contains an f-periodic interval J with
Orb//) z> co andu,v G /.

Then for any positive integer q there is some n divisible by2q such thatf"(U) U f(V)
contains an f-periodic interval J* with Orb//*) z> co andu,v G /*.

Proof. By 3.1(h) one of the sets U, V, say U, contains a periodic point p of / of
order 2k. Let /, c / be a periodic interval of order m = 2s, where 5 > max{k,q),
such that u, v g Jx and Orb//,) z> co (Theorem 3.5). Denote g = /"', co, = /, n u.
Then p is a fixed point of g and coj = Lg(y) for some y. Note that p g (7 is to the
left of /,.

First we show that

(3.6) g'(U) 3 Jf    for every /' > 2.

Let /2 c /j be a g-periodic interval of order 2 with Orbg(/2) d w, and such that /2
is to the left of g(/2). Then there is some z g U n /2 + 0 and g'(<7) 3
g'(conv{p, /}) D g'-Hconvip,/,}) D g-2(conv{p, g(/2)}) d g'^/,) = /,.

Now by (3.6) and Lemma 3.7 it suffices to show that for some j, gJ(V) n coj is
infinite. So assume g(V) n co! is finite. Then yr = gr(y) g F for some r and by
Theorems 1.1 (ii) and 3.1(iii) there is an s with yr+s g V and gs(^) e U such that
(gJ(ü), Jr+J) n co! is infinite.   D

4. Proofs of the main results. We need some lemmas. First the notation. For any
positive integer k, let X(k) = {0,1}* be the set of ordered A:-tuples of two symbols
and let X = {0,1}^ be the set of infinite sequences of such type. If a g X(k) and
ß g X(s), then aß G X(k + s) is the concatenation of a and ß. Assume X is
equipped with the topology of pointwise convergence.

4.1. Lemma. Let / g C°(I, I) be of type 2X and let co be an infinite attractor off
containing f-nonseparable points u < v.

Then there are a system {Ay a g X(k)}x=l of closed subintervals of I and an
increasing sequence {n(k)}x=1 of positive integers such that, for any k,

(4.1) Aaß<zAa whenever aß G X(k),

(4.2) AaC\Afi=0     fora, ßG X(k),a± ß,

(4.3) ifaeX(k)       thenf"^(Aa)=Jk,

where Jk is an f-periodic interval of order > 2k with Orb//A) z> u andu,v G Jk,

(4.4) n(k) — n(i) is divisible by 2', for every i < k

and

(4.5) f'Hk)(Aa0)c (-oo,«+ 1/k)    and   f"(k)(Aßf)cz(v-l/k,oo)

fora,ß g X(k).
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Proof. Let [/„", U{' be closed intervals with u g U0", v g [/,", conv(í/0" U Uf") = I,
and
(4.6) ¿y0"c (-00,m + 1/n)    and    U? <z (v - l/n,oo)

for n = 1,2,... (see Lemma 3.8). Choose «(1) such that

f^(ux)nf^(UfX)^Jf,
where /[ is an /-periodic interval of order > 2 with u,v g Jx and co g Orb//,)
(Lemma 3.9; note that any periodic interval contains the closure of a periodic
interval). Let A, c Ux be a closed interval such that fm(A¡) = If for /' = 0,1.

Now assume by induction that {Ay a g X(/')}/_, and {«(OK-i are defined in
such a way that (4.1)-(4.5) hold for any k < 5. By Lemma 3.9 we can choose a
positive integer m divisible by 2s and such that

fr"{url n Js) nf"{url n /,) d Jf+1,
where Js+l is an /-periodic interval of order > 2S+1 with u, v g/j+1 and co c
Orb//J+1). Hence there is a closed interval F¡ c £/,i+1 n /ä such that fm(F¡) = Js+1
and since (4.3) is true for k = s, we can find, for every a g X(s), a closed interval
Aa,<zAa with f"is\Aai) = F¡, i = 0,1. Put n(s + 1) = n(s) + m. Clearly, the
system {Ay a g *(.? + 1)} and n(s + 1) satisfy (4.1)-(4.5) for k = s + 1 ((4.5)
follows from (4.6)).    G

Let £ be an irrational number and define \p: [0,1] -* X as follows:

,,,v     r, ,» .      ,      /0   ¡f£(f + n{)e [0,1/2),
*(0-{i.}.-i.   where/^^    tf £(/+ „^ 6 [l/2fl).

Here E(x) g [0,1) denotes the noninteger part of x.

4.2. Lemma. Let *(s) = {sn)x=1 and HO = {'X=i- Then
(4.7) rn =^ sn    for infinitely many n, whenever t ¥= 5;

(4.8) ^ w a Ro/"e/ /nc2p.

Proof. Property (4.7) follows easily from the fact that the sequence {E(n£)}x=1
is uniformly distributed (and hence dense) in [0,1], see e.g. [9]. To prove (4.8) note
that for any n there is at most one / = /(«) g [0,1] with t„ = 1/2 and that \p is
continuous on [0,1]\{í(«)}^_,.    D

From the following lemma, (i) => (ii) of Theorem 2.2 follows. However, the lemma
gives a somewhat stronger result.

4.3. Lemma. Let the assumptions of Lemma 4.1 be satisfied. Then f has a perfect
nonempty 8-scrambled set S, where 8 = v — u.

Proof. For any k, let Fk = U{/4„; a G X(k)}, where Aa are the sets from
Lemma 4.1, and let F = Clx=fFk. Then by (4.1) and (4.2), F is a nonempty perfect
set. Moreover, let {K¡}iEM be the connected components of Int(F) and let
K: = (x¡, y¡) for any /'. Put AT,* = (x¡, y,] and denote

B = F\ IJ K*.
ieM
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Clearly, B is an uncountable Borel set and there is a 1-1 map cp of X onto B defined
as follows: For a = {a(i)}x=l let <p(a) G (\]f=xAa(}) ...a(k)) n B.

Now let \p be the map from Lemma 4.2. Since \p is 1-1, (4.8) implies that \p([0,1])
is an uncountable analytic set. Hence there is an uncountable compact set P c
^([0,1]) (cf. [10, p. 387]). Moreover, since the set I*cJiof sequences, which are
eventually stationary, is countable, we may assume

(4.9) PczX\X*.
Now since cp ' is clearly continuous and 1-1, <p(P)cz[0,1] is an uncountable
compact set. Hence there is a nonempty perfect set S c tp(R).

It suffices to show that S is a Ô-scrambled set for /, where 8 = v - u. Let x + y,
x,y(zS. Denote (p~\x) = {x(i)}x_x, (p~\y) = {y(i)}x=f. By (4.7) there is an
arbitrary large j with x(j) =£ y(j). Hence by (4.5),

|/»'>-»(^)-/''0-i)(>,)|>dist{/-o-i)(i4jt(i) ...xlj)),f>v-»(Ay(1)...yU))}

> 8 -2/(/-l)
and thus (1.1) is true.

For any k there are a,ß^X(k) such that x g Aa, y g Aß, so by (4.3),
{f"{k)(x), f(k)(y)} <z Jk and since Jk is periodic of order 2k, there is some m(k)
with 0 < m(k) < 2k such that diam(fm{k)(Jk)) < 2"/idiam(7). Hence
iy»<A)+mU>(;c) _y»(*)+m(*)^j| ^ 2-*diam(7) and this implies (1.2).

Finally, let p be a periodic point of order 2r and let x G S. By (4.4), for any
Á: > r,

(4.10) /*<*>(/>) -/»<'>o»<*>-»<'>(¿»)) = /"(r)0) = ?•
Since the system {/'(•^+i)}/=i contains more than 2r pairwise disjoint intervals, we
have q G /r+1. By symmetry we may assume g is to the left of /r+1, i.e., q < u. Let
<jD_1(x) = {x(i)}x=l. By (4.9) there is an arbitrarily large s > r + 1 with x(s) = 1.
Hence x G ^x(1)x(2)...x(s-i)i and by (4.5), fi'-l\x) > v - l/(s - 1). Conse-
quently, using (4.10), we have

|/»(-i)(^)-/»(-D(x)|> 8 -1/0-1)
and (1.3) follows.   D

4.4. Proof of Theorem 2.4. Assume the trajectory of x is not asymptotically
periodic (otherwise (2.1) is clearly true). Then L/x) = co is infinite. Since every two
points u, v g co are /-separable, there is an /-periodic interval / with co c Orb//)
and such that for every /', diam(/'(/)) < e. Since / is periodic, / contains a periodic
point q of /. Choose j such that fj(x) g / and let p g Orb/c¡r) be such that
fJ(p) g /. Then clearly \f(p) -f"(x)\ < e for every n > j and (2.1) is true.   D

4.5. Proof of Theorem 2.2. (i) => (ii) follows from Lemma 4.3 and by Theorem
2.4 we have non-(i) => non-(ii), since in this case, (1.3) cannot be satisfied.   D

5. Proof of Theorem 2.7. Examples of functions of type 2X possessing infinite
attractors have been indicated by Sarkovskii [14] and Kenzegulov and Sarkovskii [8].
Denote these functions by g and /, respectively. It turns out that / and g actually
satisfy our Theorem 2.7, but it is rather difficult to show it. Therefore in this section
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we give another construction. Both maps / and g are given as the uniform limits of
sequences of maps with cycles of order not greater than 2"+1, n = 1,2,_The key
to the construction is a general system { /„} of maps depending on some parameters.
Its properties are given in Lemma 5.2. By specifying the parameters we then obtain
sequences converging to / or g, respectively.

Note that our function g has similar properties as the map g from [14], while / is
of quite different type than / from [8] (or than a similar map indicated later in [25]
which has zero topological entropy and seems to be chaotic, too). More precisely,
both / and the map from [25] should have infinite attractors with isolated points but
/ has a unique infinite attractor, which is a perfect set.

We begin with the following auxiliary functions. Let 7 = [a, b], K = [a, a + p],
and L = [b - q, b] be nondegenerate intervals with AT n L = 0. Define maps
<//(/), <p(A", L) g C°(7, 7) as follows:

>p(I)(x) = a + b - x   for x g 7
and

for x = a,
for x = a + p,

<p(K,L)(x) = {b ÎOTX = b-q,
for x = b.

Moreover, let cp(AT, L) be linear on each of the intervals AT, L, and I\(K U L).
Denote t(AT, L) = \p(I)°<p(K, L) (first apply q>, then \p).

5.1. Lemma. For any disjoint, nondegenerate intervals K, L with conv(AT U L) = 7,
(i) t(K,L)(K) = Landr(K,L)(L) = AT;
(ii) r2(K, L)(x) = ^(L)(x) for x g L;
(hi) t4( AT, L)(x) is the identity map for x G AT U L;
(iv) for every y G 7\ ( AT U L), either y is a (repulsive) fixed point of t( AT, L), or

the trajectory of y with respect to t(AT, L) is eventually in K U L.

Proof. Straightforward verification.   D
Now assume there is a system

(5.1) J00=[0,l],JfX,J?,Jx,J20,..., //, //\...
of closed intervals with the properties

(5.2) // < //>    and    con//,1 U 7,°) = J,°_x    for i > 1

(A < B means x < v for any x g A and y g B). Define recursively a sequence
{ /, }f=0 of maps from C°([0,1], [0,1]):

(5.3) /0(x) = l-x    for* e [0,1],
(5.4) fk+i=fk°<Pk     for any ¿>0,
where

(5.5) œ/x^M^'^+iK*)     ^rx^Jk°,
I x otherwise.
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5.2. Lemma. For every k ^ 1 and i = 0,1,
(i) fk(x) = fj(x) forj^ kandx€ //;
(ii) Jk is an f ¡¿periodic interval of order 2k;
(hi) fkm(x) = HJk)(x) forx G Jk° and m = 2k;
(iv) /;(//) = //(//) forj <kandr>0;
(v) // is linear on every interval J c Orbfi(Jk) for every j;
(vi)Orbh(Jk°)^Orbft(Jx);
(vii) the f¡.-trajectory of every x G [0,1] either is eventually periodic of period < 2k + x

or is eventually in Orb//¿°).

Proof. Property (i) follows from (5.4), (5.5), and (5.2).
To show the next two properties assume by induction that (ii) and (hi) are true for

k = s (they are clearly true for k = 0). Since %(JS°) = Jf and <ps(x) = x for
x £ /,°, (ii) for k = s implies

(5-6) //+,(*) = (//°<Ps)(*)    forxG/s°    and   l<j<2>.
Using (hi) for k = s and (5.6) we have, for n = 2s,

(5-7) //+1(x) = 0,"'9.)(*) = r(j}+1,J,°+1)(x)    forx G /,°

and thus, by Lemma 5.1(i),

(5.8) /AiU;,) - #.1    and    fM»+l(J}+1) - J,°+l.
Consequently, since //^ and //+1 are disjoint, both these intervals are /i+1-periodic
of order 2S + X, i.e. (ii) is true for k = s + 1.

Moreover, by (5.7), //+",(x) = t2(/»+i. Js°+l)(x) for x g Js° and Lemma 5.1(h)
implies (hi) for k = s + 1.

To prove (iv) it clearly suffices to show that

(5-9) //+1(//) = //(//)    for j<s,
under the hypothesis that (iv) is true for k = s. We use induction on r:

fi:iVJ) = a+i(//+iU'))=f,+i(f'iJJ)Y
Since by (iv) for k = s, ff(Jj) = ff(Jf) = / is a component interval of Orb///),
we have either Js° c / or J° n / = 0 and by (5.5),

f.+i(f;('j)) -íáváj)) =f,(j)=frVj)-
Hence (5.9) is true for r:= r + 1.

(v) follows from (ii) and from the fact that /¿ is linear on every component
interval of Orbf(Jk°), and (vi) follows from (ii) and (5.8).

Finally, to prove (vii) assume by induction that the condition is satisfied for
k = s. Let x g [0,1]. If ff(x) £ Orb//s°) for every j, then by the hypothesis, x is
eventually /rperiodic and since by (i), //+ ,(x) = fs'(x), x is eventually fs+rperiodic
of period < 2s+ x < 2s+ 1.

Otherwise there is the smallest j > 0 with y = fj(x) g Js°. Let n = 2s. Then by
(5.7) and Lemma 5.1(iv), either y is a fixed point or y is eventually in //+1 U Js°+1
under f*"x, i.e., either y is eventually in Orty (/,+,) or y is /ç+1-periodic of
period < 2S + 2. Since by (5.4) and (5.5), y = fj+x(x) = f/(x), (vh) is proved.    D
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Now we are ready to prove the easier part of Theorem 2.7.
5.3. Proof of Theorem 2.7(h). Choose intervals (5.1) such that p(Jk+l) =

p(Jk + l) = 3~xp(Jk). Then using Lemma 5.2(h), (v), and (vi) we can easily show by
induction that for every component interval / of Orbf(Jk), p(J) = 3~k. Next using
Lemma 5.2(i) and (iv), we obtain \\fk+l - fk\\ < 3~k for every k.

Let g = lim^ _ œ fk. Then g has only cycles of order 2", n = 0,1, 2,_Other-
wise any h from a certain neighborhood of g, and thus also every fk for sufficiently
large k, should have a cycle of order + 2" (Block [2]) contrary to Lemma 5.2(vii).

By Lemma 5.2(iv)

(5.10) OrbA(/,°) = Orbg(/,°) = F,.

Put F = f)x_fFk. Then F is the Cantor middle-third set. Using (5.10) we see that
for x g F and any k, any component interval of Fk contains some gJ(x), hence
Lg(x) = F.

Moreover, F is the unique infinite attractor of g: If x is not eventually periodic,
then, for any k, x is eventually in Fk under g (Lemma 5.2(vh) and (i)) hence
Lg(x) c F. On the other hand, if G is a neighborhood of a point of F, then
g'(Jj°) c G for some /', j, and hence, for a suitable s, gs(x) g G. Thus Lg(x) = F.

Finally, let x, y g F, x + y. Then x, y belong to different component intervals of
Fk for any k with 3~k < \x - y\. By Lemma 5.2(h), x and y are g-separable and
Theorem 2.2 now implies that g is not chaotic in the sense of Li and Yorke.   D

5.4. Proof of Theorem 2.7(i). First we show that the intervals (5.1) can be chosen
such that for every k,

(5.11) Fk contains a component interval Ik with p(lk) > 1/2,

where Fk = Orbfi(Jk). Clearly (5.11) is true for k = 0. Assume by induction (5.11) is
true for a certain k. Take n such that fk(Ik) = Jk (Lemma 5.2(h)) and let Kk,
Lk c Ik be disjoint closed intervals with conviAT^. U Lk) = Ik. Denote fk"(Kk) =
Jk + 1 and f"(Lk) = Jk + 1. By Lemma 5.2(v) a suitable choice of Kk, Lk (i.e. AT^. < Lk
or Lk < Kk) implies (5.2) for i = k + 1.

If we take Kk, Lk such that one of the conditions

(5.12) p(Kk)> 1/2   or   p(Lk) > 1/2

is satisfied, then clearly (5.11) is true for k := k + 1.
Thus we have defined Jk+1, Jk + l recursively from fk and Jk. Since by (5.3)-(5.5),

fk + x is defined recursively from fk, Jk+1, and Jk + 1, this modification leaves Lemma
5.2 true for arbitrary choice of parameters p(Kk) and p(Lk) satisfying (5.12). Next
we shall specify how to choose the parameters.

Denote pk = p(fk(Jk°))/p(Jk°). Since p(<pk(Jk0)) = p(Jkx) (see (5.5)), Lemma
5.2(v) gives

(5.13) p{fk + 1(jk°+f)) = p{fk{<pk(Jk\f))) = p{fk(JLf)) = P*m(/¿+1).

Moreover, there is an e^ > 0 such that

(5.14) p(Kk) <ek~ pkp{Jkx+1) = Pkp(fkn(Kk)) < ^{fk(Jk0)).
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Now if we choose Kk, Lk such that

(5.15) p(Lk)>\    and    p(Kk) < ek    for any A: odd,

then (since fk+1(Jk°+1) c fk(J°)) (5.13) and (5.14) imply

(5.16) £/i(A(A0)<»-
k = l

Since by Lemma 5.2(i),

llA+i - All- max{|/t+1 -(x) -A(x)|; x g/,0}
= max{|//m/x))-//x)|; xg/;0}

</»(A(Jf)).
(5.16) implies that lim^^/j = / uniformly.

Denote F = n^Li/^, and let / = [u, v] be the connected component of F with
p(J) > 1/2 (see (5.11)). In the sequel we will need the following condition to be
satisfied:
,s 17\        Any neighborhood of either of the points u, v contains a

component interval from a certain fj.

This condition is clearly satisfied, when we choose the parameters p(Kk), p(Lk) for
the even k's (see (5.12) and (5.15)) as follows:

n   \ ^ t n    ■riK^<LK    and k = ° (mod4) or
M(Lj>l/2   if|Lt<^    and^2(mod4)

and p(Kk) > 1/2 (and so p(Lk) < 1/2) otherwise.
Now let U be a connected component of F. For any k, take Uk to be the

component interval of Fk with U cz Uk. Then by Lemma 5.2(iv) and (ii), f'(U)<z
f'(Vk) = A(Í4) and A(t/J n Uk = 0 for i < 2k. Consequently,
(5.18) f'(U)r\U=0    for any / > 0.
Let y g/ = [m, u]. Then for any k, every component interval of Fk contains
infinitely many members of the sequence {f'(y)}fLf and hence co = Lf(y) is
infinite. Moreover, by (5.17) any neighborhood of u contains some f'(y) and hence
m g co. Similarly, v G co.

Clearly, / is of type 2°° (the argument is similar to the one in the proof of
Theorem 2.7(h)). Thus by Theorem 2.2 to finish the proof it suffices to show that
m, f g co are /-nonseparable.

Assume the contrary. Let Ju, Jv be disjoint /-periodic intervals of order < 2k = m
with u g Ju, v g /„. Then by (5.18) either fm(J) < / or / < fm(J). Assume, e.g.,
/m(/) < /. Then /„ = /"■(/„) 3 conv{t;,/m(i;)} D [u, v], i.e., u g J—a contradic-
tion.   D

5.5. Remark. It turns out that the map / from the above proof has homtervals (in
the sense of Misiurewicz), i.e. intervals, all of whose images are pairwise disjoint and
mapped monotonically by any iterate of /. Keeping the notation from the proof, one
can easily see that, e.g., / = [m, v] is such an interval.
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On the other hand,, clearly the map g from the proof of Theorem 2.7(h) has no
homtervals. This would suggest that the existence of homtervals is connected with
the chaoticity of maps of type 200. But this is not the case; the existence of
homtervals is irrelevant for the chaoticity. (One can only prove that any chaotic map
of type 2°° must have a wandering interval attracted by an infinite set. For
nonchaotic mappings this statement is not true.)

Actually there are mappings /*, g* g Co([0, 1],[0,1]) both with zero topological
entropy and infinite attractors such that /* is chaotic and has no homtervals and
g* is not chaotic but has homtervals. The mapping /* can be obtained by a slight
modification of our map / from the proof of Theorem 2.7(i):

Let H = {Un}x=l be the system of maximal homtervals of /. Put f*(x) = f(x)
for x g [0,1]\U£., U„, and let f*(Un) = f(U„) for any n, and /* be monotonie
on no subinterval of Un. It is easy to verify that /* has the desired properties.

As an example of g* one can probably take Harrison's mapping (cf. [6]), but the
proof seems to be difficult. So we provide an outline of another construction,
modifying simply our map g from the proof of Theorem 2.7(h).

5.6. Example. Keep the notation from the proof of Theorem 2.7(h). Denote by 7„
the (closed) interval such that each of the sets 7„ n /„° and 7„ n Jx contains just one
point, and let A"„ be a (nontrivial) closed interval lying in the interior of 7„,
n = 1,2,....

Clearly, g maps If monotonically onto If U /j°. Let g, g C°([0,1], [0,1]) be such
that gf(x) = g(x) for x G 7,, and let g, be strictly monotonie on 7, such that
gf(If) = If U Jf and gf(Kf) = A"2. We can easily see that g, has properties similar
to g (i.e. g, is not chaotic, has a unique infinite attractor—the Cantor set, and any
point from AT, is attracted to it).

Similarly, we put g2(x) = g,(x) for x £ 72, and set g2 monotonie on 72 with
g2(I2) = 72 U J2 (= g2(72)) and g|(AT2) = AT3. Next, changing g2 appropriately on
the interval 73, we obtain g3, etc. Clearly, lim„_00 g„ = g* uniformly and g* is the
desired mapping: It is nonchaotic and Kx is its homterval attracted by the Cantor
set (we have g*2"(AT,) = ATn + 1 for any n).   O
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