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Abstract

A hyperjerk system is a dynamical system governed by an nth order ordinary differential equation with n > 3 describ-
ing the time evolution of a single scalar variable. Such systems are surprisingly general and are prototypical examples of
complex dynamical systems in a high-dimensional phase space. This paper describes a numerical study of a simple sub-
class of such systems and shows that they provide a means to extend the extensive study of chaotic systems with n = 3.
We present some simple chaotic hyperjerks of 4th and 5th order. Two cases are examined that are apparently the sim-
plest possible chaotic flows for n = 4, together with several hyperchaotic cases for n = 4 and 5.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The study of chaos in low-dimensional dynamical systems is now relatively mature [1], and interest is turning more
to understanding the dynamics of high-dimensional systems where chaos, hyperchaos, self-organization, pattern forma-
tion, and other related processes are common. According to the Poincaré–Bendixson theorem [2], systems of the form
dx/dt = f(x), where x is an n-dimensional vector and f(x) is a smooth function, can exhibit chaos only for n > 2. The
case n = 3 has been widely studied, and many examples of chaos have been identified in such systems [3]. Most of these
systems can be cast in the form of an explicit 3rd-order ordinary differential equation [4,5] describing the time evolution
of a single scalar variable x according to:
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Such systems have been called ‘‘jerk systems’’ because the successive time derivatives of the displacement in a mechan-
ical system are the velocity, acceleration, and jerk [6].

One particularly simple example of such a system is [7,8]
d3x
dt3

þ a
d2x
dt2

þ dx
dt

¼ gðxÞ ð2Þ
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where g(x) is a nonlinear function such as g(x) = b(x2 � 1), which exhibits chaos for a = 0.6 and b = 0.58. Integrating
each term reveals that this equation is a damped harmonic oscillator driven by a nonlinear memory term that involves
the integral of g(x)
d2x
dt2

þ a
dx
dt

þ x ¼
Z

gðxÞdt ð3Þ
An obvious generalization of Eq. (2) to higher dimension is
dðnÞx
dtðnÞ

þ a
dðn�1Þx
dtðn�1Þ þ

dðn�2Þx
dtðn�2Þ ¼ gðxÞ ð4Þ
for which Eq. (3) becomes
d2x
dt2

þ a
dx
dt

þ x ¼
Z
ðn�2Þ

� � �
Z

gðxÞdt ð5Þ
This paper will examine the properties of Eq. (4) for n > 3 and its generalizations. Such systems are examples of what
we will call a ‘‘hyperjerk system,’’ which is a system of the form d(n)x/dt(n) = f(d(n�1)x/dt(n�1), . . . ,x), since it involves
time derivatives of a jerk function. We argue that such systems for n > 3 warrant study because of their wide generality
and elegant simplicity. In this paper we will present several hyperjerk flows of 4th and 5th order. Among these, we inves-
tigate the simplest chaotic flows for n = 4 together with several hyperchaotic cases for n = 4 and 5, one of these appar-
ently being in its simplest possible form.

In the next section, we will present some hyperjerk cases with n = 4. Each case is optimized relative to the largest
Lyapunov exponent (LLE) via an exhaustive numerical search. Several Poincaré sections will be plotted, and the
Kaplan–Yorke dimension DL (or else called Lyapunov dimension) is calculated for each case.
2. Hyperjerk chaotic flows with n = 4

In this section we will present some cases of chaotic hyperjerk systems with n = 4 of the form:
d4x
dt4

þ a0
d3x
dt3

þ a1
d2x
dt2

þ a2
dx
dt

¼ g x;
dx
dt

;
d2x
dt2

� �
ð6Þ
where gðx; dx
dt ;

d2x
dt2Þ is the nonlinear function. Note that setting the damping term a0 in (6) is equal to 1 gives a constant

state-space contraction, and therefore the sum of the LEs is equal to �1. Then finding the largest LLE is much like
maximizing the Lyapunov dimension DL. The latter though is not always true as has been shown for many numerical
examples in [9] for a maximally chaotic three-dimensional nonlinear flow.

Consider first the simple quadratic case
d4x
dt4

þ d3x
dt3

þ 5:2
d2x
dt2

þ 2:7
dx
dt

¼ 4:5ðx2 � 1Þ ð7Þ
The Lyapunov exponent (LE) spectrum is (k1,k2,k3,k4) = (0.185,0,�0.483,�0.7), resulting in a Lyapunov dimen-
sion DL = 2.38 for initial conditions of ðd3x

dt3 ;
d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð0:01; 0:01; 0:01; 4Þ.
A cubic case was found with a maximized LLE for all polynomial hyperjerks (we searched up to a 5th order poly-

nomial), and it is given below:
d4x
dt4

þ d3x
dt3

þ 10:4
d2x
dt2

þ 8:4
dx
dt

¼ �9:3x3 þ 2:4x2 þ 13:6x� 1 ð8Þ
The spectrum of LEs was found to be (k1,k2,k3,k4) = (0.4,0,�0.23,�1.18), and the dimension DL = 3.15, and its

dynamics are very fast. The initial conditions used were ðd3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð0; 0; 0; 5Þ.
A case with the arctan(x) nonlinearity is given by
d4x
dt4

þ d3x
dt3

þ 2:6
d2x
dt2

þ 2:4
dx
dt

¼ 1:9x� tan�1ð200xÞ ð9Þ
This kind of nonlinearity is important because such a hyperjerk system can be easily implemented electronically using
operational amplifiers whose open-loop gain approximates the arctangent. Its LEs spectrum is (k1,k2,k3,k4) =
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(0.2,0,�0.165,�1.03) resulting in a dimension DL = 3.03 with initial conditions used ðd3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð0:02;�0:33;
�0:27; 0:25Þ. Its Poincaré sections are given in Fig. 1.

Continuing the numerical investigation of chaotic hyperjerk systems with n = 4 leads to examples with more com-
plicated nonlinearities such as
d4x
dt4

þ d3x
dt3

þ 1:87
d2x
dt2

þ 2:34
dx
dt

¼ 5:45xþ x2
d2x
dt2

ð10aÞ
Its LE spectrum is (k1,k2,k3,k4) = (0.37,0,�0.53,�0.84), and the dimension DL = 2.7 with initial conditions
ðd3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð�0:32; 0:15;�0:39;�0:36Þ. Its Poincaré section is given in Fig. 2. An optimized case (relative to
DL this time and not to the LLE) similar to (10a) is given by
d4x
dt4

þ 0:25
d3x
dt3

þ 2:2
d2x
dt2

þ 1:2
dx
dt

¼ �1:9x� 3:2x2
d2x
dt2

ð10bÞ
In this case the damping term a0 is equal to 1/4 instead of unity, and hence its dimension is higher. The spectrum of LEs
is (0.284,0,�0.108,�0.425), and the dimension is DL = 3.42. In this example it is clearly shown how the LLE is inde-
pendent of the Lyapunov dimension DL and that a maximally chaotic flow does not guarantee its maximal complexity.

Lastly, we present the maximally chaotic hyperjerk system
d4x
dt4

þ d3x
dt3

þ 3
d2x
dt2

þ 2:95
dx
dt

¼ �3:93 sinðxÞd
2x
dt2

� 1:47 ð11Þ
with an LLE = 1.94. Its LE spectrum is (1.94,0,�0.4,�2.54), resulting in DL = 3.6. Initial conditions were
ðd3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð�0:37;�0:11; 0; 0:9Þ. From all numerical examples of hyperjerks searched, Eq. (11) was found to
be the most chaotic. The nonlinearity sin(x) was found to be one of the strongest of all nonlinearities. Many other cases
were found with the sin(x) nonlinearity with a similarly large LLE.

For the hyperjerks of Eqs. (8) and (9), the dimension barely exceeded 3. For the systems of Eqs. (10b) and (11), the
dimension is large compared to these previous cases. This demonstrates that a hyperjerk flow with n = 4 is capable of
producing attractors whose dimension can be tuned anywhere between 2 and 4 by tuning the LLE and the damping
term a0 since other more complicated examples were also found with DL > 3.7. The latter is a further step in the
Fig. 1. Poincaré sections of Eq. (9).



Fig. 2. Poincaré sections of Eq. (10a).
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investigation of nonlinear flows like those in [10] for three-dimensional nonlinear systems that are capable of filling most
of their phase-space.

In this section, we presented some chaotic hyperjerk flows with n = 4. Each case was optimized for the highest largest
Lyapunov exponent (LLE) while the trace of the Jacobian matrix (the rate of state-space contraction) was kept constant
at �1 for reasons of simplicity. We demonstrated one case that was optimized relative to its dimension DL by varying
the damping term of the hyperjerk. All these cases have an LEs spectrum of the form (+,0,�,�). In the next section, we
will present two hyperchaotic cases with n = 4 showing that these systems can produce such complex dynamics.
3. Hyperchaotic hyperjerk flows with n = 4

In the previous section we presented some chaotic hyperjerk systems with one positive LE. Here we will demonstrate
that a system written in a jerk form with n = 4 can also produce hyperchaotic dynamics with an LEs spectrum of the
form (+,+,0,�). One such system, with a constant damping term, is given by
d4x
dt4

þ 0:1
d3x
dt3

� 3x� 4
d2x
dt2

� �
d2x
dt2

� �2

þ dx
dt

� �3

¼ �2x3 ð12Þ
The LEs spectrum is (0.141,0.0168,0,�0.257) with DL = 3.61 with initial conditions ðd3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð0:1; 0:1;
0:1; 0:1Þ. Its Poincaré plots are given in Fig. 3. Note that the damping term of Eq. (12) is small and equal to 0.1.
The hyperchaos is robust with respect to parameter variation except for the damping term. The hyperchaotic Rossler
flow [11] can be written in hyperjerk form [12], but the result is extremely complicated and inelegant in contrast to all the
cases presented here.

The hyperjerk system in Eq. (12) above has eight terms in its dynamical system representation, in contrast to the
Rossler hyperchaotic flow that has nine terms, but it has four nonlinearities in contrast to the Rossler flow with only
one. Generally, our search has not revealed simpler hyperchaotic flows with n = 4 (for example, with fewer nonlinear-
ities), but this is beyond the scope of this paper. The hyperjerk system of Eq. (12) illustrates that such systems can
produce a variety of dynamical behaviors (chaos, hyperchaos, tuning of the dimension, etc.).
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In the previous sections, hyperjerk forms were chosen that have a constant state-space contraction for reasons of
simplicity. Next we present a very simple and elegant hyperjerk that results in hyperchaos, has only one parameter
and only seven terms with a state-space contraction that depends on the nonlinearity of the system. This case is con-
jectured to be the simplest hyperchaotic flow and is given by
Fig. 4.
from c
d4x
dt4

þ d3x
dt3

x4 þ A
d2x
dt2

þ dx
dt

þ x ¼ 0 ð13Þ
Fig. 3. Poincaré sections for the hyperchaotic case of Eq. (12).

Largest three Lyapunov exponents with varying A for the case of Eq. (13). The point ‘‘CH’’ with the arrow shows the route
haos to hyperchaos.



Fig. 5. Poincaré sections for the hyperchaotic case of Eq. (13) for A = 3.6.
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Fig. 4 shows the LEs spectrum as a function of the parameter A. For reasons of simplicity and for better visualiza-
tion, only the first three LEs are plotted. For A � 3.98 this hyperjerk system experiences a route from chaos to hyper-
chaos as shown in Fig. 4. The initial conditions were: ðd3x

dt3 ;
d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð0:1; 0:1; 0:1; 0:1Þ. The maximum LLE is 0.132
for A = 3.6 resulting in DL = 3.13, and its whole LEs spectrum is (0.132,0.035,0,�1.25). Its correlation dimension was
also calculated using the method in [13] and was found to be D2 = 3.126 ± 0.184. Fig. 5 shows Poincaré plots for this
case with A = 3.6.

In the next section, we present hyperjerk flows that are apparently the simplest chaotic flows for n = 4 using various
nonlinearities following the work of Sprott [3].
4. Simplest chaotic flows with n = 4

It is already known that for a flow to exhibit chaos it must have at least three degrees of freedom [2]. The simplest
chaotic flows for n = 3 have been known for several years now [3]. An obvious extension for the latter is to find the
simplest chaotic flows with n = 4. Next, we present two hyperjerk systems using different nonlinearities that are in their
simplest possible form.

The first hyperjerk system is given by
d4x
dt4

þ d3x
dt3

þ A
d2x
dt2

þ dx
dt

¼ gðxÞ ð14Þ
Fig. 6. Bifurcation diagram for Eq. (14).



Fig. 7. Bifurcation diagram for Eq. (15).
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For 2.42 < A < 2.6 and for the nonlinearity g(x) = x2 � 1, this flow exhibits a period-doubling route to chaos as shown

in Fig. 6. The initial conditions used were: ðd3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð�0:11;�0:55; 0:5; 0:01Þ. Its maximum Lyapunov expo-

nent occurs for A = 2.42 where LLE = 0.078 and the Kaplan–Yorke dimension is DL = 2.17.
The second simplest hyperjerk with only seven terms in its dynamical system representation and with a different non-

linearity is given by
d4x
dt4

þ d3x
dt3

þ A
d2x
dt2

þ dx
dt

� �2

þ x ¼ 0 ð15Þ
For 3.3 < A < 4.6, the flow exhibits a very interesting and rich dynamical behavior. The bifurcation diagram of
Fig. 7 shows the extrema of the x as a function of A. We note the existence of period-doubling routes to chaos and
also the well-known windows of period-3. The most interesting phenomenon though is the antimonotonicity effect
of the reverse period doubling cascades and the sudden transition to chaos for A = 3.9. The initial conditions used were:
ðd3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð�0:85; 0:26;�0:48;�0:18Þ. The maximum Lyapunov exponent occurs for A = 3.48 where
LLE = 0.031 and the Kaplan–Yorke dimension is DL = 2.068.
5. Hyperjerk flows for n > 4

In this section we extended the numerical investigation even further, including cases of hyperjerk flows for n > 4.
Chaos was found to be common for these higher dimensions. In contrast to Eq. (4) though, it was found after an
exhaustive numerical search that chaotic phenomena are more common when the hyperjerk is of the general form:
dðnÞx
dtðnÞ

þ a0
dðn�1Þx
dtðn�1Þ þ � � � þ an

dx
dt

¼ gðxÞ ð16Þ
where a0, . . . ,an are constant parameters. Hence it is concluded that a linear superposition of all the time-derivatives
helps to bound all the variables if g(x) is finite. Perhaps this is a generalization of a simple harmonic oscillator or even
of many coupled harmonic oscillators. If the linear superposition of the left-hand side of Eq. (16) is not applied and
instead Eq. (4) is used, then unbounded solutions were dominate the dynamical behavior of these hyperjerk systems.

Hence, by extending Eq. (4) according to Eq. (16) we come to a 5th order hyperjerk with one only quadratic non-
linearity similar to Eq. (7) that is optimized relative to its LLE:
d5x
dt5

þ d4x
dt4

þ 7:068
d3x
dt3

þ 3:94
d2x
dt2

þ 9:17
dx
dt

¼ 3:9ðx2 � 1Þ ð17Þ
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This hyperjerk equation results in a low-dimensional attractor. The initial conditions used were

ðd4x
dt4 ;

d3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð0:1; 0:1; 0:1; 0:1; 0:1Þ. The LE spectrum was found to be (0.159,0,�0.242,�0.315,�0.6) with
DL = 2.65.

Similarly to Eq. (9) we present a chaotic hyperjerk system for n = 5 with the arctan(x) nonlinearity:
d5x
dt5

þ d4x
dt4

þ 7:278
d3x
dt3

þ 4
d2x
dt2

þ 9:19
dx
dt

¼ �7:9xþ 2:06tan�1 ð200xÞ ð18Þ
The initial conditions used were again ðd4x
dt4 ;

d3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼ ð0:1; 0:1; 0:1; 0:1; 0:1Þ, and the LE spectrum is
(0.257,0,�0.217,�0.36,�0.68) with DL = 3.11.

Continuing with the investigation of hyperjerk flows with n = 5, we come to a very interesting case that results in
hyperchaos and that can be implemented electronically as described for the case of Eq. (9):
d5x
dt5

þ 0:46
d4x
dt4

GðxÞ þ 8:5
d3x
dt3

þ 3:4
d2x
dt2

þ 8:9
dx
dt

þ 5:2x� 1:256GðxÞ ¼ 0 ð19Þ
The nonlinear function G(x) is the Heaviside step function, which in the following numerical simulations it was well
approximated by
GðxÞ ffi tan�1ðAxÞ þ p=2
p

with A	 1. Values of A in the range 100 < A < 800 give similar results. The case above is hyperchaotic with an LE

spectrum (0.0637,0.0213,0,�0.038,�0.454) and DL = 4.1. The initial conditions used were ðd5x
dt5 ;

d4x
dt4 ;

d3x
dt3 ;

d2x
dt2 ;

dx
dt ; xÞt¼0

¼
ð0:1; 0:1; 0:1; 0:1; 0:1Þ. As with the hyperchaotic case of Eq. (13), the nonlinearity is in the damping term.
6. Conclusions

In this paper, we investigated several chaotic flows for 3 < n < 6 called ‘‘hyperjerks’’ describing the time evolution of
a single scalar variable. Their elegance and surprising simplicity allow one to easily investigate their dynamical prop-
erties and furthermore to construct minimal chaotic systems, some of them presented here with the use of bifurcation
diagrams and Lyapunov exponent calculations. This work leads one step further in the investigation of dynamical sys-
tems and specifically of autonomous systems, since chaotic flows with n = 3 have been already extensively studied.
Many hyperjerk systems presented here are suitable also for experimental realization such as with electrical circuits.
Additionally, several hyperchaotic systems were presented for 3 < n < 6, one of these having only one nonlinearity
and seven terms, simplifying even more the famous hyperchaotic Rössler system. The numerical investigation of such
hyperjerk flows in even higher dimensions is anticipated.
References

[1] Sprott JC. Chaos and time-series analysis. Oxford: Oxford University Press; 2003.
[2] Hirsch MW, Smale S. Differential equations, dynamical systems and linear algebra. New York: Academic Press; 1974.
[3] Sprott JC, Linz SJ. Algebraically simple chaotic flows. Int J Chaos Theory Appl 2000;5:3–22.
[4] Linz SJ. Nonlinear dynamical models and jerky motion. Am J Phys 1997;65:523–6.
[5] Eichhorn R, Linz SJ, Hänggi P. Transformations of nonlinear dynamical systems to jerky motion and its application to minimal

chaotic flows. Phys Rev E 1998;58:7151–64.
[6] Schot SH. Jerk: the time rate of change of acceleration. Am J Phys 1978;65:1090–4.
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[13] Sprott JC, Rowlands G. Improved correlation dimension calculation. Int J Bifurc Chaos 2001;11:1861–80.


	Chaotic hyperjerk systems
	Introduction
	Hyperjerk chaotic flows with n=4
	Hyperchaotic hyperjerk flows with n=4
	Simplest chaotic flows with n=4
	Hyperjerk flows for n4
	Conclusions
	References


