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In a recent paper [P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, and H. F. Runarsson, Phys. Rev. Lett. 115,

211102 (2015).], it was shown that the lensing of light around rotating boson stars and Kerr black holes

with scalar hair can exhibit chaotic patterns. Since no separation of variables is known (or expected) for

geodesic motion on these backgrounds, we examine the 2D effective potentials for photon trajectories, to

obtain a deeper understanding of this phenomenon. We find that the emergence of stable light rings on the

background spacetimes allows the formation of “pockets” in one of the effective potentials, for open sets of

impact parameters, leading to an effective trapping of some trajectories, dubbed “quasibound orbits.” We

conclude that pocket formation induces chaotic scattering, although not all chaotic orbits are associated to

pockets. These and other features are illustrated in a gallery of examples, obtained with a new ray-tracing

code, PYHOLE, which includes tools for a simple, simultaneous visualization of the effective potential,

together with the spacetime trajectory, for any given point in a lensing image. An analysis of photon orbits

allows us to further establish a positive correlation between photon orbits in chaotic regions and those with

more than one turning point in the radial direction; we recall that the latter is not possible around Kerr black

holes. Moreover, we observe that the existence of several light rings around a horizon (several fundamental

orbits, including a stable one), is a central ingredient for the existence of multiple shadows of a single hairy

black hole. We also exhibit the lensing and shadows by Kerr black holes with scalar hair, observed away

from the equatorial plane, obtained with PYHOLE.

DOI: 10.1103/PhysRevD.94.104023

I. INTRODUCTION

The effect of gravitational lensing was considered by

Einstein even prior to the completion of his general theory

of relativity (GR) (see [1] for a historical account). In

particular, in 1912, he derived the basic lensing equation

and magnification factor for the intensity of the deflected

light. These results, however, were only published in

1936, in a paper often considered the pioneering study

on gravitational lensing [2], where Einstein discusses that a

gravitational lens can lead to both multiple images and

ring-shaped images (subsequently called Einstein rings) of

a star. Both of these effects were actually discussed by other

authors in the 1920s, first by Eddington [3] and then by

Chwolson [4], before Einstein’s 1936 paper [1].

At the time of Einstein, the prospects for observing this

type of lensing were dim. By contrast, the phenomenon at

the origin of the gravitational lensing, i.e., the bending of

light by a gravitational field—and in particular that caused

by the Sun—had been instrumental in establishing GR as a

physical theory of the Universe. It was only with the

discovery of quasars, in the 1960s [5], that the subject of

gravitational lensing was brought into the realm of obser-

vational astronomy. Being both very distant and very bright

objects, quasars are ideal light sources for observing

lensing effects, when a deflecting mass, typically a galaxy,

is present along their line of sight. The first lensing effect

of a distant quasar (a double image) was identified in

1979 [6] and, since then, many other systems with both

multiple images and Einstein rings have been discovered

(see, e.g., [7]).

The largest lensing effects that have been observed, at

present, in astrophysical objects (and cosmological con-

texts), are of the order of tens of arcseconds (see, e.g., [8]),

corresponding to tiny local light bendings by (typically)

lensing galaxies. Ultracompact objects can, on the other

hand, cause much more extreme local deflections of light.

Black holes (BHs), in particular, can possess planar circular

photon orbits (a.k.a. light rings) and hence can bend light

by an arbitrarily large angle. For the paradigmatic Kerr BH
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spacetimes of GR, these light rings are unstable. Their

existence allows light to circle any number of times around

the light ring before being scattered back to infinity (or fall

into the BH). From the viewpoint of an observer who sees

the BH lit by a distant celestial sphere, an infinite number of

smaller and smaller copies of the whole celestial sphere

accumulate near the edge of the absorption cross section

for light (at high frequencies), dubbed the “BH shadow

[9,10],” in an organized self-similar structure—see [11] for

striking visualizations of this effect in the Schwarzschild

and Kerr BH spacetimes, and [12–53] for examples of

recent investigations of BH shadows and lensing by

compact objects in different models.

In a recent paper [12], some of us have studied the

lensing and shadows of a deformed type of Kerr BHs,

known as Kerr BHs with scalar hair (KBHsSH) [54–56]

(see also [57–71] for generalizations and physical proper-

ties). These are solutions to Einstein’s gravity minimally

coupled to a simple and physically reasonable matter

content: a complex, massive, free scalar field. KBHsSH

interpolate between a (subset of) of vacuum Kerr BHs,

when the scalar field vanishes, and horizonless, everywhere

regular, gravitating scalar field configurations known as

boson stars [72,73], when the horizon vanishes.

The lensing of both KBHsSH and their solitonic limit

[rotating boson stars (RBSs)] was observed to exhibit

chaotic patterns for solutions in some region of the

parameter space, as illustrated by the example in Fig. 1.

Chaotic scattering in GR spacetimes has been observed

and discussed in binary or multi-BH solutions (see, e.g.,

[45,46,74–84]) and is well known in the context of many-

body scattering in classical dynamics, for example, the

scattering of charged particles off magnetic dipoles [85]

and the three-body problem (see, e.g., [86]). KBHsSH or

RBSs provide an example of chaos in geodesic motion on

the background of a single compact object, which moreover

solves a simple and well-defined matter model minimally

coupled to GR.
1
Additionally, these objects possess a rich

geometric structure, and may contain both multiple light

rings [12], including a stable one, and a structure of

ergoregions [57,65]. The purpose of this paper is to

investigate, in detail, chaotic scattering in this family of

backgrounds and its interplay with the above geometric

structure.

We start in Sec. II by performing an analysis of the

effective potentials for (null) geodesic motion. We assume a

stationary and axisymmetric spacetime but no separation of

variables; the latter is not known (or expected) in general

for geodesic motion on RBSs or KBHsSH. Examining the

2D effective potentials for photon trajectories, we find that

the emergence of stable light rings on the background

spacetimes allows the formation of “pockets” in one of the

effective potentials, for open sets of impact parameters,

leading to an effective trapping of the corresponding

trajectories, dubbed “quasibound orbits.” This analysis is

analytical, with the exception of the explicit metric coef-

ficients which are numerical for the examples exhibited.

Comparing this analysis with some of the lensing

images obtained in [12] allows us to establish a corre-

spondence between pocket formation and the emergence

of chaotic patterns in the images. Then, searching for

features shared by all trajectories in chaotic patches, we

observe that they exhibit a positive correlation to the

number of radial turning points of the geodesic motion,

and their time delay. Note in particular that in the Kerr BH

background a photon can only have one radial turning

point [89], while in our family of backgrounds more than

one radial turning point can occur, corresponding, generi-

cally, to chaotic motion.

In Sec. III we exhibit a gallery of examples of lensing

images obtained with a new ray-tracing code, PYHOLE,

briefly described in Appendix D. This code, based on

PYTHON, includes tools for a simple, simultaneous visu-

alization of the effective potential together with the

spacetime trajectory, for any given point in a lensing image

(and for an arbitrary numerical or analytical background

metric). The results obtained with this code are in agree-

ment with previous results [12,67], obtained with different

ray-tracing codes, and it adds further tools that are useful

for interpreting the results.

In Sec. IV we present some conclusions. In Appendix A,

we illustrate a trajectory in phase space of a trapped photon.

FIG. 1. Example of a RBS exhibiting chaotic scattering, which

can be clearly seen in some fringes on the right-hand side

(wherein neighboring pixels present different colors). The setup

for this figure is explained in [12] (cf. Sec. III below), and this

image corresponds to configuration 11 therein (zoomed).

1
Chaotic geodesic motion has also been reported around BHs

surrounded by disks [87,88]. These models have some parallel-
ism with KBHsSH, since the scalar field of the latter has a
toroidal-type energy distribution, around the horizon.
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In Appendix B the effective potentials for Kerr are

discussed, without using separation of variables, which

are useful for a comparison with those shown in Sec. II

for RBSs and KBHsSH. In Appendix C we introduce an

acceleration field and describe its connection to the number

of radial turning points. In Appendix D, some details on

PYHOLE are discussed, and, as an application, we also

exhibit the lensing and shadows by KBHsSH, observed

away from the equatorial plane.

II. EFFECTIVE POTENTIALS FOR

PHOTON MOTION

A. Preliminaries

The geodesic motion of a photon on a background

spacetime ðM; gμνÞ, assuming minimal coupling between

the (photon’s) electromagnetic field and the geometry, is

described by the Hamiltonian

H≡
1

2
pμpνg

μν ¼ 0; ð2:1Þ

where pμ are the 4-momentum components of the photon

orbit and gμν is the inverse metric. In this paper we shall be

interested in RBSs and KBHsSH, described by the line

element

ds2 ¼ −e2F0Ndt2 þ e2F1

�

dr2

N
þ r2dθ2

�

þ e2F2r2 sin2 θðdφ −WdtÞ2; ð2:2Þ

where N ¼ 1 − rH=r and rH is the radial coordinate of the

horizon (for RBSs rH ¼ 0). The explicit forms of the

functions F0; F1; F2;W, all of them functions of ðr; θÞ, are
only known numerically (examples can be found in [90]).

But the formalism we are describing is valid for any

stationary and axisymmetric spacetime, in coordinates

adapted to these symmetries. For such a background, the

Hamiltonian takes the form

p2
rg

rr þ p2
θg

θθ þ p2
t g

tt þ p2
φg

φφ þ 2ptpφg
tφ ¼ 0: ð2:3Þ

Since the quantity

T ≡ p2
rg

rr þ p2
θg

θθ ≥ 0; ð2:4Þ

is positive definite, we can write the Hamiltonian condition

in the form

2H ¼ T þ V ¼ 0; ð2:5Þ

and identify the problem with a mechanical system with

vanishing total energy, kinetic energy T and potential

energy V:

V ≡ p2
t g

tt þ p2
φg

φφ þ 2ptpφg
tφ ≤ 0: ð2:6Þ

This inequality defines the allowed region in the

ðr; θÞ-space.
The geodesic equations are obtained from Hamilton’s

equations:

_xμ ¼ ∂H

∂pμ

; _pμ ¼ −
∂H

∂xμ
; ð2:7Þ

where the dot denotes differentiation with respect to an

affine parameter. In coordinates adapted to the stationarity

and axisymmetry, H does not depend on t and φ, and

both pt and pφ are constants of the geodesic motion. We

can then define the integrals of motion E and Φ which are

interpreted as the photon’s energy and angular momentum,

as measured by an asymptotic static observer (assuming

asymptotic flatness):

E≡ −pt Φ≡ pφ: ð2:8Þ

Inserting these terms in Eq. (2.6) for V, we obtain

V ¼ −
1

D
ðE2gφφ þ 2EΦgtφ þ Φ2gttÞ ≤ 0; ð2:9Þ

where

D≡ g2tφ − gttgφφ ¼ Nr2 sin2 θe2ðF2þF0Þ; ð2:10Þ

which implies D > 0 outside the horizon.

Since we are only interested in the geodesic motion

outside the event horizon, and in order to introduce an

explicit dependence on the impact parameter, η,

η≡
Φ

E
; ð2:11Þ

we define the rescaled potential energy ~V, such that

−
DV

E2
≡ ~V ¼ gφφ þ 2gtφηþ gttη

2 ≥ 0; ð2:12Þ

which is a quadratic function of the impact parameter,

with ðr; θÞ-dependent coefficients. Factorizing this func-

tion leads to two 2D effective potentials, which we now

address.

B. The two 2D effective potentials

The rescaled potential energy ~V can be written in the

form

~V ¼ gttðη − hþÞðη − h−Þ ≥ 0;

ðwith gtt ≠ 0Þ: ð2:13Þ
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This introduces the two functions h�ðr; θÞ which we

dub the two 2D effective potentials.
2
Their usefulness is

connected to the observation that h� ¼ η⇒ ~V ¼ 0. Thus,

the equipotential lines of h�ðr; θÞ give the boundary of the

allowed region in the ðr; θÞ-space, for each value of η. A

similar effective potential was recently used in [45,46].

Moreover, since the solutions of the quadratic equation are

h� ≡
−gtφ �

ffiffiffiffi

D
p

gtt
; ð2:14Þ

there is a regime transition when gtt changes sign, which is

possible outside the event horizon when entering/exiting an

ergoregion.

For the special case gtt ¼ 0, we have

~V ¼ 2gtφðη − ~hÞ ≥ 0; ðwith gtt ¼ 0Þ; ð2:15Þ

where

~h≡ −
gφφ

2gtφ
: ð2:16Þ

In the limit gtt → 0, one of the functions h� diverges and

the other converges to ~h.
We remark that the asymptotic limit of the effective

potentials (at spatial infinity) is

h� →∓ r sin θ: ð2:17Þ

In the following two subsections we analyze the effective

potentials outside and inside an ergoregion, respectively,

and in the subsequent one we examine light rings and

spherical orbits.

1. Outside the ergoregion (gtt < 0)

Since gtt < 0 holds outside the ergoregion,

−gttgφφ > 0⇒ g2tφ − gttgφφ > g2tφ⇒
ffiffiffiffi

D
p

> jgtφj, where

we assumed that gφφ > 0 (absence of closed timelike

curves). This condition is verified for all RBSs and

KBHsSH that shall be studied in this work. As a conse-

quence, the effective potentials read

hþ¼−gtφþ
ffiffiffiffi

D
p

gtt
<0; h−¼

−gtφ−
ffiffiffiffi

D
p

gtt
>0: ð2:18Þ

A generic plot of ~V outside of the ergoregion can be found

in Fig. 2 (left panel). We conclude that the boundary of the

forbidden region in the phase space ðr; θÞ is given by the

equipotential lines defined as

hþðr; θÞ ¼ η; if η < 0 and h−ðr; θÞ ¼ η; if η > 0:

ð2:19Þ

2. Inside the ergoregion (gtt > 0)

Since gtt > 0 holds inside the ergoregion, −gttgφφ <

0⇒ g2tφ − gttgφφ < g2tφ⇒
ffiffiffiffi

D
p

< jgtφj, where we again

assumed that gφφ > 0. In this case the sign of the

h-functions will depend on the sign of the function W.

For the sake of simplicity we will here assume
3
that

FIG. 2. Dummy shape of the potential ~V outside of the ergoregion, gtt < 0 (left panel), and inside of the ergoregion, gtt > 0 (right

panel). The shaded region illustrates the allowed η interval. In the first case, hþ must always be negative and h− always positive. Due to

the condition ~V ≥ 0, we have hþ ≤ η ≤ h−. In the second case, ifW > 0 (spacetime with positive rotation), then h� is always positive,

with h− < hþ. Due to the condition ~V ≥ 0, we have η ≤ h− or hþ ≤ η. Since hþ → þ∞ as gtt → 0þ the right region is not accessible

from spatial infinity.

2
In the following we shall refer to the two 2D effective

potentials as simply “effective potentials.” Observe that these
are different from the standard 1D effective potentials typically
seen in the geodesic analysis of separable problems; but for
purely radial motions that can occur on the equatorial plane, they
become equivalent to the former.

3
The case W < 0 can be obtained by a transformation

W → −W, h� → −h∓, and η → −η.
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W > 0⇒ −gtφ > 0. This will be the case for all configu-

rations analyzed afterwards. In such a situation,

hþ ¼ −gtφ þ
ffiffiffiffi

D
p

gtt
> 0;

h− ¼ −gtφ −
ffiffiffiffi

D
p

gtt
> 0: ð2:20Þ

We remark that hþ > h− holds, regardless of the sign

of W.

A generic plot of ~V inside of the ergoregion (with

W > 0) can be found in Fig. 2 (right panel). Notice that

as we go from the inside to the outside of the ergoregion,

or in other words as we approach gtt → 0þ, we have

that hþ → þ∞. Since the impact parameter η is a

constant of motion for a given photon trajectory, the

allowed region hþ < η is not accessible from spatial

infinity: as it turns out, it corresponds to bound states with

negative energy (cf. Sec. II E). In fact, there are stable light

rings around RBSs that can be populated by photons in

such a state.

A boundary to a forbidden region only exists in this case

for η > 0 (if W > 0):

h−ðr; θÞ ¼ η; ðscattering stateÞ and

hþðr; θÞ ¼ η; ðbound state onlyÞ: ð2:21Þ

C. Effective potential contour plots

We will now exhibit contour plots of hþ and h− for

different spacetimes, namely, three RBSs and one

KBHSH. The solid (blue) lines represent negative η

values, whereas dashed (red) lines represent positive

values of η. Although the function h− is also relevant

for defining the allowed region for some photon trajecto-

ries, the landscape of the function hþ is richer, in

particular as it leads to the appearance of a trapping

region. We remark that in the following, the term light ring

will be used for photon orbits with pr ¼ _pr ¼ 0 on the

equatorial plane (θ ¼ π=2⇒ pθ ¼ 0). We equally remark

that light rings are related to extrema of h� (cf. Sec. II E).

The following table summarizes the particular configu-

rations (see Fig. 3) for which the h� contour lines are

shown below:

Object
Configuration

in [12]
Light
rings Ergoregions Chaos Fig.

RBS 9
(w ¼ 0.75μ)

No No No 17

RBS 10
(w ¼ 0.7μ)

1 stableþ
1 unstable

No Yes 18, 21

RBS 11
(w ¼ 0.65μ)

1 stableþ
1 unstable

Yes Yes 1, 19, 22

KBHSH III 1 stableþ
3 unstable

Yes Yes 20, 10–12

The value of w (in units of the scalar field mass μ), in the

second column of the table is the frequency in the scalar

field ansatz, cf. Eqs. (4) in [54], whereas the column labeled

“Chaos” refers to the occurrence of chaotic patterns in the

lensing images of that configuration. In the plots below a

compactified radial coordinate R ∈ ½0; 1� will be used:

R ¼ R�

1þ R� ; with R� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − r2H

q

: ð2:22Þ

In the remainder of this paper, configurations 9, 10, and

11 of RBSs, as well as configurations III (and also II) of

KBHsSH, are the same as those considered in [12]. We

keep this labeling here, to avoid confusion, even though we

shall not discuss all configurations presented in [12].

Figure 4 exhibits the effective potentials contour plots

for the RBS configuration 9. This background has no

ergoregion or light rings, but it is very close, in solution

space, to the RBS for which light rings first appear (see

Fig. 3). Each contour line of hþ in Fig. 4 sets the boundary

of the forbidden region in ðr; θÞ space for a given η. There is
a distinct deformation of the hþ contour lines, which will

grow into a pocket in the following cases to be analyzed.

Since ∂rh� is never zero on the equatorial plane there are

no light rings—no maxima, minima, or saddle points of h�
exist. The contour plot of h− for this configuration is very

similar to the one displayed in the bottom panel of Fig. 6

and hence it will not be shown.

The next case, shown in Fig. 5, corresponds to the RBS

configuration 10. It has no ergoregion but it has two light

FIG. 3. RBS solutions (solid red spiral) in an Arnowitt-Deser-

Misner (ADM) mass,MADM, vs scalar field frequency w diagram.

KBHsSHexistwithin theRBS spiral and are bounded by a subset of

Kerr solutions (dashed blue line), extremal KBHsSH (dotted green

line), and the RBS spiral itself. Points 9–12 (II–III) correspond to

the BSs (KBHsSH) under discussion. Two extra lines mark the

appearance of a stable light ring (LR) and an ergotorus, always to

the left of these lines. See [12,54,57] for more details.
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rings, one stable and one unstable. The new feature in the

hþ contour lines is the existence of a pocket that can be

closed below a certain impact parameter η, and form an

allowed region that is disconnected from spatial infinity

(thus leading to bound orbits). This can be seen in Fig. 5.

This disconnected region can in fact be made arbitrarily

small until it becomes a single point on the equatorial plane

for η≃ −11.97, with ∂rhþ ¼ 0 at that point. The latter

actually corresponds to a stable light ring since the motion

is bounded. From Fig. 5, we see clearly that a saddle point

appears on the equatorial plane, which in that case

corresponds to an unstable light ring, since the photon

can escape due to radial perturbations, for η≃ −8.61. The

contour plot of h− for this configuration is very similar to

the one displayed in the bottom panel of Fig. 6 and hence it

will not be shown.

In Fig. 6 we consider the RBS configuration 11. This

background has two light rings and one ergoregion (an

ergotorus [57]). As discussed before, hþ will diverge to−∞

as the ergosurface is approached from the outside of the

ergoregion.
4
After entering the latter, hþ will decrease from

þ∞ to a minimum at positive η, which corresponds to a

stable light ring. It turns out that such a light ring has

negative energy (cf. Sec. II E). In Fig. 6(top panel) are

displayed the contour plots of hþ. Again, blue solid lines

represent negative values of η, whereas red dashed contour

lines represent positive values. Notice the sharp transition

of hþ from −100 to þ100, since the function diverges at

the boundary of the ergoregion. Observe that the function

 0
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 0  0.2  0.4  0.6  0.8  1

θ
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FIG. 4. Contour plots of hþ for the RBS configuration 9. In this

and the next three figures, the solid (blue) lines represent negative

η values. It has no ergoregion or light rings. This configuration is

very close in solution space to a RBS where light rings first

appear. There is a deformation of the hþ lines, which will grow

into a pocket in the cases considered next.
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FIG. 5. Contour plots of hþ for the RBS configuration 10. It has

no ergoregion but it has two light rings, one stable and one

unstable. There is a pocket that can be closed below a certain

impact parameter η and form an allowed region which is

disconnected from spatial infinity, leading to bound orbits.
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FIG. 6. Contour plots of hþ ¼ η (top panel) and h− (bottom

panel) for the RBS configuration 11, which has two light rings

and an ergoregion. The positive values of hþ set the position of

the ergoregion, with the minimum corresponding to the stable

light ring. The saddle point corresponds to an unstable light

ring (with negative η). The function h− has no light rings

associated with it. Observe that some geodesics with η < 0

(e.g., η ¼ −4.8) can penetrate the ergoregion. This also occurs

for the case of Fig. 20.

4
Had we assumed gtφ > 0, then h− would diverge instead.
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h− (Fig. 6 bottom panel) does not form a pocket; the

corresponding h− functions of the previous configurations

9 and 10 were not displayed due to the strong similarity

with the RBS 11 function h−.
The existence of a pocket in the effective potential,

whose opening can be made arbitrarily small, leads to

trapped or quasibound orbits, from which a photon might

only escape after a very long time. Such trapped orbits will

be exemplified in the gallery of Sec. III B.

Finally, in the top (bottom) panel of Fig. 7 the hþ (h−)
contour lines are shown for the KBHSH with a hammerlike

shadow—configuration III in [12]. This spacetime contains

two ergoregions (Saturn-like topology [57]) and four light

rings, three unstable and one stable. In Fig. 7(top panel),

as before, the sharp transition from negative to positive η

values marks the boundary of the ergoregion. As this

boundary is approached from the outside (inside) of the

ergoregion, hþ diverges to negative (positive) values. Inside

the ergotorus there is a stable light ring for R≃ 0.3. Clearly,

there are also saddle points for R≃ 0.06 and R≃ 0.74 on

the equatorial plane, corresponding to unstable light rings.

Additionally, there is an ergoregion near the horizon (which

is at R ¼ 0), amounting to a pileup of hþ contour lines at

R ∼ 0.02 (on the equatorial plane), since hþ diverges.

Inside this ergoregion there are no light rings.

Figure 7 bottom panel, shows the h− contour plot, which

reveals the existence of a saddle point at R≃ 0.032 on

the equatorial plane and hence an unstable light ring.

Heuristically, this is the merging of the structure of both

a Kerr-like BH and a RBS: a Kerr BH has an ergosphere

and two unstable light rings (cf. Appendix B); a RBS such

as configuration 11 has an ergotorus and two light rings,

one stable and the other unstable.

D. Pocket formation, chaos, and turning points

The formation of pockets in the effective potential will

lead to quasibound orbits, i.e., orbits that stay in a confined

spatial region for a long time. We shall now show that one

can associate these orbits to the emergence of chaotic

patterns in the lensing images, such as the one exhibited in

Fig. 1. In order to do so, we recall that for a given photon

orbit the value of the impact parameter η is a constant of

motion. This value also fixes the photon’s allowed space-

time region. Let us analyze the contour η ¼ constant in an

image containing the lensing of a RBS or a KBHSH.

In Fig. 8 we exhibit three contour plots of η ¼ constant,

with η ¼ −7.8, η ¼ −7.5, and η ¼ 0.1, in a detail of Fig. 1,

corresponding to the gravitational lensing of the RBS

configuration 11, whose effective potentials are shown in

Fig. 6. Observe that in the contour plot for η ¼ −7.8 the

pocket is not yet open (Fig. 6, top panel); correspondingly,

there is no chaos in the lensing image for this value of the

impact parameter. For η ¼ −7.5, on the other hand, the

pocket is open and indeed the η ¼ constant contour line in

the lensing image intersects a chaotic region. As the impact

parameter becomes even larger, the pocket’s opening

becomes wider, which explains why the chaotic region

expands to higher latitudes in the lensing image. This

analysis suggests that pocket formation induces chaotic

behavior. One may wonder, however, if the existence of a

pocket is necessary for the occurrence of chaotic regions. It

turns out that it is not. To establish this, observe that the line

of constant η ¼ 0.1 crosses a chaotic region near the edges

of the figure, but there is no pocket associated with it in the

h− function (Fig. 6, bottom panel). Thus, there are chaotic

regions with no corresponding pocket in the effective

potential. One way to understand these regions is via a

different “potential,” the acceleration field F r. However,

in order to avoid distracting the reader from the main

message, we leave the discussion of such a concept to

Appendix C.

The relation between chaotic patterns on the image plane

and the characteristics of the corresponding geodesic
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FIG. 7. Contour plots of hþ (top panel) and h− (bottom panel),

for the KBHSH with the hammerlike shadow (configuration III).

This configuration contains two ergoregions (Saturn-like top-

ology) and four light rings, three unstable and one stable. The hþ
dashed (red) lines occur within the two disconnected ergoregions,

one of which is near the horizon (at R ¼ 0). The function h− in

this case has a saddle point on the equatorial plane, signaling the

existence of an unstable light ring (bottom panel).
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motion can be understood in a number of different ways.

The manifestation of this chaos is the pixelated aspect of

some image patches, which suggest that there is a sensitive

dependence on initial conditions in the map between a

camera pixel and a point on the celestial sphere, the map

corresponding to the geodesic linking the two points. To

quantify such chaoticity, one can then introduce a number

of measures such as the Lyapunov exponent, entropy, the

time delay function T associated to each pixel, or the

number of radial turning points. In the following, we shall

expand on the two last notions, as particularly well suited to

measure chaoticity.

The time delay function is defined as the variation of the

coordinate time t, in units of 1=μ (with μ the mass of the

scalar field), required for the geodesic emanating from a

particular pixel to reach a corresponding point on the

celestial sphere or fall asymptotically into the black hole.

The idea behind this function is that trajectories that are

semipermanently trapped in the pocket take much longer to

escape, giving initially nearby orbits more time to diverge.

In Fig. 9 the time delay for configuration III is portrayed as

a heat map—with the corresponding scale on the right of

the image—indicating the variation of the coordinate time

for each trajectory to travel from the camera to the celestial

sphere. The “brighter” regions on the time delay image can

be seen to match the chaotic regions seen in the lensing

image of this configuration—see Fig. 10.

The number of radial turning points, on the other hand, is

defined as the number of times that _r changes sign during

the light ray’s trajectory. Recall that null geodesics on a

Kerr spacetime have at most one radial turning point [89];

hence a violation of the latter can be interpreted as a

deviation from Kerr.

On the panels to the right of Fig. 10 we have a

representation of the number of radial turning points as

a gray level for the RBS configuration 11 (top row) and

the KBHSH III (bottom row); a larger number of turning

points corresponds to a darker shade in the image, with

white connected to just one turning point. The shadow of

KBHSH III is represented in black in order to ease

visualization—the number of turning points is actually

zero in that case, both for the main shadow as well as

the eyebrows. In the left panels of Fig. 10 we have a

representation of the gravitational lensing of the respective

configurations; observe the correlation between the regions

with a larger number of turning points (right panels) and the

chaotic patterns (left panels). This suggests that having

more than one radial turning point is a necessary ingredient

for chaos, a feature absent in geodesic motion around a

Kerr BH. Note, however, that this correlation is not an

equivalence: there are still some regular regions with more

than one turning point.

Let us summarize the situation briefly. Chaotic patterns

on the image plane correspond to trajectories that stay

quasibound around the central object (RBS or KBHSH)

and hence have a large time delay and numerous (more than

one) radial turning points. Spacetimes that admit such

trajectories/patterns are those that have a stable light ring

FIG. 9. Time delay heat map associated to scattering orbits for

KBHSH configuration III (zoomed).

FIG. 8. Gravitational lensing of the RBS configuration

11 (zoomed). White contour lines of constant η are shown for

three values of η. Notice that the transition from η ¼ −7.8 to

η ¼ −7.5 leads in this image to an overlap with the chaotic

region, whereas in the effective potential (Fig. 6, top panel) it is

connected to the appearance of a pocket. However, the line of

constant η ¼ 0.1 crosses a chaotic region near the edges of the

figure, but there is no pocket associated with it in the potential

(Fig. 6, bottom panel).
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(in addition to an unstable light ring as with Kerr). The

existence of a stable light ring leads to the formation of

pockets in the effective potential describing null geodesic

motion; the opening of these pockets to infinity, through a

narrow throat, signals the onset of a regime in which

quasibound trajectories are possible (but not guaranteed).

These pockets, while bottlenecked, have the effect of

promoting quasibound motion. The widening of these

pockets suppresses chaoticity but does not eliminate it,

even when fully opened. This last feature can be understood

intuitively by the effect of a stable light ring on an

acceleration field, as defined in Appendix C.

As a side note, we remark that the presence of an

ergoregion is not necessary for quasibound motion.

However the existence of an ergotorus is a sufficient

condition for the existence of a stable light ring—this

can be understood from the behavior of the effective

potential hþ—and hence a sufficient condition for chaotic

behavior to manifest for a given spacetime.

E. Light rings

As we have seen, the existence of light rings is central

to the properties of the effective potentials. In particular,

the existence of stable light rings allows for pockets,

which translate into spacetime quasitrapping regions for

photons. In this subsection we will investigate in detail the

properties of the light rings for the above configurations

that possess them.

Throughout this article, a light ring refers to a null

geodesic on the equatorial plane (θ ¼ π=2) that satisfies
pr ¼ pθ ¼ 0 and _pr ¼ 0. These conditions are equivalent

to V ¼ 0 and ∂rV ¼ 0 (cf. Appendix C). Using Eq. (2.13)

and computing the derivative of V with respect to r,
enforcing h� ¼ η⇔ V ¼ 0 at the end, we obtain

∂rV ¼ �
�

E2

D
gtt

�

ðhþ − h−Þ∂rh�:

Since hþ ≠ h− outside the horizon we conclude
5
that

∂rV ¼ 0⇔ ∂rh� ¼ 0. Moreover, since the radial condi-

tion for stable (unstable) light rings is ∂2
rV > 0 ð∂2

rV < 0Þ,
by a similar calculation one can then conclude that stable

(unstable) light rings satisfy �∂2
rh� > 0 (�∂2

rh� < 0).

FIG. 10. Zoomed turning point heat map (right panels) and lensed image (left panels) for the RBS 11 [row (a)] and

the KBHSH III [row (b)]. Clearly, there is a strong correlation between the chaotic patters (left) and the number of turning

points n (right). The logarithmic scale displayed is given by log10ðnÞ, with n ≥ 1; the exceptional case n ¼ 0 corresponds to the

shadow points, shown in black.

5
We would obtain the same result even if gtt ¼ 0.
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Besides stability, light rings can also be categorized by

their rotational direction. From the geodesic equations for t
and φ we have that

_φ=E ¼ −
1

D
ðgtφ þ gttηÞ;

_t=E ¼ 1

D
ðgφφ þ gtφηÞ: ð2:23Þ

Their quotient yields

Ω≡
dφ

dt
¼ −

gtφ þ gttη

gφφ þ gtφη
;

which describes the azimuthal rotation direction with

respect to a static observer at spatial infinity. At a light

ring, V ¼ 0 holds gφφ þ 2gtφηþ gttη
2 ¼ 0, which leads to

gφφ þ ηgtφ ¼ −ηðgtφ þ ηgttÞ⇒ Ω ¼ 1

η
ðat a light ringÞ:

Hence, the rotational direction of the light ring is given

by the sign of the impact parameter η. Additionally, at a

light ring the expression for _φ=E can be simplified using

Eq. (2.14):

_φ=E ¼ −
1

D
ðgtφ þ gtth�Þ ¼∓

1

D

ffiffiffiffi

D
p
⇒∓ _φ=E > 0:

Since η ¼ 1=Ω ¼ _t= _φ and recalling Secs. II B 1 and II B 2,

gtt < 0⇒∓ h� > 0⇒∓ η > 0⇒ ð∓ ηÞð∓ _φ=EÞ
> 0⇒ _t=E > 0;

gtt > 0⇒ h� > 0⇒ η > 0⇒∓ _t=E > 0;

where gtφ < 0 was assumed. Hence we conclude that we

can have _t=E < 0 at a light ring only if it is inside an

ergoregion with hþ ¼ η. For physical photons, this actually

implies that their energy is negative. Let us first detail this

conclusion and then discuss its implications.

Consider a zero-angular-momentum observer (ZAMO)

frame [91] at the position of the light ring. The locally

measured energy of the photon, pðtÞ, in this frame, is

given by pðtÞ ¼ EΛ − γΦ [50], which must be positive

for physical photons. Notice that in general pðtÞ is

different from E, the latter being the photon’s energy

with respect to spatial infinity. The expressions for γ and

Λ are given by

γ ¼ −
gtφ

gφφ

ffiffiffiffiffiffiffi

gφφ

D

r

; Λ ¼
ffiffiffiffiffiffiffi

gφφ

D

r

: ð2:24Þ

Hence we have

pðtÞ > 0⇔ EΛ > γΦ⇔ E > −
gtφ

gφφ
Φ: ð2:25Þ

The same relation is obtained if we require _t > 0, i.e.,
_t ¼ 1

D
ðEgφφ þ ΦgtφÞ > 0. We used the fact that D > 0

and gφφ > 0. Hence pðtÞ > 0⇔ _t > 0. Since it is always

possible to construct a ZAMO frame at the position of

the light ring, we conclude that _t > 0 is a necessary

condition for a physical photon. Then, the condition
_t=E < 0 implies E < 0. Despite having a positive energy

regarding a local observer, the photon has negative

energy with respect to spatial infinity. Likely, the

accumulation of negative energy states around this light

ring is associated to an instability [92].

For the spacetime configurations already analyzed, the

signs of η; _t=E, and _φ=E for different light rings (LR) are

organized in the following table, together with other

information.

Configuration
in [12] Fig. LR R Stability η gtt _t=E dφ=dt

RBS 10 18, 21 hþ 0.60 Stable − − þ −
hþ 0.79 Unstable − − þ −

RBS 11 1, 19, 22 hþ 0.39 Stable þ þ − þ
hþ 0.76 Unstable − − þ −

KBHSH III 20, 10–12 h− 0.03 Unstable þ − þ þ
hþ 0.06 Unstable − − þ −
hþ 0.30 Stable þ þ − þ
hþ 0.74 Unstable − − þ −

The value of gtt reveals whether a light ring is inside an

ergoregion or not (gtt > 0 in the former case). This occurs

for two of the cases displayed. In both cases, as expected,

the light ring is corotating, from the viewpoint of the

asymptotic observer, as appropriate for causal particles

inside an ergoregion. For both these cases observe that
_t=E < 0, which implies from the previous discussion that

E < 0 for a physical state. We remark, however, that it is

possible to have light rings inside an ergoregion with

E > 0. Indeed, the KBHSH dubbed configuration II in

[12], which is not discussed in detail in this paper, has two

unstable light rings, one of which is inside an ergoregion

with _t=E > 0⇒ E > 0.

Throughout this article, light rings are only defined on

the equatorial plane (θ ¼ π=2). We remark that it seems

plausible that such a concept can be continued outside

the equatorial plane, by a set of spherical orbits. Such orbits

would involve oscillatory motion in the θ coordinate, with

light rings being a subset of the latter (cf. Appendixes A, B,

and C). We shall not, however, make a detailed study of

these spherical orbits in this work.
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III. LENSED IMAGES WITH PYHOLE

In the previous section we provided various insights

for the emergence of chaotic patterns in lensing images of

RBSs and KBHsSH. In particular we have established that

the presence of stable light rings allows for the existence of

pockets in the effective potential leading to quasibound

orbits, which are strongly correlated to the chaotic

patterns. In this section we will exhibit a gallery of

examples of spacetime orbits, represented together with

the effective potential and the corresponding point in the

lensing image, for a sample of solutions of RBSs and

KBHsSH. To do so, we shall use a new code for ray

tracing, PYHOLE, which provides a simple interactive

graphical user interface with tools that facilitate the

interpretation of the results (see Appendix D). Of par-

ticular importance is the ability within this code to select

any point in the lensing image and obtain, within seconds,

the corresponding visualization of the spacetime trajec-

tory, as well as the trajectory in the effective potential.

This feature is used in this section to analyze the

emergence of chaotic scattering.

A. Ray-tracing setup for lensed images

Our setup is the same as in [12], inspired by the

construction in [11]. We consider a coordinate system

centered around the region we wish to study—a RBS or

a KBHSH. An observer (or camera) is placed off-center

in the spacetime and it receives light from a collection of

far away sources, emitting isotropically in all directions,

which we call the celestial sphere. We assume from the

outset that this is a four-dimensional stationary (axisym-

metric) background and take our coordinates to be

adapted to these symmetries: the coordinates are spheri-

cal-polar ft; r; θ;ϕg as defined in [54], where k ¼ ∂=∂t
and m ¼ ∂=∂ϕ are the Killing vector fields that gen-

erate, respectively, the stationarity and axisymmetry of

the spacetime. We fix t ¼ ϕ ¼ 0 for the camera’s

position, at some ðr; θÞ coordinates ðrobs; θobsÞ. The

emitting celestial sphere surrounds both the central

region and the observer, being placed at a large radial

coordinate rcs.
In particular for this work, unless otherwise stated,

we have placed the camera on the equatorial plane,

θ ¼ π=2, and at a fixed radial distance specified differ-

ently for the RBS and KBHSH solutions: For RBS

solutions we keep the camera at a circumferential radius

of ρobs ¼ 22.5=μ with μ the mass of the scalar field

(taken to be 1). For KBHsSH we place the camera at a

circumferential radius of ρobs ¼ 15M, where M is the

ADM mass of the BH. Here the circumferential radius ρ

is defined as

ρ ¼ 1

2π

I

dφ
ffiffiffiffiffiffiffi

gφφ
p

; ð3:1Þ

where gφφ is evaluated on the equatorial plane on a

spacelike slice. The celestial sphere is then placed at

ρcs ¼ 2ρobs. These relations implicitly fix robs and rcs.
The camera is attached to a ZAMO with the frame

e1 ∝ ∂ϕ, e2 ∝ ∂θ, e3 ∝ −∂r; e0 is directed perpendicular to

the constant time hypersurface. We then define standard

spherical coordinates on the observer’s sky in terms of a

polar angle with respect to e3 and an azimuthal angle in the

e1 − e2 plane, measured with respect to e1.
Given a light ray incident on the camera, it is straightfor-

ward to relate its momentum, at the camera position, to

these spherical coordinates [50]. To obtain an image, a scan

over observation angles is performed, tracing the corre-

sponding light rays backwards on the background, starting

at the camera position and ending, heuristically, either at a

point on the distant celestial sphere or at the horizon, in case

there is one.

One further step is required, which is a projection from

observation angles to the image plane, and this is described

briefly in Appendix D. The net result is a map, from camera

pixels to points on the celestial sphere (or vice versa) that

allows us to construct the final lensed image.

B. Rotating boson stars

As a first example, we show in Fig. 11 the lensing of

configuration 10, as seen from the equatorial plane. In order

to identify points in the image, we introduced an image

coordinate system (X, Y) ranging from ð−1;−1Þ at the

lower left corner of the image to (1,1) at the upper right

corner. We then selected three points in the lensing image,

expressed as 110, 210, and 310, where the subscript denotes

the configuration these points belong to. The corresponding

impact parameters and their location in (X, Y) image

coordinates are

Point η (X, Y)

110 −9.00 (0.790,0.289)

210 −8.50 (0.732,0.026)

310 −8.00 (0.690,0.189)

Point 110 corresponds to an impact parameter for which

the effective potential forms a pocket around a stable light

ring (marked by a green upright triangle in the potential

plot) that does not connect with the exterior region. Hence

this trajectory cannot get trapped and this point belongs

to a nonchaotic region in the lensing. The corresponding

spacetime trajectory exhibits only weak bending around the

center. In order to ease the representation of the trajectory,

Cartesian-like coordinates ðx; y; zÞ are used, defined from

ðr; θ;φÞ as if these were standard spherical coordinates.

For point 210, the effective potential has a pocket with a

small opening (a “throat”) around an unstable light ring

(marked by a red inverted triangle in the potential plot),

connecting it to the asymptotic region. But as the
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corresponding orbit has small θ motion, the photon enters

and exits the pocket after a single bounce off the boundary

of the pocket. The corresponding point in the lensing image

is at the threshold between a chaotic and nonchaotic region.

Finally, point 310 corresponds to a trajectory that gets

trapped for some time in the pocket, bouncing off its

boundary a few times before finding its way out. In the

spacetime, the photon circles around the central region a

FIG. 11. Top: Lensing of configuration 10 with three highlighted points. Bottom: Corresponding scattering orbits in the effective

potential (left) and spacetime (right).
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FIG. 12. Top: Lensing of configuration 11 with four highlighted points. Bottom: Corresponding scattering orbits (except point 111) in

the effective potential (left) and spacetime (right).
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few times, before being scattered off to infinity. In the

lensing image this point appears inside a chaotic region.

In Fig. 12, we exhibit the lensing of configuration 11,

again seen from the equatorial plane, and we have selected

four points in the lensing image, denoted 111 to 411. The

corresponding impact parameters and their location in

(X, Y) image coordinates are

Point η (X, Y)

111 −9.00 (0.908,0.291)

211 −7.50 (0.734,0.029)

311 −7.00 (0.685,0.130)

411 −4.80 (0.464,0.189)

2

1

3

2

0.6       

FIG. 13. Top: Lensing of configuration 12 with three highlighted points and enlarged image of the selected points. Bottom:

Corresponding scattering orbits in the effective potential (left) and spacetime (right).
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The new qualitative feature in this configuration, with

respect to the previous one, is the existence of an

ergoregion. Its boundary is shown as a dashed green

line in the effective potentials. Point 111 corresponds to an

impact parameter for which the pocket does not connect

with the asymptotic region. Its potential and spacetime

orbit are similar to those of point Point 110 (Fig. 11),

and they are not shown here. Points 211 and 311 are also

qualitatively similar to points 210 and 310 as shown in

Fig. 11. But point 411 is qualitatively new, in the sense

that the chaotic region has now extended to other disjoint

parts on the lensing image.

To close the gallery on RBSs, Fig. 13 shows the lensing

of configuration 12, seen from the equatorial plane, and

three highlighted points, denoted 112, 212, and 312. The

corresponding impact parameters and locations in (X, Y)
coordinates of the lensing image are

Point η (X, Y)

112 −6.50 (0.900,0.326)

212 −5.50 (0.737,0.008)

312 −5.50 (0.737,0.044)

The RBS 12 was not analyzed in detail before, since the

respective effective potential displays essentially the same

features as the RBS 11. Nonetheless, the RBS configura-

tion 12 exhibits one of the richest dynamical structures of

the configurations presented here. In particular, large areas

of the central region of the lensing image exhibit chaotic

behavior. The characteristics of points 112 and 212 are very

similar to their counterparts in configurations 10 and 11.

However, just a small perturbation of 212 leads to point 312.

It is chosen such that its impact parameter allows the

photon to enter a pocket with a very small opening. At the

same time, it has sufficient θ momentum for it to get

trapped in the pocket for a very long time. Its orbit fills out

the pocket with an almost dense covering, as well as the

central spacetime region, respectively. Given a sufficiently

long integration time, these types of orbits tend to escape

eventually.

C. Kerr BHs with scalar hair

We now turn our attention to KBHsSH, in particular

configurations II and III. Similarly to the RBS 12, the

KBHSH II was not discussed before since its effective

potential shares the same qualitative features as the Kerr

case (cf. Appendix B). Figure 14 shows the lensing of

configuration II, as before seen from the equatorial plane.

We have selected five points in the lensing image, denoted

1II to 5II. The corresponding impact parameters and the

locations in (X, Y) image coordinates are

Point η (X, Y)

1II −7.00 (0.839,0.343)

2II −5.87 (0.680,0.000)

3II −5.80 (0.673,0.087)

4II −4.00 (0.464,0.292)

5II þ1.50 ð−0.171; 0.024Þ

In Fig. 14 we show the effective potential and space-

time orbit for points 1II, 3II, and 5II, all of which are

scattering states. Instead of an isolated pocket, the

effective potential now has an inner allowed region

connected to the BH horizon. Point 1II corresponds to

a state for which this inner region is not accessible from

infinity. The same holds for point 5II, which has an impact

parameter with the opposite sign, and hence is located on

the left side of the shadow. For point 3II, the exterior and

interior allowed regions are connected, but the orbit does

not fall into the BH; it bounces off at the throat of the

potential and then escapes to infinity. In the lensing image

this orbit corresponds to a region close to the shadow’s

edge, where smaller and smaller copies of the celestial

sphere accumulate in an orderly fashion. In spacetime this

orbit circles once around the BH before being scattered

off to infinity. This circling occurs in the neighborhood of

the unstable light ring. In Fig. 15 we instead show two

orbits that are absorbed by the BH, corresponding to

points 2II and 4II in the lensing image of Fig. 14. Point 2II
lies just barely inside the shadow along the equatorial

plane. The potential is just open for this impact param-

eter, allowing the photon to pass through to the inner

region and fall into the shadow. Point 4II on the other

hand lies well within the shadow and moves within a wide

open effective potential.

Finally, we consider the richest of our backgrounds,

configuration III. In Fig. 16, we exhibit the lensing of this

configuration, seen from the equatorial plane. We selected

seven points in the lensing image, denoted 1III to 7III.

The corresponding impact parameters and their locations in

(X, Y) image coordinates are

Point η (X, Y)

1III −7.00 (0.806,0.395)

2III −6.60 (0.735,0.011)

3III −4.60 (0.504,0.025)

4III −3.00 (0.337,0.437)

5III −3.50 (0.394,0.426)

6III 0.00 (0.000,0.260)

7III −0.50 (0.055,0.265)

In Fig. 14 we show the effective potential and spacetime

orbit for points 2III, 3III, and 5III, all of which are scattering
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FIG. 14. Top: Lensing of configuration II with five highlighted points. Bottom: Corresponding scattering orbits in the effective

potential (left) and spacetime (right). Figure 15 shows the absorption states.
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states. The orbit of point 1III is similar to that of 1II

(Fig. 14), except that there are three (rather than two)

disconnected regions, one of which is connected to

infinity, another one to the horizon, and the third is an

intermediate closed pocket (as in Fig. 18, left panel). It is

therefore not shown. The effective potential in this

configuration exhibits features from both a more Kerr-

like BH, such as configuration II, and a RBS with an

ergoregion and light rings.

Observe the difference between points 3III and 5III;

both scatter off the innermost throat, which connects

the pocket with the near-horizon region of the

effective potential. But whereas point 3III is the result

of a single scattering, point 5III also scatters off the

outermost throat (which is almost nonexistent). Recall

that each throat satisfies ∂rhþ ¼ 0 at the boundary of

the allowed region and is likely connected to a

fundamental orbit (an unstable spherical orbit)

(cf. Sec. II E, Appendix A,B, and C). Moreover, notice

that point 3III is close to the edge of the main part of

the shadow, whereas point 5III is close to the edge of

one of the eyebrows.
6

To further extrapolate these results, recall that in the

familiar Schwarzschild or Kerr case, the edge of the

shadow connects to a self-similar structure with infi-

nitely many copies of the whole celestial sphere. This is

due to photons that approximately resonate the unstable

light ring. In a spacetime endowing photon orbits with

an effective potential as that in Fig. 16, there are several

light rings. Thus, photons can approximately resonate

with each of these or, in principle, any combination

thereof. This creates a hierarchy of resonances, wherein

more excited ones resonate more times, with different

light rings. The plausible scenario we have just

described suggests that the photons approaching the

edge of the main shadow and of the eyebrows approx-

imately resonate with different combinations of funda-

mental orbits.

This possibility is supported by Fig. 17 where we

show three orbits that fall into the BH, two close to the

edge of the main part of the shadow (points 6III and

7III), and the other one close to the edge of one of

the eyebrows (point 4III); the latter can be seen to

scatter off both throats of the potential. Point 6III in

particular illustrates a case with zero impact para-

meter that nevertheless displays a nontrivial trajectory.

Clearly the effective potentials cannot describe all the

dynamics.

Finally, in Fig. 18 we show two bound states around

configuration III, for the same impact parameter as for point

1III. One of these bound states has nonzero θ momentum

and the other one is purely planar. This illustrates that for

the same values of the impact parameter there can be many

different orbits, including both scattering and nonscattering

states.

FIG. 15. Absorption orbits in the effective potential (left) and spacetime (right), corresponding to points 2II and 4II in the lensing image

of Fig. 14.

6
Secondary shadows, disconnected from a larger one, are

dubbed “eyebrows” [11].
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FIG. 16. Top: Lensing of configuration III with seven highlighted points. Orbits for points 2III, 3III, and 5III in the effective potential

(left) and spacetime (right).
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IV. OVERVIEW AND DISCUSSION

In this paper we have performed a detailed study of

photon orbits in the background of KBHsSH and RBHs,

extending and complementing the results in [12]. We now

summarize some of our main results:

(i) For null geodesics, the Hamiltonian H ¼ 0 restricts

the motion of the light ray and sets a forbidden

region in the phase space (r, θ). The boundary of the
latter can be studied in a systematic way by defining

two potentials h�, such that their contour lines

delimit the boundary of the forbidden region for

each value of the impact parameter η.

(ii) For some configurations, this boundary forms a

pocket that can be closed for some interval of η,

giving rise to bound orbits. However, there is a open

interval of η values that can leave an arbitrarily small

entrance to the pocket, leading to trapped or quasi-

bound orbits. The formation of such pockets can be

traced back to the presence of a stable light ring,

combined with at least one unstable light ring. The

latter is associated to a throat (a pocket entrance) that

connects the interior of the pocket with a different

region of the allowed phase space.

(iii) The existence of a pocket is strongly correlated to the

existence of chaos in themotion of the light ray, leading

to turbulent patterns in thegravitational lensed imageof

the configuration. However, despite inducing chaos,

pockets are neither a necessary nor sufficient condition

for a particular trajectory to lie in such a chaotic pattern.

(iv) A common feature of chaotic orbits appears to be

having more than one radial turning point, a feature

which embodies a deviation from Kerr spacetime

[89]. Nevertheless, it is still possible to have several

turning points for a regular scattering, and hence this

is not a sufficient condition for chaos.

(v) The ergoregion does not appear to play a major role

in this context, despite enhancing the chaotic pat-

terns in the image.

(vi) If an event horizon and a pocket are both present, the

existence of a two-throat system may be the origin of

FIG. 17. Absorption orbits in the effective potential (left) and spacetime (right), corresponding to points 4III, 6III, and 7III in the lensing

image of Fig. 16.
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the formation of disconnected shadows, first re-

ported in [12] for KBHsSH.

To conclude, and following the above observations, we

would like to emphasize that

(i) Not all KBHsSH display chaotic lensing. For

instance, configuration II in [12] exhibits

effective potentials very similar to those of Kerr

(cf. Appendix B), even though the corresponding

shadow is quite distinct. This also provides an

example for which lack of integrability, in the sense

of Liouville,
7
does not imply chaos.

(ii) An important part of our analysis in this paper relied

on numerical ray tracing. The results obtained using

different ray-tracing codes agree, lending them

credibility. Such numerical methods, however, have

issues for very long term integrations. Thus, our

discussion of the chaotic patterns is mostly focused

on their emergence, rather than on their precise

quantitative properties, for which numerical errors

may become important.

(iii) Finally, a similar analysis to that performed herein

can certainly be pursued for other similar types of

backgrounds, as, e.g., the ones discussed in

[61–64,70,93].
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APPENDIX A: QUASIBOUND ORBIT

IN ðr;_rÞ PHASE SPACE

A quasibound orbit displays an interesting dynamics.

The motion is two-dimensional in r, θ. Thus, by focusing

on the (r, _r) phase space, one can anticipate effective

energy losses (gains) due to the coupling to the θ motion.

This is exactly what can be observed in a neat way for some

trajectories. As an example, the plot in Fig. 19 (left panel)

displays a trajectory in phase space (r, _r) for a photon that

enters a trapping region in the RBS configuration 11. The

orbit spans a “pearlike” curve that decreases in size,

resembling the well-known picture for a harmonic oscil-

lator with friction (wherein the curve is an ellipse). Here,

FIG. 18. Effective potential (left) and spacetime orbits (right) of two bound orbits in configuration III, with η ¼ −7.00, one with θ

motion and the other without. Observe that it is possible to have regular orbits even inside the pocket (bottom row).

7
Except for the corresponding Kerr boundary line (see Fig. 3),

it is unlikely that any KBHsSH has a hidden constant of motion
(which exists in Kerr), and hence geodesic motion is almost
certainly nonintegrable in (almost) the entire domain of existence.
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however, the energy is not being lost; rather it is being

transferred into the θ-motion.

The envelope curve in the left panel of Fig. 19 (the red

solid line) can be computed as follows. The maximum

possible value of _r can be obtained on the equatorial plane
8

(θ ¼ π=2) with _θ ¼ 0. This implies

_r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
Vðr; π=2Þ

grr

s

: ðA1Þ

This function (red solid line in the left panel of Fig. 19)

perfectly describes the envelope shape.

For a given value η, the conditions hþ ¼ η and ∂rhþ ¼ 0

are satisfied in phase space by the green dot in the figure. The

trajectory of the photon near that central dot is represented in

the right panel of Fig. 19, displaying multiple reflections on

the contour line hþ ¼ η. The reflection points are outside the

equatorial plane and close to the condition ∂rhþ ¼ 0,

leading to little motion along the r coordinate. By analogy

with the Kerr analysis (cf. Appendix B), it seems plausible

that these points are connected to a spherical orbit, with

motion along θ only, and constant r (cf. Appendix C).

APPENDIX B: THE KERR CASE

In this appendix, we will implement the h� framework

for the Kerr spacetime. This is a well-known case, but

it is typically treated by separating variables. As such, we

provide here a treatment parallel to that used in the main

text for solutions for which no separation of variables is

known (or likely to exist).

In the Kerr case, we have two unstable light rings on the

equatorial plane at radial coordinates r1 (for corotating

photons) and r2 (for counter-rotating photons), in Boyer-

Lindquist coordinates, given a value of the rotation param-

eter a such that a=M ∈ ½−1; 1� [9,94]:

r1 ≡ 2M

�

1þ cos

�

2

3
arccos

�

−
jaj
M

���

;

r2 ≡ 2M

�

1þ cos

�

2

3
arccos

�jaj
M

���

;

where M is the Kerr ADM mass. Moreover, we have that

r1 ≤ r2. Between these radii we can have unstable spherical
orbits, which are not restricted to the equatorial plane

and for which θ oscillates between π=2� ψ , where

ψ ∈ ½0; π=2�. In particular, given a radial coordinate r such
that r1 ≤ r ≤ r2, we can have a spherical

9
photon orbit at

that position as long as we have the correct restrictions on

the constants of geodesic motion. For Kerr these constants

are E, Φ, and Q, the latter being the Carter constant [9,95].

Specifically, the relations that must be satisfied are

η≡
Φ

E
¼ −

r3 − 3Mr2 þ a2rþMa2

aðr −MÞ ;

χ ≡
Q

E2
¼ −

r3ðr3 − 6Mr2 þ 9M2r − 4a2MÞ
a2ðr −MÞ2 :

The first equation establishes a connection between our

impact parameter η and the radial coordinate of a spherical

orbit. From this equation, it is possible to conclude that

the η required is positive for r1 and negative for r2 (given
a > 0), with the physical interpretation that r1 is connected
to a corotating light ring, whereas r2 is related to a counter-
rotating one (cf. Sec. II E) [94].

As mentioned, θ oscillates between π=2� ψ , where ψ

can be computed as

-3
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FIG. 19. Left panel: Phase diagram ðr; _rÞ of a photon trajectory in the RBS configuration 11 with η≃ −7.46. The red line is given by the

function �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−V=grr
p

and the green dot satisfies ∂rhþ ¼ 0 and hþ ¼ η. Right panel: Segment of the previous trajectory equivalent to the

central green dot, in ðr; θÞ-space.The connection to a spherical orbit is apparent. Thepurple line represents the boundary of the allowed region.

8
One can convince oneself of this by looking at the potential V

and realizing that the minimum is on the equator.

9
Spherical photon orbits denote null geodesics with a constant

radial coordinate r; the latter is not related (in general) to the
standard spherical coordinates.
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ψðrÞ¼ arcsin

8

<

:

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½a2−η2−χ�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½a2−η2−χ�2þ4a2χ
p

2a2

s 9

=

;

:

Hence given a value of r (with r1 ≤ r ≤ r2) one can

compute ηðrÞ and χðrÞ and obtain the respective ψðrÞ.
The curve π=2� ψðrÞ in (r, θ) space is represented in

Fig. 20 as a dotted (black) line. In this figure are also

represented the contour lines of the functions h�, each with
a saddle point that coincides with the position of a light

ring. This is consistent with the previous discussion since

the saddle point for hþ (h−) occurs for a negative (positive)
value of η and thus corresponds to a light ring that is

counter-rotating (corotating). Moreover, the h− saddle

point (connected to corotation) occurs for a smaller radial

coordinate than the hþ saddle point (connected to counter-

rotation), as expected.

Interestingly, it is clear that the curve given by π=2þ
ψðrÞ and π=2 − ψðrÞ also satisfies the condition ∂rh� ¼ 0.

As such, the latter also yields spherical orbits

(cf. Appendix A and C). In particular, for η ¼ 0 we have

ψ ¼ π=2 for both h�. Hence there is a continuous con-

nection between spherical orbits as we go from hþ to h−
(or vice versa). As a final observation, hþ can diverge due

to the existence of an ergoregion, in this case with spherical

topology. As before, inside this region the hþ contour lines

are for positive η (cf. Sec. II D).

APPENDIX C: ACCELERATION FIELD F r

From one of Hamilton’s equations (2.7) we obtain

_pr ¼ −
1

2
ð∂rg

rrp2
r þ ∂rg

θθp2
θ þ ∂rVÞ:

Setting pr ¼ 0 and solving for pθ from H ¼ 0 leads to

_pr½pr¼0� ¼ −
1

2

�

−
V

gθθ
∂rg

θθ þ ∂rV

�

:

Dividing by the photon’s energy at spatial infinity E, we
obtain a function that only depends on (r, θ) and on the

impact parameter η ¼ Φ=E:

F rðr; θÞ≡ −
1

2E2
ðV∂r log½gθθ� þ ∂rVÞ: ðC1Þ

Hence, this function, dubbed the “radial acceleration field,”

returns the value of _pr of the photon when pr ¼ 0, divided

by a scale factor. We remark that gθθ is positive definite,

and hence the logarithm is well defined. Now we will

consider applications of the F r function to some of the

spacetimes.

In Fig. 21 are displayed the contour plots of F r for the

RBS configuration 11 and the Kerr case. The dashed red

(solid blue) lines represent positive (negative) values of F r.

Starting from the top left figure, for the RBS 11 with η ¼ 3,

the acceleration field only has positive values (dashed red

lines) inside the allowed region. This actually implies that

in this case the motion can have at most one radial turning

point. For instance, if the light ray has at any given point

pr ¼ 0, then F r > 0 implies that _pr > 0, and pr cannot

become negative afterwards since there is no negative F r

region.

Going now to Fig. 21 top right we have the Kerr case

with η ¼ 3.2. The transition line from positive to negative

values is the set of points such that F r ¼ 0, which implies

that if pr ¼ 0 at those points then _pr ¼ 0 (but pθ ≠ 0 in

general). This appears to be connected to a spherical orbit at

that location (cf. Appendix B). Moreover, notice that if

∂rV ¼ 0 at the boundary of the allowed region (V ¼ 0),

then F r ¼ 0. Since ∂rV ¼ 0⇔ ∂rh� ¼ 0 if V ¼ 0

(cf. Sec. II E) then it may be possible to establish a
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FIG. 20. Contour plots of hþ (top panel) and h− (bottom panel),

for the Kerr BH solution. The solid (blue) lines represent negative

η values, whereas dashed (red) lines represent positive values. The

dotted (black) line is given by both π=2þ ψðrÞ and π=2 − ψðrÞ,
coinciding with the condition ∂rh� ¼ 0. The saddle points of h�
are consistent with the position of the light rings, as expected. The

coordinate R is computed with the same expression as before

(2.22), despite r being a Boyer-Lindquist coordinate now.
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connection between ∂rh� ¼ 0 and spherical orbits

(cf. Appendixes A and B).

Curiously, it is also possible in this case to conclude that

there is at most one radial turning point. For instance, if

during the motion pr ¼ 0 inside the red (blue) region, then

the value of _pr is positive (negative) and r will start to

increase (decrease). Since the sign of F r will not change

after this point, then the photon cannot have pr < 0

(pr > 0) afterwards and so the photon eventually escapes

(falls into) the BH. This is consistent with the literature, as

it is known that null geodesics in a Kerr spacetime have

at most one radial turning point [89]. However, we note

that the present approach is valid even when the geodesic

equations are not fully separable and integrable, despite that

not being the case for Kerr.

Continuing to the bottom left panel of Fig. 21, we have

the RBS configuration 11 again, now with the different

impact parameter η ¼ −7.11. In this case there are two

disconnected lines for which F r ¼ 0, each connected to a

spherical orbit, by analogy with Kerr. Contrary to the

previous cases, in this situation it is possible to have more

than one turning point, since after having pr ¼ 0 the sign of

F r can still change. This can be traced back to the transition

line F r ¼ 0 that goes from positive to negative values of

F r as r increases, and ultimately to the existence of a stable

light ring. Thus, it is possible to have a photon wobbling

around that line, yielding several radial turning points (see

the bottom left panel of Fig. 21 for an example).

Advancing to the bottom right panel of Fig. 21, we again

have the RBS 11, now with η ¼ 0.1. The transition line

F r ¼ 0 has now become closed in a loop, leading to an

isolated region with F r < 0. As in the case before, it is

possible to have more than one radial turning point.

However notice that there is no pocket in this case:

∂rh− is never zero at the boundary of the allowed region

(green line). This case illustrates a situation for which chaos

is possible even without a pocket (cf. Sec. II D).

APPENDIX D: PYHOLE

PYHOLE is a ray-tracing code written in Python 3 using

the NumPy [96] and SciPy [97] extensions for scientific

computing. This choice allows rapid and flexible design of

the code and simple addition of features. Since Python is an

interpreted language, the resulting code is platform inde-

pendent and can be run on any system with a Python 3

interpreter. This flexibility comes at the cost of computa-

tional speed as Python code for numerical applications is

FIG. 21. Contour lines of the acceleration field F r, with dashed red (solid blue) lines for positive (negative) values. All figures

correspond to the RBS 11 except the top right panel, which corresponds to Kerr. The thick green line sets the boundary of the allowed

region. The black line in the bottom left image represents a single photon trajectory.
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typically slower than optimized native implementations in

languages such as C++ or Fortran. However, by optimizing

the code specifically for NumPy, modern Python imple-

mentations can reduce the overhead significantly. We

further address the issue by parallelizing the code and

providing native implementations of the crucial code paths

(see Appendix D 2).

The design of the code is fully modular to allow for

different metrics (numerical as well as analytical), propa-

gators, and projections. The code consists of two major

components:

(1) the computational component that performs the ray

tracing for each pixel in the image; and

(2) the interactive component that renders a picture from

the ray-tracing data and allows analysis of the results

by the user.

The computational component of the code consists of a

“scene” object that collects all the settings of a particular

setup to be computed. This includes settings for the

observer position, the background metric and the display

styles to be used. Within each scene, a “camera” object

encapsulates the observer’s reference frame information as

well as the projection of incoming rays onto the image

plane. Besides the camera, the user specifies a “metric”

object, which contains all information about the metric that

is used for ray propagation. Internally, the camera passes

the metric on to a “propagator” object along with each

initial condition to be propagated. The propagator then

performs the actual numerical integration backwards along

the light ray, returning the position of the source of the light

ray on the celestial sphere, or event horizon, to the camera.

With this setup it is possible to interchange the various

objects for different implementations of each functionality.

At the core of all this sits the numerical propagator. In

the Python code, we use the built-in Adams/BDF multistep

method with automatic step size control provided by SciPy,

which is based on the Netlib VODE implementation [98].

We have performed tests with other Runge-Kutta-based

integration schemes [99], but the results did not change,

while the runtime of the code increased significantly. This

is expected as the ordinary differential equation near the

BH becomes stiff, which is a situation not handled well by

Runge-Kutta-based integrators.

The mapping between a pixel on the projected image

and the direction of the source of the corresponding light

ray is the output of the computational module of the code.

Computing this mapping for high-resolution images

(typically 1024 × 1024 pixel s) is a time-consuming oper-

ation, which is why this mapping is precomputed and

stored in a file on disk. The analysis code is then capable

of loading a precomputed direction mapping instead of

recomputing it.

The interactive component is a unique feature of

PYHOLE. After rendering the image, it is presented to the

user in a graphical user interface. It is then possible to select

points within the image and show their trajectories, along

with other relevant information such as plots of the

effective potential associated with a given trajectory (see

Figures 11–18). The trajectories are computed on the fly

using the same propagator described above. Apart from

single trajectories, this component also allows the analysis

of the resulting image using other techniques, including the

visualization of the time delay function (see Fig. 9), as well

as shadow fragmentation analysis.

1. Metric, interpolation, and image

The metric is specified as an object, which allows for the

simple addition of different metrics by the user. For the

RBSs and KBHsSH solutions analyzed in this paper, we

work with an interpolated metric constructed using a

second-order 2D spline interpolation of the functions F0,

F1, F2, and W over R and θ as defined in [12]. The

derivatives of these functions with respect to the interpo-

lation variables are obtained by taking derivatives of the

interpolant. The interpolation is performed using the

RectBivariateSpline functionality of SciPy, which

is based on the FITPACK implementation in Netlib [100].

The resulting values are then inserted in the analytical

expressions for the actual metric components and their

derivatives with respect to r and θ. For reference, a third-

order spline interpolation has also been tried but it has been

determined that this does not change the accuracy of the

result.

Besides the metric, some further information is needed to

produce a camera image. Typical user input to construct

this image consists of

(i) the initial observer position,

(ii) the field of view,

(iii) the image resolution, and

(iv) the radius of the celestial sphere.

The observer position is given by ðt ¼ 0; r; θ;ϕ ¼ 0Þ
where without loss of generality t ¼ 0 and ϕ ¼ 0 is

assumed. Thus the user only supplies an initial r and θ

position. We are specifying the observer’s radial position r
for each choice of metric through a fixed circumferential

radius R, as in [12], and the same for the radial position of

the celestial sphere (cf. Sec. III).

The projections currently implemented are stereographic

and gnomonic projection, as well as the equirectangular

projection used in [12]. Gnomonic projection is the

projection resulting from a physical pinhole camera, while

the very similar stereographic projection is a variation

thereof commonly used in computer graphics. The equi-

rectangular projection directly maps the two observer

angles onto the coordinate axes without further geometric

projection.

For all of these projections, the user input is a field of

view, which specifies the angle between the central

direction and the boundaries of the image plane.
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Together with the resolution of the image, this fixes the

scaling factor used to convert pixels to degrees.

As a test of PYHOLEwe have performed the lensing of the

same configurations used in [12] and obtained results in

good agreement. In Fig. 22 we show the image in the

camera when the metric is flat (top panels), along with

configurations II (second row) and III (third and fourth

rows) in [12]. For all of these the observer is placed at

different polar angles, from the equator to the pole. The

images of configuration II show an expected transition from

the “squared” shadow shape observed along the equatorial

plane to an axisymmetric shadow when observed along the

polar axis (θ ¼ 0). A more spectacular gallery is provided

by configuration III. For the latter, as we move away from

the equatorial plane the main shadow splits into (at least)

two disjoint pieces, and the largest of the two eventually

merges with one of the (initial) eyebrows. As we approach

the polar axis, the latter structure becomes annular, whereas

the other piece of the main shadow that had separated from

it becomes a central eye. At the pole, we obtain a Saturn-

like shadow, with the whole structure displaying axial

symmetry, as it should be.

FIG. 22. From left to right: View from the camera of an empty space (top row) and configuration II in [12] (second row) with the

observer at θ ¼ 90, 60, 40, 20, and 0. Third and bottom rows: Shadows and lensing of configuration III in [12] with the observer at

θ ¼ 90, 80, 70, 50, 30, and 0 (1024 × 1024 pixel s).
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2. Parallelization

On modern computers typically many cores are available

for parallel computation. Even simple consumer-grade

computers typically have at least four cores, while more

powerful workstations easily reach 16 or 32 cores. As the

problem at hand is trivially parallelizable, PYHOLE has been

designed to allow parallel execution via parallel processes,

e.g., message passing interface (MPI). The pixels of the

image to be computed are split into chunks of roughly equal

size, each of which is then propagated by a separate

instance of the code. Eventually, the results are recombined

in the main process to yield the full picture. To even the

load on all available processors, the image is not simply

subdivided into contiguous stripes, but rows are inter-

leaved. Given N available processors, the nth processor

computes lines n; nþ N; nþ 2N; nþ 3N;… of the image.

This way each processor samples all regions, evening out

the effect of more difficult (and hence time-consuming)

integrations, such as ones closer to the BH.

Furthermore, we have implemented a version of the

propagator that is capable of running on modern graphical

processing units (GPUs) using OpenCL [101]. These GPUs

used on modern graphics cards and specialized high-

performance computing equipment are capable of perform-

ing parallel operations in thousands of threads at once.

When using suitable algorithms, they can outperform

classical CPUs by a significant margin. Furthermore,

OpenCL includes the capability to run the exact same

code used for GPU computing also for highly optimized

parallel CPU computations. This provides a huge simpli-

fication over the manual parallelization of C- or C++-based

codes written for CPUs. Our OpenCL code is interfaced

with PYHOLE via the PyOpenCL package [102].

Running the OpenCL implementation on an

AMD W8100 FirePro graphics processor allows us to

compute an entire 1024 × 1024 pixel image even of highly

chaotic images such as the RBS configuration 12 in less

than 1 hour, depending on the integrator accuracy settings.
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