
iILIl_

:, : <liCt: i
Pi_ccdiligs of the Cotifcrence oil

Palullcl Architectures and Languages Europe

Eitidhovcti, The Ncthcrlands, June 1991

CHAOTIC LINEAR SYSTEM SOLVERS

IN A VARIABLE-GRAIN DATA-DRIVEN

MULTIPROCESSOR SYSTEM*

Jean-Luc Gaudiot and Chih-Ming Lin

Department of Electrical Engineering - Systems

University of Southern California

Los Angeles, California 90089-0781

Abstract

Linear systems are important problems in many scientific applications. While asynchronous

methods are effective solutions to linear systems, they are difficult to realize due to the chaotic

behavior of the algorithms. In this paper, we investigate the implementation as well as the per-

formance of an asynchronous method, namely chaotic relaxation, in our Variable-grain Tagged-

Token Data_fiow (VTD) System. We compare asynchronous methods with synchronous methods

executed on both the fine-grain and the coarse-grain execution models. New high-level data-

flow language constructs are introduced in order to express asynchronous operations. A new

firing rule that deviates from the single assignment rule of functional languages is proposed to

support the implementation of asynchronous computations in the VTD system. In addition

to the conventional speedup measure, we then define new performance measurements, called

Growth Factor, Scalability Factor, and Robustnes_to characterize the system performance from

the machine and application viewpoints. Simulation results indicate that asynchronous methods

are more efficient than synchronous methods and that the coarse-grain execution mode is more

efficient that the fine-grain execution mode in our VTD system.

1 Introduction

Linear systems play an important role in many applications such as P DE solvers. Gener-

ally_ linear systems can be solved by direct or iterative methods. Iterative methods can

further be classified as synchronous [9] or asynchronous [3]. While synchronous methods

are easy to implement, they do not yield acceptable levels of performance for complex

problems_ mainly because of the synchronization necessary among the various processes.

On the other hand, asynchronous approaches have been found by many researchers [3, 5]

to efficiently exploit runtime parallelism. In an asynchronous approach, communication

between processes is achieved by reading the dynamically updated variables while each

• This material is based upoa work supported in part by the U.S. Department of Energy, Department

of Energy Research, under Grant No. DE-FG03-87ER25043.

IDllD"fi:4iBt.lTiOi",tOP ii-ii,_$ t__OOt..tlv_i_;_l,,tTIS C..iixii..irv'ilTlr_iD_l_l_
d

process continues its execution to update shared variables. Therefore, tile chaotic behavior

of data in an asynchronous Mgorithm is very complex, ltowever, while an asynchronous

method can be effective in parallel machines and can deliver high performance, it is dif-

ficult to implement due to the chaotic behavior of the method itself. F¥om the software

perspective, l_lguagc constructs must be defined to specify the asynchronous method,

thereby parallelizing the algorithm. From the hardware point of view, special architec-

ture schemes dedicated to the algorithm need to be developed.

The data-flow principles of execution [2]offer the programmability needed to synchro-

nize at runtime the m_my parallel processes on a large scale multiproccssor, instead of

relying on the conventional central program counter, the availability of data renders an

instruction executable. Asynchronous algorithms have been implemented in data-driven

systems, more precisely in micro.actor-based data-driven systems [5]. Although the mi-

cro approach to asynchronous methods correspond well to the simplicity of data-driven

principles, it yields much overhead to respect the functionality of execution.

In this paper, we will first introduce special hlgh-level data-flow language constructs

(Async-Repeat and Async-For) to describe the chaotic behavior in asynchronous algo-

rithms. The scheme to form coarse-grain (macro-actor) data-flow graphs and a specific

firing rule in the Matching Store with Locks of processors will also be introduced in order

to correctly execute the computations of the asynchronous algorithms. In this paper, we

are also interested in measuring and comparing the performance of algorithms &s well as

our VTD system: First, to evaluate the performance of the architecture, the conventional

"Speedup" measurement will be taken to depict the trend of the performance with larger

machine configurations. Second, to estimate the growth of parallelism within an algo-

rithm when the algorithm's complexity has been increased, a new measurement, called

"Growth Factor", will be defined to show how suitable an algorithm is for multiprocessor

systems. Third, to measure the efficiency of parallel systems in the execution of parallel

algorithms, we will introduce another new measurement, called "Scalabilitv Factor", to

demonstrate the scalability property of the systems. Finally, we will define "Robustness"

to indicate the potential performance of the systems.

We shall start our discussion in section 2 by giving a brief introduction to the data-flow

principles of execution as well as to asynchronous methods for solving linear systems. In

section 3, the Jacobi method and the chaotic relaxation method are described in a High-

level data-flow language along with the new languages constructs. The VTD System and

the new firing rule for chaotic relaxation and the new performance measurements will be

described in section 4. Section 5 will present the results of a deterministic simulation on

the system and concluding remarks will be made in section 6.

2 Data-flow Principles and Iterative Solutions for

Linear Systems

In this section, we first introduce the data-flow principles of execution and review the es-

sentials of the synchronous and asynchronous linear system solvers which will be evaluated

on our VTD system. DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

2.1 Data-flow Principles

Programmability has been identified as tile major issue in the design of large-scale multi-

processor systems [1, 2]. Indeed, progrrmuners cannot be expected to be able to schedule

and synchronize tile hundreds or thousands of tasks that are required to fully utilize the

resources of such machines. Therefore, the data-flow model of computation has been

introduced to alleviate this problem [1]. Data-flow principl_ allow runtime synchroniza-

tion of operations based on their data dependencies. This allows a very large number of

different tasks to be scheduled efficiently and transparently.

Data-flow computing is an alternative to the control-flow model. It is inherently

parallel, as the execution of an instruction is based upon the availability of its arguments.

Data-flow principles can be characterized by two statements: First, operations execute

only when all required operands are available. Second, actors are purely functional and

execution produces no side-effects. Data-flow programs axe represented by directed graphs

which consist of actors connected together with arcs. Arcs represent the data dependencies

between actors and carry tokens which are the data values passed between actors [2].

2.2 Jacobi Method

The Jacobi iterative method can be derived from a liner system A x x = b as:

x!k+l) = -- _'_'i,j=l aijx_k) "_"bi for i = 1,... ,n and k > 0 (1)
all

where the x!°)'s are initial estimates of the components of the solution x. By examining

the Jacobi iterative method shown above, it can be seen that all the components of the

previous (old) vector x (k) must be saved before the components of the next (new) vector

x(k+l) axe computed. Therefore, in this algorithm, an iterative sequence, of approximations

x(1), x(2),..., x(") will be sequentially computed.

2.3 Chaotic Relaxation

In the asynchronous approach, each process continues execution to update the elements in

x(0 and communication between processes has been achieved by reading the dynamically

updated variables. A subset of asynchronous methods, called chaotic relaxation schemes,

was introduced by Chazan and Mira_ker [3] to solve linear systems. In a chaotic relax-

ation scheme, practical constraints on the asynchronous behavior are imposed. While an

asynchronous algorithm imposes no restriction on how "old" a value may be (i.e., how

many iterations ago it was produced), chaotic relaxation requires that the updated value

of a point be received within a fixed amount of time.

3 From Algorithms to Data-flow Graphs

We have now established two categories of algorithms for linear system solvers that we

will implement and evaluate on our VTD system. These algorithms will now be expressed

in a high-level data-flow language translated into data-flow graphs.

3.1 The Jacobi Method and Synchronous Constructs

Tile algorithm is shown in Fig. 1 in SISAL [8]. Line 4 contains the decision to proceed or

not with ,he rcla_xation at ca_:h iteration. The Rclazation procedure (lines 5 through 15)

l)crforms tile rcla_xation for all of the elements ill X[i] and generate new values of vector

X[i]. The Convergence Check procedure (llncs 16 through 22) checks all the elements and

generates a termination signal back to line 4. Here, we use a stopping criterion evaluated

by an Loo norm.

In the SISAL program, one should note that the relaxation on each clement X[i] under

the.for constructs (lines 5 and 6) can be executed in parallel mainly due to the definition of

the language constructs. In the same way, the convergence check on earth elements of X[i]

and old X[i] can be executed in parallel under the for constructs in line 16. However, the

algorithm itself will be executed in a synchronous manner. In other words, a step-by-step

iteration process will take place.

3.2 Chaotic Relaxation and Asynchronous Constructs

The chad)tic relaxation is an approach which is particularly successful in parallel environ-

ments. However, new language constructs must be introduced to describe the algorithm.

3.2.1 The Asynchronous Constructs

Asynchronous computations cannot be easily implemented by traditional high-level pro-

graxnming constructs. Therefore, we designed the async-repeat and the async-for opera-

tors to represent an asynchronous behavior. The main idea of the new async-repeat and

async-for constructs is to release the synchronization constraints from the repeat and for

constructs in SISAL since then inherently create synchronization points in the body of

the loops.

1. Async-repeat • This construct allows the procedures inside it to be concurrently

evaluated without any synchronization between one another. For example, in the following

program, statement (1) and statement (2) can be executed simultaneously and repeatedly

as long as the condition c < 100 remains true:

for initial

while c < 100 async-repeat

a:= old a + 1 ; (1)

c:= a + b; (2)

return value of c;

end for

in the above program, under the asynchronous construct, statement (2) may be executed

and its result generated before the completion of the execution of statement (1). In other

words, if statements (1) and (2) were executed independently, c may be already larger

than 100 (assume b = 101 and a = 0). This would force termination of the process before

a is updated by statement (1). Note that the execution model described above will not

be allowed in the conventional repeat construct which only executes the two statements

one after the other due to the synchronization point imposed by the language construct.

i

define main, jacobi

type OneDim = axray[real];

type TwoDim = axray[OneDim] ;

function jacobi (A : TwoDim ; B : OneDim ; N :integer ;

returns OneDim)

(1) for initial

Err := 0 ;

X := array [1: 0.0, 0.0, 0.0, 0.0] ;

(4) while Err < N repeat % convergence check

(5) X := for i in 0, N % relaxation on X

templ := for j in 1, N

temp2 :=

ifi#j

then h[ij] * old X[i]

(10) else 0.0

end if ;

returns value of sum temp2

end for;

returns array of (B[i]-templ) / h[i,i]

(15) end for; % generate new X

Err := for i in 1, N % generate error norm

temp3:= if abs(X[i] - old X[i])<
then 0

else 1

(20) end if;

returns value of sum temp3

end for ;
returns value of X

end for

end function

Figure 1: A SISAL program for Jacobi methods.

ml _iI , rl _, ,' , ,, z I II

i

• 12. Async-for : While tile conventional for construct in SISAL allows every index

value to be synchronously executed in parallel, the async.for construct releases the syn-

chronization between ea£h index value and allows independent execution of index values

in parallel. For example, in the following progranl, the return values of array X does not

need to wait until all the new values of each index i become available. Instead, each new

value of index i can be updated _._ynchronously as soon as the value is available and the

next computation can bc started.

for initial

X := async-for i in 0, N

temp := Y[i] x old X[il;

returns value of temp × temp

end for;

While the async-for construct allows each index i to be evaluated a.synchronously, it

should be noted that the operation within the construct corresponds to an infinite loop.

It ensures that the computation will proceed until another process (outer loop) terminates

the whole execution. The following program is an example which shows that the process

under the async-for construct will be terminated by the process that is under the async-

repeat construct.

for initial

while condition async-repeat

X := async-for i in 0, N

temp := A[i] x old X[i];

returns value of temp x temp

end for;

Procedure_two ;

Procedure_three ;

end for;

Overall, under the bodies of the new async-repeat and async-for constructs, synchroniza-

tion constraints can be released while the repeat and for constructs create synchronization

points inside the bodies of the constructs. However, in general, the async-for constructs

will require the async-repeat to co-exist in a program. This is because only the async-repeat

construct can terminate the process under the async-for constructs.

3.2.2 The SISAL Programs

Chaotic relaxation can be expressed in SISAL by using the new constructs. First, in

order to allow several procedures to be executed a.synchronously in parallel, the repeat

must be replaced by async-repeat at the outer loop of these procedures. In Fig. 1, in

line 4, the repeat should be replaced by async-repeat. Therefore, under the async-repeat

construct, both the Relaxation procedure (from line 5 to 15) and the Termination Check

(from line 16 to 23) can be executed concurrently without any dependency between each

other. Second, in order to allow each index value, which is under the for construct, to

be executed a.synchronously in parallel, the for must be replaced by async-repeat at the

beginning of the procedure. In line 5, we replace for by async-for. Therefore, inside

7

I

the async-for construct, each index value can concurrently proceed tile execution of the

computation without waiting for other values which are executing the same function.

4 VTD System and Performance Measurements

While the macro-_tor concept is a solution which reduces overhead in fine-gain computa-

tions, the architecture must be able to execute actors of varying sizes. Our Variable-grain

Tagged-token Data-flow (VTD) system has therefore been designed for this purpose. A

new firing rule in the VTD system is also proposed to guarantee the proper behavior

of chaotic relaxation and to achieve efficient computations. To characterize the perfor-

mance in the VTD system, new performance measurements are defined along with the

conventional performance measurements.

4.1 The VTD System

The VTD system consists of a set of identical Processing Elements (PEs) connected by a

hypercube (message-passing) communication network. A single PE consists of 4 units :

Matching Store Unit, Instruction Fetch Unit, ALU, Token Formatting Unit [5].

4.2 The Matching Store with Locks

In chaotic relaxation, due to the asynchronous iterations at each grid point, the value of

each grid point must be saved for the relaxation of other grid points. In order to guaranto_

the proper behavior of the chaotic actors, we introduce the notion of locks at the inputs

of the actors. In other words, we create locks inside the matching store for the firing of an

actor. Note that the implementation of locks in actors corresponds to the Async-repeat

and Async-for constructs of the high-level language. The locks will be attached to the

input actors of a subgraph. These actors represent the processes that can be executed

asynchronously under the Async-repeat and Async-for constructs.

Under the new firing rule, when an actor is fired, the input tokens remain in the input

".'* lock until the next input token is received. In this fashion, the incoming token will replace

the stored value and will activate once more the actor. Fig. 2 shows the step-by-step the

operation of the new firing rule of an actor along with the matching store with locks:

1. Initially, when either token A or token B (A and B have the same tags) comes into the

actor F, it will be locked inside the actor.

2. When the partner token arrives, actor F will be fired and will produce an output token.

3. After firing actor F, both input tokens remain locked inside the actor.

4. When another token C is later received by the actor, the actor is fired with the locked

token on the other port and the new value on the first port. The incoming token will

remain locked in the actor. Note that it overwrites the previous token value.

4.3 Performance Measurements

Many measurements of system performance, such as speedup and system utilization, have

been used to evaluate multiprocessor systems in the past. However, these measurements

do not clearly indicate the effectiveness of architectures as well as application programs

" 0

A[q 8[_

F(A[iI ' B[i])

CR

F(C[_ ,B[i])

Figure 2: A New Firing Rule with lock3 in Matching Store.

o

$
ideal S

System A

System B

16

8

4

2 4 8 16 32 PE

Figure 3: Speedups with Various PEs.

because there is no indication of how much of th, performance is due to tile architectures

and how much of it is due to the applications. Indeed, tile speedup should be measured

by scaling the problem to tile number of procesaols, not by fixing problem size. An expla-

nation of misuses of Amdald's speedup formula him b_mn demonstrated in [7]. Therefore,

when multiprocessor systems axe evaluated, both parallel algorithms and parallel architec-

tures axe required to achieve high performaame. For instance, a parallel machine cannot

deliver high efficiency in executing a sequential prograan due to the lack of parallelism

within the prograan. On tile other haald, a parallel algorithm cmanot guarantee high per-

form_ce in a multiproeessor system if the system cannot exploit the parallelism involved

in the prograan. Clearly, what we need is a better performance measurement to reflect

the degree of exploited parallelism resulting from algorithms as well as the ability of the

architectures to utilize such parallelism.

In this paper, we axe interested in measuring and comparing the performaame of algo-

rithms as well as our VTD system: First, to evaluate the performance of the architecture,

the conventional Speedup measurement is taken to depict the trend of the performance

with larger machine configurations. Second, to estimate the aanount of the growing par-

allelism within an algorithm when the algorithm's complexity has been increased, a new

measurement, called Growth Factor, is defined to show how suitable of an algorithm is

for multiprocessor systems. Third, to measure how efficient of parallel syatenm in exe-

cuting parallel algorithms, we introduce a new measurement, called Scalability Factor, to

demonstrate the scalability property of the systems. Finally, we define the Robustness to

indicate the potential performance of the systems.

1. Speedup : Speedup has been conventionally defined as the ratio of the execution

time of an Application (AP) on N Processing Elements (PEs) to the execution time of

the same application on a single P E :
E_,e. time ot AP on one PE

Speedup (AP, PE(N)) = "Eft, tim,, o1AP onN PF,.

Under this definition, the ideal speedup of an architecture is N when there axe N PEa in

the system. In other words, if a speedup cure is closer to the line of ideal speedup, then

the architecture is considered a better parallel system. For instance, Fig. 3 shows that

system "A" performs better than system "B" in term of system "A" having a speedup

curve closer to the line of ideal speedup. However, by this definition, it is only shown

how the execution time can be reduced in various system configurations while tile amount

of complexity in the application remains unchanged. However, this does not show the

suitability of an algorithm for multiprocessor systems. In other words, the speedup curves

only demonstrate the machine domain performance without considering the application

aspect.

2. Growth Factor : Before the speedup in a system is measured, how well an applica-

tion can perform in parallel systems must be studied. The growth factor shows how much

parallelism changes when the complexity of an algorithm is changed. Here, the complex-

ity of an algorithm refers to the number of operations needed to execute the algorithm.

For example, tile inner product of vectors V(a_, a2, as, ..., a_) and U(bL, b2,b3, ..., b,,,) has

a complexity of O(m). The growth factor therefore is defined as tile ratio of the execution

time of an Application (AP) with a complexity (M × m) on a fixed number of n PEa to

the execution time of the same application with a complexity of m on the n PEs.

Exe. time oI Mm AP on n PEs
Growth Factor (AP(Mm), PE(n)) = s_.. .,,,_ of ,n AP 0,, ,, t.E;

Growth Factor

-_- ApplloatlonA

Apl_'loatlonB

Ideal Growth Faotor

16

8

4

2 4 8 16 32Complexity(M) '

Figure4: GrowthFactorswith VariousComplexity(M).

ScalabUttyFactor
.,,..

Ideal Scalablllty Factor
1

AppUcationA

0.5"-

0.25 "- Application B

....._- I I I

2 4 8 16 32 Scale(S)

Figure 5: Scalability Factors with Various Scales (S).

Ideally, a perfectly parallel algorithm should have a growth factor proportional to the

increaling rate of its complexity (M). For example, a vector to vector multiplication is a

perfectly parallel statement that the amount of parallelism increases at the same rate as

the vector length (complexity). Therefore, if an application has a curve of growth factor

close to the line of ideal growth factor, it is considered a better parallel application. For

example, in Fig. 4, application "A" is a better parallel application than application "B"

because the curve of growth factor in "A" is closer to the line of ideal growth factor.

3. Scalability Factor : The performance of multiprocessor systems should also be

meMured by comparing the execution time of large problems with that of small problems

on single processor systems. In other words, the complexity in the applications should be

increased while the size of the machine configuration is increased. The scalability factor

is defined as the ratio of the execution time of an Application (AF) with complexity (m)

on n PEs to the execution time of the same application with complexity S × m on S × n

PEa.

CA(s) (s)) E=o. ol, o..Scalability Factor P m , PE n = E=e.,/me o/ SraAP on Sn PE,

If an algorithm has an ideal growth factor and a system has an ideal speedup, then the

tcalabillty factor should remain a constant for various values of N. In other words, a

perfectly parallel algorithm with a large complexity on a large perfectly parallel system

configuration should require the same execution time as it would with a small complexity

Problem Size= 16 x 16

_System Size Chaotic(Macro) Ci_aotic(Micr0)

number of P Es exe. time speedup exe. time speedup

i PE i0829i 1 108990 1

2 PEs 56690 1.91 54430 2'002

4 PEs 26999 4.01 27174 4.01

8 PEs 13548 7.99 14840 7.34

16 PEs 8050 13.45 10538 10.34

32 PEs 6867 15.76 9708 il.22

TABLE 1 - Execution Time and Speedup in Chaotic Relaxation.

on a small system configuration. However, due to the fact that most algorithms and

systems are not perfectly parallelized, the actual scalability factors will fall below the line

of ideal scalability factor. Fig. 5 shows that the closer the curve is to the ideal line, the

easier it will be to scale up the application/system configuration combination.

4. Robustness: The robustness property of a system can actually indicate its po-

tential performance [6]. The robustness is defined as the ratio of the execution time of

an Application (AP) with a complexity (R x m) on one PE to the execution time of the

same application with a complexity of R x m on the R x n PEs.

(A (R) ()) S_e. time o! Rm AP on one PERobustness P m , PE Rn = Ext. time o] Rm AP on Rn PEs

Essentially, robustness is an indication of how well the architecture/execution model will

scale up when mazdfine sizes and problem sizes are increased. In fact, one of the most

important parameters in evaluating a mul'iprocessor system is to observe the system per-

formance with various problem sizes. We thus express the performance of an architecture

by showing the robustness in a large number of PEs.

5 Simulation Results

Once the Jacobi method and chaotic relaxation have been programmed and compiled into

data-flow graphs. The execution of the graphs in the VTD system can be verified by a

deterministic simulation in both micro-actor (fine-grain) and macro-actor (coarse-grain)
execution models. "

5.1 Simulation Results

The execution of the Jacobi method and chaotic relaxation to solve various sizes of linear

systems with the termination criterion IIz(k) -x(k-t)l[oo < 10-3 have been simulated.

From the simulation results, several statistics and observations have been obtained:

1. Speedup : The speedup measure has been defined in the previous section. The

reports of the speedups in various system sizes for both chaotic relaxation and the Jacobi

method are attached in Tables 1 and 2, while Fig. 6 shows the trend of the speedups with

• t

Problem Size = 16 × 16

System size Jacobi(Macro) Jacobi(Micro)
number of P Es exe. time speedup exe. time speedup

1 PE 79924 I 92203 I

2 PEs 42112 1.89 49399 1.86......

4 PEs 23109 3.45 27901 3.30

8 PEs 13640 5.86 18219 5.06

16 PEs 9759 8.18 14470 6.37

32 PEs 9244 8.64 13971 6.59

TABLE 2 " Execution Time and Speedup in the Jacobi Method.

increasing P Es for the two different relaxation methods.

Observation: The results indicate that the speedup in chaotic relaxation is better than

the speedup of the Jacobi method in both macro and micro execution modes. In chaotic

relaxation, a superlinear speedup can be sometimes observed due to the nondeterministic

property of the algorithm itself. Indeed, the random sequence of relaxations may lead to

a faster convergence in multiprocessor systems. This feature is confirmed in Table 1: the

speedups in a 4 PE system for both macro and micro execution of chaotic relaxation can

be as high as 4.01

2. Scalability Factor: The scalability factor of a system was defined in the previous

section. We exploit the trend of scalability factors in different problem sizes with various

system configurations. We start with the matrix size equal to 8 x8 and the machine size

equal 8 PE, then 16x16 in 16 PEs, 32x32 in 32 PEs, and 64x64 in 64 PEs. The report

is shown in Table 3 and the curves are shown in Fig. 7.
Observation: The results show that the chaotic relaxation in the macro execution mode

of the VTD system has the best scalability factor while the Jacobi methods in the micro

execution mode has the worst scalability factor. However, one should note that the

increasing rate of the machine size from 8 PEs to 16 PEs does not equal the increasing rate

of the complexity of the algorithms with a matrix size from 8x8 to 16x16. Therefore, we

only compare the relative performance of different algorithms in various execution modes,

instead of comparing it with the ideal scalability factor.

3. Robustness: The robustness of a system was defined in the previous section.

We exploit the trend of "speedups" in many different problem sizes with various system

configurations. We start with the matrix problem size from 8x8 up to 64x64 and the

machine size from 1 PE to 64 PEs. The report is shown in Table 4 and the curves are

shown in Fig. 8.

Observation: In the results, we know that there are almost lineax increasing speedup

curves for the two methods in each operation mode. This is a very promising feature

for data-driven multiprocessor systems. Indeed, the robustness property of data-flow

architectures can guarantee the performance in multiprocessor systems for various problem

sizes. For example, from Table 4, the speedup of chaotic relaxation for 64x64 problem

size can reach up to 52 in a 64 PEs system with the macro execution mode.

0 •

.b o

Speedup

16

Chaotic(macro)

Chaotic(micro)

8 Jacobi(macro)

.i JO

4 Jacobi(micro)

2

II I"' "_

PE
2 4 8 16 32

Figure 6: Speedup with Problem Size: 16 x 16.

ScMability Factors

NumberP_obl_mSi_._bh_oti_Ch_oti_J_bi J_ob_
of PEs (Macro) (Micro).....(Macro) (Micro)
8PE 8x8 1 1 1 1

16 PEs 16 x 16 0.416 0.409 0.383 0.372

32PEs 32 x 32 0.278 0.262 0.238 0.226

64 PEs 64 x 64 0[i53 0.132 0.121 0.114

TABLE 3 : Scalability Factors in the VTD System with Ditferents Algorithms.

t

t_ f

Scalability Factor

1

015 ,_,.n

0.2S" - Chaot!c(macro)
Chaotic(micro)

- - Jacobi(macro)

i I I Jacobi(micro) ._

1 2 4 8 Scale(S)

Figure 7: Scalability Factors in the VTD System.

Speedups of Various Problem Sizes

Number Problem Size Chaotic Chaotic Jacobi Jac0bi

of PEs (Macro) (Micro) (Macro)(Micro)
8BE 8 x 8 7.15 5.54 4.28 3.45

16 PEs 16 x 16 13.45 10.34 8.18 6.37

32 PEs 32 x 32 26.2620130 16.05 12.21

64 PEs 64 x 64 52.15 39.77 31.49 23.70
J

TABLE 4 • Robustness in Data-flow Architectures.

Robt ;ss

64

Chaotic(macro)

Chaotic(micro)

32 jacobi(macro)

Jacobi(micro)
16

8

PE 8 16 32 64

Problem Size 8x816x16 32x32 64x64

Figure8: Robustnesscurvesin Data-flowArchitectures.

6 Conclusions

In this paper, we have demonstrated how synchronous and asynchronous linear systems

solvers could be described in a high level data-flow language (SISAL) and implemented on

the Variable-grain Tagged-tokea Data-flow (VTD) multiprocessor system in both micro
and macro execution models. The conventional Jacobi method and chaotic relaxation

were chosen for their known inherent parallelism of execution. While the "conventional"

principles of the U-interpreter were used in the graph construction of the Jacobi method,

chaotic behavior could not be easily realized in this model of interpretation. We there-

fore proposed a new scheme for the implementation of chaotic relaxation: the "Matching

Store with Locks" scheme proceeds with the execution to detect any change on the input

arcs, instead of allowing execution upon arrival of a matched token set. The new de-

fined performance measurements Growth Factor, Scalability Factor, and Robustness have

als_l characterized the system performance more precisely, besides the traditional speedup

l_efformance measurement in multiprocessor systems.

References

[1] Advanced Topics in Data-flow Computing. Edited by J.L. Gaudiot and L. Bic,

Prentice Hall, 1990.

[2] Arvind and R.A. Iannucci. Two fundamental issues in multiprocessors: the data-

flow solution. Technical Report LCS/TM-241, Laboratory for Computer Science,

MIT,September 1983.

[3] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and Application,

pages:199-222, 1969.

[4] J-L. Gaudiot and M.D. Ercegovac. Performance evaluation of a simulated data-

flow computer with low resolution actors. In Journal of Parallel and Distributed

Computing, November 1985.

[5] J-L. Gaudiot, C.M. Lin, and M. Hosseiniyar. Solving partial differential equations in

a data-driven multiprocessor environment. In Proceedings of the 15th International

Symposium on Computer Architecture, Honolulu,Hawaii, May 1988.

[6] J-L. Gandiot and Y.H. Wei. Token relabeling in a tagged token data-flow architecture.

IEEE Transactions on Corriputers, September, 1989.

[7] J. Gustafson. Reevaluating Amdahl's law. Communication of the ACM, May 1988.

[8] J.R. McGraw and S.K. Skedzielewski. SISAL: Streams and iterations in a single

assignment language, language reference manual, version 1.2. Technical Report M-

146, Lawrence Livermore National Laboratory, March 1985.

[9] R. S. Varga. Matriz iterative analysis. Prentice Hall, 1962.

i Ill II

,,,#

