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Abstract 

In the current analysis, an attempt is made to develop a nonlinear size-dependent fluid-

structure interaction model for the chaotic motion of nanofluid-conveying nanotubes 

subject to an external excitation. The material properties of the nanotube are assumed to 

be viscoelastic. Size effects in both solid and fluid nanoscale parts are taken into 

consideration. In addition, the effects of both centripetal and Coriolis accelerations are 

incorporated in the model. Using Hamilton’s principle, the nonlocal strain gradient elasticity 

and the Beskok-Karniadaki theory, the nonlinear size-dependent governing equation is 

derived. For developing a precise solution approach, Galerkin’s procedure and a direct-

time-integration method are eventually used. Different parameters of the nanosystem are 

taken into consideration to study the size-dependent chaotic motion of the viscoelastic 

nanotube conveying nanofluid subject to a harmonic excitation.  

Keywords: Chaos; Fluid-conveying nanotubes; Internal energy loss; Nonlocal strain gradient 

model 
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1. Introduction 

Fluid-solid interactions (FSI) at small-scale levels such as microscales and nanoscales, 

between micro/nanoscale structures (Ashoori Movassagh and Mahmoodi, 2013; Wang et 

al., 2011; Zhang et al., 2013) and micro/nanofluids, are important since these interactions 

can affect the mechanical behaviour of the whole small-scale system. For instance, it has 

been shown that flowing nanofluid through a carbon nanotube (CNT) can alter its vibration 

response as well as its instability behaviour (Yoon et al., 2005). Therefore, for better 

manufacturing different small-scale systems containing flowing fluid such as nanofluidics 

devices, FSI interactions should be investigated and understood comprehensively.     

A considerable number of articles have been reported on the mechanical response of 

macro-scale pipes conveying fluid (Bahaadini and Saidi, 2018; Deng et al., 2017; Ghayesh et 

al., 2011; Liu et al., 2018; Sinir and Demir, 2015); the studies on nano-scale pipes conveying 

fluid are limited. Since multiscale models are computationally costly and experimental 

techniques need much effort and skill, some theoretical models have been also developed. 

Among various theoretical models, the couple stress one (Ma et al., 2008; Şimşek and 

Reddy, 2013) has been mostly employed for microscale structures conveying fluid and the 

nonlocal theory (Aydogdu, 2014; Sudak, 2003) has been used for fluid-conveying nanoscale 

systems. In this paper, a novel nonlinear model which is capable of covering different sizes 

is applied via nonlocal and strain gradient models (Li and Hu, 2015).  

Using the nonlocal theory, Wang (Wang, 2009) examined the scale-dependent 

mechanics of  tubular ultrasmall beams containing flowing fluid; they particularly studied 
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the vibration and stability characteristics of the ultrasmall system. Lee and Chang (Lee and 

Chang, 2009) employed the nonlocal theory to scrutinise the effect of an elastic medium on 

the vibration response of fluid-conveying single-walled CNTs. In addition, the time-

dependent deformation of fluid-conveying curved CNTs was studied in Ref. (Xia and Wang, 

2010). Size effects on the oscillation of non-uniform nanotubes containing fluid flow 

surrounded by a viscoelastic medium were also examined by Rafiei et al. (Rafiei et al., 2012). 

Furthermore, Zhen and Fang (Zhen and Fang, 2015) developed a scale-dependent nonlocal 

model for large amplitude vibration of fluid-conveying CNTs subject to an external 

excitation; the proposed model contained only one scale parameter. Rashidi et al. (Rashidi 

et al., 2012) presented a theoretical model for the vibration of nanofluid-conveying 

nanotubes; in their model, small-scale effects on the flowing nanofluid were taken into 

consideration. Li et al. (Li et al., 2016) obtained the linear critical velocities of fluid-

conveying ultrasmall tubes employing the nonlocal strain gradient theory as a two-

parameter scale-dependent model. Moreover, the influences of surface properties (Zhang 

and Meguid, 2016) and a magnetic field (Arani et al., 2016; Arani et al., 2015; Hosseini and 

Sadeghi-Goughari, 2016) on the mechanical response of nanotubes conveying fluid have 

been examined in the literature. More recently, the mechanical behaviours of fluid-

conveying functionally graded nanotubes (Filiz and Aydogdu, 2015), boron nitride 

nanotubes (Arani et al., 2013a; Arani et al., 2013b), nanocomposite shells (Arani et al., 2017) 

and piezoelectric nanotubes (Saadatnia and Esmailzadeh, 2017) have been investigated via 

use of scale-dependent theoretical models.  
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The valuable studies in the above paragraph are not comprehensive in terms of size-

dependent theoretical modelling. The majority of them include only one scale parameter, 

leading to a model limited to a small size range. In addition, few nonlinear models, in which 

only one eigenfunction was considered in solution procedures, were developed. In the 

present analysis, a size-dependent nonlinear fluid-structure interaction model is proposed 

for the bifurcation response of viscoelastic nanotubes containing nanofluid flow; this is for 

the first time. To better describe the size influence on the solid part of the nanosystem (the 

nanotube), a nonlocal strain gradient theory is applied. Moreover, to take into account the 

size influence on the nanofluid flow, a speed correction factor is used. Based on Hamilton’s 

principle, the nonlinear motion equation of the nanofluid-conveying nanotube is extracted. 

Applying Galerkin’s procedure and a direct-time-integration solver, the motion equation is 

numerically solved. Various nanosystem parameters are taken into account in order to 

examine the chaotic oscillations of nanofluid-conveying nanotubes with viscoelastic 

material properties.  

 

2. Size-dependent modelling 

Figure 1 illustrates a nanofluid-conveying nanoscale tube with clamped-clamped 

boundary conditions. The average diameter and length of the nanoscale tube are d and L, 

respectively. In addition, let us denote the modulus of elasticity, viscosity constant and 

Poisson's ratio of the solid part by E,   and v, respectively. The longitudinal and transverse 

time-dependent displacements of the mid-plane are also indicated by u and w, respectively. 
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The longitudinal component of the strain tensor can be expressed as (Ghayesh et al., 2016; 

Reddy and Pang, 2008)   

   0 0 ,
xx xx xx

z                                   (1) 

where  0

xx  and  0

xx  are given by  

           

2 2
0 0

2

1
,  .

2
xx xx

u w w

x x x
                  (2) 

In view of the Kelvin-Voigt scheme (Ghayesh, 2018a, b) together with the strain gradient 

and nonlocal models, the constitutive relation of the solid part can be written as (Lim et al., 

2015) 

   l

l

     

   

        
     

           

2( ) 2 ( ) 0 0 2 2 0 0

0

0 0 0 0
2 2

.

t t

xx xx xx xx sg xx xx

xx xx xx xx

sg

e a E z z

z z
t t t t

                 (3) 

Here  ( )t

xx  and 2  represent the total longitudinal stress and the Laplacian operator, 

respectively (Farajpour et al., 2018a). The strain gradient and nonlocal parameters are, 

respectively, denoted by lsg and e0a in which e0 and a represent the nonlocal calibration 

coefficient and the internal characteristic length, respectively. Let us denote the cross-

sectional area and inertia moment of the nanotube by A and I, respectively. For convenience 

purposes, the stress resultants in the solid part of the fluid-conveying nanosystem are 

defined as 

   ( ) ( ), , .t t

xx xx xx xx

A

N M z dA                                  (4) 
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Using Eqs. (1)-(4), the stress resultants of the solid part are formulated as 

   l 
                                  

2 2 2
2 2 2 2

0

1
1 ,

2
xx xx sg

u w u w w
N e a N A E

x x t x x t x
             (5) 

   l 
  

          

2 3
2 2 2 2

0 2 2
1 .

xx xx sg

w w
M e a M I E

x t x
                                                    (6) 

The effects of zeroth-order and first-order stress nonlocalities are taken into consideration 

in the nonlocal strain gradient elasticity. Moreover, both viscoelastic and elastic stresses are 

simultaneously incorporated in the present model. In view of the nonlocal and strain 

gradient viscoelastic models, one can write  (Lim et al., 2015) 

  
  
  

     
           
     
     

( ) ( ) ( )

( ) ( )

(1) (1) (1)

( ) ( )

(0) (0) (0)

( ) ( )

.

t t t

ij ij el ij vis

ij ij el ij vis

ij ij el ij vis

                   (7) 

  
  
  

     
           
     
     

( ) (0) (1)

( ) (0) (1)

( ) ( ) ( )

( ) (0) (1)

( ) ( ) ( )

,

t

ij ij ij

t

ij el ij el ij el

t

ij vis ij vis ij vis

                  (8) 

in which  (0)

ij  and  (1)

ij  indicate the zeroth-order and first-order nonlocal stresses, 

respectively;   stands for the gradient operator (Farajpour et al., 2018b); “el” and “vis” are 

used to indicate the elastic and viscoelastic stress segments, respectively. Using elastic and 

viscoelastic stresses, the variations of the elastic energy (Uel) and the work caused by the 

viscous stress (Wvis) are as  

    
 

   
 

  ( ) (1)

( ) ( )

0 0

,

L
L

t

el xx el xx xx el xx

A A

U dAdx dA                  (9) 
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    
 

    
 

  ( ) (1)

( ) ( )

0 0

.

L
L

t

vis xx vis xx xx vis xx

A A

W dAdx dA               (10) 

Incorporating the effects of the slip boundary condition on the internal wall of the nanotube 

(Rashidi et al., 2012), the variation of the total motion energy of the nanofluid-conveying 

nanosystem ( e
T ) can be written as 

      

    

                    

                   

 

 

0 0

0 0

,

L L

e nt nf nf nf nf

L L

nt nf nf nf

u u u u u u
T m dx m U U U dx

t t x t x t

w w w w w w
m dx m U U dx

t t x t x t

                         (11) 

where U and m are respectively the nanofluid speed and the mass per unit length; “nt” and 

“nf” denote the nanotube and the nanofluid, respectively; nf  is a speed correction factor 

defined by (Beskok and Karniadakis, 1999) 

  ,
s

ave

nf ns

ave

U

U
                   (12) 

where 
ns

ave
U  and 

s

ave
U  indicate the average nanofluid velocities for the no-slip and slip 

boundary conditions, respectively. According to the Beskok-Karniadaki theory, the speed 

correction factor is determined as (Beskok and Karniadakis, 1999) 

   


  
       

24
1 1 ,

1

v

nf

v

Kn
Kn

Kn
                                         (13) 

where  v  is the tangential momentum accommodation constant. This constant is usually 

set to 0.7 for numerical calculations. Kn represents the Knudsen number defined as 


 ,

p

e

Kn
L

                                (14) 
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in which p  and e
L  are respectively the average molecular free path and an external 

characteristics dimension. In Eq. (13),   is a constant coefficient given by (Rashidi et al., 

2012) 

 


    
102

tan ,
B

A Kn                                                                                                        (15) 

where 

 


 0

64
lim .

15Kn
                  (16) 

In Eq. (15), A and B are constant coefficients; the former is set to 4 while the latter is equal 

to 0.4. It should be noticed that at nanoscale levels, no-slip boundary conditions are no 

longer valid. The speed correction factor takes into account the influences of slip boundary 

conditions on the mechanical behaviour of nanoscale tubes. This factor depends on the 

Knudsen number (Kn) as seen from Eq. (13). It has been shown that ignoring this factor 

(Kn=0) leads to overestimated results for the critical velocity corresponding to divergence 

(Rashidi et al., 2012). The work ( F
W ) caused by the external transverse excitation is as 

(Ghayesh et al., 2013a; Ghayesh et al., 2013b) 

    1
0
cos d ,

L

F
W F t w x                     (17) 

where F1 and   indicate the forcing amplitude and frequency, respectively. Now, 

employing Hamilton’s principle given by  (Ghayesh, 2018c; Ghayesh et al., 2014) 

     
2

1

d 0,
t

e F el vis
t

T W U W t                  (18) 

one can obtain the nonlinear size-dependent governing equations as 
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       
   

    

2 2 2
2 2

2 2
2 ,xx

nt nf nf nf nf nf

N u u u
m m m U m U

x t t x x
              (19) 

 

   



 

         
  

  
   

2

12

2 2 2
2 2

2 2

cos

2 .

xx

xx

nt nf nf nf nf nf

M w
F t N

x x x

w w w
m m m U m U

t t x x

             (20) 

Neglecting inertia terms in the governing equation along the axial direction (i.e. Eq. (19)), 

and then using Eqs. (5) and (6) together with Eqs. (19) and (20), we have    

 

 

l

l 

             
    

           

2

2 2

2 2
2 2

1

2

0,

sg

sg

w u
EA EA

x x x

w w u
A A

x x t x t x

               (21) 

   

   

   

l l 



 



      
                
                       
   

        


   


4 4 5 5
2 2 2 2

4 4 4 4

2 2

0 1

2 2 2
2 2

2 2

2
2 2

0 2

cos

2

2

sg sg

xx xx

nt nf nf nf nf nf

nt nf nf nf

w w w w
EI EI I I

x x t x t x

w w
N e a N F t

x x x x

w w w
m m m U m U

t t x x

w
e a m m m U

t
 

  
    

2 2
2 2

2
.

nf nf

w w
m U

t x x

            (22) 

Integrating Eq. (21) with respect to x leads to the following equation  

 

 

l

l 

           
   

          

2

2 2

2 2
2 2

1

2

,

sg

sg

w u
EA EA

x x

w w u
A A C

x t x t x

               (23) 

in which C is an integration constant which is determined from the boundary conditions of 

the axial displacement as 
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   l l
                 


2 2

2 2 2 2

0

1 1 .
2

L

sg sg

EA w A w w
C dx

L x L x t x
             (24) 

Substituting the above equation (i.e. Eq. (24)) into Eq. (22), the final nonlinear size-

dependent governing equation is obtained as 

   

   

 

l l

l

l

 

 



      
                

                         
  

         


  






4 4 5 5
2 2 2 2

4 4 4 4

22 2
2 2 2 2

02 2

0

2
2 2

1

0

2

2

1
2

1 cos

2

sg sg

L

sg

L

sg

nt nf nf

w w w w
EI EI I I

x x t x t x

A w w E w
e a dx

L x x x

w w
dx F t

t x x

w
m m m

t
 

     



 

  
    

   
         

2 2
2 2

2

2 2 2
22 2 2

0 2 2
2 .

nf nf nf

nt nf nf nf nf nf

w w
U m U

t x x

w w w
e a m m m U m U

t t x x

            (25) 

For convenience during the numerical solution, let us consider the following dimensionless 

parameters and operators   

 

l
  




  

    


    

  


   



2

0

2
2

2 2

44

1
1 2

,   ,   ,   ,   ,   

,   ,   ,   ,

,   ,   ,   . 

sg

nl sg

nf nf

nt nf nt nf

nt nf

nt nf

e ax w AL
w A

L d L L I

m mt EI
m U UL

L m m m m EI

L m mF LL EI
s F

d EId m m EL EI

            (26) 

In view of the above definitions, Eq. (25) can be rewritten as    
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To obtain the nonlinear dynamic characteristics of nanofluid-conveying viscoelastic 

nanotubes subject to external excitation loading, the nonlinear size-dependent (Gholipour 

et al., 2015) governing equation (i.e. Eq. (27)) is discretised. For this purpose, the non-

dimensional transverse deflection (w ) is expressed as 

   


 
1

( , ) ( ) ( ),
zN

i i

i

w q                  (28) 

where i
q  and i  are used to indicate the general coordinates and eigenfunctions of the 

nanosystem, respectively. Substituting Eq. (28) into Eq. (27) and applying Galerkin’s 

procedure, the following set of equations is derived 
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            (29) 

To numerically solve the above set of equations, a direct-time-integration method is 

eventually applied. It should be noted that to precisely describe the nonlinear scale-

dependent dynamic characteristics of nanofluid-conveying viscoelastic nanotubes subject 

to external excitation loading, eight eigenfunctions are taken into consideration. 

 

3. Numerical results 

The scale-dependent chaotic motion of viscoelastic nanotubes conveying nanofluid is 

investigated in the following. The elastic and geometric properties of the viscoelastic 

nanotube are, respectively, set to (E,v, nt )=(610 MPa,0.3,1024 kg/m3) and (h,Ro,L)=(66 

nm,290.5 nm, 20do) where nt  and Ro denote the mass density and outer radius of the 

viscoelastic nanotube, respectively. The dimensionless parameters of the nanosystem are 

  0.12
nl ,   0.04

sg , 4006.941, 0.5915M , 20s  and   0.0005 . In addition, for 
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all cases, it is assumed that ω /ω1=1.0 in which ω1 stands for the fundamental natural 

frequency. For this viscoelastic nanotube, the critical flow speed corresponding to buckling 

is Ucr=4.13118.  

Shown in Fig. 2 is the bifurcation response of the Poincaré section of the nanotube 

conveying nanofluid flow for a speed before the critical value (U =3.95<Ucr); the transverse 

deflection is plotted at x=0.45. The natural frequency is determined as ω1= 4.5486. From 

Fig. 2, it is observed that the scale-dependent motion of the nanofluid-conveying 

viscoelastic nanotube is period-1 for this speed. It implies that in the sub-critical regime, 

when the nanofluid speed is sufficiently smaller than the critical speed, the period-1 motion 

governs the viscoelastic nanosystem. To further illustrate the period-1 motion of the 

nanofluid-conveying nanotube (described in Fig. 2), the dynamical characteristics of this 

scale-dependent motion at F1=30.0 is plotted in Fig. 3. Three different types of diagrams are 

shown, namely the Fourier transforms (FFTs), phase-plane portraits and time histories.   

Figure 4 depicts the scale-dependent bifurcation response of the Poincaré section of 

the nanotube conveying nanofluid for a speed close to the critical region in the sub-critical 

regime (U =4.10<Ucr); the transverse motion is shown at x=0.45. The nanosystem natural 

frequency is determined as ω1=1.8275. As can be seen from the figure, for this nanofluid 

speed, various scale-dependent motion types including period-1, period-3 and chaos are 

observed. At the beginning, the period-1 motion is found for the nanosystem. However, as 

the force amplitude increases, the viscoelastic nanosystem experiences various motion 

types. Another important observation is that there are five different chaotic regions in the 
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nonlinear dynamic response of the viscoelastic nanotube conveying nanofluid flow near the 

critical region in the sub-critical regime. In addition, Figs. 5 and 6 give more details of the 

dynamical characteristics of the period-3 motion at F1=5.0 and the chaotic motion at 

F1=28.1, respectively.    

In Fig. 7, the bifurcation response of the Poincaré section of the nanotube conveying 

nanofluid is plotted for a speed a little higher than the critical value (U=4.16>Ucr). The 

transverse motion is plotted at x=0.45. The natural frequency of the nanofluid-conveying 

nanotube is ω1= 2.4584. Again, various scale-dependent motions including period-i (i=1,2,3) 

and chaos are seen for the nanosystem. Comparing Figs. 4 and 7, it is found that a slight 

change in the nanofluid speed near the critical value can significantly alter the nonlinear 

scale-dependent motion of the viscoelastic nanotube; particularly, a slight rise in the 

nanofluid speed shifts the regions in which chaotic motions occur. For more details, the 

dynamical characteristics of the chaotic motion at F1=5.4, the periodic motion at F1=25.0 

and the chaotic motion at F1=40.5 are shown in Figs. 8, 9 and 10, respectively.  

Figure 11 illustrates the bifurcation response of the Poincaré section of the nanotube 

conveying nanofluid for a nanofluid speed higher than the critical value (U=4.30>Ucr). The 

transverse defection of the viscoelastic nanotube is obtained at x=0.45. A value of ω1= 

5.8445 is determined for the natural frequency of the nanosystem. It is found that at the 

beginning, the nonlinear dynamic response of the nanosystem is period-1. As the force 

amplitude further increases, other motion types including period-3 and chaos are observed 

in the nonlinear dynamic response of the nanotube conveying nanofluid flow. However, 
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compared to Fig. 7 (U = 4.16), less motion complexity is observed in Fig. 11 (U=4.30) for the 

viscoelastic nanosystem. This implies that in the super-critical regime, a slight rise in the 

nanofluid speed noticeably reduces the motion complexity of the viscoelastic nanotube. 

The motion dynamical characteristics at F1=3.4 for the system of Fig. 11 are demonstrated 

in Fig. 12. Furthermore, the motion dynamical characteristics at F1=40.0 for the system of 

Fig. 11 are illustrated in Fig. 13. It is concluded that at F1=3.4, the nanosystem motion is of 

chaotic type while at F1=40.0, it exhibits a period-3 motion.  

From full diagrams, it can be concluded that depending on the fluid velocity, chaos in 

the motion of the viscoelastic nanotube conveying nanofluid flow can be reduced or 

increased. The chance of occurring chaos in the fluid-conveying nanotube rapidly grows by 

increasing the fluid velocity in the subcritical regime near the critical point. Nonetheless, in 

the supercritical regime, increasing the fluid velocity reduces chaos in the nanosystem. This 

is due to the fact that increasing the fluid velocity in the subcritical regime (or decreasing 

the velocity in the supercritical one), the fluid-conveying nanosystem approaches the 

critical point corresponding to buckling.  

Figure 14 is plotted to study the small-scale effects on the subcritical and supercritical 

fundamental natural frequencies of the nanotube conveying nanofluid flow. The nonlocal 

parameter has a decreasing influence on the total stiffness of nanostructures while the 

strain gradient parameter has an increasing influence. This implies that the critical velocity 

corresponding to buckling decreases with increasing e0a while increasing lsg increases the 

critical fluid velocity, as seen in the figure. 
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4. Conclusions 

A nonlinear scale-dependent fluid-structure interaction model was developed for the 

chaotic motion of viscoelastic nanotubes conveying nanofluid flow. The viscoelastic 

nanosystem was subject to an external excitation in the transverse direction. Size effects 

were incorporated in both solid and fluid parts of the viscoelastic nanosystem. Moreover, 

the effects of both centripetal and Coriolis accelerations were taken into account. 

Employing the Beskok-Karniadaki theory, nonlocal strain gradient elasticity and Hamilton’s 

principle, the nonlinear scale-dependent equation was derived. A precise solution approach 

on the basis of Galerkin’s procedure and a direct-time-integration method was presented 

for the nonlinear scale-dependent equation of the nanotube conveying nanofluid.  

It was concluded that the viscoelastic nanotube conveying nanofluid flow exhibits the 

period-1 motion when the nanofluid speed is adequately smaller than the critical speed. 

However, when the nanofluid speed approaches the critical value in the sub-critical regime, 

various scale-dependent motions including period-i (i=1,3) and chaos are seen in the 

nonlinear dynamic behaviour. Moreover, it was found that near the critical speed, a slight 

change in the value of the nanofluid speed can noticeably alter the nonlinear motion of the 

viscoelastic nanosystem. It was also observed that when the nanofluid speed is higher than 

the critical value, the motion type of the nanotube conveying nanofluid flow is period-1 for 

small force amplitudes. Nonetheless, other motion types including period-3 and chaos are 

observed with increasing force amplitude. Furthermore, depending on system parameters, 

in the super-critical regime, the complexity of the motion of the viscoelastic nanotube 

conveying nanofluid flow can be reduced by increasing nanofluid speed. 
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Appendix A: a convergence study 

A convergence test is performed in order to indicate that eight eigenfunctions are 

enough to obtain a precise solution. Figure 15 shows the bifurcation diagrams of Poincaré 

sections of the nanotube conveying nanofluid flow for different degrees of freedom. The 

dimensionless fluid velocity is set to U=4.10. It is found that two and four degrees of 

freedom are not enough to obtain an accurate solution while eight degrees of freedom lead 

to a converged solution. 

Appendix B: a verification study 

For verification purposes, a linear nanoscale tube conveying nanofluid flow is taken into 

consideration. Using Eq. (25) and neglecting geometrical nonlinearity, one obtains 
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w w w
e a m m m U m U
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              (B1) 

in which  
d

E . It should be noticed that the effects of the speed correction factor are 

also ignored in the above equation. For the transverse displacement, one can write  

  ,
ikx i t

w We                     (B2) 

where k and   are the wave number and frequency of the nanotube, respectively. 

Substituting Eq. (B2) into Eq. (B1) yields the following relation   
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              (B3) 

The above equation for the linear frequency of nanotubes conveying nanofluid flow is the 

same as that obtained in the literature (Li and Hu, 2016).  
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Figure 1. A nanoscale tube conveying fluid flow subject to external loading. 
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Figure 2: Bifurcation response of the Poincaré section of the nanotube conveying nanofluid for U = 3.95: (a) 

the transverse motion at x=0.45; (b, c) q1 and q2. 
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Figure 3: Dynamical characteristics of the system at F1=30.0 for the periodic motion of Fig. 2: (a) the time 

history of q1 (b) the time history of q2 (c) the phase-plane diagram of q1 (d) the phase-plane diagram of q2 (e) 

FFTs of q1 (f) FFTs of q2. 
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Figure 4: Bifurcation response of the Poincaré section of the nanotube conveying nanofluid for U=4.10 (a) the 

transverse motion at x=0.45; (b, c) q1 and q2. 
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Figure 5: Dynamical characteristics of the system at F1=5.0 for the period-3 motion of Fig. 4: (a) the time history 

of q1 (b) the time history of q2 (c) the phase-plane diagram of q1 (d) the phase-plane diagram of q2 (e) Poincaré 

sections of q1 (f) q2 motions. 
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(a) 
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Figure 6: Dynamical characteristics of the system at F1=28.1 for the chaotic motion of Fig. 4: (a) the time history 

of q1 (b) the time history of q2 (c) the phase-plane diagram of q1 (d) the phase-plane diagram of q2. 
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Figure 7: Bifurcation response of the Poincaré section of the nanotube conveying nanofluid for U = 4.16: (a) 

the transverse motion at x=0.45; (b, c) q1 and q2. 
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Figure 8: Dynamical characteristics of the system at F1=5.4 for the chaotic motion of Fig. 7: (a) the time history 

of q1 (b) the time history of q2. 
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Figure 9: Dynamical characteristics of the system at F1=25.0 for the periodic motion of Fig. 7: (a) the time 

history of q1 (b) the time history of q2 (c) the phase-plane diagram of q1 (d) the phase-plane diagram of q2. 
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Figure 10: Dynamical characteristics of the system at F1=40.5 for the chaotic motion of Fig. 7: (a) the time 

history of q1 (b) the time history of q2. 
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Figure 11: Bifurcation response of the Poincaré section of the nanotube conveying nanofluid for U = 4.30: (a) 

the transverse motion at x=0.45; (b, c) q1 and q2.  
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Figure 12: Dynamical characteristics of the system at F1=3.4 for the chaotic motion of Fig. 11: (a) the time 

history of q1 (b) the time history of q2 (c) FFTs of q1 (d) FFTs of q2 (e) Poincaré sections of q1 (f) q2 motions. 
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Figure 13: Dynamical characteristics of the system at F1=40.0 for the period-3 motion of Fig. 11: (a) the time 

history of q1 (b) the time history of q2. 

 

 
Figure 14: Small-scale effects on the subcritical and supercritical fundamental natural frequencies of the 

nanotube conveying nanofluid flow. 
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Figure 15: Bifurcation diagrams of Poincaré sections of the nanotube conveying nanofluid flow for U = 4.10: 

(a) 2-degree-of-freedom model; (b) 4-degree-of-freedom model; (c) 6-degree-of-freedom model; (d) 8-

degree-of-freedom model. 


