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Summary

Trolleys have wheels which can choose the direction of their rolling.
Studying the motion of a wheel like this, we can often find periodic mo-
tions (“shimmy”) or even chaotic ones. It has also been experienced that
the chaotic motions sometimes disappear quite unexpectedly. A strongly
simplified model of these systems is analysed in the paper by means of the
methods of bifurcation theory. Analytical and numerical results are shown
to characterize the system, including simulation results. Similar behaviour
can be found in more complicated systems as well, like the trailers or the
nose-gears of aeroplanes. The development of the so-called transient chaotic
motion is explained in these systems.

1. Introduction

The special literature has investigated the problem of shimmying wheels
for several years and a great number of mechanical models have been devel-
oped. The central problem of these mechanical models is the mathematical
description of the constraining force at the contact point of the wheel and
the ground. The application of the so-called creep-force provides the most
realistic models and it is widely used in the literature (see [1,2] or also [3] for
more details).

However, the present research concentrates on the topological descrip-
tion of possible stable and unstable chaotic behaviour in the motion of a
wheel with towed axis. The understanding of this behaviour needs the sim-
plest model (see e.g. p. 22 in [3]) which enables us to describe the system in
low-dimensional phase spaces by the geometry of the trajectories. This has



Figure 1: Mechanical model

resulted in the application of the classical Coulomb friction force in the model
which, of course, have a number of well-known disadvantages and makes the
model quantitatively unrealistic with respect to some of the parameters (like
the speed of towing) [3].

2. Model

The model in question, possibly the simplest one, is presented in Fig. 1.
The system has n = 3 degrees of freedom if the geometrical constraints
are considered only. The corresponding three general coordinates are q (pin
position), ϑ (bar angle) and ϕ (wheel rotation angle).

The parameters are as follows. Body 1 is assumed to be massless, i.e.
M1 ≈ 0 while M2 and M3 denote the masses of the homogeneous bar (body 2)
and disc (body 3, i.e. the wheel). There are two geometrical parameters l and
R which are the length of the bar and the radius of the wheel, respectively.
Body 1 is supported by linear springs having an overall stiffness k. The
velocity v is constant which means that the geometrical constraints are non-
stationary in the system.

The cases of rolling and slipping wheel are considered separately by
means of the Coulomb friction as explained in the Introduction. When the
friction force is great enough to provide rolling then a kinematical constraint



is considered in the form
|vP | = 0

where P denotes the ideal contact point of the wheel and the ground. This
means that the velocity of this contact point is zero and it results two first
order scalar differential equations with respect to the general coordinates. If
the Appell-Gibbs equations are applied for this anholonomic rheonom system
in the same way as it is shown in [4], the following 4-dimensional system of
ordinary differential equations yields:
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where ν stands for the angular velocity of the bar.

Since the angle ϕ is a cyclic coordinate, it does not appear on the right-
hand-side of the first three equations (1a-c). Thus, the dynamics of rolling
can be described uniquely in the three dimensional phase-space of the coor-
dinates ϑ, ν and q.

The dynamics of the slipping wheel can be given by Lagrange’s equations
of the second kind since there are no kinematical constraints in this case.
The simplest presentation of these equations is the following system of three
second order ordinary differential equations:
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In these equations µs denotes the constant coefficient of Coulomb friction
when the wheel is slipping and g stands for the gravitational acceleration.
The velocity coordinates of the point P of the wheel which is in contact with



the ground should be substituted into the right-hand-side of Equ.(2) in the
following form:
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and this completes the differential equations related to the dynamics of the
slipping wheel. This system can be represented in the 6-dimensional phase-
space of the coordinates ϑ, ϑ̇, q, q̇, ϕ and ϕ̇.

There is still one question left: when will the dynamics of rolling change
to the dynamics of slipping, and when will this happen in the other way
round? If QP = col( QPx QPy QPz ) denotes the constraining force at the
point P of the wheel then the condition of rolling is expressed by the following
inequality:
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where µr(≥ µs) is the coefficient of Coulomb friction in case of rolling. The
friction force ( QPx QPy 0 ) can, of course, be expressed by the coordinates
ϑ, ν = ϑ̇ and q if equations (1a-c) are also used. Without going into the com-
plicated details of the transformation of condition (3) into the 3-dimensional
phase-space of the dynamics of rolling, we present the following inequality
which is, in practice, a good approximation of (3):
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This is a condition for ν = ϑ̇ only, which can be given analytically by means
of the positive zero ν2 of the polynomial on the left hand side in (4). Note
that the condition of rolling does depend on ϑ and q as well, but their effect
is negligible as compared to that of the angular velocity of the bar.

The condition of switching to the dynamics of rolling from the dynamics
of slipping is much simpler. Because of the strong dissipation due to Coulomb
friction, the speed of the contact point P of the wheel decreases during
slipping and becomes zero. If the condition of rolling is also satisfied at this
instant, the wheel rolls again. This can easily be followed when Equ.(2) is
solved numerically.



3. Dynamics of Rolling

The equations (1a-c) can clearly be analysed with the help of the Hopf
Bifurcation Theorem [5]. It is the method presented in [4] which has been
followed during the analysis of Equ.(1). The main steps are as follows.

The stability of the trivial solution of (1a-c) can be investigated by
means of the variational system
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The Routh-Hurwitz criterion applied to the coefficient matrix results in the
following condition of the exponential asymptotical stability of zero solution:
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At the critical value of the parameter M3 the characteristic roots λ1,2,3 are
given by the formulae
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As a consequence, Hopf bifurcation can be expected. The behaviour of the
system can analytically be approximated for those parameters close to the
critical ones in (5). This approximation is based on the truncated power
series of the non-linear terms in (1) at the critical parameters which results
the system
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related to λ1,2 = ±iω is tangent to the attractive centre manifold at the
origin. Using also the third eigenvector s3 = col( l
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we get the so-called Poincaré normal form
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Only the coefficients
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As shown in [5], the positiveness of δ proves the existence of a subcritical
Hopf bifurcation, that is an unstable periodic motion exists around the stable
stationary motion when M3 < M3cr. If we take the value of ω from (6) then
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which is used to estimate the amplitude r of the unstable periodic motion in
the plane (x1, x2) (see details in [5]):
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Figure 2: Phase-space structure in case of rolling

By means of the transformation matrix ( s1 s2 s3 ), the unstable periodic
solution can be transformed back to the phase-space (ϑ, ν, q). Since the
last row of the transformation matrix is just ( 1 0 0 ), the simplest result is
obtained for the amplitude Aq with respect to the coordinate q which has
the actual form
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The formulae are similar but more complicated for Aϑ and Aν , and
the unstable limit cycle can be placed into the phase-space onto the centre
manifold.

These analytical results and two trajectories are presented in Fig. 2. The
trajectories are obtained from the numerical solutions of Equ.(1) by means
of fourth order Runge-Kutta method on an IBM PC. The parameters are
fixed as follows:

M2 = 1.5 [kg], M3 = 3.75 [kg],



l = 0.2 [m], R = 0.1 [m],

k = 75 [N/m], v = 1 [m/s] (7)

while

M3cr = 4 [kg], ω = 10 [1/s], Aϑ = 0.10 [rad ] ≈ 6o, Aq ≈ 20 [mm] .

Fig. 2 shows the 3-dimensional phase-space of the dynamics of rolling. The
plane presented in this space is a good approximation of the centre manifold,
and the cylinder, determined by means of the third eigenvector s3 , estimates
the domain of attraction of the stable zero solution. The unstable limit cycle
is located at the cross section of the plane and the cylinder.

All the solutions approach the attractive plane quickly. The trajectory
which starts inside the cylinder (with initial conditions ϑ0 = −0.24 [rad], ϑ̇0 =
ν0 = 0.4 [rad/s], q0 = 0 ) tends to the zero solution then, but the one starting
outside the cylinder (ϑ0 = −0.24 [rad], ν0 = 0, q0 = 0 ) seems to tend to
infinity (or at least to some singularities at ϑ = ±π/2).

These simulation results show a good agreement with the analytical ap-
proximations. However, it is obvious that the model of rolling cannot describe
a physically realistic situation since the vibrations should not increase till in-
finity. Equ.(1), of course, is valid only where condition (4) is satisfied. In
other cases, Equ.(2) describes the system. The next section presents results
involving both dynamics.

4. Chaos

Condition (4) of rolling appears in the 3-dimensional phase-space of
rolling as two planes parallel to the plane (ϑ, q). These planes are designated
by their shaded corners in Fig. 3.

Thus, the wheel rolls till the trajectory runs between these ”walls“.
With the parameters (7) and µr = 0.12, the unstable limit cycle is situated
within the walls. As a consequence, those trajectories, starting outside the
cylinder, will cross the walls as they spiral outwards. When they reach the
wall, the wheel starts slipping and the trajectories have to be calculated
as the solutions of Equ.(2) with initial conditions given by continuity. The
coefficient µs = 0.06 is used in (2).

Note that the trajectories related to the dynamics of slipping run in the
6-dimensional phase-space (ϑ, ϑ̇, q, q̇, ϕ, ϕ̇). In Fig. 3, they are represented
with dotted lines by projecting them onto the 3-dimensional space (ϑ, ν, q)



Figure 3: Chaotic behaviour

used in case of rolling. The trajectories do not stay for too long in the
6-dimensional phase-space of the dynamics of slipping since the Coulomb
friction causes a strong dissipation. As explained at the end of Section 2,
the wheel may roll again when the trajectory crosses the 3-dimensional space
(ϑ, ν, q) right between the walls. If the trajectory arrives back in this phase-
space of the dynamics of rolling outside the cylinder, it will, sooner or later,
leave this space again. There are several switches between the dynamics of
rolling and slipping and, as it often happens in systems with similar struc-
tures, this may refer to the presence of a chaotic attractor. The numerical
simulation does present this chaotic attractor as shown in Fig. 3.

Figure 4(a) shows a one-dimensional discrete mapping. This presents
the qualitative structure of an approximative Poincaré mapping when the
trajectories in the 3-dimensional phase-space are cut by the half-plane (ϑ+, q).
Since the centre manifold is very attractive, the trajectories run quite close
to it, and two subsequent intersection points (of subscript j and j + 1) can
fairly well be represented by their ϑ coordinates only. At the unstable limit
cycle, there is an unstable fix point ϑU(≈ 6o) in the map, while the trivial



(a) (b)

Figure 4: Discrete maps with chaos (a) and transient chaos (b)

solution ϑS = 0 is stable, of course. Outside the limit cycle, there is a sharp
discontinuity at ϑ⋆ in the map which refers to the change from rolling to
slipping. The narrow part of the map on the right side of this discontinuity
describes the switch back to the dynamics of rolling. The structure of the
map in the upper right corner of Fig. 4(a) shows a typical case when chaotic
iteration occurs (see the Lorenz map, p. 98 in [6]). This approximate discrete
mapping based on numerical results does not provide a mathematical proof
of the existence of chaos here, but makes it very likely and geometrically well
interpreted.

This result is quite reasonable since the chaotic dance of the wheels of
trolleys can often be experienced. But this chaos is not always attractive, i.e.
the strange solution may be unstable for some parameters. This is explained
in the last section.

5. Transient Chaos

If µr = 0.115 is used when solving the equations (1) and (2) with con-
dition (4), and the trajectory starts outside the cylinder (i.e. outside the
domain of attractivity of the trivial solution), the trajectory behaves chaoti-
cally only for a limited time. After some switches between the two dynamics
to an fro, the trajectory once arrives back to the phase-space of rolling within
the cylinder, and after that it gradually approaches the zero solution. Since
the chaotic behaviour is temporary, this effect is often referred as transient
chaos or preturbulence (see p. 315 in [6]).



Figure 5: Transient chaos

This situation is shown in Fig. 5. Instead of the 3-dimensional phase-
space of rolling, the plane of ϑ and ν = ϑ̇ is used, and instead of the additional
3 dimensions required for the dynamics of slipping, the absolute value of the
velocity of the wheel contact point P is given. When the wheel rolls, the
trajectory runs in the horizontal plane within the planes of dashed corners.
If the trajectory leaves this plane at the wall, the wheel is slipping. After some
time, the trajectory suddenly gets ”inside“ the direct domain of attractivity
of the origin and it tends to the zero solution right in the middle of the
plane (ϑ, ν), as represented by the dark disc in Fig. 5 covered by trajectories
spiralling inwards.

The same process can be followed in Fig. 4(b) which shows the corre-
sponding one-dimensional discrete map as explained in Section 4 . Now, the
narrow part of the map on the right side of ϑ⋆ enables the chaotic-like itera-
tion in the upper right corner to escape and to get inside ϑU as indicated by
the arrow in the figure.

It is not easy to explain this situation either topologically in the phase-
space or physically in the real space. The analysis of the structure of this



transient chaos shows that this is an unstable strange solution. Thus, there
is only one attractor in this case, and it is the zero solution. Moreover, the
domain of attractivity of the trivial solution is not only the cylinder, but
”almost“ the whole phase space. But the presence of this unstable chaos
produces a fractal structure in this space which makes it difficult for the
solutions to reach the stable origin. They do reach it sooner or later, but
after a ”stochastically“ varying time of chaotic-like behaviour only.

This transient chaos is also experienced in practice when the chaotic
dance of the trolley-wheel suddenly disappears and the motion becomes reg-
ular and stationary.

Acknowledgements

This research was supported by the Hungarian Scientific Research Foun-
dation OTKA 5-207.

References

[1] True, H.: Bifurcation problems in railway vehicle dynamics. Proc. Bifur-
cation: Analysis, Algorithms, Applications (Dortmund, 1986), ISNM 79, pp.
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