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Chaotic particle transport in time-dependent Ra3 leigh-Benard convection

T. H. Solomon and J. P. Gollub
Department ofPhysics, Haverford College, Haverford, Pennsylvania 19041

and Department of Physics, University ofPennsylvania, Philadelphia, Pennsylvania 19104
(Received 9 June 1988)

The transport of passive impurities in nearly two-dimensional, time-periodic Rayleigh-Benard
convection is studied experimentally and numerically. The transport may be described as a one-

dimensional diffusive process with a local effective diffusion constant D (x) that is found to depend

linearly on the local amplitude of the roll oscillation. The transport is independent of the molecular

diffusion coefficient and is enhanced by 1-3 orders of magnitude over that for steady convective

flows. The local amplitude of oscillation shows strong spatial variations, causing D*(x) to be highly

nonuniform. Computer simulations of a simplified model show that the basic mechanism of trans-

port is chaotic advection in the vicinity of oscillating roll boundaries. Numerical estimates of D
are found to agree semiquantitatively with the experimental results. Chaotic advection is shown to
provide a well-defined transition from the slow, diffusion-limited transport of time-independent cel-
lular flows to the rapid transport of turbulent flows.

I. INTRODUCTION

Much can be learned from comprehensive studies of
the transport of passive impurities in hydrodynamic
flows. An understanding of transport phenomena is of
practical importance in diverse fields of science and en-
gineering including oceanography, astrophysics, bio-
physics, and chemical engineering. At a fundamental lev-
el, it is of interest to elucidate the various mechanisms
that lead to transport enhancement as a fluid is driven
farther from the motionless state. In addition, transport
experiments can provide specific information about the
dynamics of a flow that cannot be obtained easily from
the velocity field alone. The reason for this surprising
fact is that transport is affected by the trajectories of indi-
vidual fluid elements, which can be quite complex' even
in laminar flows. These trajectories are often sensitive to
small amplitude instabilities. For this reason, transport
experiments can be helpful in the studies of hydrodynam-
ic instabilities.

Rayleigh-Benard (RB) convection is a good model sys-
tem for a comprehensive investigation of transport, since
convective flows can be created ranging from time-
independent, spatially periodic flows on the one hand, to
turbulent Qows on the other. As a result, the transport
rates vary over a wide range. At one extreme, when the
Quid is motionless, the transport is due entirely to molec-
ular diffusion. At the other extreme (turbulent flows),
transport is due to advection by the flow and is often de-
scribed phenomenologically as enhanced (or "eddy")
diffusion. We are not aware of studies of passive trans-
port in turbulent RB convection; however, theoretical
and experimental studies of similar systems have been re-
ported. '

There are two important laminar flow regimes between
these extremes: a time-independent and a time-periodic
regime. In the time-independent regime, large-scale
transport is limited by molecular diffusion between adja-

cent convection rolls. We presented an experimental
study of this phenomenon in a previous article, and it
has also been discussed theoretically by various au-
thors. In the time-periodic regime, the transport is
dominated by advection of tracer particles across roll
boundaries. In this regime, particle trajectories may be
chaotic (showing sensitivity to initial conditions). The
differential equations for the velocity of a fluid element in
a two-dimensional, time-dependent flow are formally
those of a Hamiltonian system with two degrees of free-
dom. As a result, the particle trajectories display features
of Hamiltonian chaos in real space. Chaotic structures
such as heteroclinic tangles and invariant tori have been
observed numerically and experimentally. ' "However,
the quantitative effects of chaotic advection on transport
have not been studied extensively.

In this paper, our previous experimental work on
transport in steady RB convection is extended to the
time-periodic, advection-dominated regime. Qualitative
observations of the transport are presented, along with
quantitative measurements of the transport rates as a
function of the strength of the time dependence. A
simplified numerical model is discussed, ' in which trans-
port between convection rolls is caused by chaotic advec-
tion due to lateral oscillations of the roll boundaries. The
model gives a semiquantitative account of the experimen-
tal results. Finally, we give a general discussion of trans-
port that should be applicable to a wider range of cellular
flows.

II. EXPERIMENTAL METHODS

The convection cell used in these experiments is a rec-
tangular box with horizontal dimensions 15 cm (along the
x direction) by 1.5 cm (y direction) and a depth of 0.75
cm (z direction). The working fluid is water at an average
temperature of 36 C, where the Prandtl number is 4.7.
Convection patterns are established with rolls oriented
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parallel to the short side of the convection cell. Laser
Doppler velocimetry (LDV) is used to characterize the
flow and optical-absorption techniques are used to ana-
lyze the spreading of an injected impurity in the flow.
Details of the experimental configuration can be found in
the previous article. Two impurities with different
molecular diffusion coefficients are used: methylene blue,
a molecular dye with diffusion coefficient D, =5.7 X 10
cm /s; and a particulate impurity (vinyl toluene t
butylstyrene latex spheres) with diffusion coefficient
D2=1.74X10 cm /s.

The characterization of a velocity field with LDV tech-
niques is straightforward for the time-independent case
but more problematic here due to the local nature of an
LDV probe. To obtain spatial information about the flow
it is necessary to collect velocity time series at numerous
locations along the convection cell. The average value
(time average) of the vertical velocity v, at each location
is then used to describe the spatial structure of the flow,
and the standard deviation (cr„)(averaged over a wave-

length of the flow) is used as a measure of the local ampli-
tude of time dependence.

After injection of an impurity, one-dimensional con-
centration profiles c, (x, t) are measured at the midheight
of the cell by optical absorption. (The subscript is used to
denote one-dimensional concentrations, integrated over y
and z, with units of dye quantity per unit length. ) An
enhanced local-transport coefficient is defined using
Fick's law for a coarse-grained (averaged over a convec-
tion roll) concentration profile c(x, t):

F(x, t)=D*(x, t)
ac(x, t)
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FIG. 1. LDV characterization of a time-periodic flow at
R/R, =26. 1. (a) Profile of the average vertical velocity v, (x).
(b) Standard deviation cr, (x) of the local velocity. The smooth
curve is the spatially averaged standard deviation (o „(x)).

where F(x, t) is the flux of dye past the point x at time t
and Bc/Bx is determined by measuring the slope of
c, (x, t) between the centers of adjacent convection rolls.
The enhanced diffusion coefficient D*(x,t) is determined
by dividing F(x, t) by Bc/Bx. This local method has been
tested on transport in time-independent convection. "

III. EXPERIMENTAL RESULTS

Transport experiments were performed at Rayleigh
numbers R ranging from R /R, = 19 (just above the onset
of time dependence in this cell) through R/R, =32.
(Here, R, is the Rayleigh number corresponding to the
onset of convection. ) For each flow studied, LDV char-
acterizations were obtained. An example of such a char-
acterization is shown in Fig. 1, where the average value
of the vertical component of velocity U, and its standard
deviation o., are plotted as a function of horizontal posi-
tion x. Examination of this figure reveals a significant
spontaneous, spatial nonuniformity in the flow. The
wavelength of the convection pattern A, [distance between
peaks in Fig. 1(a)] is somewhat larger near one end of the
cell than elsewhere. Variations in wavelength up to 20%
were noted in these experiments. The strength of the
time dependence (o, ) [the smooth curve in Fig. 1(b)] is
also nonuniform and is apparently correlated with the
variation in A.. Similar nonuniformities in the velocity
field were observed in many (but not all) runs throughout

the range of Rayleigh numbers studied. It should be not-
ed that both the magnitude of the spatial variations and
the location of the maximum in (o„)change from run to
run, implying that the effects are not due to irregularities
in the construction or temperature control of the convec-
tion cell. Once a particular pattern is established, howev-
er, it is generally stable for at least a few days.

The oscillatory instabilty is accompanied by lateral os-
cillations of the roll boundaries. Figure 2 shows a time
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FIG. 2. Time series of the horizontal velocity near a roll
boundary; R/R, =26.1. The oscillation between positive and
negative velocities indicates lateral movement of the roll bound-
ary.
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series of horizontal velocity measurements taken in the
vicinity of a roll boundary. The fact that the horizontal
velocity oscillates between positive and negative values

implies that the roll boundaries oscillate laterally, as ex-
pected of the "even" oscillatory instability. ' ' The na-
ture of the time dependence, however, is somewhat more
complicated than this simple picture would suggest (see
Sec. V).

Visual observation of the motion of an impurity inject-
ed through a small tube in the bottom corner of the cell
clearly indicates the presence of advective transport be-
tween convection rolls. A photograph of this
phenomenon is shown in Fig. 3. Small blobs of the im-

purity are pulled periodically from the corner of one roll
into the next. Lines of impurity are stretched and folded
repeatedly in the vicinity of the corners. Stretching and
folding of this nature are common characteristics of
horseshoe mappings in which a rectangle in phase space
is stretched and folded onto itself. The presence of such
mappings in a real space Aow has been shown to be an in-
dicator of chaotic advection. Within the rolls, impurity
concentrations are found to homogenize very rapidly
(within a few minutes). This time is short compared to
the typical time of approximately one-half day for the ex-
periments.

Transport coeScients are measured for each run as a
function of position and time. We find D* to be indepen-
dent of time, within the resolution of the data. [For each
run, D'(x, t) is averaged over time and will be referred to
as D'(x) from here on.] The spatial dependence of D',
however, can be dramatic. A plot of D~(x) correspond-
ing to the velocity profile of Fig. 1 is shown in Fig. 4.
The spatial nonuniformities in ( o „(x)) lead to variations
in D'(x) by a factor of 10 from place to place. Varia-
tions in D'(x) are found whenever (o„(x))is nonuni-
form, although the location of the maximum transport
varies from run to run.
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FIG. 4. Effective diffusion coefficient D (x) for an experi-
ment (same as in Fig. 1) at R/R, =26. 1 with methylene blue

dye. Note the dramatic spatial nonuniformity in D*(x).
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There is a monotonic relationship between D* and
(o„)which we determined experimentally. Because of
the strong spatial variations often found in D'(x) and
(e, (x) ), it is not necessary to vary R to determine this
relationship. We expect D' to be proportional to A, (see
next section), so the data is rescaled to correspond to the
critical wavelength A,, for convection at R -R, . Plots of
D'(A, , /A, ) versus (cr„)are shown in Fig. 5 for experi-
ments conducted with both latex sphere and methylene
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FIG. 3. Photograph of chaotic impurity transport
R/R, =32; latex sphere impurity. The photograph was taken
less than 15 min after the start of the injection. The impurity is
dark and has been injected from the left. {The first roll on the
left is completely dark in this photo. ) Note the pinching of
blobs of impurity from the top-right corner of the first roll into
the second. Also, note the folding of streaks of impurity across
the bottom of the separatrix between the second and third rolls.
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FIG. 5. Local transport enhancement as a function of the
amplitude of local time dependence at R /R, =26. 1. The
effective diffusion coefficient D has been scaled to the critical
wavelength A,, for convection near onset. Each figure contains
data from a single run. (a) Methylene blue dye. (b) Latex
sphere impurity.
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blue impurities. An approximately linear relationship
can be seen in both of these plots. Furthermore, the
enhancement does not depend appreciably on the molec-
ular diffusion coefficient of the impurity.

IV. NUMERICAL MODEL

In this section we describe a simplified model of trans-
port in time-periodic RB convection that was briefly
presented in a preliminary report. ' A Lagrangian ap-
proach is taken in which the trajectories of individual im-

purity particles are obtained by integrating the equations
describing the velocity field. The system is Hamiltonian:
x(x,z, t) and z(x, z, t) are derived from a stream function

. ,vir
I

4 =—sin ( k [x +B sin(cut ) ] ] W(z),
k

where A is the maximum vertical velocity in the flow, k
is the wave number 2mll. , and W(z) is a function that
satisfies the rigid boundary conditions at the top and bot-
tom surfaces. ' This stream function describes single-
mode, two-dimensional convection with rigid boundary
conditions. The term B sin&et represents the lateral oscil-
lation of the roll pattern with amplitude B and frequency
m that is caused by the even oscillatory instability. '

Trajectories of particles near the separatrices are
chaotic in this model. ' Figure 6 shows the evolution of a
line of tracer particles initially located along a separatrix.
Qualitatively, the stretching and folding behavior ob-
served in this figure is similar to that seen in the experi-
ment (Fig. 3). More importantly, a quantitative compar-
ison can be made between the model and the experimen-
tal transport data. Calculations of D* as a function of B
have been performed for the model. The parameters A

and co are set to match the conditions of the experiment.
One convection roll is filled uniformly with 10000 parti-
cles, and the trajectories of these particles are computed
individually. After one complete period of oscillation,
the number of particles that have been exchanged be-
tween adjacent rolls is counted to determine the net flux
of impurity between rolls. An example of one of these
simulations is shown in Fig. 7. Note the pinching of the
impurity near the corner of the roll, similar to the pinch-
ing seen in Fig. 3. The calculated flux of impurity and
the difference in concentration between the rolls is insert-
ed into Fick's law to determine D*. Values of D* are
determined numerically for amplitudes of oscillation B
such that 0&2B/A, &0.1.

Knowledge of the dependence of D* on A, and on the
harmonic content of the velocity field is important for
comparisons between the experimental and numerical
data. A simple rescaling of the x variables in the velocity
equations shows that the number of particles exchanged
during one period of oscillation will not depend explicitly
on A, . (This assertion was also tested numerically. ) This
information, along with Fick's law, predicts D*-A, .
The effect of the third harmonic in the velocity profile on
the particle-exchange rate was also investigated. Simula-
tions were performed with varying ratios of fundamental
and third harmonic, holding the maximum vertical veloc-
ity constant. We found that the magnitude of the har-

(c)

(d)

i I

4, ,NINWAt PAllb

FIG. 6. Simulation of the evolution of a line of tracer parti-
cles, located initially along the separatrix between two convec-
tion rolls. The horizontal lines represent the upper and lower
boundaries of the cell and the vertical marks denote roll
boundaries. Parameters for this simulation: Amplitude
2B/A, =0.12, frequency co=0.49 s ', velocity A =0.18 cm/s.
(a) Time t = T/2 (where T =2m. /co) is the period of oscillation),
(b) t =T, (c) t =3T/2, and(d) t =2T.

monic content has a negligible effect on the rate of parti-
cle exchange.

For a proper comparison with the experimental data,
the strength of the oscillation should be expressed in
terms of (o„),not B. The conversion between B and
(o„)is accomplished by expanding the i equation for

0. 5

-0. 5-0. 5 0. 0
x (cm)

0. 5 1.0

FIG. 7. Numerical determination of D* by calculation of
particle locations after one complete period of oscillation:
A =0.14 cm/s, co=0.49 s ', 2B/A, =0.02. Note the pinching of
impurity near the roll corners (similar to that observed in Fig.
3).
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FIG. 8. Quantitative comparison between simulation (solid
line) and experiment (open circles) for the effective transport
coefficient. The experimental data is the same data shown in
Fig. 5(a).

V. DISCUSSION

A. Comparison between model and experiment

small B (corrected to include a term for the third har-
monic), determining o, (x,z) at z =0 and averaging over
one complete wavelength of the roll pattern.

We find numerically that D' depends linearly on 8
(and (cr, )) for small values of 2Bik, (50.1). A plot of
D' versus (o„)(for A, =A,, ) is shown in Fig. 8. The re-
sults of the numerical model are presented along with the
experimental data from Fig. 5(a). For both the experi-
mental and numerical data, D' scales linearly with ( cr„).
The slopes of the experimental and numerical data differ
by about a factor of 2.

graph images (observed from the side) have been record-
ed to obtain qualitative information about the mecha-
nisms causing the time dependence. In these images, hot
and cold blobs are observed circulating within the rolls
and, in addition, thermal boundaries between rolls are ob-
served to oscillate laterally. Examples of these images are
shown in Fig. 9. Figure 9(a) is an enhanced shadowgraph
image in which three roll boundaries can be seen quite
clearly. The presence of circulating warm and cold ele-
ments of quid is etnphasized in Fig. 9(b), which is an ab-
solute value subtraction of two shadowgraph images
separated in time by one-half oscillation period. The
thermal boundary layers between rolls are not completely
visible in Fig. 9(b), due to the subtraction process. La-
teral motion of the roll boundaries can be seen quite
clearly when the shadowgraph images are observed as a
movie.

Evidently, the motion can be regarded as a superposi-
tion of lateral and BE1 oscillations. It is the lateral
motion that is primarly responsible for the enhanced
transport. Without detailed information about the con-
tribution of a pure BE1 oscillation to the velocity field,
precise quantitative estimates of the effects of the BE1
part of 0., on the transport cannot be obtained numeri-
cally. Qualitatively, this part is not expected to contrib-
ute substantially to the transport. However, since it does
influence o.„,it may be responsible for much of the
discrepancy between the experimental and numerical re-
sults in Fig. 8. Ideally, it would be desirable to make in-
dependent measurements of the relative strengths of the
BE1 and even oscillations. This would enable us to iso-
late the effects of the even oscillations on the transport.

Other factors also affect the comparison between the
numerical and experimental data, but are believed to be
relatively minor. Quasiperiodic time dependence is ob-
served occasionally in U, (t). However, this fact should

Various factors must be considered in the comparison
of the experimental and numerical results. First, the na-
ture of the time dependence is somewhat more complicat-
ed than is implied by the model. It has been shown
theoretically' that the first instability to time dependence
in RB convection in fluids with Prandtl numbers 2. 5 is
not the "even" (transverse) oscillatory instability, but is,
instead, a "hot-blob" instability, in which fluid elements
hotter and colder than the surrounding fluid circulate
within the convection rolls. There are two types of hot-
blob instabilities, a one-blob instability (BE1) and a two-
blob instability (B02). The motions of the warm ele-
ments in adjacent rolls show reflection symmetry about
the roll boundary. There is no lateral oscillation of the
roll boundaries associated with a pure BE1 or BO2 oscil-
lation, nor any contribution to advective transport be-
tween convection rolls.

We find that the roll boundaries do, in fact, oscillate la-
terally in the present experiments and that there is advec-
tive transport between rolls. However, the time depen-
dence clearly is not due entirely to lateral oscillations,
since plots of o „(x)would then have local minima at the
roll boundaries rather than maxima (Fig. 1). Shadow-

FIG. 9. (a) Shadowgraph image and (b) absolute value sub-
traction of two images separated time by one-half the period of
oscillation at R /R, =32. (The convection cell is observed from
the side and appears shallower than it actually is.) The motions
of hot and cold fluid elements (dark spots in the image) can be
seen clearly (b).
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not cause significant error as the a, determined experi-
mentally is proportional to the time average of the ampli-
tude of the time dependence, and D' depends linearly on
this amplitude (according to the model). Another poten-
tial source of error is instrumental noise in the LDV sys-
tem. We corrected for this approximately by subtracting
the square of the instrumental noise from the square of
the total standard deviation to obtain 0, However, it is
likely that we have underestimated the noise (and hence
may have overestimated a„).In addition, the experimen-
tal determination of D'(x) using Fick's law has a pre-
cision of about 10%%uo. Finally, there are uncertainties of
10% in the estimation of the maximum vertical velocity
of the flow and the frequency of the oscillation.

Though the numerical and experimental results shown
in Fig. 8 differ quantitatively, they agree sufficiently well
to support the basic mechanism assumed for the trans-
port. Both the numerical and experimental transport
coefficients scale linearly with the oscillation amplitude.
(This linearity was previously predicted by Eckhardt. '

)

In addition, the absolute magnitudes of the enhancement
differ only by a factor of 2, a discrepancy that is reason-
able given the presence of the BE1 oscillation that does
not contribute significantly to the transport but does con-
tribute to (0„).

B. Spatial inhomogeneities and anomalous difFusion

The striking spatial nonuniformities in (0„(x))and
D'(x) observed in these experiments are indications of a
symmetry-breaking instability similar to those observed
in other experiments with RB convection. ' ' The
strength of time dependence (0„)is observed to grow
with wavelength X, implying that there is a causal link
between the nonuniformities in these two quantities. It is
natural to propose that variations in (a„)are caused by
variations in A., since convection is more unstable to the
oscillatory instability at higher wavelengths. ' However,
nonuniformities in ( a, ) can also be observed when A, is
held constant by external forcing. '

Anomalous diffusion (D' explicitly dependent on time)
has been predicted' for time-periodic RB convection. In
an ideal two-dimensional flow, "classical barriers" to
transport (invariant tori and cantori) would create
nonuniformities in impurity concentrations within con-
vection rolls. The diffusion of impurities across these
barriers would impede large-scale transport and result in
a time dependent D*. These effects are expected to be
significant only when concentrations within the rolls are
nonuniform. In the present experiments, concentrations
within the rolls are homogenized rapidly, eliminating the
effects of anomalous diffusion. Various factors contribute
to this homogenization. As shown in the previous pa-
per, molecular diffusion and advection due to a weak,
three-dimensional, boundary-induced flow combine to
mix impurities within rolls. This effect results in uniform
concentrations within steady rolls for methylene blue dye
but not for the more slowly diffusing particulate impuri-
ty. In time-periodic convection, on the other hand, even
the particulate impurity is mixed rapidly within the rolls.
This is an indication of mixing without classical barriers.

In a recent paper, Feingold et al. ' show theoretically
that certain classes of three-dimensional, time-periodic
flows are susceptible to a process they term "singularity-
induced diffusion" in which mixing is ergodic (there are
no forbidden regions), even if the time dependence is
infinitesimal. This process could possibly explain the rap-
id homogenization observed in these experiments.

C. General discussion of transport phenomena
in cellular flows

10
Vg

g) 10

O

10

/

ill /

10-9
D2

10 10 10 2 102
v cm s

106

FIG. 10. Diagram of transport in convective flows, covering
all the relevant regimes: I, molecular diffusion; II, diffusion-
limited transport; III, chaotic advection (near the onset of time
dependence); IV, chaotic but nonturbulent velocity field (not
studied); V, turbulent transport (estimated, based on similar
studies in other systems). D& and D& are the molecular diffusion
coefficients of methylene blue and latex sphere impurities, re-
spectively.

Here we propose a general scheme for summarizing
enhanced transport in cellular flows such as RB convec-
tion and Taylor-Couette flow. In Fig. 10 the enhanced
diffusion coefficient D' is plotted schematically as a func-
tion of a characteristic velocity of v of the flow for two
different impurities. (We plot D' versus v instead of us-
ing the dimensionless quantity R because transport is a
kinematic phenomenon, dependent directly on the veloci-
ty of the fluid. ) Various regimes are identified. Regime I
denotes the zero-velocity regime, where D* is equal to
the molecular diffusion coefficient D of the impurity. (D,
and D2 refer to the molecular diffusion coefficients of
methylene blue and 0.369 pm latex spheres, respectively. )

Regime II denotes the diffusion-limited regime studied
experimentally in the previous paper and theoretically
by various authors. In this regime, D* is proportional
to U' and maintains its dependence on D. The time-
periodic regime (III) of this paper is accompanied by an
additional dramatic enhancement of several orders of
magnitude (depending on the impurity used) due to
chaotic advection. The dependence of the transport on D
is eliminated in this regime. As a result, chaotic advec-
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tion provides a well-defined transition between the slow
transport of the diffusion-limited regimes and the rapid
transport of the turbulent regime.

For the turbulent regime (V), we rely on theoretical
and experimental studies in other systems for our esti-
mates of D*. Here, D' is expected to be proportional to
the rms velocity of the flow. The form of the curve in the
region (IV) between chaotic advection and turbulent ad-
vection is speculative, since this regime has not been in-
vestigated in detail. This could be the goal of a future ex-
periment. We suggest that the main features of Fig. 10

would apply qualitatively to Couette flow and other cellu-
lar flows as well ~
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