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We investigate the chaotic phase synchronization in a system of coupled bursting neurons in small-

world networks. A transition to mutual phase synchronization takes place on the bursting time

scale of coupled oscillators, while on the spiking time scale, they behave asynchronously. It is

shown that phase synchronization is largely facilitated by a large fraction of shortcuts, but saturates

when it exceeds a critical value. We also study the external chaotic phase synchronization of

bursting oscillators in the small-world network by a periodic driving signal applied to a single

neuron. It is demonstrated that there exists an optimal small-world topology, resulting in the largest

peak value of frequency locking interval in the parameter plane, where bursting synchronization is

maintained, even with the external driving. The width of this interval increases with the driving

amplitude, but decrease rapidly with the network size. We infer that the externally applied driving

parameters outside the frequency locking region can effectively suppress pathologically

synchronized rhythms of bursting neurons in the brain.VC 2011 American Institute of Physics.

[doi:10.1063/1.3565027]

Recently, one class of neural networks which has been
intensively studied is the small-world network. The
small-world property turns out to be widespread prop-
erty in the biological systems—often with important dy-
namical consequences. Models of neural systems with
small-world coupling display enhanced signal-propaga-
tion speed, computational power, and synchronizability.
On the other hand, chaotic phase synchronization (CPS)
is a widely investigated phenomenon in a variety of physi-
cal and biological systems. Mutual phase synchronization
in these systems is thought to play a substantial role in in-
formation processing. In this paper we investigate the
effect of CPS of bursting neurons modeled by a network
of coupled two-dimensional maps exhibiting the small-
world property. We also analyze the external CPS of the
bursting behavior in the studied network with a periodic
driving signal applied to one arbitrarily taken neuron.

I. INTRODUCTION

Synchronization of coupled neurons in biological sys-

tems has been widely studied over the last few years. Classi-

cal phenomena such as mutual synchronization, entrainment

and chaotic synchronization are now observed in many bio-

logical experiments and numerical simulations.1–4 Theoreti-

cal and experimental studies suggest that synchronization in

neuronal systems causes many physiological mechanisms of

normal, as well as pathological, brain functions. For exam-

ple, synchronization plays a crucial role in the mechanisms

of information processing and information preface within

different brain areas.5 Synchronous oscillations in the senso-

rimotor cortex provide integration and coordination of the in-

formation needed for the motor control.6 It is also suggested

that synchronization is the origin of neurological diseases

such as epilepsy7 and Parkinson’s disease.8

There are two basic types of neuronal firing activities,

bursting and tonic spiking, observed in biological experiments.

Bursting occurs when neuronal activity alternates between a qui-

escent state and fast repetitive spiking. Different types of burst-

ing and their generation mechanisms have been extensively

studied.9–11 for its important role in enhancing the reliability of

communications between neurons by facilitating transmitter

release.12 So far, many mathematical models have been devel-

oped to emulate this spiking-bursting behavior of neurons, rang-

ing from differential equations13 to discrete-time maps.14,15

When coupled bursting neurons may exhibit different form of

synchronization: Burst synchronization,16,17 when only the

envelopes of the spikes become synchronized; and complete

synchronization18 which involves also the synchronization of in-

ternal spikes. Additionally, chaotic phase synchronization (CPS)

is another widely studied phenomenon in a verity of physical

and biological systems, which is defined as the coincidence of

the characteristic time scales of the interacting systems, bursting

in our case, while the amplitudes remain uncorrelated.19 During

the last decade CPS in small and large neural ensembles has

been studied in much detail. For a global-coupling20 or scale-

free network,21,22 the transition to mutual CPS in bursting neu-

rons occurs as the coupling strength is large enough.

As for a neural network, the interplay between the intrin-

sic dynamics of the constituent neurons and their complex

pattern of connectivity strongly affects the synchronizationa)Electronic mail: jiangwang@tju.edu.cn.
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dynamics of the resulting system. Recently, one class of neu-

ral networks which has been intensively studied is the small-

world network,23 which is characterized by a small value of

normalized path length (just like a random network) while

retaining a comparatively large value of clustering coefficient,

as it occurs for a regular network. The small-world property

turns out to be widespread in biological systems,24–32 often

with important dynamical consequences.33–38 In the human

functional network described by Chialvo et al.,25,26 the short-

est path length was found to be L¼ 6.0, with a cluster coeffi-

cient of C¼ 0.15, which would take the values L¼ 6.0 and

C¼ 0.00089 if the network were to be treated as a random

graph. Such network exhibits the so-called small-word prop-

erty. The observation of excitatory traveling waves in the

brain cortex implies that a salient feature of the circuitry is

the coexistence of shortcuts and regular local connection char-

acteristics of the small-world networks.27–29 Experimental

evidence also suggested that a small-world topology might be

a general organization principle of the human brain.30

Humphries et al. argue that the medial reticular formation of

the brainstem is characterized by a neural network exhibiting

small-world properties.31 Moreover, a recent study using

functional magnetic resonance imaging suggests that connec-

tivity graphs formed out of cortical and sub-cortical voxels

also show small-world properties.32 Models of neural systems

with small-world coupling display enhanced signal-propaga-

tion speed, computational power, and synchronizability.33,34

Small-world networks of coupled phase oscillators synchron-

ize almost as readily as in the mean-field model,35–37 which

may be relevant to the observed synchronization of widely

separated neurons in the visual cortex.38

In this paper we study the CPS of bursting neurons mod-

eled by a network of coupled two-dimensional maps15 exhib-

iting the small-world property. The map-based model

proposed by Rulkov et al.,14,15 despite its intrinsic simplicity

and low dimensionality, can reproduce characteristic behav-

iors of biological neurons,14,39,40 but at essentially lower com-

putational costs; thus allowing detailed analysis of the

dynamics of large ensembles.41–43 We investigate the parame-

ter regimes for which chaotic bursting synchronization occurs,

and the transition to phase synchronization with the variation

of coupling parameters. Moreover, a periodic external driving

is introduced to a single neuron of the network, thus acting as

a pacemaker trying to impose its rhythm on the whole ensem-

ble. The crucial role of the pacemaker on the dynamics of

complex networks has been studied extensively.44–47 It was

shown that the periodic pacemaker can largely enhance noise-

induced synchrony,44 stochastic resonance,45,46 and subthres-

hold signal detection in excitable networks.47 Here, it is used

as an electrical stimulation of the brain to suppress the unde-

sirable synchronous rhythms related to neurological diseases,

such as epilepsy and Parkinson’s disease.

The remainder of this paper is organized as follows: In

Sec. II, we present the map-based neuron model proposed by

Rulkov and the definition of the geometrical phase of the

bursting dynamics. Section III describes the simplified neural

network, whose connection architecture displays the small-

world property and investigates its transition to CPS with the

variation of coupling parameters. In Sec. IV, we analyze the

effect of external CPS of the bursting behavior in the studied

networks with a periodic driving signal applied to one arbi-

trarily taken neuron. Finally, a brief conclusion of this paper

is given in Sec. V.

II. NEURON DYNAMICS AND PHASE
SYNCHRONIZATION

The single map-based neuron model proposed by Rul-

kov15 can be written in the form

xnþ1 ¼ a
�

ð1þ x2nÞ þ yn; (1)

ynþ1 ¼ yn � rxn � b; (2)

where xn is the fast dynamical variable representing the

transmembrane voltage of the neuron and yn is the slow dy-

namical variable denoting the slow gating process. The first

variable can emulate the spiking-bursting activity of a neu-

ron, depending on the value of the parameter a, whereas the

latter variable undergoes a slow temporal evolution due to

the small value of the parameters r and b, which model the

action of an external dc bias current or the synaptic inputs to

the cell. If the parameter a is selected within the range [4.1

and 4.4], the fast variable xn of the map-based neuron dis-

plays a chaotic bursting behavior, as shown in Fig. 1(a).

In order to investigate the bursting synchronization of

coupled neurons, we introduce the definition of bursting

phase. For map-based neuron system (1,2), we denote nkf g
as the moment at which the kth burst starts, which is

recorded when the slow variable yn presenting nearly regular

saw-teeth oscillations gets a local maximum, as shown in

Fig. 1. Then the bursting phase of a neuron at the discrete

time n is defined as

uðnÞ ¼ 2pk þ 2pðn� nkÞ=ðnkþ1 � nkÞ;

ðnk < n < nkþ1; k ¼ 1; 2; :::;KÞ; (3)

where K is the total number of bursts during the observation

time and nkþ1 � nk is the inter-burst interval. Thus, the burst-

ing phase of the neuron un increases linearly between the

moments nk and nkþ1 at which bursts start and gains a 2p

growth over each inter-burst interval. Then the bursting

FIG. 1. (Color online) Time evolutions of the (a) fast and (b) slow variables

in the map-based neuron with a ¼ 4:1, b ¼ r¼ 0:001.

013127-2 Yu et al. Chaos 21, 013127 (2011)

Downloaded 04 Mar 2012 to 158.132.161.52. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



frequency of a neuron can be defined as an average speed of

the phase increase,

X ¼ lim
n!1

ðuðnÞ � uð0ÞÞ=n: (4)

For an ensemble of uncoupled neurons, they may burst at

different times in a noncoherent fashion. But when they are

coupled through synapses, though not exhibit a complete

synchronization in the spiking time scale, yet can present a

coherent behavior, since their bursting phase can synchron-

ize through the interaction provided by the coupling term. In

the case of only two coupled neurons, phase synchronization

between them would indicate that their phase is approxi-

mately equal, that is, uð1Þ � uð2Þ
�

�

�

� � 1. But for a large num-

ber of coupled neurons, other diagnostics of phase

synchronization need to be used like order parameter.

III. CHAOTIC PHASE SYNCHRONIZATION IN
SMALL-WORLD NETWORKS

A. Small-world networks

In this section, we consider a network of diffusively

coupled excitable neurons with small-world topology. The

temporal evolution of the ith unit is described by the follow-

ing set of discrete equations:

xi;nþ1 ¼ ai=ð1þ x2i;nÞ þ yi;n þ I
syn
i;n ðxi;nÞ; (5)

yi;nþ1 ¼ yi;n � rixi;n � bi; (6)

where xi;n and yi;n represent the fast and slow dynamical vari-

able of the ith neuron, respectively. I
syn
i;n ðxi;nÞ is the coupling

term, the form of which depends on the network topology

chosen to describe the neural network. The coupling between

the neurons may occur via two different types of synapses:

The electrical and chemical ones. But for a commonly inves-

tigated model of neural network, global-coupling network,

the coupling term usually considers the mean field produced

by all the neurons,20

I
syn
i;n ðxi;nÞ¼e=N

X

N

j¼1

xj;n; (7)

where N is the number of neurons in the ensemble, and e is

the strength of regular coupling between the given unit and

the set of its “neighbors.” This form of mean-field coupling

has been extensively used in the studies on synchronization of

bursting neurons.20,48 However, such a model exhibits regular

connection topology only, in which each neuron is connected

with all other neurons of the ensemble. Considering the non-

uniform connectivity of realistic neural networks in the small-

world network we use the coupling term of the form21,22,49

I
syn
i;n ðxi;nÞ¼e=ki

X

j2M

xj;n; (8)

where e is the strength of the coupling, and we assumed that

each unit i is connected with a set M comprising ki; other

units are randomly chosen along the network.

To construct a small-world network, we consider fol-

lowing the random rewiring procedure proposed by Watts

and Strogatz.23 Staring from a ringlike network with regular

connectivity, where each node is connected to its k, nearest

neighbors on each side of the ring, we rewire each edge at

random with the probability p. By increasing the probability

p the architecture of the network is tuned between two

extremes, regular (p¼ 0) and random (p¼ 1) networks.

Small-world networks are characterized by intermediate

value of the probability 0 < p < 1, as exemplified in Fig. 2.

These networks has a small value of characteristic path

length L, comparable with that of a random network, while

get a large value of clustering coefficient C, just like a regu-

lar network. The shortest path length is defined as the aver-

age number of edges in the shortest path between any two

vertices; and the clustering coefficient is the fraction of

edges between the neighbors with respect to maximum

possible.23

In the following we consider a small-world network

containing N¼ 1000 map-based neurons, which is obtained

from a regular ring (k ¼ 10) with different values of rewiring

probability p. In view of the diversity of neurons in the real

biological system, we set ai as random and uniformly distrib-

uted in [4.1 and 4.4] and ri ¼ bi ¼ 0:001, so that each

uncoupled neuron produces chaotic bursts.

B. Phase synchronization of bursting neurons

In what follows, we will systematically analyze the

effects of different coupling strength e and rewiring probabil-

ity p on the CPS of the small-world network. Here, we do

not expect synchronization in the spiking time scale, but we

seek a weaker form of synchronization in the bursting time

FIG. 2. (Color online) Example of considered small-world network topolo-

gies. Given 20 isolated nodes. (a) Regular ringlike network characterized by

p¼ 0. Each node is connected to its k ¼ 2 nearest neighbors on each side of

the ring. Realization of small-world topology via different random rewiring

probability: (b) p¼ 0.05 and (c) p¼ 0.2. (d) Realization of random network

via random rewiring probability p¼ 1.
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scale. One useful diagnostic of synchronization, the mean

field of the ensemble, is used which is defined as

Xn ¼ 1=N
XN

j¼1
xj;n: (9)

In Fig. 3, a transition to CPS is observed as the coupling

strength between the neurons increases. The typical time

evolutions of uncoupled and synchronized bursting neurons

are given in Fig. 4. When the neurons are uncoupled (e ¼ 0),

they burst at different times in a noncoherent fashion [Figs.

4(a) and 4(c)] and the mean field fluctuates randomly with a

small amplitude, Fig. 3(a). Alternatively, when the coupling

strength between the neurons is large enough (e ¼ 0:05), a
large amplitude mean field is formed [Fig. 3(b)] and its

quasi-periodic oscillations make neurons to develop a com-

mon rhythm [Figs. 4(b) and 4(d)]. Notably, only on the slow

time scale dynamics become coherent as the neurons are

bursting synchronously, and the fast time scale spiking

remains uncorrelated, but this does not substantially contrib-

ute to the mean-field dynamics, which is close to periodic.

Since a state of synchronized bursting in the small-world

network is characterized by a large-amplitude oscillation of

a macroscopic mean field, whereas small-amplitude noisy

fluctuations mark the absence of synchronization: A quanti-

tative measure of synchronization is the variance of mean-

field oscillation VarðXÞ. Figure 5 depicts the values of this

variance versus the coupling strength e for different values

of p. Obviously, the synchronization of bursts exhibits strong

dependence on the rewiring probability. In particular, the

network only gets weak synchronization in the absence of

shortcuts. But when a tiny fraction of the shortcuts are intro-

duced into the system, on the other hand, the dynamics of

the system changes dramatically, undergoing a transition to

CPS at a critical value ec (compare curves for p ¼ 0 and for

p ¼ 0:05 in Fig. 5). Above the transition threshold bursting

synchronization is achieved and the mean field of the whole

network shows large-amplitude oscillations, while below the

threshold the coupling is not strong enough to yield a

synchronized rhythm and the mean field exhibits irregular

oscillations of small amplitude due to the finite size of the

network (depending on 1=N with the number N of oscilla-

tors). Remarkably, the critical value ec decreases with the

increase of rewiring probability p. This is because in the

small-world networks there are more shortcuts which allow

FIG. 3. The mean field of (a) an un-

coupled (e ¼ 0) and (b) a strongly

coupled (e ¼ 0:05) small-world network

with size N ¼ 1000 and rewiring proba-

bility p ¼ 0:2.

FIG. 4. Time evolutions of the fast vari-

able for two selected neurons (a1 ¼ 4:1
and a2 ¼ 4:2) for the small-world net-

work with e ¼ 0 [(a) and (c)] and

e ¼ 0:05 [(b) and (d)].
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the neural activity to spread across the network more

quickly. In fact, for sparsely connected networks in general,

rhythms are more robust when the topology architecture of

the network is random as opposed to structured. Moreover,

as p grows, bursting synchronization, measured by VarðXÞ in
Fig. 5, saturates and does not show significant difference for

p > pc � 0:5. It is thus indicated that phase synchronization

is almost the same as that for p ¼ 1 and can be achieved

with relatively small amount of shortcuts p ¼ 0:5. Similar

results were obtained for a small-world network of coupled

phase oscillators.35

If the neuron phases are synchronized, so are their burst-

ing frequencies. Hence, we can compare the bursting fre-

quencies Xi of the neurons in the small-world network with

those frequencies at zero-coupling X0;i, which fluctuate ran-

domly among all sites. As shown in Fig. 6, when the cou-

pling strength e is low enough, there is no phase

synchronization and a linear dependence between Xi and

X0;i is observed. Increasing the coupling strength leads to the

appearance of synchronization plateaus which gradually

increase in size. When the coupling strength exceeds the

threshold ec, the frequencies of all coupled neurons are dis-

tributed around a mean value, implying that phase and fre-

quency synchronization of the bursts is achieved.

We can also use another diagnostic of CPS, which is the

asymptotic behavior of the order parameter20

r ¼ lim
n!1

XN

k¼1
eiuðk;nÞ

�

�

�

�

�

�: (10)

As shown in Fig. 7, for weakly coupled (e ¼ 0:03) ensemble

of neurons, the burst phases uðk; nÞ are spatially uncorrelated
such that the order parameter r fluctuate around a small value

(�0.6) and with much dispersion. Alternatively, in a com-

pletely phase synchronized state (e ¼ 0:07) the phases

uðk; nÞ are approximately equal, resulting that the order pa-

rameter r tends to unity. Thus, we can use this order parame-

ter to investigate the transition to phase synchronization of

bursts as the coupled strength is varied, as shown in Figs. 8

and 9. As one can see, the order parameter r indeed under-

goes a transition to coherence at the critical value ec, just like

FIG. 5. (Color online) The variance of the mean-field oscillation VarðXÞ
versus the coupling strength e for different values of rewiring probability

p in the small-world network with size N ¼ 1000.

FIG. 6. (Color online) Bursting frequencies for the small-world network

versus those at zero-coupling. (a) e ¼ 0:2, (b) e ¼ 0:32, (c) e ¼ 0:5, and
(d) e ¼ 0:7.

FIG. 7. (Color online) Time evolutions of the order parameter r for different

values of coupling strength e in the small-world network with size N ¼ 1000

and rewiring probability p ¼ 0:2.

FIG. 8. (Color online) The order parameter r as a function of the coupling

strength e for different values of rewiring probability p in the small-world

network with size N ¼ 1000.
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the behavior of mean-field variance. Its minimum is obtained

for zero-coupling and decreases as the network size turns

larger (depending on 1=N with the number N of oscillators).

Moreover, the critical value ec decreases as the rewiring

probability p is gradually increased (Fig. 8), whereas

increases with the enlargement of the network size (Fig. 9).

IV. EXTERNAL CHAOTIC PHASE SYNCHRONIZATION

By now, we have demonstrated that a small-word neural

network can get well-coordinated synchronization with a rel-

ative large value of coupling parameter. However, synchro-

nization is not always desirable. In fact, pathologically

strong synchronization processes may severely impair brain

function. For example, many neurological diseases, such as

epilepsy and Parkinson’s disease, are suggested to be caused

by a strong synchronized population of oscillatory neurons

in the cortical and thalamic areas.50,51 Hence, suppression of

such undesirable synchronized behavior of the neuron popu-

lation has become a challenging problem of neuroscience.

Here, we consider the possibility to control such rhythm (of-

ten pathological) by means of external periodic driving sig-

nal. Such technique has been extensively studied in deep

brain stimulation (DBS), where strong high-frequency

(>100 Hz) electrical pulse-train stimulation is permanently

administered to sub-cortical target areas to block the

synchronized neural activity.52,53 In this work, however, we

would like to investigate the parameter regions where exter-

nal CPS occurs, which is regarded as an inverse problem of

synchronization suppression.

We apply a periodic signal d sinðwnÞ to one arbitrarily

taken neuron i� so that its fast variable x has the following

equation:

xi�;nþ1 ¼ ai�=ð1þ x2i�;nÞ þ yi�;n þ I
syn
i�;nðxi�;nÞ þ d sinðwnÞ:

(11)

The equation for the slow variable of neuron i� and those for

other N � 1 neurons remains unchanged. The number of

bursting neurons in the studied network is N ¼ 100. In order

to investigate the effect of the external driving signal, we fix

the coupling strength value e ¼ 0:2, so that the unperturbed

ensemble (d ¼ 0) exhibits bursting synchronization and their

corresponding frequencies Xi lock approximately at a com-

mon value.

With the variation of the frequency x of the driving sig-

nal for different values of signal amplitude d, we observe the

effect of external frequency locking of bursts (i.e., external

CPS). As shown in Fig. 10, the frequency mismatch Xi � x

is plotted against x for all neurons which belong to the net-

work. Obviously, when the signal amplitude is too small

[Fig. 10(a)], the difference Xi � x vanishes for a particular

value of x. But for d � 0:1 a narrow frequency locking

region is obtained around x ¼ 0:012 [Fig. 10(b)], where

Xi � x ¼ 0 is satisfied. The width of this frequency locking

interval, Dx, increases with the signal amplitude in the direc-

tion of higher frequencies of the driving [Figs. 10(c) and

10(d)]. However, for d > e, a further increase in the ampli-

tude of driving force does not enlarge the frequency locking

interval significantly [Fig. 12(a)]. In fact, this widening trend

is limited by the intensity of the driving signal, since for

FIG. 9. (Color online) The order parameter r as a function of the coupling

strength e for different values of network size with rewiring probability

p ¼ 0:2.
FIG. 10. The frequency difference between bursting neurons and external

driving signal versus the external driving frequency for the small-world net-

work with coupling strength e ¼ 0:2 and a driving signal with amplitude

(a) d ¼ 0:05, (b) d ¼ 0:1, (c) d ¼ 0:15, and (d) d ¼ 0:2.

FIG. 11. (Color online) Time evolutions of difference between bursting

phase and driving phase for different values of driving frequency. The red

line corresponds to the driven neuron, and the black line corresponds to

other mutually synchronized neurons.
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relatively large amplitudes of driving signal outside the syn-

chronization region, i.e., the driving frequency is higher than

the upper end of the frequency locking interval, the driven

neuron switches to a frequency different from those of driv-

ing signal and of other mutually synchronized oscillators.

In order to investigate the effect of driving frequencies

inside and outside the external CPS region, we plot in Fig.

11 the time evolution of phase difference between the burst-

ing phase uðnÞ and the driving phase / � xn. For a fre-

quency x within the frequency locking interval, x ¼ 0:0115,
the difference keeps constant and is very small for all neu-

rons. But for a frequency x outside the frequency locking

interval, x ¼ 0:02, there is an overall linearly increasing

trend of the phase difference with evolution time, indicating

that the corresponding frequencies are different from the

external driving. In this situation, the influence of the exter-

nal signal is strong enough to steer the system out of phase

synchronization state, leading to a phase drift.

The frequency locking interval shown in Fig. 10 is

actually a cross section of the Arnold-like tongue in the pa-

rameter plane amplitude against the frequency of the external

driving signal, Fig. 12(a). This tonguelike structure charac-

terizes a region where chaotic bursting synchronization is

maintained, even with the external driving. Hence the desira-

ble choices for suppressing synchronization would be those

outside this tongue. Notice that the synchronization tongue

obtained in Fig. 12 is greatly asymmetric, since the unper-

turbed frequency x0 is not located at the middle of the fre-

quency locking interval, especially for large driving

amplitudes. A detailed explanation for this asymmetry of the

frequency locking tongue has been provided by Ivanchenko

et al.20 An imposed periodic signal precipitates a burst of a

neuron into a quiescent regime when positive and delays it

when negative. If the external driving frequency is higher

than that of the mutual synchronized network, the periodic

signal will fasten the oscillations of the driven neuron. When

the driven neuron starts bursting, the abrupt change of its

amplitude increases the mean field perceived by all other

neurons, pushing them toward bursting. Hence, a higher fre-

quency would give better synchronization effect. On the con-

trary, if the frequency of external driving signal is smaller

than that of the synchronized ensemble, only tiny synchroni-

zation effect can be expected. Hence, a local driving can

result in external CPS of the whole network only when the

oscillations in the unperturbed network (d ¼ 0) are mutually

synchronized.

To gain more insights into the dependence of external

CPS of the small-world network on p and e, in Fig. 13 we

plot the width of frequency locking interval Dx as a function

of rewiring probability p for different coupling strength e,

with a fixed driving amplitude d. Evidently, Dx exhibits a

resonancelike behavior with respect to p, thus indicating the

existence of an optimal small-world topology for the external

CPS of the network. Similar results were also obtained from

the study of stochastic resonance on excitable small-world

networks.45,46 Since the effectiveness of the pacemaker to

enforce its rhythm to other units in the network relies on spe-

cific topology properties of the network, such as the normal-

ized clustering coefficient C and the characteristic path

length L, Perc has proposed the ratio R ¼ C=L as a crucial

quantity defining the optimal properties of a network to facil-

itate the spreading of the localized pacemaker-emitted rhyth-

mic activity.45 It has been proved that there exists a peak

value of R obtained by some value of p, which may just war-

rant the largest peak value of Dx in our work. From Fig. 13

we can also find that the value of p which gives the maximal

Dx decreases when the coupling strength increases. Thus, as

the coupling increases the peak Dx is obtained for fewer

added shortcuts, or equivalently, by a lower value of p.

Moreover, the maximal Dx decreases as the coupling

strength increases; however, stronger coupling strength con-

tributes to a higher value of Dx in regular network (in the

limit p ! 0).

Finally, we study the effect of network size on the exter-

nal CPS of small-world networks. As shown in Fig. 14, the

width of frequency locking interval Dx decreases as the

number of oscillators in the ensemble grows, implying that

the external CPS becomes too difficult for large networks.

FIG. 12. The frequency locking tongue

in the parameter plane amplitude against

frequency of the external driving signal

for different number of driven neurons:

(a) Ndr¼ 1, (b) Ndr¼ 2, and (c) Ndr¼ 4.

FIG. 13. (Color online) Width of the frequency locking interval Dx versus

the rewiring probability p for different values of coupling strength: e ¼ 0:1
(blue circles), e ¼ 0:15 (black squares), and p ¼ 0:2 (red triangles). The

fixed driving amplitude is d ¼ 0:2.
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Similar results were also obtained for global-coupling and

scale-free neural networks.20–22 This is because the contribu-

tion of the driven oscillator to the mean field is proportional

to e=N. One possible way to overcome this problem is to

apply the same driving signal not to one, but to several arbi-

trarily chosen neurons at the same time. As shown in Fig. 15

increasing the number of driving will enlarge the width of

frequency locking tongue (also see Fig. 10 for details).

V. CONCLUSIONS

In conclusion, we have investigated the CPS in a system

of coupled map-based neurons in small-world networks. A

transition to mutual phase synchronization has been observed

as the coupling strength exceeds a threshold. This transition

occurs on the time scale of bursting, while on the time scale

of spiking, the synchrony does not appear. We have seen that

phase synchronization is largely facilitated by a large frac-

tion p of shortcuts and saturates for p> 0.5, indicating that

the same synchronizability as the random network can be

achieved with relatively small number of shortcuts.

We have also analyzed the external CPS in the small-

world networks by a periodic external signal applied to one

arbitrarily taken neuron. We have shown frequency locking

tongues in the driving parameter space, representing parame-

ters values for which synchronization is maintained, even

with the external driving. Since many neurological diseases

are suggested to be related with strong synchronized oscilla-

tions of bursting neurons, we infer that effective synchroniza-

tion suppression can be realized with the driving parameters

outside these synchronization tongues. It is worth noting that

the width of these synchronization tongues depends exten-

sively on coupling strength and rewiring probability. In partic-

ular, there exists an optimal small-world topology, warranting

the largest peak value of the frequency locking interval.

Moreover, their widths increase with the driving amplitude,

but decrease rapidly with the network size. On the other hand,

increasing the number of driving neuron will enlarge the

width of frequency locking tongue, a factor that should be

considered in practical intervention experiments.
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