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�is study addresses the chaotic phenomena and nonlinear responses in a vibroacoustic system. It is the 	rst study about the
chaotic phenomena in a vibroacoustic system, which is formed by a 
exible panel coupled with a cavity. A multimode formulation
is developed from the acoustic governing equation and nonlinear structural governing equation.�e chaotic and various nonlinear
responses are computed from the multimode formulation using a numerical integration method. �e results obtained from the
proposedmethod and classical harmonic balancemethod are generally consistent. A set of modal convergence studies is performed
to check the proposed method. �e e�ects of various parameters on triggering the nonchaotic responses to chaotic responses in a
vibroacoustic system are studied in detail.

1. Introduction

Over the past decades, numerous researchers have been
working on research topics related to chaos science, nonlinear
vibration, and vibroacoustics (e.g., [1–6]). In practice, linear
designs for chaotic and nonlinear machines or structures are
inappropriate and result in unsafety. In fact, there are many
physical machines and structures, which would undergo
chaotic and nonlinear vibrations. For example, Tian et al.
[7] studied the nonlinear aeroelastic characteristics of a
trapezoidal wing in hypersonic 
ow. In their numerical
results, it was found that the geometrical parameters of
trapezoidal wing imposed signi	cant e�ects on the nonlinear
aeroelastic behaviors of wing structure; and the evolution
processes of chaos exhibited remarkable di�erence for the
wing con	gurations considered in the study. Rao et al. [8]
presented a work about the dynamics of a cracked rotor
system with oil-	lm force in parameter space. �e “eye” of
chaos was found in the cracked rotor system, emerging as the
accumulation limit of forward and reverse period-doubling
bifurcation cascades. Asemani and Vatankhah [9] proposed
a new control system to stabilize the unstable periodic orbit
of chaotic spinning disks with incomplete state information.
�e proposed control structure was developed according to

the T-S fuzzy systems and its design procedure ful	lled the
constraint in the T-S fuzzy dynamic output feedback control
signal. Akbarimajd and Youse	 [10] proposed a new control
strategy based on Takagi-Sugeno fuzzy model for deceasing
the power system oscillation. In the control system, the
stability of the whole closed-loop model was enhanced using
a general Lyapunov-Krasovskii functional. �e proposed
strategy was applied to a 16-machine/68-bus power system.
In the nonlinear time domain simulations, the e�ectiveness
of the proposed method was checked.

Moreover, so far, there are few research works about both
nonlinear vibration and structural acoustics [11–15], although
numerous studies about linear vibroacoustic (e.g., [16–19])
and nonlinear vibration (e.g., [20–24]) have been carried out.
In [11, 12], Lee et al. did the research works about the sound
radiation and absorption of a curved panel, which underwent
nonlinear vibrations. In the simulation results, there were no
chaotic phenomena observed. Lee et al. [13] studied the sound
radiation of a chaotically vibrating curved beam/panel. In the
theoretical model, there was no structural acoustic coupling
term considered. In other words, the problem in [13] is not
structural-acoustic and is di�erent from the one in this study.
Inmost of the linear structural-acoustic studies, various panel
absorbers and panel-cavity systems were investigated. It was
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Figure 1: Nonlinear vibroacoustic system: a curved panel backed by a cavity.

assumed that the structural vibrations in the systems were
small andmainly focused on the sound absorption and sound
reduction. For example, Lee et al. [16] studied the acoustic
absorption of a 	nite 
exible microperforated panel backed
by an air cavity. �e absorption formula for the microperfo-
rated absorber was based on the modal analysis solution of
the classical plate equation coupled with the acoustic wave
equation. Choy et al. [19] proposed a compact 
ow-through
plate silencer using reinforced composite plates. �e light-
weight and high sti�ness property was a crucial element in
the silencer design. �e other concept in the design was that
the sound re
ection from the plate of the silencer caused
a desirable noise reduction from low to medium frequency
with wide broadband. In practice, the structural parts in
these panel absorbers and panel-cavity systems might be
very thin and undergoing nonlinear vibration. In the studies
of nonlinear vibration, various structures and systems (e.g.,
beam, plate, shell, and spring-mass) were investigated. Some
of them focused on the solution methods. For example,
Fan et al. [20] studied the steady-state periodic and quasi-
periodic responses of van der Pol-Mathieu system.�ey pro-
posed combining the method of multiple scales and double
perturbation technique to obtain the special periodic and
quasi-periodic solutions. Huang and Zhu [21] investigated
the nonlinear dynamic responses of an Euler-Bernoulli beam
attached to a rotating rigid hub with a constant angular
velocity.�ey used Lagrange’s equations based on discretized
expressions of kinetic and potential energies of the system to
develop the spatially discretized governing equations. �en,
they used the incremental harmonic balance method to solve
the governing equations and obtain the results of periodic
responses and period-doubling bifurcations.

To the best of the author’s knowledge, this study is the
	rst one about the chaotic phenomena in a vibroacoustic

system which considers the structural acoustic coupling.
�e multimode formulation is developed and solved by
the numerical integration method. �e e�ects of various
parameters on triggering the nonchaotic responses to chaotic
responses in a vibroacoustic system are studied in detail.

2. Theory

Figure 1 shows a vibroacoustic system that is formed by a
curve structure backed by a cavity. �e governing equation
of the acoustic pressure within the cavity is the well-known
wave equation [26, 27]

∇2�� − 1�2�
�2����2 = 0, (1)

where �� is the acoustic pressure, �� is the sound speed, and� represents the structural mode number.
Consider the modal decomposition approach and then�� is expressed in terms of

�� = �∑
�=1

��� (�) 	� (�, �, ) , (2)

where 	� is the �th acoustic mode shape and ��� is the

corresponding modal response; � is the number of acoustic
modes used. According to [26, 27], the mode shape function
is taken to be those in an enclosurewith rigid boundaries (i.e.,
cos(����/��) cos(����/��) cos(���/��), where ��, ��, and ��
are the acoustic mode numbers).

Multiply 	� to the right side of (1) and take integration
over the cavity volume, �:

∫
�
	�∇2�� �V − ∫

�

	��2�
�2����2 �V = 0. (3)
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Consider the technique of integration by parts:

∫
�
	�∇2�� �V = ∫

�
��∇2	� �V + ∫

	

����� 	� ��, (4)

where � represents the normal direction of the cavity bound-
ary surface and � is the surface area.

Put (4) into (3):

∫
�
��∇2	� �V − ∫

�

	��2�
�2����2 �V = −∫

	

����� 	� �� (5)

⇒
−��� [(��)2 ��� (�) + 1�2�

�2��� (�)��2 ] = −∫
	

����� 	� ��, (6)

where ��� = ∫�	�	��V; �� = √(���/��)2 + (���/��)2 + (���/��)2;���/�� = − 
(�2!�/��2) at  = 0; ���/�� = − 
(�2!
/��2)
at  = ��;  
 is the air density; ��, ��, ��, ��, ��, and �� are the
acoustic modes numbers and cavity lengths in the �, �, and 
directions, respectively; !
 and !� are the excitation source
displacement and curved panel displacement, respectively,
which are expressed in the following forms:

!
 = " (�) #1 (�, �) , (7a)

!� = $� (�) #� (�, �) , (7b)

where "(�) and $�(�) are the harmonic excitation source
amplitude and curved panel amplitude; #1 and #� are the 1st
and �th vibration mode shape functions of the source panel
and curved panel, respectively. �e boundary condition is
simply supported (i.e., sin(���/��)).

Put (7a) and (7b) into (6):

[(�)2 − (��)2] ������ (�) =  
'�� �2$���2 −  
'1� �2"��2 , (8)

where '�� = ∫	 #�	� ��; � is the wave number. �e accelera-

tion of the source panel is assumed as �2"/��2 = *- sin(2�);2
is the excitation frequency; * is the dimensionless excitation

parameter and - is the gravity of 9.81ms−2.

From (2), the acoustic pressure is expressed in terms of$�(�). �e acoustic pressure acting on the panel surface is
given by

�� = �∑
�=1

��� (�) 	� (�, �, 0) . (9)

According to (8), ���(�) can be rewritten in the following
form:

��� (�) =  
'��[(�)2 − (��)2] ���
�2$���2

−  
'1�[(�)2 − (��)2] ��� *- sin (2�) .
(10)

In [11, 12], the “beam-like” curved panel was adopted and
the 
exural modes along the � direction were ignored. It
was experimentally found that the 
exural modes along
the � direction were not very important in the nonlinear
phenomena. According to [11–13], the governing equation for
the nonlinear curved panel is expressed in the following form:

 �2!��2 + ��!�� + 34�4!��4
= 35ℎ�� (�2! + !��2 )∫��

0
(�!�� �!�� + 12 (�!�� )

2)��
+ � (�) = 0,

(11)

where ! is the transverse displacement of the panel; ! is
the initial de
ection; 3 is Young’s modulus;  is the material
density; � is the damping coe�cient; 5 is the width (= ��)
and ℎ is the thickness; and �(�) is the acoustic pressure acting
on the panel surface.

Consider the following modal decomposition:

! = $1 (�) #1 (�, �) + $2 (�) #2 (�, �)
+ $3 (�) #3 (�, �) + ⋅ ⋅ ⋅ . (12)

Put (12) into (11); multiply #� by each term on the right
side and take integration over the surface. In this study, the
	rst three structural modes are considered (i.e., � = 1, 2, 3).
Note that, in the convergence study in the next section, it is
proven that the contribution of the 4thmode is veryminimal.
�erefore, the threemodal equations are developed and given
in the following:

∫��
0

#�( �2!��2 + ��!�� + 34�4!��4
= 35ℎ�� (�2! + !��2 )
⋅ ∫��
0

(�!�� �!�� + 12 (�!�� )
2)�� + � (�)) ��

= 0, � = 1, 2, 3

(13)

⇒
 ?0011 �2$1��2 +  @21?0011 �$1�� + (34?4011

− 35ℎ�� ?1111?2011 ($
)2)$1
− 3Ω�� [

32?1111?2011$
 ($1)2 + 12?1111?2022$
 ($2)2
+ 12?1133?2011$
 ($3)2 + 12?1111?2011 ($1)3
+ 12?1122?2011$1 ($2)2 + 12?1133?2011$1 ($3)2]
=  
( �∑

�=1

('1�)2[(�)2 − (��)2] ���)
�2$1��2
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Table 1

(a) Mode convergence for various excitation frequencies (nonchaotic, ℎ = 2mm, �� = 0.5m, �� = 0.6m,  = 0.4m, � = 0.02, �� = 2mm, � = 4, 16 acoustic
modes).

Excitation freq., 2 = 1st symmetric mode 1st antisymmetric mode 2nd symmetric mode 2nd antisymmetric mode

0.7412
 98.42 0.00 1.58 0.00

2.1172
 97.85 0.00 2.15 0.00

2.5102
 99.44 0.00 0.56 0.00

(b) Mode convergence for various excitation magnitudes (chaotic, ℎ = 2mm, �� = 0.5m, �� = 0.3m,  = 0.4m, � = 0.02, �� = 4mm, � = 0.805�
, 16
acoustic modes).

Excitation magnitude, * = 1st symmetric mode 1st antisymmetric mode 2nd symmetric mode 2nd antisymmetric mode

5 70.90 22.43 6.67 0.00

10 76.66 16.88 6.46 0.00

20 82.64 13.23 4.13 0.00

(c) Mode convergence for various numbers of acoustic modes used (chaotic, ℎ = 2mm, �� = 0.5m, �� = 0.3m,  = 0.4m, � = 0.02, �� = 4mm,
� = 0.805�
, � = 4).

Number of acoustic
modes =

1st symmetric mode 1st antisymmetric mode 2nd symmetric mode 2nd antisymmetric mode

3 82.62 14.06 3.32 0.00

8 82.66 13.21 4.13 0.00

16 82.64 13.23 4.13 0.00

−  
( �∑
�=1

('1�)2[(�)2 − (��)2] ���)*- sin (2�) ,
(14a)

 ?0022 �2$2��2 +  @22?0022 �$2�� + 34?4022$2
− 35ℎ�� [?1111?2022$
$1$2 + 12?1111?2022 ($1)2 $2
+ 12?1122?2022 ($2)3 + 12?1133?2022 ($3)2 $2]
=  
( �∑

�=1

('2�)2[(�)2 − (��)2] ���)
�2$1��2

−  
( �∑
�=1

'1�'2�[(�)2 − (��)2] ���)*- sin (2�) ,

(14b)

 ?0033 �2$3��2 +  @23?0033 �$3�� + 34?4033$3
− 35ℎ�� [?1111?2033$
$1$3 + 12?1111?2033 ($1)2 $3
+ 12?1122?2033 ($2)2 $3 + 12?1133?2033 ($3)3]
=  
( �∑

�=1

('3�)2[(�)2 − (��)2] ���)
�2$3��2

−  
( �∑
�=1

'1�'3�[(�)2 − (��)2] ���)*- sin (2�) ,

(14c)

where ?00�� = ∫��0 #�#� ��; ?20�� = ∫��0 (�2#�/��2)#� ��; ?40�� =∫��0 (�4#�/��4)#� ��; ?11�� = ∫��0 (�#�/��)(�#�/��)��; @ =

modal damping coe�cient; 21, 22, and 23 are the resonant
frequencies of the 1st to 3rd modes; F andG are the structural
mode numbers. According to [11, 26, 27], the acceleration
terms on the right sides of (14a)–(14c) can be rewritten as�2$�/��2 = −22$�, � = 1, 2, 3.

�e above coupled modal mode di�erential equations
can be solved using the Runge-Kutta time domain numerical
integration [11–13]. �e overall root-mean square amplitude,
positive amplitude, and negative amplitude of the displace-
ment responses at the steady state are de	ned by

$ rms = √∑�� JJJJ$1,� + $2,� + $3,�JJJJ2K , (15a)

$�,+ = {$�,}max
, (15b)

$�,− = {$�,}min
, (15c)

where $1,�, $2,�, and $3,� are the modal displacement
responses at the steady state at Fth time step;K is the number
of time steps used; {⋅}max and {⋅}min are the maximum and
minimum values within the steady state, respectively.

3. Results and Discussion

In this section, the material properties in the numerical cases
considered are as follows: Young’smodulus = 7.1×1010N/m2,
Poisson’s ratio = 0.3, and mass density = 2,700 kg/m3. �e
panel dimensions are 0.5m × 0.4m × 2mm. �e air density

is 1.2 kg/m3. �e sound speed is 340m/s. In Tables 1(a)–1(c),
the case is the nonlinear forced vibrations of a curved panel
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Figure 2

backed by a cavity. �e 	rst two symmetrical and antisym-
metrical structural modes are used. �e damping ratio @ =0.02. �e excitation pressure is evenly distributed over the
panel surface. In Table 1(a), the nonlinear vibration responses
are nonchaotic. �e initial centre de
ection !� is 2mm. �e
modal convergence study shows that the contributions of the
two antisymmetrical modes are zero for various excitation
frequencies. �e approach of two symmetric modes is good
enough. In Table 1(b), the nonlinear vibration responses
are chaotic for all * values. �e excitation frequency is
0.8052
. �e contribution of the 	rst antisymmetrical mode
is higher than that of the 2nd symmetric mode and cannot
be neglected. It is noted that, for chaotic cases, the approach
of two symmetric modes and one antisymmetric mode is
necessary. In Table 1(c), the nonlinear vibration responses are
also chaotic.�emodal contributions are not very sensitive to

the number of acousticmodes in the chaotic case. It is because
the excitation frequency is far from the 	rst nonzero cavity
resonant frequency. Figures 2(a)–2(d) present the compar-
isons between the backbone curves and time histories of the
nonlinear free panel vibrations obtained from the numerical
integration method and classical harmonic balance method
[25]. Figures 2(a)-2(b) show the 1st and 2nd symmetrical
mode backbone curves, where in each of which the amplitude
is plotted against the corresponding resonant frequency. �e
1st four structural modes and 1st sixteen acoustic modes
are used. 2
 and 2� are the 1st mode linear and nonlinear
resonant frequencies, respectively. !� is the initial centre
de
ection. Figures 2(c)-2(d) show the time histories for
the vibration amplitude set as ℎ and 1.4ℎ. In the solution
procedures of the classical harmonic balancemethod, the two
harmonic terms (i.e., sin(2�) and sin(32�)) are considered.
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Figure 3

�e backbone curve and time history results obtained from
the two methods are generally in good agreement.

Figure 3(a) shows the RMS vibration amplitude plotted
against the excitation frequency for various excitationmagni-
tudes. �e vibration responses in these cases are nonchaotic
as the excitation magnitude is not large enough and the
curvature is not deep enough. �e peak frequency and RMS
vibration amplitude increase with the excitation magnitude.
Due to the zero frequency cavity mode, the RMS vibration
amplitude is higherwhen the excitation frequency is set closer
to zero.

In the case of small excitation (i.e., * = 0.5), the peak
frequency is around 2.82
 and looks more linear than the
other two. �e peak frequency is higher than one because
of the cavity sti�ness. When the excitation magnitude is set
higher (e.g., * = 1.5 and 4), the peaks are inclined to the right
side. It is called “hardening e�ect,” which implies that the
structural sti�ness is stronger due to the nonlinearity. In the
case of small excitation, the solution line at the low frequency
range is smoother than those in the two other cases, which
contain some other peaks due to the nonlinearity. For an

example, in the case of large excitation (i.e., * = 4), there is
an obvious peak around 1.52
 which does not appear in the
case of small excitation. �e simple harmonic solution line is
found in each of the three cases for the excitation frequency
higher than 32
. Figures 4(a)-4(b) show the steady-state time
histories of the superharmonic and simple harmonic cases.
Note that as only the vibration response at the steady state
is shown, the time does not start at zero in each of these
	gures. In Figure 4(a), there are many peaks as the higher
harmonic components are very signi	cant. In Figure 4(b), the
time history shows a set of simple sine waves. �e numbers
of sine waves and harmonic cycles are equal. �at is why it is
considered as “simple harmonic.”

Figure 3(b) shows the RMS vibration amplitude plotted
against the excitation frequency for various curvatures. In
the case of 2.5mm curvature, the “so�ening e�ect” is seen
(i.e., the peaks are inclined to the le� side). It is implied
that the structural sti�ness is weaker due to the nonlinearity.
�e “jump down” phenomena are observed for the excitation
frequency decreasing from 42
 to 3.52
 and from 2.82
 to
1.52
, respectively.�e peak value around 32
 is smaller than
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Figure 4

the one in the case of 1mm curvature; and the peak value
around 1.52
 is higher.�ere is an abrupt jump down around2/2
 = 1. At the very low frequency range (2/2
 < 1),
the chaotic responses are observed in the case of 2.5mm
curvature (see Figure 4(c)); and the solution line is not
smooth. In the time history, the equilibrium position, vibra-
tion amplitude, and vibration period are varying abruptly.
�at is why it is considered as “chaotic.” �e deeper the
panel curvature, the less smooth the solution line. It is
because the curved panel would chaotically vibrate at the low
frequency. Figure 3(c) shows the RMS vibration amplitude
plotted against the excitation frequency for various cavity
depths. �e 	rst peaks and second peaks on the solution
lines are observed at the excitation frequencies around 1.352
,
1.452
, 1.652
, 32
, 3.52
, and 42
, respectively. �e longer
the cavity depth, the lower the 1st and 2nd peak frequencies,
lower 2nd peak amplitude, and higher 1st peak amplitude.
At the very low frequency range (< 2
), the three solution
lines almost overlap with each other. If the cavity depth is
set longer, the simple harmonic and superharmonic solution
lines are shi�ed to the le� side.

Figure 5(a) shows the positive and negative vibration
amplitudes plotted against the dimensionless excitation

magnitude for various panel curvatures. Note that the
positive and negative vibration amplitudes are not equal
for curved panel. Generally, the vibration amplitudes are
monotonically increasing with the excitation magnitude. In
the cases of 2.5mm and 4mm curvatures, the vibration
amplitudes abruptly increase around the critical values (i.e.,* = 3 and 5). It is implied that the vibration response changes
from nonchaotic to chaotic at this excitation magnitude.
�e solution lines are not smooth because the amplitudes
of the chaotic vibrations are so sensitive. If the excitation
magnitude parameter is smaller than critical value, the
vibration response is nonchaotic. In this situation, the curved
panel vibrates without “snap-through motion.” Figures 6(a)-
6(b) and 7(a)-7(b) show the time histories and phase plots
for the various dimensionless excitation magnitudes. From
these time histories and phase plots, the simple harmonic
and quasi-chaotic vibration responses can be seen. In Figures
6(a) and 7(a), the excitationmagnitude is far from the critical
value. �e vibration response is purely simple harmonic. In
Figure 6(b), it is close to the critical value. �e vibration
response starts to change from nonchaotic to chaotic. �at
is why the phase plot in Figure 7(b) shows both chaotic and
periodic properties. If the excitationmagnitude is higher than
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Figure 5

and close to the critical value, the vibration response is some-
times “snap-through” and sometimes is not. It means that
the vibration equilibriumposition is varying (see Figures 6(c)
and 7(c)).�e phase plot looks like several ellipses of di�erent
sizes and centres overlapping with each other.�e ellipses are
	lled with the solution lines. If the excitation magnitude is
much higher than the critical value, the vibration response
is clearly considered as “chaotic” and “snap-through” (see
Figures 6(d) and 7(d)). �e phase plot looks like two equal
sized ellipses touching each other. �e two ellipses are 	lled
with the solution lines.

Figure 8(a) shows the modal contributions plotted
against the dimensionless excitation magnitude for!� = 2.5mm. It is seen that, for the excitation magnitude
parameter much higher than the critical value, the
contributions of the 1st symmetric, 1st antisymmetric,
and 2nd symmetric modes are quite constant (i.e., ≈81%,
13%, and 6%); for the excitation magnitude parameter much
lower than the critical value, the modal contributions are≈89%, 0%, and 11%, respectively (it is implied that the
contribution of the 1st antisymmetric mode is zero in the

simple harmonic case); and for the excitation magnitude
parameter around the critical value, the contribution of
the 1st antisymmetric mode abruptly jumps up to ≈38%.
Figure 8(b) shows the modal contributions plotted against
the dimensionless excitation magnitude for 0mm curvature
(i.e., 
at panel). It is seen that the contribution of the 1st
antisymmetric mode is always zero. �e contribution of the
1st symmetric mode ranges from ≈94.5% to 97.5%.

Figure 5(b) shows the positive and negative vibration
amplitudes plotted against the dimensionless excitationmag-
nitude for various excitation frequencies. If the excitation
frequency is set higher, the vibration amplitudes are generally
smaller. In each of these cases, the vibration amplitudes
abruptly increase around the corresponding critical value. It
is observed that, in the case of high excitation frequency, 2 =3.222
, the solution lines are very smooth because there is
no chaotic response. Figures 6(e)-6(f) and 7(e)-7(f) show the
time histories and phase plots for the various dimensionless
excitation magnitudes (2 = 3.222
). Similar to those in
Figures 6(a) and 7(a), the vibration response in Figure 6(e)
(the case of small excitation) is simple harmonic and the
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(f) Time history for the superharmonic case (ℎ = 2mm, �� = 0.5m,
�� = 0.3m,  = 0.4m, � = 0.02, �� = 2.5mm, � = 30, � = 3.22�
)

Figure 6

phase plot in Figure 7(e) looks like an ellipse. �e vibration
response in Figure 6(f) (the excitationmagnitude higher than
the critical value) containsmore superharmonic components.
According to the phase plot in Figure 7(f), it looks like two
deformed ellipseswith di�erent radii and centres. It is implied
that the vibration response contains two main harmonic
components whose magnitudes and vibration equilibrium
positions are di�erent.

Figure 8(c) shows the corresponding modal contribu-
tions plotted against the dimensionless excitationmagnitude.
It is found that although there is no chaotic response is
found for the case of 2 = 3.222
, the modal contribution
of the 1st antisymmetric mode is detectable and signi	cant
when the excitation magnitude is higher than the critical
value. �e modal contribution of the 1st antisymmetric
mode is zero, when the excitation magnitude is lower
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(b) Phase plot for the transition case (ℎ = 2mm, �� = 0.5m, �� = 0.3m,
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(c) Phase plot for the chaotic case (ℎ = 2mm, �� = 0.5m, �� = 0.3m,
 = 0.4m, � = 0.02, �� = 4mm, � = 4.5, � = 0.805�
)
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(d) Phase plot for the snap-through case (ℎ = 2mm, �� = 0.5m, �� =
0.3m,  = 0.4m, � = 0.02, �� = 4mm, � = 30, � = 0.805�
)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

A
m

p
li

tu
d

e/
th

ic
k

n
es

s

0.030.020.010 0.04 0.05−0.02−0.03−0.04 −0.01−0.05

Velocity/(thickness × �) 

(e) Phase plot for the simple harmonic case (ℎ = 2mm, �� = 0.5m, �� =
0.3m,  = 0.4m, � = 0.02, �� = 2.5mm, � = 1, � = 3.22�
)
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(f) Phase plot for the superharmonic case (ℎ = 2mm, �� = 0.5m,
�� = 0.3m,  = 0.4m, � = 0.02, �� = 2.5mm, � = 30, � = 3.22�
)

Figure 7

than the critical value. Figure 5(c) shows the positive and
negative vibration amplitudes plotted against the dimen-
sionless excitation magnitude for various damping ratios.
�e solution lines are almost overlapping with each other.
From the previous results, the chaotic responses occur at
the low frequency range or nonresonant range. �us, the
damping does not play a role for low frequency excita-
tion.

4. Conclusions

�is study addresses the chaotic and nonlinear responses in
the vibroacoustic system. �e multimode formulation devel-
oped from the acoustic governing equation and nonlinear
structural governing equation has been presented.�e results
obtained from the proposed method and classical harmonic
balance method are generally consistent. From the results,
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Figure 8

it is known that there is a critical excitation magnitude
to abruptly trigger the chaotic response in a vibroacoustic
system. �e critical force depends on various parameters.
When the chaotic responses occur in a vibroacoustic system,
the modal contribution of the 1st antisymmetric structural
mode cannot be neglected, even though the system and
the excitation are symmetric. Generally, at a low frequency
range, if the excitation is large enough and the curvature is
deep enough, the chaotic responses occur; if the excitation
is not large enough, the superharmonic responses occur. �e
simple harmonic responses also occur in a medium-to-high
frequency range but their existence does not depend on the
excitation magnitude.

Conflicts of Interest

�e author declares that there are no con
icts of interest
regarding the publication of this paper.

Acknowledgments

�e work described in this paper was fully supported by a
SRG Grant from City University of Hong Kong (Project no.
7004701).

References

[1] M. P. Aghababa and J. A. Sharif, “Chaos and complexity inmine
grade distribution series detected by nonlinear approaches,”
Complexity, vol. 21, no. S2, pp. 355–369, 2016.

[2] A. E. Matouk, “Chaos synchronization of a fractional-order
modi	ed van der Pol-Du�ng system via new linear control,
backstepping control and Takagi-Sugeno fuzzy approaches,”
Complexity, vol. 21, no. S1, pp. 116–124, 2016.

[3] Y. Y. Lee and E. W. M. Lee, “Widening the sound absorption
bandwidths of 
exiblemicro-perforated curved absorbers using
structural and acoustic resonances,” International Journal of
Mechanical Sciences, vol. 49, no. 8, pp. 925–934, 2007.

[4] Z. L. Huang and X. L. Jin, “Response and stability of a SDOF
strongly nonlinear stochastic system with light damping mod-
eled by a fractional derivative,” Journal of Sound and Vibration,
vol. 319, no. 3–5, pp. 1121–1135, 2009.

[5] L. Xu, “Dynamics of two-strand yarn spinning in forced
vibration,” Nonlinear Analysis: �eory, Methods & Applications,
vol. 71, no. 12, pp. e827–e829, 2009.

[6] L. Xu and L. Sun, “Electromechanical coupled non-linear
vibration of the microplate,” Proceedings of the Institution of
Mechanical Engineers, Part C: Journal ofMechanical Engineering
Science, vol. 224, no. 6, pp. 1383–1396, 2010.



12 Complexity

[7] W. Tian, Z. Yang, Y. Gu, and X. Wang, “Analysis of nonlinear
aeroelastic characteristics of a trapezoidal wing in hypersonic

ow,” Nonlinear Dynamics, vol. 89, no. 2, pp. 1205–1232, 2017.

[8] X.-B. Rao, Y.-D. Chu, Y.-X. Chang, J.-G. Zhang, and Y.-P. Tian,
“Dynamics of a cracked rotor system with oil-	lm force in
parameter space,” Nonlinear Dynamics, vol. 88, no. 4, pp. 2347–
2357, 2017.

[9] M. H. Asemani and R. Vatankhah, “Tracking control of chaotic
spinning disks via nonlinear dynamic output feedback with
input constraints,” Complexity, vol. 21, no. S1, pp. 148–159, 2016.

[10] A. Akbarimajd and N. Youse	, “A novel of fuzzy PSS based
on new objective function in multimachine power system,”
Complexity, vol. 21, no. 6, pp. 288–298, 2016.

[11] Y. Y. Lee, J. L. Huang, C. K.Hui, andC. F. Ng, “Sound absorption
of a quadratic and cubic nonlinearly vibrating curved panel
absorber,” Applied Mathematical Modelling, vol. 36, no. 11, pp.
5574–5588, 2012.

[12] Y. Y. Lee, R. K. L. Su, C. F. Ng, and C. K. Hui, “�e e�ect of
modal energy transfer on the sound radiation and vibration of
a curved panel: theory and experiment,” Journal of Sound and
Vibration, vol. 324, no. 3–5, pp. 1003–1015, 2009.

[13] Y. Y. Lee, C. K. Hui, W. Z. A. Lu, and E. W. M. Lee, “�e
low frequency sound radiation of a chaotically vibrating curved
beam/panel,” International Journal of Nonlinear Sciences and
Numerical Simulation, vol. 10, no. 9, pp. 1159–1166, 2009.

[14] C. K. Hui, Y. Y. Lee, and J. N. Reddy, “Approximate elliptical
integral solution for the large amplitude free vibration of a
rectangular single mode plate backed by a multi-acoustic mode
cavity,”�in-Walled Structures, vol. 49, no. 9, pp. 1191–1194, 2011.

[15] M. Sadri and D. Younesian, “Nonlinear free vibration analysis
of a plate-cavity system,”�in-Walled Structures, vol. 74, pp. 191–
200, 2014.

[16] Y. Y. Lee, E. W. M. Lee, and C. F. Ng, “Sound absorption of a
	nite 
exible micro-perforated panel backed by an air cavity,”
Journal of Sound and Vibration, vol. 287, no. 1-2, pp. 227–243,
2005.

[17] A. J. Pretlove, “Free vibrations of a rectangular panel backed by a
closed rectangular cavity by a closed rectangular cavity,” Journal
of Sound and Vibration, vol. 2, no. 3, pp. 197–209, 1965.

[18] Y. Y. Lee and C. F. Ng, “Sound insertion loss of sti�ened
enclosure plates using the 	nite element method and the
classical approach,” Journal of Sound and Vibration, vol. 217, no.
2, pp. 239–260, 1998.

[19] Y. S. Choy, Y. Liu, H. Y. Cheung, Q. Xi, and K. T. Lau,
“Development of composite plate for compact silencer design,”
Journal of Sound and Vibration, vol. 331, no. 10, pp. 2348–2364,
2012.

[20] Q. Fan, A. Y. Leung, and Y. Y. Lee, “Periodic and quasi-periodic
responses of Van der Pol-Mathieu system subject to various
excitations,” International Journal of Nonlinear Sciences and
Numerical Simulation, vol. 17, no. 1, pp. 29–40, 2016.

[21] J. L. Huang and W. D. Zhu, “Nonlinear dynamics of a high-
dimensional model of a rotating euler-bernoulli beam under
the gravity load,” Journal of Applied Mechanics, vol. 81, no. 10,
Article ID 101007, 2014.

[22] D. Younesian, M. Sadri, and E. Esmailzadeh, “Primary and sec-
ondary resonance analyses of clamped-clamped micro-beams,”
Nonlinear Dynamics, vol. 76, no. 4, pp. 1867–1884, 2014.

[23] A. Y. T. Leung and Z. J. Guo, “Feed forward residue harmonic
balance method for a quadratic nonlinear oscillator,” Interna-
tional Journal of Bifurcation and Chaos, vol. 21, no. 6, pp. 1783–
1794, 2011.

[24] Y. Y. Lee,W. Y. Poon, andC. F.Ng, “Anti-symmetricmode vibra-
tion of a curved beam subject to autoparametric excitation,”
Journal of Sound and Vibration, vol. 290, no. 1-2, pp. 48–64,
2006.

[25] Y. Y. Lee, “Structural-acoustic coupling e�ect on the nonlinear
natural frequency of a rectangular box with one 
exible plate,”
Applied Acoustics, vol. 63, no. 11, pp. 1157–1175, 2002.

[26] F. Fahy, Sound and Structural Vibration, Radiation, Transmission
and Response, Academic Press, 6th edition, 2000.

[27] Y.-Y. Lee, “Two modelling techniques for the vibration and
transmission loss of a nonlinear vibro-acoustic system,” Journal
of Mechanical Science and Technology, vol. 30, no. 7, pp. 3041–
3049, 2016.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 

Journal of 

Mathematics and 

Mathematical 

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in 
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

