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Abstract: Underwater wireless sensor networks (UWSNs) have applications in several fields, such
as disaster management, underwater navigation, and environment monitoring. Since the nodes in
UWSNs are restricted to inbuilt batteries, the effective utilization of available energy becomes essen-
tial. Clustering and routing approaches can be employed as energy-efficient solutions for UWSNs.
However, the cluster-based routing techniques developed for conventional wireless networks cannot
be employed for a UWSN because of the low bandwidth, spread stay, underwater current, and
error probability. To resolve these issues, this article introduces a novel chaotic search-and-rescue-
optimization-based multi-hop data transmission (CSRO-MHDT) protocol for UWSNs. When using
the CSRO-MHDT technique, cluster headers (CHs) are selected and clusters are prearranged, render-
ing a range of features, including remaining energy, intracluster distance, and intercluster detachment.
Additionally, the chaotic search and rescue optimization (CSRO) algorithm is discussed, which is
created by incorporating chaotic notions into the classic search and rescue optimization (SRO) al-
gorithm. In addition, the CSRO-MHDT approach calculates a fitness function that takes residual
energy, distance, and node degree into account, among other factors. A distinctive aspect of the
paper is demonstrated by the development of the CSRO algorithm for route optimization, which was
developed in-house. To validate the success of the CSRO-MHDT method, a sequence of tests were
carried out, and the results showed the CSRO-MHDT method to have a packet delivery ratio (PDR)
of 88%, whereas the energy-efficient clustering routing protocol (EECRP), the fuzzy C-means and
moth–flame optimization (FCMMFO), the fuzzy scheme and particle swarm optimization (FBCPSO),
the energy-efficient grid routing based on 3D cubes (EGRC), and the low-energy adaptive clustering
hierarchy based on expected residual energy (LEACH-ERE) methods have reached lesser PDRs of
83%, 81%, 78%, 77%, and 75%, respectively, for 1000 rounds. The CSRO-MHDT technique resulted in
higher values of number of packets received (NPR) under all rounds. For instance, with 50 rounds,
the CSRO-MHDT technique attained a higher NPR of 3792%.

Keywords: data transmission; routing; search and rescue optimization; chaotic concept;
fitness function; underwater wireless sensor network
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1. Introduction

An underwater wireless sensor network (UWSN) consists of several underwater wireless
sensors distributed within the marine environment that assist wide-ranging applications,
including navigation, surveillance, disaster prevention, data acquisition, and resource explo-
ration [1–3]. All the sensors of a UWSN are armed with an acoustic modem since they employ
acoustic signals to interact with one another [4–6]. This node is able to form a network without
any architecture. The sensors are responsible for monitoring the underwater environments,
namely the temperature, and transmit the gathered information to a sink node (SN) via a
single hop or many hops [7–9]. The SN, placed on the aquatic surface, is capable of receiving
the information from underwater sensors via acoustic signal and transmitting the collected
information to terrestrial network devices via radio signal [10–12]. In underwater environ-
ments, the radio signal attenuates quickly and faces the absorption problem. Therefore, they
are unsuitable for longer-distance underwater communication.

The complete upsurge is adapted at the time of submerged communication since
it is lesser affected by scattering, absorption loss, and attenuation [13,14]. The acoustic
signal propagates slowly causing higher propagation delay. Furthermore, there is another
drawback of the underwater acoustic network, namely the high error rate, and the low
bandwidth. Hence, it uses lot of energy to effectively transfer information packs in a UWSN
and keeps the better presentation of a UWSN. Moreover, the sensors have constrained
energy, and it is not easier to redistribute or recharge them [15–17]. Thus, the network
lifetime and energy consumption are primary concerns in a UWSN.

The routing protocol for a UWSN deals with the path selection to transmit data
packets to the surface destination in an effective and efficient manner [18,19]. In recent
times, engineers, researchers, and scientists have employed the routing protocol to examine
the underwater medium for various applications. The proposal of the routing protocol for
UWSNs is of great significance. This protocol identifies a path from the bottom to the top
of the water surface for ensuring system efficiency, based on the desired parameter [20,21].
Especially, the problems related to the underwater medium and at the time of packet
forwarding are taken into account by this protocol for achieving the optimum efficiency
of the network based on the intended purpose. For example, this protocol deals with
the shadow zones, high propagation delay, constrained battery power, movement of the
sensors with water current, reliable transmission of data packet at the time of unfavorable
channel condition, severe noise, and interference [22].

The transmission of information through the multi-hop method was proved in [23]
to be efficient in energy preservation in longer-distance transmission than the single-hop
method. Therefore, it was necessary to discover the optimum multi-hop paths for achieving
improved transmission efficacy, reduced packet loss ratio (PLR), and minimized energy
consumption at the time of data transmission [24,25].

This article develops an effective chaotic search-and-rescue-optimization-based multi-
hop data transmission (CSRO-MHDT) protocol for UWSNs to optimize energy efficiency
and lifetime. At the initial stage, the CSRO-MHDT protocol involves the design of a
weighted clustering approach (WCA) for the effectual selection of cluster heads (CHs)
and cluster construction. In addition, the CSRO algorithm is presented by integrating
the chaotic concepts into the traditional search and rescue optimization (SRO) algorithm.
Moreover, the CSRO-MHDT technique has a suitability purpose, connecting remaining
energy, reserves, and node degrees. For assessing the better outcomes of the CSRO-MHDT
technique, a wide-ranging experimental analysis was carried out and the results were
assessed under several aspects.

The following is the outline for the remainder of the paper. Refer to Section 2 for
additional information on relevant works. Then, Section 3 delves into the specifics of the
suggested paradigm. Then, Section 4 examines the performance of the suggested model,
and Section 5 concludes the research.



Sensors 2022, 22, 2867 3 of 20

2. Related Works

According to Durrani and colleagues [26], an adoptive, clustered-node routing method
for a smart ocean underwater sensor network has been presented (SOSNET). The described
approach makes use of a moth–flame optimizer (MFO) to calculate the near-optimal number
of clusters that are required for routing to be effective. Moth migration toward the light is
taken into consideration while using the MFO, a biologically inspired optimization technique.

NR et al. [27] introduced the lion optimized cognitive acoustic network (LOCAN) for
reducing packet delay and packet loss at the time of transmitting packets in a UWASN;
these are caused by water column variation, including the Doppler effect and geometric
spreading (GS). Doppler effects form because of sensor node movement and sea surface
variations, including temperature and salinity.

The authors in [28] developed a protocol-inspired method called the beckoning pen-
guin swarm optimization protocol (BPSOP), which was inspired by the natural features of
penguins. The foraging features of penguins are employed for finding the optimal route in
a UWSN.

The authors in [29] designed an energy-effectual and void-region-avoidance routing
method. The idea of the GWO approach is utilized for selecting an optimal forwarder
node. The presented method expands the lifetime of the network by balancing the network
energy and preventing the void region.

In [30], a new approach, called improved energy-balanced routing (IEBR), was devel-
oped for UWSNs. The presented method consists of two phases: data broadcast and routing
establishment. To begin, a precise method for determining the transmission distance is
developed in order to locate the neighbor at the optimal distance and to determine the
submerged net connections [31–33]. Additionally, IEBR selects relays based on neighbor
depth, minimizes hops in a connection-based depth threshold, and eliminates the data
communication loop issue [34,35].

Rajeswari et al. [36] developed a cooperative ray optimization approach (CoROA),
which assists in minimizing the packet loss and delay, which rise because of the geometric
spreading and Doppler environments in underwater acoustic networks. The presented
method is recognized for its effective performance in distinct environments, including
spatial and temporal variations, where the throughput, battery life, and network lifetime
are improved.

To improve the overall efficiency of a system, Fei et al. [37] suggested a hybrid clus-
tering technique based on FCM and MFO with the goal of boosting system efficiency
(FCMMFO) [38,39]. In order to achieve this, the researchers first used FCM to generate
energy-efficient clusters, and then applied an optimization approach known as MFO to
select the ideal CH for each cluster [40,41].

Yuhan Su et al. investigated the impacts of transmission-obliging broadcast and radio
channel circumstances on submerged acoustic communication, and we calculated the best
transmit power setting factor. No prior knowledge of the IoUT model was required to
implement the proposed technique. The suggested technique can increase IoUT transmis-
sion performance according to the findings of the simulation. Compared with Q-learning,
the DQN-based approach upsurges the joint information by 3% and decreases the outage
likelihood by 40%. We plan to examine cooperative communications in IoUT in greater
detail in the future. To increase cooperative communication in relay-assisted IoUT systems,
novel reinforcement learning algorithms with low computational and communication
overheads need to be developed.

Zhigang Jin et al. proposed a mobbing-avoidance routing protocol for UASNs based
on strengthening knowledge. Through exploration, the RCAR protocol finds the best
route to minimize congestion and save energy. The RCAR protocol extends reinforcement
learning’s reward function with congestion and energy. To speed up the meeting process
and to ensure the best routing decision, we used a simulated steering tube with changeable
radius based on neighboring average residual energy.
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Yougan Chen et al. offered the PB-ACR protocol for multi-hop UASNs, which includes
node payload balancing as well as DCC. The energy consumption of each system node
can be lowered by grouping packets based on the importance of the data included in them.
While maintaining an appropriate balance between node payload and cooperative gain,
the proposed PB-ACR protocol has the potential to improve system life and throughput
when compared with the existing ACAR protocol.

In a study by Jianying Zhu et al., the proposed algorithm’s advantages diminish with
the node count. This technique is also well-matched with the noncooperative ACOA-
AFSA fusion algorithm, and it has a reasonable level of difficulty in time-variant marine
surroundings. Therefore, the suggested ACOA-AFSA fusion DCC technique is more
ideal for medium-sized networks, where it can boost data transmission reliability, while
extending the life of a system. In future study, we will simplify the suggested algorithm’s
hardware implementation to make it appropriate for other underwater acoustic networking
applications. Table 1 shows the current state of wireless sensor networks (WSNs) using
clustering and multi-hop routing.

Table 1. Summary of existing approaches.

Reference No. Published Year Approach Advantages Disadvantages

[26] 2019 Adaptive node clustering Throughput and reliability
are high in clustering process Network life time

[27] 2020 LOCAN methodology Energy consumption Packet loss

[28] 2020 Bee algorithm Reliable transmission Not suitable for deep
UWSNs

[29] 2021 Grey wolf
optimization algorithm

Reducing packet loss and
traffic systems Sensor failure

[30] 2019 Threshold and energy
level partition

Reducing delay and high
throughput

Maximizing energy
Resources

[36] 2021 Path selection strategy High throughput Time delay

[37] 2020 Fuzzy C means and moth–flame
optimization method

Reducing energy
consumption

Time delay
Packet loss

Proposed
Approach 2022 Chaotic search and

rescue optimization

Reliable transmission,
Reducing time delay and

high throughput

Packet loss in high
level nodes

3. The Proposed Model

In this study, a novel CSRO-MHDT method was developed for the optimal choice
of routes for data transmission in a UWSN. Clustering is a well-known energy-saving
strategy in sensor networks. The least-cost-clustering steering procedure (MCCP) is one
of the clustering-based routing protocols (UWSNs). This parameter is composed of three
important values: the total energy consumed by member nodes during data transfer to
the CH, the total energy residual on the bunch head node and its associate bulges, and
the distance between the cluster head node and the originating base station. The major
intention of the CSRO-MHDT technique is to the reduce energy dissipation and enhance the
lifetime of a UWSN. Primarily, the CSRO-MHDT technique involves WCA for the effectual
choice of CHs. In addition, the CSRO-MHDT technique derives a fitness function and can
effectually select the set of routes in a UWSN. Figure 1 presents the general procedure of
the CSRO-MHDT method.
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3.1. System Model

The system contains N dynamic bulges, which are sparse and arbitrarily dispersed
during an L× L× L process. The data source is water-medium-sensed data. The data were
gathered utilizing an underwater sensor. The current flow, pressure, and temperature are
the identified parameters. The underwater sensor was prepared with an acoustic modem,
which enables them to communicate with other nodes in the aquatic environment [42–45].
An SN is equipped with both a radio frequency (RF) and an acoustic modem for com-
munication with the base station (BS) on the surface landmass; the SN’s acoustic modem
receives data from underwater sensors, while the RF modem communicates with the base
station (BS) by transmitting data through the base station. Despite the fact that it has a short
transmission distance, the BS is capable of traversing a sensing field and collecting data
from sensor nodes on the field. Each sensor node’s power consumption is lowered, since
fewer relays are required to transmit the sensor’s message to the BS. It can be considered
that the network condition is related to the networks. The topology varies rapidly due to
the fact that underwater sensors are transferable, depending on water current velocities of
around 1–3 m/s [46–50]. The network condition can be considered as follows:

• The bulges identify their place and the place of the SN in a primary situation.
• The node can develop the CH and the CM/relay.
• The CH rotates amongst the sensors to conserve energy.

Acoustic waves in an underwater broadcast medium have distinct characteristics from
radio waves; hence, a WSN cannot be employed for underwater broadcasting networks.
For the present study, we used the power consumption strategy of an underwater acoustic
channel [51–56]. The energy required to transport k bits of information across a reserve, d,
at an information amount, R, is computed as follows:

ETx(k, d) = k× Eelec +
k
R

Ptx (1)
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where Eelec implies the power utilization for routing 1 bit of information and PTx stands for
the transmitted power.

In order to received k bits of information, the receiver radio power utilization is
provided under the following:

ERx(k) = kPr (2)

Assume that Pr refers the constants dependent upon the devices. In order to fuse k
bits of data, the power utilization is formulated as:

EDA(k) = k× EDA0 (3)

where EDA0 refers the energy used for fusing 1 bit of data, for instance, in use, as 5 nJ/bit.
Fusing data is a frequent and successful method for removing data redundancy, shrinking
data size, and lowering energy consumption. The data fusion is implemented in this
research using an upgraded back propagation neural network (BPNN). Sensor nodes in
UWSNs may collect information with great dismissal. When superfluous information is
directed to the SN, wasteful energy ingesting occurs, resulting in the node’s premature
death and the network’s lifespan being shortened. In comparison, if the CHNs integrate the
data and send it to the SN, then significant energy savings may be realized [57,58]. While
the node is mobile, caused by the water current, it can be located according to the random
motion of the node under the functioning time. The current velocity is 1–3 m

s .

3.2. Process Involved in a WCA

The weight clustering technique defines the CH and utilized cluster infrastructure
utilizing three measures: node degree (NDi), (RESi), and distance (DISi). For all the nodes,
the weight, Pi, was computed as:

Pi = w1 ∗ RESi + w2 ∗ DISi + w3 ∗ NDi (4)

However, w1, w2, and w3 signify the coefficient of model state, as follows:

w1 + w2 + w3 = 1 (5)

The SN(x) for transmitting k bits of data to the receiver at distance, d, is calculated
as follows:

RES = E−
(

ET(k, d) + ER(k)

)
(6)

where E and ET demonstrate the present energy level of the SN and the energy spent on
data distributing, respectively.

ET(k, d) = kEe + KEad2 (7)

where Ee stands for the electron energy, Ea implies the energy has been utilized in implica-
tion, and ER(k) defines the energy transmitted on the received data.

ER(k) = kEe (8)

In addition, the mean value of the distance between neighboring nodes, which exist as
single-hop neighbors, can be calculated as follows:

DIS =
∑NBi

j=1 dist
(
i, nbj

)
NBi

(9)

Although dist
(
i, nbj

)
describes distance of the SN from the neighboring jth SN, even-

tually, the NDEG implies the quantity of neighboring nodes, which have a transmitting
radius, as follows:

NDEG = |N(x)| (10)
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At this point, N(x) =
{

ny
dist(x,y) < transrange

}
x 6= y, and dist(x, y) defines the distance

between two nodes, nx and ny, and transrange stands for the transmission range of the nodes.

3.3. Design of the CSRO Algorithm

The position of the lost human is the primary motivation of the search and rescue
optimization method for optimization problems, and the significance of the clue originating
in this position defines the cost of the solution. Now, the best method discloses a good
position with additional hints [59]. When leaving certain clues, people seek the best option
across the search method. However, the search position for the individual is kept in a
situation matrix (matrix X), with the equivalent size of the memory matrix, and the left
clue can be saved in a memory matrix (matrix M). n× d shows the problem parameter and
n determines the individual quantity in the group.

C =

[
X
M

]
=



X1,1 . . . X1,d
...

. . .
...

Xn,l . . . Xn,d
M1,1 · · · M1,d

...
. . .

...
Mn,l · · · Mn,d


(11)

From the above equation, assuming there are random clues amongst the obtained
clues, the search direction can be attained by the following:

sdi =
(
Xj − Ck

)
, Where k 6= i (12)

where Ck denotes a random value among 1 and 2N, Xi, and Ck defines the position of the
ith human and the kth clue, respectively. sdi indicates the search direction of the clues. It is
noticed that Ck equals Xj, k 6= i. For avoiding repetitive position searches, the parameter of
Xi will not be modified by moving in the indicated direction [60–64]. The SAR approach
uses a binomial crossover operator for applying to the limitations. Moreover, when the
clue has greater significance compared with the current clue, a region was searched for
the spi direction. Otherwise, a search for the location of the existing position in the spi is
continuous. Therefore, the novel position of the jth variable is expressed by the ith human,
as follows:

Xi,j =


∣∣∣Ck,j + r1 ×

(
Xi,j − Ck,j

)
i f f (Ck) > f (Xi)∣∣∣Xi,j + r2 ×

(
Xi,j − Ck,j

)
i f r2 < spi or j = jr, j− 1, . . . , d

|Xi otherwise

(13)

where ck,j denotes the position of variable j and the clue k. jr, r1, and r2 represent three
uniform random numbers within [1, d], [−1, 1], and [0, 1], respectively. The second stage
is about the individual. Here, an exploitation term has been performed regarding the
human’s current location [65–68]. This stage employs the distinct clues connection concept
from the social stage. The position, upgraded by the human, i, can be attained as follows:

Xi = Xj + r3 × (Ck − Cm) (14)

where r3 denotes a uniformly distributed number between 0 and 1, Cm and Ck define two
arbitrary numbers between 1 and 2 N, respectively, and i 6= k 6= m. They could testify that
they are in the solution space afterward, solving the solution from the preceding stages.
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This phase is named the boundary. In such cases, the following formula is utilized when
the solution is placed outside the border:

X′ij =


(

Xij+X max
j

)
2 i f X′ij > X max

j(
Xi,j+X min

j

)
2 i f X′ij < X min

j

(15)

where j = 1, 2, . . . , d, Xmin
j , and Xmax

j represent the minimal and maximal thresholds for
the parameter j, respectively. According to this stage, the lost human candidate is searched
for on the basis of the previously elucidated technique. When the sum of the cost function
in a given scenario, X′i

(
f
(
X′i
))

, is superior to the existing one, ( f (Xi)), then the preceding
location (X) would be saved in an accidental position in the memory matrix (M), and would
be described as novel situation. If not, then the situation would be left, and the memory
would not be upgraded.

Mn =

{
Xj i f f

(
X′i
)
> f (Xi)

Mn otherwise
(16)

Xi =

{
X′i i f f

(
X′i
)
> f (Xi)

Xi otherwise
(17)

where n determines a random integer among 1 and N, and Mn defines the location of clue
number, n, in the memory matrix.

Time is critical in locating lost individuals due to threat of injury, and any delay that
occurs at the time of searching could lead to death [69–72]. Hence, when a person does not
discover a notable clue during their search, it leaves the next person with the existing position.

usni =

{
usni + 1 i f f

(
X′i
)
< f (Xi)

0 otherwise
(18)

where usn determines the unproductive searching number. When usn is superior to MU
for a person, it moves towards the other location in the space solution. Figure 2 portrays
the flow chart of SRO method.
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Search and rescue optimization (SRO), when searching for people, typically takes
place in two distinct phases: social and individual. Collection followers search for clues
founded in their location, and focus on areas that are more likely to yield clues in the social
phase. There is no regard for where or how many clues have been found by others during
the individual search phase. In general, clues fall into two categories, as follows:

• Remember to save a clue: A member of the exploration group is present and searching
the surrounding area.

• Forgotten clue: Members of the group discovered the clue, but no one is in the location
to solve it. To put it another way, the person who discovered the hint has abandoned
it in search of further potentially relevant information. Members of the group, on the
other hand, have access to the information about that clue.

To increase exploration competence and ensure that the ideal answer is reached, the
chaotic approach is combined with the krill head algorithm (KHA). Because Chebyshev
maps are the most utilized chaotic behavioral maps, chaotic sequences are likely to be
created efficiently and fast. Furthermore, longer sequences are not necessary

Therefore, the existing solution has been switched to an accidental resolution in the solu-
tion space, according to Equation (7) for a possible solution, when usn > MU (Multi−User).
In addition, for an unfeasible solution, usn is superior to MU, the memory matrix solution
using the minimum number of limitation violations is selected, and the current solution is
switched through the solution, so that the current solution substitutes the memory matrix.

Xij = X min
j + r4 ×

(
X max

j − X min
j

)
j = 1, 2, d (19)

where r4 shows a frequently distributed random number within the range of 0–1. Under
instruction to recover the worldwide optimization capability of an SRO algorithm, the
chaotic concept is integrated into it. The chaotic state is an unstable state, which is extremely
sensitive to initial conditions, which can be utilized for avoiding the local optimum problem
and improving the quality of the solution. It is applied for achieving improved exploration
and exploitation in every searching region, thereby enhancing the outcome in determining
optimum global solutions [46–48]. The chaotic map was used in this study to indicate
human searches around their current location in the individual phase, and the concept of
linking different hints is used in the communal stage for exploration. In contrast to the
social stage, the separation stage changed every dimension of Xij. Time is an important
factor in the search-and-rescue procedure, because missing individuals may be hurt, and
search-and-rescue parties arriving late may result in death. As a result, these processes
should be designed in such a way that a huge amount of data is examined in as short a
period of time as possible. As a result, if a human did not find the best hints after running a
specific search count in their location, they would leave and go to a different site.

xk+1
i = xk

i + Cnap ×
(

xBH − xk
i

)
, i = 1, 2, . . . , N (20)

where xk
i and xk+1

i denote positions at iterations k and k + 1 and Cmap represents a chaotic
map. In this work, ten chaotic maps were used to determine the random values involved
in the SRO algorithm.

3.4. Application of CSRO Algorithm for Data Transmission

The main function of the CSRO algorithm is maximizing the lifespan of networks and
minimizing energy utilization of all sensor nodes. Assume that h1 is the most objective
function, such that CH is selected as the next hop, CH, with a superior RE, to route the data;
such that, for maximizing the network lifespan, for instance, h1 is maximization. Assume
that h2 is another main function that has a minimal distance among the CHs to the next
hop CH, and the next hop CH, to the base station (BS). This procedure occurs under the
instruction to decrease the energy utilization of the network as required for minimizing h2.
Assume that h3 is the third main function; thus, CHs is selected as the next hop among the
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CHs with a lesser node degree. In order to improve the lifespan of the network, h3 must be
minimized. Assume that bij is a Boolean variable, determined as follows:

bij =

{
1 i f next− hop(CHi) = CHj, ∀i,j1 ≤ i, j ≤ m
0 Otherwise

(21)

Minimize F =
1
h1
× β1 + h2 × β2 + h3 × β3 (22)

which is subject to the following:

dis
(
CHi, CHj

)
≤ dmaxCHj(C + BS) (23)

m

∑
j=1

bij = 1 and 1 6= j (24)

The constraint in (23) means that the next hop node of CHi will be in the range of
CHi, and that the next hop node is CH j. β1, β2, β3 indicate the anchor nodes with the
target distance. The constraint in (25) declares that the next hop node of CHi is unique, for
instance, CH j, and the constraint makes sure that there could not be 0 or 100% weight on
either of the objectives.

4. Performance Validation

This section analyzes the CSRO-MHDT method in comparison with recent methods of
effective data transmission processes in a UWSN. The consequences are reviewed under
variable rounds of execution. Table 2 and Figure 3 demonstrate an examination of the
comparative number of alive nodes (NAN) of the CSRO-MHDT technique under varying
rounds. The results indicated that the CSRO-MHDT technique has increased values of
NAN under all rounds. For instance, with 440 rounds, the CSRO-MHDT technique has
obtained a higher NAN of 300, whereas the energy-efficient clustering routing protocol
(EECRP), the fuzzy C-means and moth–flame optimization (FCMMFO), the fuzzy scheme
and particle swarm optimization (FBCPSO), the energy-efficient grid routing based on 3D
cubes (EGRC), and the low-energy adaptive clustering hierarchy based on expected residual
energy (LEACH-ERE) models have attained lower NAN results of 296, 290, 299, 298, and
287 nodes, respectively. In addition, with 600 rounds, the CSRO-MHDT technique has an
increased NAN result of 279, whereas the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-
ERE models have lower NAN results of 264, 253, 240, 243, and 238 nodes, respectively.
Moreover, with 920 rounds, the CSRO-MHDT technique accomplished a higher NAN
result of 68, whereas the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE models
demonstrated lower NAN results of 20, 0, 0, 0, and 0 nodes, respectively.

First node dies (FND), half node dies (HND), and last node dies (LND) are examples
of the comparative network area evaluation of the CSRO-MHDT technique, as shown
in Table 3 and Figure 4, respectively (LND). The results indicated that the CSRO-MHDT
technique has resulted in lengthened lifetime over the existing methods. With respect to
FND, the CSRO-MHDT method reached FND at 476 rounds, whereas the EECRP, FCMMFO,
FBCPSO, EGRC, and LEACH-ERE models attained FND at earlier rounds of 440, 403, 361,
323, and 280, respectively. In addition, in terms of HND, the CSRO-MHDT system reached
HND at 838 rounds, whereas the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE
techniques reached HND at earlier rounds of 754, 749, 730, 753, and 722, respectively.
Finally, with respect to LND, the CSRO-MHDT approach reached LND at 998 rounds,
whereas the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE techniques reached
LND at earlier rounds of 940, 921, 903, 874, and 840, respectively.
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Table 2. NAN study of the CSRO-MHDT technique in comparison with existing methods analyzed
under different rounds.

No. of Alive Nodes

No. of Rounds CSRO-MHDT EECRP FCMMFO FBCPSO EGRC LEACH-ERE

0 300 300 300 300 300 300
40 300 300 300 300 300 300
80 300 300 300 300 300 300

120 300 300 300 300 300 300
160 300 300 300 300 300 300
200 300 300 300 300 300 300
240 300 300 300 300 300 300
280 300 300 300 300 300 299
320 300 300 300 300 299 297
360 300 300 300 297 298 295
400 300 300 298 298 297 290
440 300 296 290 299 298 287
480 296 294 287 290 290 285
520 294 288 279 284 281 271
560 287 276 268 262 264 254
600 279 264 253 240 243 238
640 269 234 230 202 228 218
680 253 217 211 188 187 179
720 226 183 172 169 160 152
760 214 142 132 130 140 50
800 183 113 121 89 95 3
840 139 72 94 56 20 0
880 116 28 37 12 0 0
920 68 20 0 0 0 0
960 28 0 0 0 0 0
1000 0 0 0 0 0 0
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Table 3. Network lifetime analysis of the CSRO-MHDT technique in comparison with existing approaches.

No. of Rounds

CSRO-MHDT EECRP FCMMFO FBCPSO EGRC LEACH-ERE

FND 476 440 403 361 323 280
HND 838 754 749 730 753 722
LND 998 940 921 903 874 840
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approaches.

Next, a brief TEC investigation of the CSRO-MHDT method in comparison with existing
approaches is provided in Table 4 and Figure 5. The results indicated that the CSRO-MHDT
technique had the lowest TEC under all rounds compared with existing methods. For example,
with 50 rounds, the CSRO-MHDT method obtained lower TEC of 2.22%, whereas the EECRP,
FCMMFO, FBCPSO, EGRC, and LEACH-ERE models achieved higher TEC of 2.46%, 2.71%,
5.39%, 5.15%, and 7.59%, respectively. With 500 rounds, the CSRO-MHDT system had the
lowest TEC of 34.16%, whereas the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE
models achieved higher TEC of 39.29%, 39.29%, 56.84%, 46.60%, and 65.87%, respectively.
Finally, with 1000 rounds, the CSRO-MHDT technique had the lowest TEC of 99%, whereas
the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE methodologies attained higher TEC
of 99.55%, 99.52%, 99.61%, 100%, and 100%, respectively.

A detailed PLR analysis of the CSRO-MHDT approach in comparison with recent
methods is offered in Table 5 and Figure 6. The outcomes showed that the CSRO-MHDT
technique had the lowest PLR under all rounds compared with existing approaches. For
instance, with 50 rounds, the CSRO-MHDT algorithm had decreased PLR of 1%, whereas
the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE systems obtained higher PLR of
1%, 1%, 1%, 1%, and 1%, respectively. Next, with 500 rounds, the CSRO-MHDT technique
had a low PLR of 2%, whereas the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE
models had higher PLR results of 5%, 7%, 8%, 9%, and 10%, respectively. Finally, with 1000
rounds, the CSRO-MHDT technique had a low PLR of 12%, whereas the EECRP, FCMMFO,
FBCPSO, EGRC, and LEACH-ERE models had increased PLR of 17%, 19%, 22%, 23%, and
25%, respectively.
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Table 4. TEC analysis of the CSRO-MHDT technique in comparison with existing approaches with
different rounds.

Total Energy Consumption (%)

No. of Rounds CSRO-MHDT EECRP FBCPSO FCMMFO EGRC LEACH-ERE

0 0.51 0.76 0.76 1.49 1.49 2.71
25 1.49 1.00 1.25 2.22 3.44 5.88
50 2.22 2.46 2.71 5.39 5.15 7.59
75 3.20 3.68 4.42 6.61 6.37 12.22

100 4.43 4.66 5.88 8.32 8.07 14.66
125 4.42 6.12 7.10 11.49 9.78 15.88
150 7.14 7.34 9.29 12.22 11.49 19.29
175 8.27 9.54 10.51 13.93 13.68 22.46
200 9.97 11.00 12.95 16.61 17.83 24.90
225 10.41 12.95 14.90 19.05 19.29 28.56
250 12.39 15.14 16.85 21.73 20.27 31.73
275 14.34 17.10 18.80 23.44 22.46 35.38
300 16.80 18.56 21.97 25.87 24.90 39.53
325 17.02 19.78 22.22 29.04 29.29 41.24
350 20.48 22.46 23.92 33.19 29.29 47.82
375 23.14 24.41 25.63 37.33 33.92 50.99
400 25.61 26.36 27.09 40.50 35.14 58.31
425 28.80 29.29 29.53 46.60 40.75 57.57
450 30.02 31.48 31.73 50.26 44.16 60.99
475 31.97 35.38 34.41 52.45 45.38 63.43
500 34.16 39.29 39.29 56.84 46.60 65.87
525 35.63 39.53 40.99 61.96 50.26 70.74
550 37.09 45.38 45.14 64.65 55.38 73.18
575 40.50 47.09 49.04 69.52 57.09 77.81
600 41.72 50.50 52.45 75.38 62.45 80.74
625 45.63 54.40 57.82 79.76 65.87 87.57
650 50.99 58.55 60.50 84.64 70.25 90.25
675 52.94 61.23 63.67 88.54 78.79 93.42
700 58.06 65.62 69.28 91.71 81.72 95.37
725 60.26 70.50 73.67 95.61 87.57 98.05
750 67.08 75.62 76.84 95.61 88.54 99.52
775 70.50 78.55 82.93 98.61 93.66 100.00
800 73.42 85.37 87.57 98.61 96.59 100.00
825 76.84 88.30 91.47 98.61 98.05 100.00
850 81.23 93.42 94.15 98.61 98.78 100.00
875 86.84 96.83 97.81 99.61 100.00 100.00
900 89.27 97.57 99.27 99.61 100.00 100.00
925 92.69 99.03 99.34 99.61 100.00 100.00
950 95.86 98.78 99.43 99.61 100.00 100.00
975 98.05 99.52 99.45 99.61 100.00 100.00
1000 99.00 99.55 99.52 99.61 100.00 100.00

Table 6 and Figure 7 illustrate the number of packets received (NPR) by the CSRO-
MHDT system under varying rounds, in comparison with existing approaches. The results
showed that the CSRO-MHDT technique had higher values of NPR under all rounds.
For instance, with 50 rounds, the CSRO-MHDT technique attained higher NPR of 3792%,
whereas the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE approaches had lower
NPR results of 3400%, 2549%, 2876%, 2026%, and 1554%, respectively. With 500 rounds, the
CSRO-MHDT method had higher NPR of 17,924%, whereas the EECRP, FCMMFO, FBCPSO,
EGRC, and LEACH-ERE models had lower NPR results of 17,401%, 16,027%, 14,784%,
12,167%, and 11,837%, respectively. Furthermore, with 1000 rounds, the CSRO-MHDT
system accomplished a higher NPR result of 23,098%, whereas the EECRP, FCMMFO,
FBCPSO, EGRC, and LEACH-ERE algorithms demonstrated lower NPR results of 21,457%,
19,887%, 18,775%, 14,849%, and 14,427%, respectively.
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Table 5. PLR analysis of the CSRO-MHDT technique in comparison with existing approaches.

Packet Loss Ratio (%)

No. of Rounds CSRO-MHDT EECRP FBCPSO FCMMFO EGRC LEACH-ERE

0 0 0 0 0 0 0
50 1 1 1 1 1 1

100 1 1 1 1 1 2
150 1 1 1 2 3 3
200 1 1 2 3 4 3
250 1 2 3 3 4 4
300 1 2 3 4 5 5
350 2 3 4 5 6 6
400 2 3 5 6 7 7
450 2 4 6 7 8 9
500 2 5 7 8 9 10
550 3 6 8 9 10 11
600 4 7 9 10 11 12
650 5 8 10 11 12 14
700 6 8 11 11 14 15
750 7 9 12 14 15 16
800 7 10 13 15 18 17
850 8 12 15 17 19 19
900 9 13 16 17 20 21
950 10 15 18 21 22 23
1000 12 17 19 22 23 25
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Table 6. NPR analysis of the CSRO-MHDT technique in comparison with existing approaches.

No. of Packets Received (%)

No. of
Rounds

CSRO-
MHDT EECRP FBCPSO FCMMFO EGRC LEACH-

ERE

0 0 0 0 0 0 0
50 3792 3400 2549 2876 2026 1554
100 7391 5755 4970 6736 3334 3054
150 10,073 8503 7587 8568 4970 4751
200 11,251 10,335 9550 9419 6736 6521
250 13,279 11,970 10,858 10,138 7718 7310
300 14,522 13,213 12,363 11,185 8830 8336
350 15,503 14,457 14,064 12,167 10,008 9679
400 16,746 15,176 14,718 13,410 11,054 10,595
450 17,074 16,877 15,503 13,933 11,709 11,442
500 17,924 17,401 16,027 14,784 12,167 11,837
550 18,709 18,120 17,204 15,045 13,148 12,789
600 19,887 18,775 17,532 15,700 13,737 13,521
650 20,410 20,018 18,055 16,485 14,391 14,034
700 21,523 20,410 18,317 17,204 14,653 14,276
750 21,850 20,868 19,102 17,597 15,111 14,642
800 22,046 20,999 19,756 18,186 14,980 14,623
850 22,569 21,195 20,214 18,513 14,849 14,445
900 22,766 21,457 20,214 18,578 14,849 14,570
950 23,027 21,457 20,083 18,775 14,784 14,358

1000 23,093 21,457 19,887 18,775 14,849 14,427

Table 7 and Figure 8 depict the PDR analysis of the CSRO-MHDT algorithm under
varying rounds in comparison with existing approaches. The outcomes revealed that the
CSRO-MHDT technique resulted in increased values of PDR under all rounds. For instance,
with 150 rounds, the CSRO-MHDT technique attained superior PDR of 99%, whereas the
EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE models reached lower PDR results of
99%, 99%, 98%, 97%, and 97%, respectively. Moreover, with 500 rounds, the CSRO-MHDT
approach had an increased PDR of 98%, whereas the EECRP, FCMMFO, FBCPSO, EGRC,
and LEACH-ERE models obtained lower PDR results of 95%, 93%, 92%, 91%, and 90%,
respectively. Finally, with 1000 rounds, the CSRO-MHDT technique accomplished a higher
PDR of 88%, whereas the EECRP, FCMMFO, FBCPSO, EGRC, and LEACH-ERE techniques
exhibited reduced PDR of 83%, 81%, 78%, 77%, and 75%, respectively.
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Table 7. PDR analysis of the CSRO-MHDT technique in comparison with existing approaches.

Packet Delivery Ratio (%)

No. of Rounds CSRO-MHDT EECRP FBCPSO FCMMFO EGRC LEACH-ERE

0 100 100 100 100 100 100
50 99 99 99 99 99 99

100 99 99 99 99 99 98
150 99 99 99 98 97 97
200 99 99 98 97 96 97
250 99 98 97 97 96 96
300 99 98 97 96 95 95
350 98 97 96 95 94 94
400 98 97 95 94 93 93
450 98 96 94 93 92 91
500 98 95 93 92 91 90
550 97 94 92 91 90 89
600 96 93 91 90 89 88
650 95 92 90 89 88 86
700 94 92 89 89 86 85
750 93 91 88 86 85 84
800 93 90 87 85 82 83
850 92 88 85 83 81 81
900 91 87 84 83 80 79
950 90 85 82 79 78 77
1000 88 83 81 78 77 75

By examining the above results and discussion, it can be confirmed that the CSRO-
MHDT technique can accomplish effective data transmission in a UWSN.
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5. Conclusions

In this study, a novel CSRO-MHDT method was developed for the optimal choice
of routes for data transmission in a UWSN. The primary intention of the CSRO-MHDT
technique is to reduce energy dissipation and enhance the lifetime of the UWSN. Primarily,
the CSRO-MHDT technique involves WCA for effective choice of CHs. In addition, the
CSRO-MHDT technique derived a fitness function and effectively selected a set of routes
in a UWSN. For assessing the outcomes of the CSRO-MHDT technique, a wide-ranging
experimental examination was carried out and the results were assessed under several aspects.
The extensive comparative analysis highlighted the superior performance of the CSRO-MHDT
technique over recent state-of-the-art approaches. Therefore, the CSRO-MHDT method can
be used in application for optimal data transmission in UWSNs. In the future, delay-aware
data aggregation schemes can be designed to improve the efficiency of UWSNs.
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