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Holographic theories with classical gravity duals are maximally chaotic; i.e., they saturate the universal
bound on the rate of growth of chaos [J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energy Phys.
08 (2016) 106]. It is interesting to ask whether this property is true only for leading large N correlators or if
it can show up elsewhere. In this Letter, we consider the simplest setup to tackle this question: a Brownian
particle coupled to a thermal ensemble. We find that the four-point out-of-time-order correlator that
diagnoses chaos initially grows at an exponential rate that saturates the chaos bound, i.e., with a Lyapunov
exponent λL ¼ 2π=β. However, the scrambling time is parametrically smaller than for plasma excitations,

t� ∼ β log
ffiffiffi
λ

p
instead of t� ∼ β logN2. Our result shows that, at least in certain cases, maximal chaos can be

attained in the probe sector without the explicit need of gravitational degrees of freedom.

DOI: 10.1103/PhysRevLett.120.201604

Introduction.—In recent years, the study of quantum
chaos in AdS=CFT has become a topic of great interest,
leading to new insights in quantum gravity and conformal
field theories. This program was initiated in Ref. [1], which
presented the first holographic realization of the butterfly
effect. More recently, the same approach has been gener-
alized to various other gravitational setups [2,3].
In quantummechanical systems, oneway to analyze chaos

is through the commutator ½WðtÞ; Vð0Þ� between a pair of
Hermitian operators. This commutator represents the sensi-
tivity of WðtÞ to perturbations created at an initial time by
Vð0Þ. The strength of this effect is measured by the quantity

CðtÞ ¼ −h½WðtÞ; Vð0Þ�2i; ð1Þ

where the bracket denotes a thermal expectation value at
temperature T ¼ β−1. The time at which CðtÞ becomes
significant is called the scrambling time t�. The quantity
CðtÞ contains time-ordered and out-of-time-ordered corre-
lators. Time-ordered correlators are not sensitive to chaos:
They decay as hVð0ÞVð0ÞWðtÞWðtÞi ∼ hVVihWWiþ
Oðe−t=tdÞ, where td ∼ β is the dissipation time. The chaotic
behavior of (1) can be probed by the out-of-time-order
correlator (OTOC)

fðtÞ ¼ hVWðtÞVWðtÞi
hVVihWWi ; ð2Þ

which becomes small at late times if the system is chaotic.
For instance, in holographic theories with Einstein gravity
duals, one finds that, for td < t < t� [1–3],

fðtÞ ¼ 1 −
f0
N2

eλLt þOðN−4Þ; ð3Þ

where f0 is a positive order one constant that depends on the
specific operators V and W. The time at which the second
term becomes relevant gives the scrambling time

t� ∼ β logN2: ð4Þ

The Lyapunov exponent λL has a universal bound [4]

λL ≤
2π

β
ð5Þ

and is saturated by black holes in Einstein gravity [5]. This
gives support to the claim that black holes are the fastest
scramblers in nature [7]. Consequently, the above bound has
been used as a criterion to discriminate between CFTs that
may have Einstein gravity duals [8].
An interesting question we may ask is if we can come

up with other examples of systems that are maximally
chaotic, i.e., that saturate the bound (5), but with no explicit
gravitational degrees of freedom. In this Letter, we will
answer this question positively. In particular, the system we
will consider is a Brownian particle (quark) coupled to a
(strongly interacting) thermal plasma.
Setup.—In the context of AdS=CFT, a heavy quark in a

thermal bath is dual to an open string living in a black brane
geometry [9]:
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ds2 ¼ −r2fðrÞdt2 þ dr2

r2fðrÞ þ r2dx2; ð6Þ

fðrÞ ¼ 1 −
�
rH
r

�
d−1

: ð7Þ

In these coordinates, the boundary is located at r → ∞. The
temperature of the dual CFT corresponds to the Hawking
temperature of the black brane:

T ¼ 1

β
¼ ðd − 1ÞrH

4π
: ð8Þ

In the following, we will focus on d ¼ 3, but the gener-
alization to higher dimensions is straightforward. The
dynamics of an open string in such a background follows
from the Nambu-Goto (NG) action:

SNG ¼ −
1

2πα0

Z
dσdτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γαβ

q
; ð9Þ

where γαβ ¼ gμν∂αXμ∂βXν is the induced metric on the
world sheet and Xμðτ; σÞ are the embedding functions into
the target space. We consider only the term corresponding
to the tension of the string and ignore terms which might
arise from couplings to other bulk fields [10].
Consider the static gauge ðτ; σÞ ¼ ðt; rÞ and parametrize

the embedding as Xμ ¼ ft; r; Xðt; rÞg. The position of the
quark is given by xðtÞ ¼ Xðt; rcÞ, where rc is a UV cutoff.
We assume that the quark is static (in average), hxðtÞi ¼ 0,
and consider small fluctuations due to its interactions with
the thermal plasma. In the gravity side, this corresponds
to studying perturbations of a static string that hangs from
the boundary to the horizon, with embedding Xðt; rÞ ¼ 0.
Indeed, one can easily check thatXðt; rÞ ¼ 0 is a solution of
the NG equations of motion [11]. For this solution, the
inducedmetric on theworld sheet is anAdS2 black hole [15]:

ds2ws ¼ γαβdσαdσβ ¼ −r2fðrÞdt2 þ dr2

r2fðrÞ : ð10Þ

Thus, perturbations over this static string embedding cor-
respond to perturbations on top of this black hole. This is the
first indication that suggests the possible appearance of
chaos, since black holes are known to (i) be fast scramblers
[7] and (ii) saturate the bound on λL [4]. However, in this
setup, what plays the role of Newton’s constantGN ∼ 1=N2

is now α0 ∼ 1=
ffiffiffi
λ

p
. Indeed, the number of degrees of freedom

available is proportional to
ffiffiffi
λ

p
, as can be seen, for example,

from the computation of the entanglement entropy between
the end points of the string [13,19]:

SEE ¼
ffiffiffi
λ

p

3
: ð11Þ

In practice, in order to determine if the system is chaotic or
not, we need to compute the following OTOC [20]:

hpxðtÞpxðtÞi ¼ h _Xð0; rcÞXðt; rcÞ _Xð0; rcÞXðt; rcÞi: ð12Þ

This can be obtained using standard techniques of quantum
field theory in curved space, focusing on the world sheet
theory (9) and regarding the embedding functions Xðt; rÞ as
quantum fields [22].
Before proceeding further, it will be convenient to

recast the problem in terms of Kruskal coordinates, t ¼
ð1=2rHÞ logð−u=vÞ and r ¼ rH½ð2=1þ uvÞ − 1�, and work
in the gauge ðτ; σÞ ¼ ðu; vÞ. The string in this case stretches
between the two asymptotic boundaries of an eternal AdS
black hole (see Fig. 1). For the static solution Xðu; vÞ ¼ 0,
we find that the induced metric is given by

ds2ws ¼ −
4dudv

ð1þ uvÞ2 ; ð13Þ

i.e., an AdS2 wormhole. The equations for the fluctuations
over this embedding follow from the action

SNG ¼ −
1

πα0

Z
dudv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2Hð1 − uvÞ2∂uX∂vX

ð1þ uvÞ4

s
: ð14Þ

Four-point OTOC.—In order to compute the relevant
OTOC, we will use the techniques and approximations
developed in Ref. [2], adapted to the world sheet theory.
Overlapping states.—We represent DðftigÞ ¼

hWðt1ÞVðt2ÞWðt3ÞVðt4Þi as the overlap of two states:

jψi¼Wðt2Þ†Vðt1Þ†jΨi; jψ 0i¼Vðt3ÞWðt4ÞjΨi; ð15Þ

where jΨi is the two-sided purification: the thermofield
double state. The V and W operators create two perturba-
tions on the string. If the difference in times t2 − t1 and
t4 − t3 are large, then the relative boosts between the wave
packets are also large.
In Kruskal coordinates, the perturbation created by W

will have large pv and will be moving near the u ¼ 0
horizon. Similarly, the perturbation created by V will have
large pu and will be moving near the v ¼ 0 horizon. We
represent the W quantum in the Hilbert space on the v ¼ 0
horizon and the V quantum on the u ¼ 0 horizon. Then jψ 0i
is the “in” state

FIG. 1. The setup: a string (shown in red) stretching between
the two asymptotic boundaries of an eternal AdS black hole.
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Vðt3ÞWðt4ÞjΨi ¼
Z

ψ3ðpu
3Þψ4ðpv

4Þjpu
3p

v
4iin: ð16Þ

Similarly, jψi is an “out” state given by

Wðt2ÞVðt1ÞjΨi ¼
Z

ψ1ðpu
1Þψ2ðpv

2Þjpu
1p

v
2iout: ð17Þ

The normalization of the states is given by

hpvjqvi ¼ 4pv

π
δðpv − qvÞ: ð18Þ

The wave functions can be expressed using the Fourier-
transformed bulk-to-boundary propagators

ψ1ðpuÞ ¼
Z

dve2ip
uvhφVðu; vÞVðt1Þ†iju¼0; ð19Þ

ψ2ðpvÞ ¼
Z

due2ip
vuhφWðu; vÞWðt2Þ†ijv¼0; ð20Þ

ψ3ðpuÞ ¼
Z

dve2ip
uvhφVðu; vÞVðt3Þiju¼0; ð21Þ

ψ4ðpvÞ ¼
Z

due2ip
vuhφWðu; vÞWðt4Þijv¼0; ð22Þ

where φV;W are the world sheet fields dual to the operators
V and W. Finally, the four-point function is given by the
overlap (see Fig. 2 for a pictorial representation)

D¼
Z
dfpigψ�

3ðpu
3Þψ�

4ðpv
4Þψ1ðpu

1Þψ2ðpv
2Þinhpu

3p
v
4jpu

1p
v
2iout:

ð23Þ

We still need to compute the bracket in the integrand. In the
center-of-mass frame, if the relative boost is large, then
the momenta pu

1; p
v
2; p

u
3; p

v
4 are large and momentum

conservation implies pu
1 ≈ pu

3 , p
v
2 ≈ pv

4. Within the two-
particle Hilbert space, we can approximate jpu

1p
v
2iout≈

eiδðsÞjpu
1p

v
2iin, where s ¼ 4pu

1p
v
2 is a Mandelstam variable.

Phase shift.—Let us now compute δðsÞ. We define
R ¼ vþ u and T ¼ v − u and rescale X → Xls=rH, where
ls ≡

ffiffiffiffiffiffiffiffiffi
2πα0

p
. At quadratic order, the action (14) reads

S0 ¼
1

2

Z
dTdRð _X2 − X02Þ: ð24Þ

We are interested in high-energy collisions near the
horizons, so we considered the flat space approximation
and set uv ¼ 0. In the center-of-mass frame, the solution
for two equal perturbations moving in opposite directions is

XðT; RÞ ¼ FðT þ RÞ þ FðT − RÞ; ð25Þ

where FðξÞ is assumed to vanish outside a window around
ξ ¼ 0. In this approximation, the two wave packets simply
pass through each other. Let us now consider the sublead-
ing interacting term in the action:

S1 ¼
l2s
8

Z
dTdRð _X2 − X02Þ2: ð26Þ

Evaluating S1 on the background of two wave packets will
yield the phase shift. By plugging in (25), we get

S1 ¼ l2s

�Z
dξF0ðξÞ2

�
2

: ð27Þ

Since we have δðsÞ ¼ S1, all that is left to do is to express
the action in terms of the Mandelstam variable of the
collision. The target space current is given by

Pa
μ ¼ −

ffiffiffiffiffiffi
−γ

p
γabημν∂bXν: ð28Þ

The string energy is then an integral over a spacelike slice
on the world sheet

E½X� ¼ −
Z

dσPτ
T ¼

Z
dσ

ffiffiffiffiffiffi
−γ

p
γτbηTν∂bXν: ð29Þ

This gives a divergent energy for the infinitely long string:

E½F� ≃
Z

dR½1þ F0ðT − RÞ2 þ F0ðT þ RÞ2 þ � � ��: ð30Þ

The expansion in terms of jF0j ≪ 1 is necessary, because
we have neglected terms beyond S1 in the expression for
the phase shift. The energy of the wave packets is thus

ΔE ¼ E½F� − E½0� ¼ 2

Z
dξF0ðξÞ2; ð31Þ

and the Mandelstam variable is s ¼ ðΔEÞ2. Comparing this
formula with (27), we get

FIG. 2. The four-point function (23) as an inner product of the
two states (16) and (17). The solid lines represent spacelike slices
of the string world sheet, while the wiggles correspond to
operator insertions near the horizons.
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δðsÞ ¼ sl2s
4
: ð32Þ

The phase shift can also be computed from light-cone
quantization for a bosonic critical string as in Ref. [24]. It is
easy to check that their method also reproduces our phase
shift formula (32).
Integral over momenta.—The bulk-to-boundary propa-

gator for an operator with conformal dimension Δ is

hϕðu; vÞOðt0Þi ¼ cO

�
1þ uv

uet
0 − ve−t

0 þ ð1 − uvÞ

�
Δ
; ð33Þ

where we have used Kruskal coordinates in the bulk and set
rH ¼ 2π=β ¼ 1 for simplicity. The temperature depend-
ence can be restored by dimensional analysis whenever
necessary. We evaluate these propagators at one of the
horizons (u, v ¼ 0) and perform the Fourier transforms
in (19)–(22):

ψ1ðpu; t1Þ ¼ −2πpuθðpuÞe2t�1þ2ipue
t�
1 ; ð34Þ

ψ2ðpv; t2Þ ¼ iπpvθðpvÞe−t�2−2ipve
−t�
2 ; ð35Þ

ψ3ðpu; t3Þ ¼ −2πpuθðpuÞe2t3þ2ipuet3 ; ð36Þ

ψ4ðpv; t4Þ ¼ iπpvθðpvÞe−t4−2ipve−t4 ; ð37Þ

where the complex conjugate in t1 and t2 appears because
we are considering Hermitian conjugates for the first and
the second propagators in jψi. Since WðtÞ ¼ xðtÞ and
VðtÞ ¼ _xðtÞ, we have already set ΔW ¼ 1 and ΔV ¼ 2.
With (34)–(37) and δ ¼ pupvl2s , we are ready to perform
the overlap integration (23). By changing the variables
pu ¼ −½p=2ið−et1 þ et3Þ� and pv ¼ ½q=2ið−et2 þ et4Þ� and
fixing the end points as t1 ¼ iϵ1, t2 ¼ tþ iϵ2, t3 ¼ iϵ3, and
t4 ¼ tþ iϵ4, we find

hVðiϵ1ÞWðtþ iϵ2ÞVðiϵ3ÞWðtþ iϵ4Þi

¼ C
Z

∞

0

dpdqp3qe−p−qeil
2
setpq=4ϵ13ϵ�24 ; ð38Þ

hVðiϵ1ÞVðiϵ3ÞihWðtþ iϵ2ÞWðtþ iϵ4Þi

¼ C
Z

∞

0

dpdqp3qe−p−q; ð39Þ

where we have defined the constants

C≡ c2Vc
2
W

π4

1024
csc4

�
ϵ1 − ϵ3

2

�
csc2

�
ϵ2 − ϵ4

2

�
; ð40Þ

ϵij ≡ iðeiϵi − eiϵjÞ: ð41Þ
The integrals above can be computed exactly in terms of
the exponential integral, EiðzÞ ¼ −

R∞
−z e

−tdt. However, the
results can be trusted only up to Oðl2sÞ, since we truncated

the action at this order. Performing this approximation, the
normalized four-point function reads

hVðiϵ1ÞWðtþ iϵ2ÞVðiϵ3ÞWðtþ iϵ4Þi
hVðiϵ1ÞVðiϵ3ÞihWðtþ iϵ2ÞWðtþ iϵ4Þi

≃1þ 2il2set

ϵ13ϵ
�
24

: ð42Þ

Scrambling and Lyapunov exponent.—Although we
denoted the imaginary time parameters as ϵi, they do not
necessarily have to be small. For instance, if we subtract
β=2 from ϵ1 and add the same to ϵ4, we can obtain two-
sided correlators from the above one-sided expectation
value. A canonical choice made in Ref. [4] consists in
setting ϵ1 ¼ β=2 ¼ π, ϵ2 ¼ −β=4 ¼ −π=2, ϵ3 ¼ 0, and
ϵ4 ¼ β=4 ¼ π=2. This corresponds to the insertion of the
V and W operators at equal spacing around the thermal
circle. With this choice, one gets ϵ13 ¼ −2i and ϵ24 ¼ 2.
Finally, by restoring the temperature dependence, we find
that the four-point function (2) is given by

fðtÞ ¼ 1 −
πffiffiffi
λ

p e2πt=β: ð43Þ

The above equation must be contrasted with the result for
correlator in the pure gravity sector (3). From (43), we can
read off the Lyapunov exponent

λL ¼ 2π

β
; ð44Þ

which saturates the bound (5), and the scrambling time

t� ∼ β log
ffiffiffi
λ

p
: ð45Þ

Thus, even though the world sheet theory is not gravita-
tional, it is maximally chaotic and exhibits the fast scram-
bling property of black holes. In addition, there is also a
parametrically large hierarchy between scrambling and
dissipation determined, in this case, by the small parameter
α0 ∼ 1=

ffiffiffi
λ

p
instead of the standardGN ∼ 1=N2. The fact that

t� scales the way it does can be easily understood, since
ffiffiffi
λ

p
is proportional to the excess of entropy due to the probe
string (11), and these are precisely the degrees of freedom
that are being scrambled.
Complexity.—Black holes are known to excel at another

information theoretic task, namely, the processing of
information. The rate of quantum information processing
is measured by computational complexity C. Complexity
counts the minimal number of gates needed to build a
quantum circuit which prepares the state from a particular
reference state. It grows linearly at late times and obeys the
bound dC=dt ≤ 2E=πℏ [25]. It is then interesting to ask
about complexity in our present setup.
In AdS=CFT, there are two proposals to compute

complexity, the complexity ¼ volume [26] and the
complexity ¼ action [27] conjectures, both satisfying the
bound. In the former, the complexity is proportional to
the spatial volume of the Einstein-Rosen bridge V:
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C ∼
V

GNl
; ð46Þ

where l is some lengthscale. This quantity does indeed
grow linearly over time at late times. In order to compute
the correction to C due to the probe string, one would need
to consider the backreaction of the string on the bulk
geometry and compute the new volume V. Here we proceed
differently. We define the dimensionless quantity

Cws ¼
l̃Vws

α0
; ð47Þ

as a “world sheet complexity,” where l̃ is a timescale and
Vws is the length of the world sheet wormhole. A brief
computation yields at late times

dVws

dt
¼ 2π

β
→

dCws
dt

¼ const: ð48Þ

It would be interesting to ask about its significance in the
CFT language. The second proposal for complexity gets rid
of the arbitrary lengthscale l and states that

C ∼
SWDW

πℏ
; ð49Þ

where SWDW is the bulk action evaluated on the Wheeler-
DeWitt patch. The correction of C due to the probe string in
this case is simpler: It is given by the NG action evaluated
on theWheeler-DeWitt patch [28]. Notice that if we were to
define a world sheet complexity using the world sheet
geometry, the result would be equivalent to (49). However,
at least in d ¼ 3 we find that there is an ambiguity on
defining the Wheeler-DeWitt patch, because the maximally
extended world sheet geometry gets past the uv ¼ 1 edges
(cf. Fig. 5 in Ref. [29]). We hope to come back to this point
in the future.
Discussion.—We have presented the first example of a

nongravitational system that is maximally chaotic, i.e., that
saturates the universal bound on the Lyapunov exponent
(5). The other two known examples that saturate the bound
AdS black holes in Einstein gravity [4] and the Sachdev-
Ye-Kitaev (SYK) model [17], which contains an AdS2
dilaton gravity sector [18]. Even though the world sheet
theory does not contain gravitational degrees of freedom, it
is worth recalling that the world sheet theory of strings
shares some interesting similarities with theories of quan-
tum gravity, including the absence of local off-shell
observables, a minimal length, and a maximum achievable
(Hagedorn) temperature, as well as (integrable relatives of)
black holes [24].
In summary, the maximal chaotic exponent for the string

follows from the following two points: (i) The induced
world sheet metric has a horizon; therefore, by Rindler
kinematics, the relation between world sheet scattering

energy and time is s ∼ e2πt=β. And (ii) the eikonal phase is
δ ∼ α0sp with p ¼ 1. This result is quite nontrivial. In
ordinary quantum field theory, a spin J field exchanged in
the Mandelstam t channel gives p ¼ J − 1. Causality and
unitarity further constrain the value of the exponent to be
p ≤ 1, since eiδðsÞ must be analytic in the upper half of the
complex s plane and jeiδðsÞj ≤ 1 [30]. The NG theory has
infinitely many higher derivative nonrenormalizable terms
that appear nonlinearly in the action. As explained in
Ref. [31], the requirements of unitarity, crossing symmetry,
and analyticity restrict the phase shift to take the form

ei2δðsÞ ¼
Y
j

μj þ s

μj − s
eiPðsÞ; ð50Þ

where PðsÞ is an odd polynomial in s and μj are located in
the lower half of the complex plane and either lie on the
imaginary axis or come in pairs symmetric with respect to
it. What is surprising is that the μj and PðsÞ for the NG
theory conspire to give the required phase shift mimicking a
single graviton exchange (see also [24]).
Finally, let us comment on the extension of the chaos

bound conjectured in Ref. [4] to our setup. The proof of the
maximal Lyapunov exponent relies on two points. The first
one is a result bounding the derivative of any function,
which was shown to hold in general. The second one is the
assumption that the error ε [32] of the late-time factoriza-
tion of the OTOC is small. A quick calculation shows that
in our setup ε ∼ 1=

ffiffiffi
λ

p
, which holds true as long as λ is

large. This, together with the fact that δðsÞ ∼ s seems to
hold beyond leading order [24], suggests that perturbative
higher-order α0 corrections should respect the bound,
although it would be interesting to see an explicit calcu-
lation. Furthermore, at weak ’t Hooft coupling, the strength
of scattering in the gauge theory is of the order of λ, so one
would expect λL ∼ λ=β, parametrically smaller than the
strong coupling result.
There are a few directions that may be worth exploring

in the future. Two interesting generalizations to consider
are (i) a higher-dimensional target space and (ii) higher-
dimensional probes in the bulk such as Dp-branes. From
the latter, one could also compute the associated butterfly
velocities and compare with the charge diffusion results
[33]. One could also repeat the computations of the OTOC
presented here in more complex shockwave geometries,
i.e., segmented strings in AdS space [34]. Finally, it would
be interesting to understand whether the chaotic behavior
observed here can emerge in other field theories in a black
hole background or whether there are specific features of
the string action that make it chaotic.

We are grateful to M. Chernicoff, V. Hubeny, and D.
Stanford for discussions and useful correspondence. This
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Note added.—Recently, we became aware of Ref. [35],
whose results overlap with ours.
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