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Abstract—Chaotic dynamics of a semiconductor laser subject
to optical feedback from a frequency-detuned fiber Bragg grating
(FBG) is investigated experimentally and numerically. Although
the FBG is similar to a mirror in perturbing the laser into chaos, it
is not the same as a mirror because it provides spatially distributed
reflections. Such distributed reflections effectively suppress the un-
desirable time-delay signature (TDS) contained in the autocorrela-
tion function of the chaotic intensity time-series. The investigation
shows that the best suppression of TDS is attained when the FBG
is positively detuned from the free-running laser frequency. The
TDS suppression is due to dispersion at frequencies near an edge
of the main lobe of the FBG reflectivity spectrum. The suppression
prefers the FBG at a positive detuning frequency because the laser
cavity is red-shifted by the antiguidance effect. Numerically, the
dynamical behavior is mapped in the parameter space of detuning
frequency and feedback strength, where wide regions of chaos are
identified. Experimentally, the TDS suppression by FBG feedback
is demonstrated for the first time. The positively detuned FBG sup-
presses the TDS by over ten times to below 0.04 in the experiments.

Index Terms—Optical chaos, time-delay signature, semiconduc-
tor laser, fiber Bragg grating.

I. INTRODUCTION

S
EMICONDUCTOR lasers subject to external feedbacks

exhibit a wide range of interesting nonlinear dynamical be-

haviors [1]–[10]. A solitary single-mode semiconductor laser

without feedback gives only continuous-wave (CW) emission,

but it can be easily perturbed into different nonlinear dynamics

which originate from the interactions between the intra-cavity

optical fields and charge-carriers. The perturbation can be real-

ized by different approaches such as optical injection and feed-

back [11]–[16], where the latter is one of the simplest approaches

as it involves only one laser [17]–[19]. When a laser is subject to

feedback, it manifests nonlinear behaviors including self-mixing

[20], [21], low-frequency fluctuations [22], [23], intensity pul-

sations [9], [24], noise suppression [3], [25], [26], frequency

oscillations [27]–[31], nonlinear transients [6], [7], and chaos
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[32]–[35]. The chaotic dynamics in semiconductor lasers with

feedbacks are typically broadband, noise-like, synchronizable,

and high-dimensional [36], [37]. These unique properties en-

abled a number of novel applications such as high-speed optical

random bit generation [4], chaos-based secure communication

[5], [18], and chaotic ranging [8], [24].

Despite being noise-like, the chaotic emission from a laser

subject to feedback is prone to being scrutinized by some power-

ful nonlinear time-series analyses. Analyses using the permuta-

tion entropy, permutation statistical complexity, delayed mutual

information (DMI), or autocorrelation function (ACF) on the

laser emission intensity time-series allow the extraction of the

information about the feedback delay time [38]–[44]. Similar

analyses on the emission optical phase can further yield more

information on the delay time [45]–[47]. Nonetheless, evaluat-

ing the ACF of the emission intensity time-series is the easiest

approach towards time-delay identification [38], [39]. The ap-

proach is, for instance, readily affordable by an eavesdropper

who attacks a chaos communication link. The residual peak in

the ACF at the delay time is referred to as a time-delay signa-

ture (TDS). The TDS can clearly reveal the value of the delay

time. Therefore, it was suggested that the TDS of the emission

intensity ACF must be suppressed as much as possible [15],

[48]–[51]. The TDS poses problems to the application of optical

chaos. For example, it degrades the security in chaos commu-

nication, quality in random bit generation, and ambiguities in

chaotic ranging applications [24], [52], [53].

Rontani et al. pioneered the suppression of TDS by opti-

mizing the feedback strength in the simplest feedback config-

uration, which employs only one mirror [38], [39]. The nu-

merical simulation showed a minimal TDS of about 0.15 by

using an optimal feedback strength, which is sufficiently strong

to induce chaos and yet not too strong to enhance TDS [38].

However, the approach usually requires relatively short feed-

back delay times, comparable to the period of the relaxation

oscillation in order to obscure the TDS. Other different ap-

proaches to TDS suppression were subsequently reported by

adopting more complicated configurations for feedbacks. These

approaches include utilizing dual-path feedbacks using essen-

tially two mirrors [35], mutually coupled feedbacks using two

lasers [54], [55], feedback into a laser cascaded with injection

into another laser [32], [49], and on-chip integrated optical feed-

back [50]. Interactions of different polarization modes in vertical

cavity surface-emitting lasers (VCSELs) were also investigated

in TDS suppression with mutual coupling, injection cascad-

ing, as well as polarization-preserved or polarization-rotated
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feedbacks [33], [56], [57]. These approaches to TDS suppres-

sion typically involved increasing the hardware complexity of

the setup by adopting multiple lasers, multiple feedback loops,

or multiple reflectors.

In order to simplify the constructions of these systems, an ap-

proach for TDS suppression by adopting a fiber Bragg grating

(FBG) as the only reflector to a single-mode laser was proposed

[51]. The approach was recently extended to VCSEL as well

[58]. The approach employs an FBG as a distributed reflector

in place of a single mirror, obscuring the round-trip feedback

delay time, which leads to the reduction of the TDS. Compar-

ing to other approaches of TDS suppression, the use of grating

feedback is relatively simple as it only involves coupling light

into an FBG. The approach is also a form of filtered optical

feedback in which the filter spectral response is determined

by the FBG. It complements some early investigations using

feedbacks from idealized Lorentzian filters for some interest-

ing frequency-dynamics and noise reduction effects [26]–[30].

Feedbacks from different practical gratings for wavelength sta-

bilization have also been reported [31], [59], [60]. Nonetheless,

the approach for suppressing TDS by FBG feedback was only

numerically investigated [51], [58], where the effect of detuning

the FBG from the laser have not been investigated numerically

neither.

In this paper, TDS suppression of a single-mode semiconduc-

tor laser subject to feedback from an FBG is experimentally and

numerically investigated. The numerical results first identify

wide regions of chaotic dynamics over a range of FBG detun-

ing frequency and feedback strength. Moreover, experimental

results confirm the reduction of TDS when the FBG replaces

a mirror for feeding back light into the laser. The reduction is

attributed to the distributed reflections of the FBG, which cor-

respond to the associated chromatic dispersion, according to

numerical results. Furthermore, best suppression of the TDS is

observed to occur when the FBG is positively detuned with re-

spect to the free-running laser frequency. The feedback power

causes red-shifting of the laser cavity through the antiguidance

effect, pushing the emission towards the low frequency edge of

the main lobe in the FBG reflectivity spectrum, which is asso-

ciated with an enhanced dispersion for TDS suppression. With

convenient adjustments of the detuning frequency, the experi-

mental results show a minimal TDS of less than 0.04, which

is below 10% of the original TDS from mirror feedback. The

TDS is nearly perfectly concealed in the experiment using a

positively detuned FBG feedback.

Following this introduction, the schematic and model of the

laser with detuned FBG feedback are presented in Section II.

The numerical results are described in Section III, while the

experimental results are listed in Section IV. They are followed

by a conclusion in Section V.

II. SETUP

The setup for the experimental and numerical investigations

is shown in Fig. 1. As illustrated by the schematic in Fig. 1(a),

a single-mode semiconductor laser emits a linearly polarized

light that is coupled through the lenses into a single-mode fiber

Fig. 1. (a) Schematic of chaos generation by a single-mode laser under feed-
back from a frequency-detuned grating for TDS suppression. The Bragg fre-
quency of the grating is detuned by ∆f = ∆Ω/2π from the free-running
optical frequency of the laser. (b) Setup for signal analysis. L: lens. HW: half-
wave plate. PBS: polarizing beamsplitter. PC: polarization controller. FBG: fiber
Bragg grating. OI: optical isolator. EDFA: erbium-doped fiber amplifier. PD:
photodetector. A: microwave amplifier. PSA: power spectrum analyzer. OSC:
oscilloscope. Thick lines: optical fibers. Thin lines: free-space optical paths.
Gray lines: microwave cables.

appended with a FBG, which provides distributed reflections for

optical feedback into the laser. A polarization controller is used

to ensure that the polarizations entering into and reflecting from

the fiber are equal, so that the power coupling back to the laser is

maximized. The FBG is uniform and has no birefringence. The

central frequency of its reflection spectrum, namely the Bragg

frequency, is detuned by ∆f from the free-running optical fre-

quency of the laser. For example, a negative ∆f means that the

Bragg frequency is lower than the free-running frequency of

the laser. The optical path length from the laser to the front-end

of the FBG is denoted by l0 , which is longer than the physical

length because of the refractive indices of the optical compo-

nents such as the beamsplitter and the fiber. The corresponding

feedback round-trip time is τRT = 2l0/c with c being the speed

of light in vacuum.

Basically, as Fig. 1(a) shows, the chaos generation only re-

quires coupling the laser and the FBG. Chaos is induced in the

laser when the feedback strength is properly adjusted by the op-

tical alignment of the fiber tip next to the lens. The TDS at τRT

for the chaotic intensity ACF can be suppressed by optimizing

the frequency detuning ∆f . The combination of a half-wave

plate and a polarizing beamsplitter is merely to split a small

amount of the emitted light from the laser for signal analysis

in Fig. 1(b). The emission is sent through a free-space optical

isolator, focused by a lens into a fiber, and amplified by an

erbium-doped fiber amplifier. A photodetector and a microwave

amplifier then convert the optical intensity of the emission into

an electrical signal for monitoring by a power spectrum ana-

lyzer and a real-time oscilloscope. Throughout the experiment,

the half-wave plate is fixed for consistency. Single-mode fibers

are used with angle-polished tips to avoid unwanted reflections

feeding back to the laser.

The numerical simulation corresponding to the signal genera-

tion setup in Fig. 1(a) is based on modifying the Lang-Kobayashi

model to incorporate the FBG [30], [38], [61]. The laser can
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be described by the normalized intracavity optical field ampli-

tude a(t) and its normalized charge-carrier density ñ(t). The

field amplitude is a complex phasor quantity in reference to the

free-running optical frequency of the laser. The rate equations

governing the laser dynamics are [1], [51], [62], [63]

da

dt
=

1 − ib

2

[

γcγn

γs J̃
ñ − γp(|a|2 − 1)

]

a

+ γcξf e
iθ

[

r(t)e−i∆Ωt
]

∗ a(t − τRT) (1)

dñ

dt
= − (γs + γn |a|

2)ñ − γs J̃

(

1 −
γp

γc
|a|2

)

(|a|2 − 1)

(2)

where γc is the cavity decay rate, γs is the spontaneous carrier

relaxation rate, γn is the differential carrier relaxation rate, γp is

the nonlinear carrier relaxation rate, J̃ is the normalized bias cur-

rent above threshold, and b is the linewidth enhancement factor

for the antiguidance effect [25], [64]. These are the dynami-

cal parameters within the laser itself, while the FBG feedback

is described by the last term in (1). The term is proportional

to the delayed optical field amplitude a(t − τRT) convoluted

with r(t)e−i∆Ωt . Here, ∆Ω = 2π∆f is the angular frequency

detuning of the Bragg frequency of the FBG away from the

free-running frequency of the laser. r(t) specifies the impulse

response of the FBG with respect to the Bragg resonance fre-

quency and so it equals the inverse Fourier transform of the

reflection frequency response [29], [51], [58], [65]:

r(Ω) = ΩBW

×

(

2Ω + i
√

Ω2
BW − 4Ω2 coth

π
√

Ω2
BW − 4Ω2

2Ωl

)−1

(3)

with FBG parameters ΩBW = 2πfBW and Ωl = 2πfl . The full

width at half-maximum (FWHM) reflection bandwidth of the

main lobe is approximately fBW for a highly reflective FBG,

whereas the reciprocal of the round-trip propagation time inside

the FBG is fl . The peak reflectivity of tanh2(πΩBW /2Ωl) is

attained at the Bragg frequency of Ω = 0. Once the FBG is se-

lected, the feedback can still be adjusted by the grating detuning

∆f and the normalized feedback strength ξf , which is propor-

tional to the coupling efficiency between the laser and the fiber

depending on the alignment of the fiber tip in Fig. 1(a) [51].

The feedback optical phase θ can in principle be adjusted by

fine-tuning the optical path length from the laser to the grating

corrugation. Based on the schematic in Fig. 1 on frequency-

detuned FBG feedback, the numerical and experimental re-

sults on chaotic TDS suppression are detailed in the following

sections.

III. NUMERICAL RESULTS

Numerical simulations are conducted based on (3) for the

FBG as in Fig. 2 and the rate-equation model in (1)–(2)

over a range of FBG detuning frequency ∆f and feedback

strength ξf in Fig. 3. Second-order Runge-Kutta integration is

performed with time step and span of 2.38 ps and 1.25 µs,

respectively. The results are obtained using the dynamical

Fig. 2. FBG reflectivity spectrum |r(Ω)|2 (black) and phase spectrum
arg(r(Ω)/r(0)) (gray). The frequency axis is centered at the Bragg frequency.
The grating has a length of l = 20 mm for fl = 5 GHz. Its FWHM bandwidth
is fBW = 13 GHz.

Fig. 3. Mapping of the output intensity dynamics in the parameter space
of feedback strength ξf and grating detuning frequency ∆f . The laser output
intensity is stable (white), period-one oscillatory (red), quasi-periodic pulsating
(gray), period-doubled oscillatory (yellow), and chaotic (black) in the different
colored regions. The length of the FBG corresponds to fl = 5 GHz. The
bandwidth of the FBG is fBW = 13 GHz.

parameters previously extracted from a semiconductor laser

with J̃ = 1.222, b = 3.2, γc = 5.36 × 1011s−1 , γs = 5.96 ×
109s−1 , γn = 7.53 × 109s−1 , and γp = 1.91 × 1010s−1 [66].

Also, since the laser parameters correspond to a relaxation

resonance frequency of fr = 10.25 GHz, a comparable grat-

ing bandwidth of fBW = 13 GHz is chosen for illustration

[51]. In addition, fl = 5 GHz is chosen throughout the simula-

tions because it corresponds to a practical grating length of l =
20 mm with a refractive index of 1.5. The grating is chosen with

θ set to zero. The numerical results focus on the case with a

round-trip feedback delay time of τRT = 0.47 ns.

According to (3), the frequency response of the FBG re-

flection is plotted in Fig. 2. The reflectivity |r(Ω)|2 in black

shows the main lobe of FWHM bandwidth fBW and the as-

sociated side lobes, which peak with a periodicity of about

fl . The reflection phase arg(r(Ω)/r(0)) in gray shows rapid

changes near the edges of the lobes. The changes correspond to
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chromatic dispersion and have been well investigated for dif-

ferent gratings [65]. For the numerical integration of (1)–(2),

the FBG frequency response r(Ω) is first inverse Fourier-

transformed to the temporal impulse response r(t), which van-

ishes for negative t as expected because of causality. Then, the

convolution contained in the last term of (1) can be performed

using the values of a previously obtained at and before t − τRT .

It is worth noting that the magnitude of r(t) is smaller than its

peak value by more than 103 times when t > 4 ns, though r(t)
for a longer window of 0 < t < 10 ns is adopted for improving

accuracy in the numerical simulation.

In the feedback parameter space (ξf , ∆f ), Fig. 3 is a map

of a number of regions for different output intensity dynamics.

The dynamics are numerically identified through examining the

distribution of the intensity time-series extrema [67]. The in-

tensity is found as stable, period-one oscillatory, quasi-periodic

pulsating, period-doubled oscillatory, and chaotic in the regions

in white, red, gray, yellow, and black, respectively. Although

there are interesting frequency-dynamics associated with sys-

tems with filtered optical feedback [27], [68], the following

focuses on the intensity-dynamics as they can be most read-

ily measured or eavesdropped in experiments [39]. Besides, no

noise is included in the rate equations to avoid ambiguities in

the boundaries of dynamical regions. Since the chaotic intensity

variation is dominated by laser dynamics instead of noise, it

is verified numerically that inclusion of spontaneous emission

noise would not affect the chaotic TDS significantly [25].

Fig. 3 basically shows the quasi-periodic route-to-chaos for

the laser with frequency-detuned FBG feedback. For instance,

when ξf increases from zero at ∆f = ±24 GHz, the intensity

first remains stable in the white region, then oscillates period-

ically in the red region, pulsates quasi-periodically in a gray

region, and finally behaves chaotically in a black region. Such a

quasi-periodic route-to-chaos is commonly found in lasers sub-

ject to feedbacks [28], [67], [69]. Moreover, the minimum ξf

required for instability roughly follows the inverse of the FBG

reflectivity spectrum, which controls the power feeding back to

the laser. For instance, when |∆f | < fBW /2, the free-running

frequency of the laser is within the main lobe of the FBG re-

flection spectrum, so the instability requires only a feedback

strength ξf of less than 0.02. But when |∆f | ≫ fBW , the lower

bound of the instability region is observed to undulate with a pe-

riodicity in ∆f of about fl = 5 GHz. The periodicity resembles

that of the side lobes of the FBG reflection spectrum. A similar

dependence of the stability boundary on the feedback reflection

spectrum was also reported for Lorentzian filters [28]. Further-

more, a region of stability in white is observed at around (ξf ,

∆f ) = (0.12, −8 GHz). The stable region is due to matching

the FBG detuning frequency with the laser cavity resonance,

which is red-shifted by the feedback through the antiguidance

effect [28], [64], [70]. It is worth noting that the antiguidance

effect also leads to asymmetry of the map with respect to the

detuning, which is commonly observed for semiconductor laser

dynamics [1], [64].

Most importantly, two large regions of chaotic operation are

observed in the feedback parameter space (ξf , ∆f ), as labeled

in Fig. 3. The regions are found with ∆f being positive and

negative, respectively. Since the setup in Fig. 1(a) is a time-

Fig. 4. Numerical results of the optical spectrum (black) for the chaotic laser
emission. The laser is subject to feedback from (a) a mirror, (b) a negatively
detuned FBG at ∆f = −16 GHz, (c) a zero-detuned FBG at ∆f = 0, and (d)
a positively detuned FBG at ∆f = 16 GHz, respectively. The frequency axis
is offset to the free-running frequency of the laser. For reference, the optical
reflectivity spectra of the mirror or the FBG are shown in red, whereas the
corresponding group delays are shown in blue. The bandwidth of the FBG is
∆f = 28 GHz.

delay system, information on the feedback delay time τRT could

possibly be extracted from the waveforms. The rest of this work

focuses on such time-delay information when the laser is in

chaos.

A. Chaotic Optical Spectrum

Chaotic emissions for the laser subject to different optical

feedbacks are compared in Fig. 4. Each black curve in Fig. 4(a)–

(d) is a chaotic emission optical spectrum, namely, the Fourier

transform of the field amplitude a(t). The FBG bandwidth is

chosen as fBW = 28 GHz for illustration in Fig. 4(b)–(d). The

FBG is replaced by a conventional mirror for comparison in

Fig. 4(a), which is modeled by setting r(t) as the Dirac delta

function δ(t) in (1). The feedback strength is fixed at ξf =
0.078 while the feedback delay time is kept at τRT = 0.47 ns.

The frequency axis is offset to the free-running frequency of the

laser. For reference in Fig. 4, the red and blue curves respec-

tively show the magnitude and group delay associated with the

frequency response r(Ω − ∆Ω) of the feedback.

Starting with Fig. 4(a), the FBG is first replaced by a con-

ventional mirror for comparison. The reflectivity spectrum in

red is just a flat line as the mirror has no frequency-selectivity.

The group delay spectrum in blue is simply zero because the

mirror itself does not induce any delay. The optical feedback is
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sufficiently strong in perturbing the laser into chaos. The broad-

band optical spectrum in black spans a frequency range of over

10 GHz [71]. The bandwidth is comparable to the relaxation res-

onance frequency as in most cases of semiconductor laser chaos

[71]. Also, the optical feedback power into the laser reduces the

optical gain, which red-shifts the cavity resonance frequency

through the refractive index change by the antiguidance effect

[64], [72]. The red-shift is apparent from the enhanced peaks at

negative frequency offset in Fig. 4(a). However, the broadband

spectrum clearly consists of periodic peaks separated by about

2 GHz which roughly corresponds to 1/τRT . The peaks can be

interpreted as the external cavity mode structures. Such spectral

features could undesirably reveal the time-delay information. In

order to better conceal the time-delay information, the FBG is

adopted in lieu of the mirror for providing distributed feedback

in Fig. 4(b)–(d).

In Fig. 4(b), the FBG is negatively detuned by setting ∆f =
−16 GHz. The red curve shows the FBG reflectivity spectrum

that is centered at the frequency offset of −16 GHz. The FBG

is a uniform grating so that its main lobe has a bandwidth of

about fBW = 28 GHz and its side lobes are roughly separated

by fl = 5 GHz [65]. The blue curve shows the group delay

associated with the FBG. The delay is obtained from the phase of

FBG frequency response. Nonetheless, the laser still experiences

the antiguidance effect, so that its peak emission continues to be

red-shifted from its free-running frequency, as the spectrum in

black shows. Most of the emitted power is contained within the

main lobe of the FBG reflectivity spectrum, which is quite flat

and does not involve much group delay. Therefore, the chaotic

spectrum still contains clear external cavity mode structures

separated by 1/τRT .

In Fig. 4(c), the FBG is not detuned as ∆f is set at 0. The

FBG reflectivity spectrum in red is now centered at the free-

running frequency of the laser, while the group delay in blue is

also centered accordingly. Such a zero-detuned FBG feedback

has been investigated previously through optimizing the grating

design parameters such as its bandwidth and physical length,

which led to better concealment of the time-delay information

as compared to mirror feedback [37], [51]. Nonetheless, with

the FBG in Fig. 4(c), the optical spectrum in black still contains

some external cavity mode structures separated by 1/τRT . The

emission power is now spread across the main lobe and some

side lobes at negative frequencies.

Finally, in Fig. 4(d), when the FBG is positively detuned at

∆f = 16 GHz. The FBG reflectivity spectrum in red is centered

at a higher frequency than the laser free-running frequency. As

the black curve shows, the optical spectrum of the laser emission

again peaks at red-shifted frequencies. The strongest emission

peaks are now mainly found in the low frequency side lobes.

Interestingly, as the blue curve shows, the group delay has much

variation near the edge of the main lobe and its neighboring side

lobes. The frequency-dependent group delay, corresponding to

the group velocity dispersion, of the FBG feedback obscures the

information on the round-trip time delay. A direct comparison of

Fig. 4(a) and (d) confirms that the external mode structures are

more pronounced for mirror feedback than for FBG feedback.

Therefore, a positively detuned FBG is effective in concealing

the information of τRT . The improvement can be quantified by

the so-called coherence function from the inverse Fourier trans-

form on the magnitude of the optical spectra. The magnitude

of the normalized coherence function at τRT drops from 0.5 in

Fig. 4(a) to 0.3 in Fig. 4(d).

B. Suppression of TDS

The above qualitatively illustrates the effect of frequency-

detuned FBG feedback by examining the optical spectrum. The

side-lobe group delay variation of the detuned FBG moderately

weakens the structures in the optical spectrum that contain the

time-delay information. Nonetheless, while there are interesting

reports on the information contained in the optical phase [46],

[47], [52], most related studies focus on the time-delay informa-

tion contained in the intensity time-series [15], [34], [39], [57].

For many applications of laser chaos such as chaotic ranging and

random bit generation, the practical performances are degraded

if the intensity time-series partially repeats itself after a delay

[24], [53], [73]. Such a correlation is revealed by examining the

ACF, as Fig. 5 illustrates.

Fig. 5(a)–(d) plot the power spectra, intensity time-series, as

well as the ACF and DMI of the intensity time-series, which

correspond to the optical spectra in Fig. 4(a)–(d). Column (ii)

of Fig. 5 shows the intensity time-series I(t) = |a(t)|2 . Column

(i) shows the power spectra by Fourier-transforming I(t), while

column (iii) shows the autocorrelation of I(t) as a function of

the lag time τ . Column (iv) shows, as a function of lag time τ ,

the mutual information between the intensity time-series I(t)
and its delayed replica Iτ (t) = I(t − τ) [38]. Such a DMI is

defined as the sum of p(I, Iτ ) log[p(I, Iτ )/(p(I)p(Iτ ))] over

the two-dimensional space (I, Iτ ), where p(I) is the probability

density function of I and p(I, Iτ ) is the joint probability density

function of (I, Iτ ). Each DMI curve in Fig. 5 is normalized to

its value at zero τ when I and Iτ are the same. For the plots

in Fig. 5, the bandwidth of the FBG is kept at fBW = 28 GHz.

The round-trip feedback delay time is set at τRT = 0.47 ns.

Starting with Fig. 5(a), the laser is perturbed into chaos by

a mirror feedback. Its power spectrum Fig. 5(a-i) is broadband

and peaks at around the relaxation resonance frequency fr of

about 10.25 GHz. The behavior is typical of semiconductor laser

chaos due to the undamping of the relaxation resonance [74].

The external cavity mode structures Fig. 4(a) lead to multiple

peaks in the power spectrum of Fig. 5(a-i), where the sepa-

ration of about 2 GHz again corresponds to the reciprocal of

τRT . The corresponding time-domain waveform in Fig. 5(a-ii)

is noise-like without much recognizable features because of the

broadband power spectrum. However, the ACF in Fig. 5(a-iii)

is found to contain observable peaks when the lag time τ equals

any multiples of the feedback delay time τRT . The peak at

τ = τRT is referred to as the TDS [32], [35], [38]. The TDS is

about 0.4 on the ACF. The TDS is relatively large because the

mirror gives a constant feedback delay time independent of the

optical frequency. Besides, oscillations on the order of 0.1 ns

are observed around the peaks of the ACF. These oscillations

correspond to the reciprocal of fr due to the enhancement of the

power spectrum near the relaxation resonance [39]. Consistent
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Fig. 5. Numerical results of the laser emission (i) power spectrum, (ii) intensity time-series, (iii) ACF of the intensity time-series, and (iv) DMI of the intensity
time-series. The laser is subject to feedback from (a) a mirror, (b) a negatively detuned FBG at ∆f = −16 GHz, (c) a zero-detuned FBG at ∆f = 0, and (d) a
positively detuned FBG at ∆f = 16 GHz, respectively. The bandwidth of the FBG is fBW = 28 GHz. The round-trip feedback delay time between the laser and
the grating is τRT = 0.47 ns.

with the ACF, the DMI in Fig. 5(a-iv) also shows a clear peak

at τ = τRT .

In Fig. 5(b), the FBG is negatively detuned by setting

∆f = −16 GHz. With the replacement of the mirror by the

FBG, the chaotic time-series in Fig. 5(b-ii) does not show much

changes. The power spectrum in Fig. 5(b-i) still peaks at around

fr without much modification on the structures separated by

2 GHz. This is consistent with the fact that the optical spectrum

in Fig. 4(b) is not much modified by replacing the mirror with

a negatively detuned FBG. Therefore, the ACF still contains a

clear TDS at τRT = 0.47 ns as shown in Fig. 5(b-iii), where the

DMI also peaks at τRT in Fig. 5(b-iv).

In Fig. 5(c), when the FBG is not detuned as ∆f is set at

zero. The time-series in Fig. 5(c-ii) remains chaotic. The power

spectrum Fig. 5(c-i) still peaks near fr , but the structures sepa-

rated by 2 GHz become less observable. This is attributed to the

group-delay dispersion near the low frequency edge of the main

lobe and the lower side lobes of the FBG, as the optical spectrum

in Fig. 4(c) suggests. Quantitatively, the ACF in Fig. 5(c-iii) has

a reduced TDS of 0.18 at τRT . The zero-detuned FBG feedback

suppresses the TDS as compared to mirror feedback. The DMI

peak in Fig. 5(c-iv) at the vicinity of τRT is also broadened

in obscuring the time-delay information. Detailed optimization

of the grating design was previously investigated numerically

without detuning [51].

The suppression of TDS continues in Fig. 5(d) when the

FBG is positively detuned at ∆f = 16 GHz. The power spec-

trum Fig. 5(d-i) becomes much smoother when compared to

Fig. 5(a-i). This is again consistent with the observation of the

corresponding optical spectrum in Fig. 4(d), which contains less

pronounced peaks as compared to Fig. 4(a). The time-series is

again chaotic in Fig. 5(d-ii). The corresponding ACF in Fig. 5(d-

iii) clearly shows a suppression of TDS to less than 0.07. More-

over, the DMI in Fig. 5(d-iv) also contains nearly no peaks near

τRT . Thus, the delay time τRT , as marked by the dashed lines in

Fig. 5(d-iii) and (d-iv), cannot be easily extracted even with the

knowledge of ACF and DMI.

In short, the detuning frequency ∆f of the FBG is an impor-

tant parameter that affects the TDS. Best suppression of TDS

is achieved when the FBG is positively detuned. The positive

detuning forces the laser to emit near the low frequency edge

of the main lobe and the nearby side lobes. They provide rela-

tively strong chromatic dispersion of the group delay for TDS

suppression.

C. Dependence on (ξf , ∆f)

While the grating design parameters such as its length and

bandwidth are relatively difficult to adjust in experiments, the

detuning frequency of the FBG with respect to the free-running

frequency of the laser is more easily adjusted, as Section IV

details. The dependence of the properties of the chaotic signal

on the detuning frequency ∆f are presented in Fig. 6. The TDS

in the ACF of the intensity is shown in row (a). The chaotic

bandwidth (CBW) is shown in row (b). The CBW is the ef-

fective bandwidth that contains 80% of the total power in the

chaotic power spectrum, as defined in previous works on laser

chaos [71]. Different columns in Fig. 6 correspond to different

grating bandwidths fBW as labeled. The feedback strengths are

kept at ξf = 0.078, 0.10, and 0.12 for the circles, squares, and
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Fig. 6. Numerical results of (a) TDS and (b) effective bandwidth for the chaotic signals as functions of the FBG detuning frequency ∆f . The feedback strength is
fixed at ξf = 0.078 (circles), 0.10 (squares), and 0.12 (triangles), respectively. The FBG bandwidth fBW = (i) 13 GHz, (ii) 28 GHz, and (iii) 40 GHz, respectively.

triangles, respectively. For each plot, the gap of ∆f bounded

by the dashed lines indicates a region without chaotic intensity

oscillation. The gap in Fig. 6(a), for example, roughly corre-

sponds to the white region of intensity-stability in between the

two chaotic region labeled in the map of Fig. 3. Since the stable

white region is attributed to the filtered feedback stabilization

for CW emission [28], [70], the gap becomes narrowed as the

FBG becomes less frequency-selective. Narrowing of the gap

between the dashed lines is observed in Fig. 6(a), (b), and (c)

when the FBG bandwidth fBW is increased progressively at

13, 28, and 40 GHz, respectively. The gap vanishes eventually

when the fBW goes to infinity as the FBG simply becomes a

mirror. For Fig. 6(b-i)–(b-iii), the CBW is shown to increase as

the detuning frequency leaves the gaps. The CBW is on the or-

der of the relaxation resonance frequency fr as in most chaotic

lasers [71]. Comparing the circles, squares, and triangles also

shows a general increment of CBW as the feedback strength

increases, which is linked to the bandwidth enhancement effect

in the semiconductor laser [16]. As for TDS, Fig. 6(a-i)–(a-iii)

clearly shows the dependence on ∆f . The variation of the TDS

with respect to ∆f is basically the reverse of that for CBW, as

both TDS and CBW quantify the chaotic signals. Most inter-

estingly, the lowest TDS in each plot is always attained when

∆f > 0. With ξf = 0.078, the minimal TDS of 0.07 is attained

in Fig. 6(a-ii) for a positively detuned FBG of ∆f = 16 GHz

which corresponds to Fig. 5(d-iii). The results in Fig. 6 confirm

the advantage of adopting a positively detuned FBG for TDS

suppression.

In addition to the detuning frequency ∆f , the feedback

strength ξf can also be adjusted conveniently in experiments.

TDS and CBW are respectively shown against the feedback

strength in Fig. 7(a) and (b) when the laser is in chaos. The FBG

bandwidth is fixed at fBW = 13 GHz (closed down-triangles),

Fig. 7. Numerical results of (a) TDS and (b) effective bandwidth for the
chaotic signals as functions of the feedback strength ξf . FBGs of bandwidths
fBW = 13 GHz, 28 GHz, and 40 GHz are considered in closed down-triangles,
closed circles, and closed up-triangles, respectively. For comparison, the open
circles are obtained when the FBG is replaced by a mirror.

28 GHz (closed circles), and 40 GHz (closed up-triangles),

where the detuning is kept at ∆f = 9 GHz, 16 GHz, and

27 GHz, respectively. For each fBW , the values of ∆f are

chosen to minimize the TDS at ξf = 0.078 by referencing to

Fig. 6. For comparison, a mirror replaces the grating for the
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results in open circles. In Fig. 7(a), independent of the grating

or the mirror, TDS is found to first reduce and then increase as

ξf increases. Such a dependence of TDS on ξf has been reported

before for mirror feedback, which is related to having sufficient

feedback power to perturb the laser into chaos while not induc-

ing much external cavity features from the feedback [38]. It is

clear from Fig. 7(a) that the FBGs are better than the mirror for

TDS suppression. In Fig. 7(b), the CBW generally broadens as

ξf increases from zero. This is due to the evolution of the laser

from stability into chaos. When the ξf increases beyond about

0.08, the CBW from mirror feedback starts to saturate and even

gradually reduce. This is not observed for the three cases of FBG

feedbacks, but it should be mentioned that strong feedbacks can

occasionally drive the laser back to stability as the map in Fig. 3

shows.

In any cases, it is clear from Fig. 7(b) that the CBW from the

positively detuned FBG feedbacks are comparable to that for

mirror feedback. By using a positively detuned FBG in place of

a mirror for feedback, the TDS can be reduced while maintaining

the same CBW.

IV. EXPERIMENTAL RESULTS

Experimental verification on the TDS suppression by FBG

feedback has not been reported so far, to our best knowledge,

on semiconductor lasers with or without frequency detuning. In

this section, an experimental investigation on TDS suppression

by optical feedback from an FBG is conducted based on the

setup in Fig. 1. In Fig. 1(a), optical feedback from the FBG is

implemented for chaos generation in a 1548-nm single-mode

distributed-feedback laser (Mitsubishi ML920T43S-01). The

laser is temperature-stabilized at 17.8 ◦C and forward-biased

at 13 mA, which corresponds to 1.3 times its threshold current.

It outputs about 2.3 mW with relaxation resonance frequency

fr ≈ 5 GHz. A commercially available FBG with a Bragg wave-

length also at 1548 nm is adopted. It has a 3-dB bandwidth of

0.45 nm or, equivalently, ∆f = 56 GHz. It is a uniform grat-

ing formed by corrugations written over a physical length of

l = 8 mm on the fiber with a refractive index n = 1.45 so that

fl = c/2nl ≈ 13 GHz. The peak reflectivity is confirmed as

higher than −1 dB from direct experimental calibration. The

setup of Fig. 1 is constructed with the laser and the fiber tip

being separated by only 0.24 m, but there is also about 4.17 m

of single-mode fiber with a group index of 1.47 before reaching

the FBG. The corresponding optical path of l0 = 6.37 m gives

the external cavity round-trip time of τRT = 42.5 ns.

The feedback strength ξf is controlled by carefully adjust-

ing the misalignment of the fiber tip. It is proportional to the

coupling efficiency from the laser into the fiber, where the pro-

portionality constant approaches 0.5 for a high-quality laser

cavity [74], [75]. Also, for analyzing the signal using the setup

in Fig. 1(b), the beamsplitter directs less than 10% power to

the optical amplifier of 10-dB gain (Amonics AEDFA-23-B-

FA), then the photodetector (Newport AD-10ir), and the 20-dB

microwave amplifier (HP 83006 A). The output electrical signal,

proportional to the intensity of the laser emission, is monitored

in the time-domain by the real-time oscilloscope of 2.5-GHz

bandwidth (Agilent 90254A) and in the frequency-domain by

the power spectrum analyzer of 26.5-GHz bandwidth (Agilent

N9010A). In the experiments, the detuning frequency ∆f is

adjusted by varying the laser free-running frequency through

temperature-tuning. The detuning frequency ∆f changes by

about 13 GHz/◦C when the FBG is kept unchanged. The fol-

lowing discusses the experimental results on TDS suppression.

A. Suppression of TDS

Fig. 8 shows the experimental data that confirm the TDS

suppression. The laser is under FBG feedback with a negative

detuning at ∆f = −40 GHz, zero detuning at ∆f = 0, and

positive detuning at ∆f = 40 GHz as shown in Fig. 8(b)–(d),

respectively. The FBG is replaced by a mirror for comparison in

Fig. 8(a). The feedback strength is kept at ξf = 0.06. The power

spectra in column (i) are shown with the full frequency-span

of the power spectrum analyzer at a resolution bandwidth of

2.6 MHz. The power spectra are similar in having an enhance-

ment at around the relaxation resonance frequency of fr ≈ 5
GHz. Such an enhancement is typical of chaotic signals in semi-

conductor lasers [12].

To show the spectra in detail, the insets in column (i) plot

the power spectra by zooming to a reduced span of 200-MHz

around the peak frequency of 5 GHz with a resolution of 25 kHz.

With mirror feedback in Fig. 8(a-i) inset, the spectrum shows a

clear and repeating feature in every 24 MHz, which corresponds

to 1/τRT . With FBG feedbacks in Fig. 8(b-i)–(c-i) insets, the

repeating features become less apparent. Interestingly, by detun-

ing the FBG feedback positively, the repeating feature vanishes

completely in the inset of Fig. 8(d-i). The positive detuning of

∆f = 40 GHz puts the laser close to the low frequency edge

of the FBG main lobe, which results in the elimination of any

repeating feature for Fig. 8(d-i).

As for the time-domain, column (ii) in Fig. 8 shows the in-

tensity recorded by the oscilloscope. It should be pointed out

that the oscilloscope has a limited bandwidth of 2.5 GHz, so

the faster oscillations of the chaotic signals are not recorded di-

rectly. However, the intensity time-series sufficiently confirms

the random-like property of chaotic signals. The time-delay in-

formation of the setup is not apparent in the time-series, as in

the case of numerical simulations in column (ii) of Fig. 5. The

ACF can be obtained by directly correlating the time-series, but

it can also be calculated by taking inverse Fourier transform on

the power spectrum. The latter approach, as supported by the

Wiener-Khinchin theorem, avoids the bandwidth limitation of

the oscilloscope. The ACFs in Fig. 8(a-iii)–(d-iii) are obtained

by transforming the power spectra recorded in Fig. 8(a-i)–(d-i),

respectively. For Fig. 8(a-iii), the ACF produces a pronounced

peak at τRT = 42.5 ns, as marked by the red arrow. The strong

TDS is nearly 0.5 for the mirror feedback chaos, which corre-

sponds to the pronounced repeating spectral features in Fig. 8

(a-i) inset. For Fig. 8(b-iii), the TDS is slightly reduced by the

FBG feedback with negative detuning. It further subsides when

the FBG has no detuning in Fig. 8(c-iii). Finally, in Fig. 8(d-iii),

the TDS basically disappears in the ACF. There is nearly no

peaks observed at τRT , as indicated by the red arrow, except
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Fig. 8. Experimental results of the laser emission (i) power spectrum in full span (with inset zoomed to a 200-MHz span), (ii) intensity time-series, (iii) ACF
of the intensity time-series, and (iv) DMI of the intensity time-series. The laser is subject to feedback from (a) a mirror, (b) a negatively detuned FBG at ∆f =
−40 GHz, (c) a zero-detuned FBG at ∆f = 0, and (d) a positively detuned FBG at ∆f = 40 GHz, respectively. The bandwidth of the FBG is fBW = 56 GHz.
The round-trip feedback delay time between the laser and the grating is τRT = 42.5 ns.

for a very small residual TDS of less than 0.04. The TDS is

suppressed by over 10 times when compared to using mirror

feedback. Hence, the experiment confirms the numerical re-

sults on chaotic TDS suppression by a positively detuned FBG

feedback.

In addition, the DMI is evaluated in column (iv) of Fig. 8

based on the intensity time-series of column (ii) over a time

span of 5 µs. Mirror feedback in Fig. 8(a-iv) again shows a

pronounced DMI peak at τRT = 42.5 ns as the red arrow indi-

cates. Replacing the mirror by the FBG in Fig. 8(b-iv)–(d-iv)

again gives significant suppression of the peak. For the posi-

tively detuned FBG feedback, Fig. 8(d-iv) unveils no DMI peak

near τRT , thus confirming the concealment of the time-delay

information.

B. Dependence on (ξf , ∆f)

By adjusting the temperature of the laser, its free-running

emission frequency is varied, thus the detuning frequency ∆f
of the fixed FBG is modified. The closed symbols in Fig. 9

show the TDS and CBW from the experiments as ∆f varies,

where the feedback strength is kept at 0.06. A gap in between

the dashed line again represents a range of ∆f without chaotic

signals. Other than the gap, the chaotic signal maintains a wide

bandwidth according to Fig. 9(b). The CBW is roughly the same

as the relaxation resonance frequency fr of 5 GHz. As for TDS of

the ACF, Fig. 9(a) shows its dependence against the detuning.

Best suppression is obtained at a positive detuning of ∆f =
40 GHz, where the TDS is less than 0.04 as in Fig. 8(d-iii).

Moreover, as the temperature-tuning may also affect the dy-

namical parameters of the laser, it is necessary to compare the

Fig. 9. Experimental results in closed symbols for (a) TDS and (b) effective
bandwidth for the chaotic signals as functions of the FBG detuning frequency
∆f , as varied by adjusting the free-running laser frequency. The FBG has a
bandwidth of fBW = 56 GHz. For comparison, the open symbols are obtained
when the FBG is replaced by a mirror. The feedback strength is fixed at ξf =
0.06.

FBG feedback with mirror feedback at the same laser tempera-

ture. So the data in open symbols in Fig. 9 are obtained for mirror

feedback. The axis on detuning is still representing the differ-

ence of the fixed Bragg frequency from the free-running laser

frequency, though the FBG is not connected to the experimental
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Fig. 10. Experimental results in closed symbols of (a) TDS and (b) effective
bandwidth for the chaotic signals as functions of the feedback strength ξf . The
FBG bandwidth is fBW = 56 GHz. For comparison, the open symbols are
obtained when the FBG is replaced by a mirror.

setup for the open symbols. In other words, any two vertically

separated closed and open symbols in Fig. 9 are recorded for

the same laser temperature. The results of the mirror feedback

show that both the TDS and CBW do not change much even

when the laser temperature is tuned. On TDS suppression, FBG

feedback consistently outperforms mirror feedback.

For completeness, the feedback strength ξf is varied in Fig. 10

by fine-adjusting the optical misalignment of the fiber tip in

Fig. 1(a). The laser temperature is kept constant so that ∆f
stays at 40 GHz. Fig. 10(a) shows the TDS first drops and then

increases as ξf is increased. Such a dependence is consistent

with the reports on mirror feedback [38], [39]. FBG feedback

(closed symbols) again shows lower TDS as compared to mirror

feedback (open symbols). The minimum TDS for FBG feedback

is attained at ξf = 0.06. It is interesting that the minimum TDS

for mirror feedback is attained at a smaller ξf of 0.03. Thus, the

optimal ξf for TDS suppression is increased when the mirror

is replaced by the FBG. The increment is also observed in the

numerical simulation in Fig. 7(a). Such an increment is expected

from (1) because the feedback field is proportional to not only

ξf , but also r(t) when incorporating the FBG. While the optical

coupling between the laser and the fiber in Fig. 1(a) is quantified

by ξf , the reflectivity by the FBG is quantified by r(t) and in

turn r(Ω) according to (3). Due to the detuning of ∆f =
40 GHz, the laser emission is not within the FBG main lobe of

near perfect reflectivity, but is rather situated in a side lobe with

only about 0.3 reflectivity. As a result, ξf needs to be increased

for optimal TDS suppression when using the FBG.

In addition, Fig. 10(b) shows the CBW that grows with the

feedback strength. There is only a slight difference in bandwidth

between mirror feedback (open symbols) and FBG feedback

(closed symbols). Therefore, FBG feedback is experimentally

demonstrated as a simple approach to achieve TDS suppression,

where a positive detuning frequency of the grating from the laser

is preferred. The experimental results in Figs. 8–10 also agree

qualitatively with the numerical results in Figs. 5–7. At this

point, a quantitative performance comparison of FBG feedback

is drawn with some other TDS suppression approaches. These

approaches typically involved more complicated construction

such as double optical feedback using two precisely located mir-

rors [35], mutual coupling using two lasers [55], and cascaded

coupling using even three lasers [49]. The reported experimental

values of the TDS in ACF of these approaches were no less than

0.04. By contrast, FBG feedback investigated in this paper gives

a suppressed TDS of 0.04, but it is structurally much simpler

than the other approaches, as it uses only one laser with a fiber

grating.

V. CONCLUSION

In summary, evolution of the TDS in the ACF of the

chaotic intensity time-series is investigated on a single-mode

semiconductor laser subject to feedback of a frequency-detuned

FBG. Suppression of TDS by a positively detuned FBG is exper-

imentally demonstrated. Numerically, a dynamical map reveal-

ing large regions of chaotic operation is reported in the parameter

space of (ξf , ∆f ). TDS suppression prefers adopting FBG feed-

back over mirror feedback. It also prefers a positive detuning

over a negative detuning. Experimentally, as compared to mirror

feedback, TDS is suppressed by 10 times to less than 0.04 when

using a positively detuned uniform FBG for the feedback. The

approach is relatively simple in the experimental setup, which

implies its potentials in applications relying on semiconductor

laser chaos.
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