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Preface
This publication is my thesis for the Doctor Scientiarum degree at the Department

of Informatics, University of Oslo, Norway. The thesis is mainly comprised of five
research papers published, to be published, or submitted to international journals in
the field of nonlinear dynamics and time series analysis. It includes also two review
papers, made at the early stage of the work, on topics I investigated later in the research
papers, and one research report.
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4 T. Aasen, D. Kugiumtzis, S. H. G. Nordahl. Procedure for Estimating the Correla-
tion Dimension of Optokinetic Nystagmus Signal. Computers and Biomedical
Research, in press, 1997.
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The course of the work

The work started formally in January 1993 and was completed in January 1997.
However, I had discussions with Professor Nils Christophersen on the subject of the
thesis already from May 1992. We agreed the main goal to be the analysis of time series
with the new and promising nonlinear methods mainly based on chaos theory. This was
a rather new field not only at our Department, but in Norway in general. I started on
this project and was given a three year financial support by the Norwegian Research
Council which was later extended to four years by the Department of Informatics with
additional tuition obligations.

Fortunately, Bjørn Lillekjendlie, an experienced researcher at the Center for Indus-
trial Research (SINTEF), had interest in similar topics and we collaborated at this early
stage. With the assistance of my supervisor Nils Christophersen, we made a litera-
ture survey with a critical standpoint on the new developments, and wrote two review
papers which formed the frame for my forthcoming reseach (papers 1 and 2). This
was an absolutely necessary process since the field was completely new to me and my
collaborators.

At this stage there was an obvious need for concentration on some specific part of
the vast field of chaotic time series analysis. It was reasonable to start with state space
reconstruction, the first step of almost any time series analysis. This subject was treated
exhaustively in the recent years and numerous methods were proposed but with little
theoretical background. After long and painstaking work I summed up my research
work on this topic to a paper which after many interventions by Nils Christophersen
was finally ready to be sent for publication (paper 3). A part of this work, not included
in paper 3, was presented later in a research report (paper 7). Meanwhile I was in
contact with Torbjørn Aasen at Haukeland hospital, Bergen, who had applied some of
the methods I was studying on the optokinetic data. We elaborated on some new ideas
about the implementation of state space reconstruction to the correlation dimension
estimation of these data. Moreover, we found some interesting results reported in paper
4.

The work in paper 3 inspired me with new ideas for research in the implementa-
tion of the methods based on the state space reconstruction, especially regarding the
analysis of real world data. I soon found that the performance of some of the methods,
and particularly the estimation of the correlation dimension, is sensitive to distance
measures. Statistical analysis on the different measures of noisy distances led me to
new results that I wrote in paper 5. Furthermore, based on these results, I proposed a
modification of the method for the estimation of the correlation dimension from noisy
data in paper 6.

I decided then to turn to the prediction of chaotic time series and employ my ex-
perience from state space reconstruction on this problem. At this time I appreciated
the collaboration with the colleague Ole Christian Lingjærde who had already worked
with many of these methods. Together we decided to investigate the applicability of
different nonlinear models to the prediction of chaotic time series. Especially, we con-
centrated on the class of local linear models which turned out to be an interesting area
for research. With the assistance of Nils Christophersen, we introduced and imple-
mented new ideas in the context of local linear prediction. Some results from our work
were reported in paper 8, but more results are expected by the continuation of this re-
seacrh work. However, I had to put a stop on the work for the completion of the thesis,
as four years had already passed.
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After this four year period of study and research I feel I have gained the skill and
spirit of a new scientist. I believe I have contributed to some aspects of chaotic time
series analysis, which was a completely new field to me when I started this work. I
hope my work has elucidated some points in the implementation of nonlinear methods
on chaotic time series and improved the procedures towards a more proper analysis.

Anyway, the scientific research is a continuous process that does not terminate after
the completion of a goal, a degree here, it is a way of living.
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Chapter 1

Chaotic Time Series Analysis

The introductory part begins with a short background on chaotic time series analysis.
Then the focus is on selected aspects of the analysis. Particularly, the state space re-
construction, the estimation of the correlation dimension and local linear prediction are
briefly discussed and the main results on each topic are presented with reference to the
individual papers. Finally, suggestions for further research are put forth and the main
conclusions are highlighted.

1.1 Introduction

There are two contrasting notions in life, theory and practice. Science is apparently
related to theory but to date much of what is called “science” is actually practical
work. Mathematicians are often considered as good representatives of theoreticians.
They investigate mathematical problems, build theories, find solutions, but often have
little concern for real life problems. On the other hand, in many disciplines, as biology
and medicine, many scientists act more like practitioners. They have a certain real
problem in mind, collect the data, apply some method, often directly from a software
package, and draw conclusions based on the results of the output of the method, with
little concern for the theoretial ground of the applied method. The interconnection of
these two groups is desirable as many physical processes or natural phenomena can be
considered as mathematical systems, from the dripping faucet to measles. Statisticians
and methodologists seem to be the ones to fill the gap between theory and practice and
bring the mathematical theory into practical and applicable methods.

For a real problem at hand, relevant data are collected and the objective is first to
find evidence that supports a certain hypothesis for the cause that generate the data,
and then build a model that reflects the cause and explains the data. The latter is often
referred to as the inverse problem, “to find the cause given the effect”, where the cause
is the underlying mechanism and the effect is the measured data. The work of the
methodologist is to build the appropriate methods and implement them correctly on
the given data in order to gain insight about the underlying mechanism and then model
this mechanism. In some applications, a-priori knowledge may be sufficient to explain
the cause and build a model based on first principles, and then the data are used only to
validate the model and fix the exact parameters. However, there are many phenomena
and processes for which we know little about their cause and then one must rely only
on the available observations in order to find a model, the so-called data-driven model.
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The work of the thesis deals with data-driven methods.

1.1.1 Dynamical systems and chaos

A natural or technical system that exhibits changes with time may be termed a dynam-
ical system. Dynamical systems are typically classified as deterministic, if the laws
controlling the mechanism are fully understood, and stochastic, if some part of the
mechanism cannot be explained without introducing randomness. Until the early six-
ties, this was a clear and meaningful distinction. It was believed that the evolution of a
deterministic system could be anticipated exactly given the initial conditions while the
evolution of a stochastic system could be anticipated only in a statistical sense, i.e. as
the developement of averaged quantities influenced by chance.

First, Smale [31], [32] proved that there exist low-dimensional deterministic non-
linear systems sensitive to initial conditions, a phenomenon later termed chaos and
the systems chaotic (from the greek word χάoς, the opposite of order). As opposed
to other regular deterministic systems, such as periodic or quasi-periodic systems, the
trajectories generated by chaotic systems starting from two nearby points diverge ex-
ponentially with time and then converge and this feature is continuously repeated. Due
to the divergence phenomenon, the largest Lyapunov exponent of a chaotic system is
always positive. The stretching and folding of a trajectory in state space forms an ob-
ject with fractal properties, called strange attractor. Strange attractors have typically
non-integer fractal dimensions. In the last decade, there have been written many books
about nonlinear dynamic theory with focus on chaotic systems and their properties [9],
[2], [41], [15], [23] as well as on their applications [13], [21], [33].

Chaotic systems could be placed in a separate class between regular determinis-
tic and stochastic systems. They seem stochastic when they are observed but there is
no ambiguity in their mathematical description. In statistics, a challenging problem
is, when observing the apparently random behavior of a system evolving in time, to
determine whether the randomness is that of a high-dimensional system or is due to
the chaotic behavior of a low-dimensional process. With high-dimensional systems,
only the main structure of the system can be modeled deterministically, and the rest
unspecified part is subsumed in one or more random components. On the other hand,
low-dimensional systems bear deterministic description and investigation of their dy-
namical properties. In practice, this is a problem in statistical estimation, because the
observations of the system will almost inevitably be subject to measurement errors.
Even if the chaotic system is free from noise, due to its rich behavior it can be inter-
preted with respect to its invariant measure as a random system in equilibrium. There
are some recent books dealing with the statistical aspects of chaotic systems [37], [3].

1.1.2 Evidence of chaos in time series

Poincarè in the 1890s was the first to anticipate the possibility of chaos in deterministic
systems. However, chaos could not be observed before the invention of the high-speed
computers. Computer experiments led to meteorologist Lorenz’s discovery in 1963 of
chaotic motion of a simple nonlinear model simulating atmospheric convection [16].
However, first after the 1970s, it was shown that chaos could explain real phenomena,
e.g. in turbulence of fluids by the work of Ruelle and Takens [27] and in population
biology by the work of May [18]. To date, it is well known that many physical pro-
cesses can have chaotic behavior under certain conditions, and this has been shown
with experiments in chemical reactions, electronic circuits, mechanical oscillators etc
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[21]. It seems that chaos is abundant in nature, too. Many scientists believe that chaos
is a key force behind many real phenomena such as weather patterns and stock mar-
kets. Though in some few cases chaotic behavior can be described mathematically, e.g.
in a model for population dynamics, in general there is lack of complete evidence of
chaos from observations. Probable reasons for this ambiguity is the inevitable effect of
stochasticity in real phenomena that may impair the chaotic signature, and the short-
comings of the applied methods in detecting chaos from observations. For the former
little can be done but for the latter the procedures may be improved.

The observations are often given in the form of measurements of a single quantity,
the scalar time series. When the objective is to investigate chaos they are referred to as
chaotic time series. Most of the methods used to analyze chaotic time series estimate
properties of the chaotic dynamics. Classical linear methods are employed as well
but more as preliminary steps than major tools. For example, the Fourier spectrum
may be used to observe periodicities in the data indicating some form of determinism,
regular or chaotic. A first idea about the data complexity may simply obtained from
time history plots or scatter plots (often referred to as plots of the pseudo-state space).
For data of an oscillating type, i.e. data generated from a continuous pseudo-periodic
system, Poincarè sections and return maps may be used to investigate chaotic behavior
[4], [21], [22]. If the return map obtained from a Poincarè section is unimodal the
original system is likely to have the characteristics of one-dimensional chaotic maps.
It is often hard to construct appropriate Poincarè sections, especially for dimensions of
the pseudo-state space larger than three. A unimodal map may also be inspected in a
much simpler way, from the scatter plot of the successive maxima of the oscillations,
the so-called Lorenz’s trick. For example, fine unimodal curves obtained in this way are
shown for two well-known simulated chaotic systems, the Lorenz and Rössler system,
in [33].

Other more sophisticated methods are used to estimate system invariants, assuming
the existence of a deterministic system. The most important invariants are the frac-
tal dimension and its measures, e.g. the correlation and information dimension, the
entropy and the Lyapunov exponents. The predictability of the underlying system ap-
proximated by some model may also be considered as an invariant of the system. The
estimation of all these invariants requires the reconstruction of the state space from the
chaotic time series.

The objective with all these methods varies with the application. In many applica-
tions, the invariant estimates are used as discriminative statistics, i.e. as a tool to in-
vestigate an hypothesis on the nature of the data. For example, invariant estimates may
be used to distinguish chaos from white noise (as for the ST-interval of the ECG data
that at first glance seems to be completely stochastic [30]), or from a linear stochastic
system (typically using the method of surrogate data [36]). Moreover, they can be used
to detect different states of the same system, as with the optokinetic data from patients
and healthy persons (paper 4), and the electrical activity of the brain before and during
an epileptic seizure [17]. Another use of the invariant estimates are to extract values in
order to characterize the underlying mechanism. However, with real data, exact confi-
dent estimates are seldom obtained, but even approximative results can be useful. For
example, an estimate of the correlation dimension to the closest larger integer gives an
idea about the number of degrees of freedom of the underlying system.

There are few books dealing with the investigation of chaos from observations [38],
[20] [12], but several mathematically oriented books about chaos devote a chapter to
chaotic time series analysis [29], [22]. Moreover, there are a number of good research
paper collections, e.g. [19], [13], [40], [24], and few review papers [6], [35], [8], [1].

3



This work deals with some of the topics on chaotic time series analyis, specifically
the state space reconstruction, the estimation of the correlation dimension and the pre-
diction with local linear models. The background for these topics is given in the two
review papers (paper 1 and paper 2).

1.2 State Space Reconstruction

1.2.1 The objective

Suppose a scalar time series is given, x(t) = x(kτs) for k = 1, . . . , N where τs is
the sampling interval and N is the length of the time series. Assuming the original
state space is a manifoldM of some dimension �d� (the smallest integer larger than
the fractal dimension d of the attractor of the system), the evolution of the unknown
deterministic system in discrete (or discretized) time is determined by the mapping

sk+1 = f (sk) (1.1)

where sk is the state at time k and f is the system function defined on M . The time
series is a measured quantity of this dynamical system

xk = h(sk) (1.2)

where h is the measurement function h : M → IR. Here, the simple noise-free case is
considered, but in practice, a noise component is involved in the measurement process,
called observation noise, or in the system evolution, called dynamic noise. In this work,
we often assume that a small or moderate amount of observation noise is present.

The objective is to reconstruct a state space, so that the system dynamics on the
reconstructed attractor is homeomorphic to the dynamics on the original attractor. For
noise-free infinite time series generated from a dynamical system, Takens’ theorem as-
sures that generically all the dynamical properties on the original attractor inM can be
preserved on the reconstructed attractor in IRm, i.e. the transformation Φ from M to
IRm is an embedding [34] (see Fig.1.1). According to Takens, the sufficient dimension
m forΦ to be an embedding ism ≥ 2�d�+1 (m is therefore called embedding dimen-
sion). In [28], this condition is relaxed tom ≥ 2d+1. Assuming the reconstruction is
successful, the original system function f on the original attractor can be approximated
by a functionF on the embedded attractor.

1.2.2 The methods

Several methods for reconstruction have been suggested and many techniques have
been proposed to estimate their parameters but their validity is questionable. In paper
1, the two most prominent reconstruction methods and the techniques for estimating
their parameters are discussed.

The most simple and popular method to reconstruct points in IRm from scalar data
is the method of delays (MOD). The reconstructed vector is

xk = [xk, xk−ρ, . . . , xk−(m−1)ρ]
T (1.3)

and τ = ρτs is the delay time. Obviously, the vector xk carries information from a
segment of the time series from the time (k − (m − 1)ρ)τs to time kτs covering the
time window length τw = (m−1)τ . According to the theoretical conditionm ≥ 2d+1,
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Figure 1.1: State space reconstruction from a time series generated by a dynamical
system.

there are many possible values for the parameters m, τ , and thus τw, that yield valid
reconstructions. However, with limited or noisy data the parameters must be carefully
selected.

Many researchers have overlooked the importance of the parameter τw and concen-
trated on the parameters τ andm solely. The applicability of the techniques estimating
τ and m are discussed in paper 3 with a critical view as to their validity. It turns out
that the suggested estimates ofm and τ are not always proper, and some examples are
given in paper 3 showing that the results from some well-known estimation techniques
are questionable. The main reason of the insufficiency of the estimates of τ and m is
that these parameters are considered as independent but often the estimation of the one
depends on the value of the other.

In paper 3, a new perspective for the reconstruction problem is given based on the
role of τw and it is shown that this is the overall parameter for successful reconstruction.
Once τw is determined, the selection of τ and m is of less importance. Certainly,
there are still constraints on m. The condition m ≥ �d� should hold to avoid bad
projections. On the other hand, in the implementation of some methods, a large m can
cause numerically unstable solutions (as in the prediction with local linear maps, see
paper 8). Similar constraints apply to τ , e.g. a small τ may also be inappropriate for
some implementations (as in the measure of distances with the maximum norm, see
paper 5).

The parameter τw yields any reconstruction method because in any case, the ob-
jective is to pass information from the samples within a time interval τw to a vec-
tor xk ∈ IRm. Geometrically, the samples in the window τw = (m − 1)ρτs, i.e.
xk−(m−1)ρ,
xk−(m−1)ρ+1, . . . , xk can be considered as coordinates in IRp, where p = (τw+1)/τs.
A reconstruction technique based on τw that givesm-dimensional point vectors xk can
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thus be seen as a transformationB : IRp → IRm. With MOD, B is a simple projection
giving the subspace defined by them selected coordinates xk−(m−1)ρ, xk−(m−2)ρ, . . . , xk
employing the delay τ = ρτs. Other reconstruction techniques implement more com-
plicated B transformations, as the one employed in the Singular Spectrum Approach
(SSA). This method yields first a transformation of the natural coordinate system to
another orthogonal system using the SVD on the initial data matrix of dimension
p × (N − p + 1), ranking the p new directions according to the variance they ex-
plain. Then the projection onto the m first directions completes the transformation B
of SSA.

The SSA method seems to have proponents and opponents and there is some con-
fusion regarding its applicability to chaotic time series. In paper 7, a fair comparison of
MOD and SSA is attempted and it is shown with simulations that the two methods are
equivalent under the same τw for noise-free data. For data corrupted with white noise,
SSA gives better reconstructions for invariant estimation because it has an in-built filter
for white noise.

In applications with short or noisy time series (or both), only a limited range of
τw-values is likely to work. In paper 3, it is found that values of τw around the mean
obital period τp are the most appropriate, at least for the estimation of the correlation
dimension that is used as a test tool. In the paper, evidence for this choice is given
based on the dynamic properties of the underlying system. Dealing with real world
data, τp is not known a-priori and has to be estimated from the data. Empirically, τp
can be found from the form of the oscillations of the time series, detecting repeated
patterns in the time series. The simplest repeated pattern is a single oscillation and
then τp is estimated as the average time between peaks. For more complicated patterns
filtering may be employed to facilitate the estimation of τw.

Concluding this chapter on state space reconstruction, paper 3 elucidated some
points regarding the selection of the optimal parameters for reconstruction with MOD,
established the importance of τw and proposed a simple empirical way to estimate
the optimal τw from the mean orbital period τp. Moreover, the paper 7 showed with
simulations that the two reconstruction methods MOD and SSA give equivalent results
under the same τw. However, SSA can perform better with noisy data employing a
state space filter. All these results were evaluated using estimation of the correlation
dimension.

1.3 Correlation Dimension

Among all invariant measures, most attention has been given on the correlation dimen-
sion. The correlation dimension has been a standard tool for the investigation of chaos
in many applications, as in physiology and geophysics. This measure has been popu-
lar because it gives a fairly good approximation of the fractal dimension and is easily
computed.

1.3.1 The method

The strange attractor generated from a chaotic system is typically a fractal object, i.e. it
is self-similar on different scales. A fractal object, or fractal, is characterized by a frac-
tal dimension, a non-integer number less than the topological dimension of the object.
Considering the object as a set of points, its fractal dimension is related to the point
distribution in the state space. In Fig.1.2, six fractal objects are shown, the three first
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are strange attractors generated by chaotic maps (logistic, Henon, Ikeda), and the other
three are strange attractors generated by chaotic flows (Rössler, Lorenz, Rabinovich).
The attractor of the logistic map covers almost completely the line segment (0, 1) (ex-
cept a countable infinity of periodic points), and the fractal dimension is d � 1. The
Henon attractor seems to form lines and has d � 1.21, the fractal dimension is closer to
one than to the topological dimension two. The Ikeda attractor has a fair distribution on
the plane justifying that d � 1.6. Similarly, the Rössler and Lorenz attractors seem to
lie on two planes and have d � 2.01 and d � 2.06, respectively, while the Rabinovich
attractor seems to be more expanded in three directions and has d � 2.19.

The correlation dimension measures the point distribution of the attractor in state
space. For time series, the state space is the reconstructed state space IRm. For the
points in this space, the correlation integral is computed first. The correlation integral
for a distance r is the average number of points on the attractor that are less than r units
apart

C(r) =
2

N(N − 1)

N∑

i=1

N∑

j=i+1

Θ(r − ‖xi − xj‖), (1.4)

where Θ(x) is the Heavyside function (Θ(x) = 0 if x < 0 andΘ(x) = 1 if x ≥ 0) and
‖.‖ is the norm for distance measuring [7]. Temporally close points are usually omitted
in the computation of the average in eq.1.4. The correlation dimension ν is given by
the scaling law C(r) ∼ rν for r → 0 and N → ∞. All strange attractors possess
this scaling property. In practice, ν is found from the local slope of logC(r) vs. log r
over a range of small r-values, where C(r) is computed over the available N data. In
order to obtain a reliable estimate of ν given a time series, the same scaling should be
observed for increasing embedding dimensions establishing the so-called saturation
property. For flows, the reconstruction parameter to be tuned is not m but the time
window length τw as was argued in paper 3.

A legitimate estimate of the correlation dimension ν should fulfill the two condi-
tions of clear scaling and saturation. Both of the conditions hold for noise-free infinite
chaotic time series and arbitrary reconstructions satisfying Takens’ criterion. For finite
and noisy time series, the reconstruction setup must be carefully chosen in order to
maintain scaling and saturation.

In paper 3 and paper 7, the estimation of ν was used as a tool to assess different
reconstructions. Moreover, in paper 3, ν was estimated from real data including the
Taylor Couette experiment [5] and EEG data from epileptic seizures, and it was found
that confident estimates of ν could be obtained for suitably selected τw around the
mean orbital period τp. For noisy limited data in general, there is no gaurantee that
confident estimates of ν can be obtained regardless of the reconstruction setup. For
example, scaling may be masked by noise completely.

1.3.2 Correlation dimension as discriminative statistics

The estimation of ν may be employed in order to determine the fractal dimension,
exactly or approximately depending on the quality and nature of the data, or in order to
distinguish different data types. The former requires reliable and confident ν estimates
while the latter requires only statistically significant differences of the ν estimates from
the different data types.

Correlation dimension estimation was used in paper 4 as a discriminative statistics
to distinguish healthy subjects from patients of various vertigo diseases based on op-
tokinetic data (OKN). The correlation integral was computed for points reconstructed
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Figure 1.2: Strange attractors of chaotic systems: (a) Logistic map, xi+1 = 4xi(1−xi),
(b) Henon map [10], (c) Ikeda map [11], (d) Rössler flow [26], (e) Lorenz flow [16],
and (f) Rabinovich-Fabrikant flow [25].
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with SSA and for increasing τw. Scaling and saturation were investigated with an au-
tomatic process for each OKN time series. A statistical test on 10 healthy and 10 sick
subjects showed significant difference in the ν estimates of the two groups.

1.3.3 Interdistance measure

The estimation of the correlation dimension from noise-free data is straightforward
and without problems, apart from the selection of suitable reconstruction parameters to
account for the limited length of the data. When there is noise in the data, the setup for
estimation has to be carefully examined for robustness to the noise factor. Particularly,
the measure of point distances may be sensitive to noise.

In paper 5, the effect of noise on the computation of point distances with differ-
ent norms when estimating ν was studied. In the presence of noise, a norm may be
considered as a stochastic variable being a function of the noisy point difference vec-
tor (xi − xj , see eq.1.4). A statistical analysis of the three most prominent norms,
the taxicab norm L1, the Euclidean norm L2, and the maximum norm L∞, in mea-
suring noisy point distances revealed distinct statistical differences. For example, the
L1 norm is more sensitive to noise when the point difference vector is close to some
coordinate axes of IRm and the L∞ when it is close to the diagonal or antidiagonal. On
the other hand, L2 is not sensitive to any particular direction, it has a so-called circular
dependency on the point difference vector. Based on these statistical properties, the
drawbacks of the norms in the estimation of ν from noisy data can be anticipated.

In paper 5, the drawbacks of the norms were investigated in a systematic way and
using corrupted data from many different chaotic maps and flows. The followingresults
were reached:

• L2 is the most robust norm to noise for measuring point distances,

• L∞ gives the least biased ν estimates for noisy time series generated from chaotic
maps,

• the performance of L1 and L∞ on flows varies with the application and the
reconstruction setup.

. The results above do not pertain only the correlation dimension estimation but any
method estimating scaling properties from point distances, i.e. other dimension mea-
sures and entropy.

1.3.4 Correction of the correlation dimension estimation from noisy
data

Noise corrupts the scaling on the range of r distances up to the noise amplitude, and
then ν can be estimated only from the scaling for larger r. For systems retaining the
scaling property only for small r or in applications with moderate or large noise levels
the estimation of ν deteriorates. There are two different approaches to solve this prob-
lem. One is to filter out the noise from the time series (nonlinear filtering [14]) and then
use the filtered time series to estimate ν . The other is to compensate for the effect of
noise in the computations directly when estimating ν . The latter approach was adopted
in paper 6.

The correction algorithm for the estimation of ν presented in paper 6 relies on a
nice statistical property of the L2 norm, i.e. the circular dependency of the norm on
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the point difference vector. When noise is added on the point difference vector the
norm is positively biased. Subtracting the bias, the noise-free point distance can be
estimated. Alternatively, when a noisy point distance is compared to a given distance
r, one can reduce r with a quantity that accounts for the bias and retrieve the noise-free
case. This is implemented to correct the estimation of ν . The correlation integral C(r)
of the noisy data is computed as before (using the L2 norm) and a new r′ is found
from the statistical bias of the L2 norm. Then the corrected estimate of ν can be found
from the local slope of the graph logC(r) vs log r′ over a range of r around the noise
amplitude. The method was tested on many simulated data corrupted with different
levels of white noise, and the original ν-estimates could be retrieved up to moderate
noise levels (for most systems up to 10% – 15%). Moreover, the correction algorithm
was applied to data from the Taylor Couette experiment and from epileptic EEG. In
both cases, a more clear scaling could be observed after the correction was applied
probably due to the unmasking of the scaling for distances around the noise amplitude.

1.3.5 Conclusions

Many researchers to date disregard the correlation dimension estimation in the analysis
of chaotic time series claiming that there is little information to gain using this tool.
They rely on other tools such as the Lyapunov exponents. On the other hand, many
papers are still published presenting results on the estimation of ν from real world data
of limited length for which the estimation of Lyapunov exponents would be difficult
because it requires larger data size.

It is fair to say that the correlation dimension has been a useful tool in chaotic time
series analysis. In this work, it has been used as a tool to assess the reconstruction setup
(paper 3 and paper 7) and as discriminative statistics to distinguish different types of
optokinetic data (paper 4). Moreover, the algorithm for the computation of ν was stud-
ied with focus on the distance of noisy points. Some interesting results were derived
regarding the appropriateness of the different norms in the estimation of ν from noisy
data (paper 5). Further, a new algoritm was proposed to compensate for the effect of
noise in the estimation of ν (paper 6).

1.4 Local Prediction

Time series prediction has traditionally been a popular subject and an active area of
research. Concerning chaotic time series, prediction has often been used as another tool
to investigate chaos, treating nonlinear short-term predictability as an invariant property
of the underlying system. If the underlying system is chaotic the prediction error (due
to error in the initial conditions and in the model fitting) amplifies exponentially with
time. For regular deterministic data, no amplification of error with time should be
observed, and for stochastic data, the error may grow following another power law
[39]. Moreover, the rate of the error amplification indicates the complexity of the
chaotic mechanism.

Apart from the dynamical information one may seek by applying nonlinear pre-
diction, another more challenging objective would be to achieve best predictions for
the problem at hand. This is the case with many applications in different disciplines,
from biology, to astrophysics and economics. It has to be mentioned that in the chase
of optimal future point estimates, the statistical confidence of these estimates is of-
ten overlooked and most models are used without any concern for the variance of the
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predicted values.
In chaotic time series prediction, the models are defined directly from the data (data

driven or empirical models) and often they give little insight into the nature of the un-
derlying process. Therefore they are often referred to as black-box models. In paper 2,
a review of this large category of models is made, and the models are classified further
as global models (e.g. polynomial maps), local models (linear maps, weighted sim-
plexes), and semilocal models (neural networks, radial basis functions). The research
work of the thesis on prediction is made on the local linear pediction models.

1.4.1 Local linear prediction models

The rationale behind local linear models is to define a linear least square problem lo-
cally for each target point a prediction is desired. So, the global prediction model is
actually the concatenation of many local linear models, one per target point. To elu-
cidate, assume that measurements up to time i of some quantity are obtained and the
value at time i+ 1 is sought. Assume also that points are reconstructed from the data
following the MOD method with a suitable selection ofm and τ (or ρ). Then any linear
prediction algorithm consists of the following three steps:

1. Find the neighbors of the target point xi = [xi, xi−ρ, . . . , xi−(m−1)ρ]T .

2. Assume a linear model for the neighbors and their one-step ahead mappings and
find the parameters of the model.

3. Find the one-step prediction applying the model to the target point.

The multi-step prediction can be found directly from the linear model that approxi-
mates the multi-step ahead mapping. Alterantively an iterative scheme can be applied,
i.e. starting with the scheme for one-step prediction, construct a target point for time
i+ 1, repeat the one-step prediction and so on until the desired time is reached. There
are plenty of modifications and improvements of the standard local prediction scheme
presented above. Worth mentioning is weighting of the neighbors in order to account
for the level of closeness of the neighbor points to the target point. However, in the
work presented below the standard setup is adopted and the new ideas and modifica-
tions concern only the linear model.

1.4.2 Regularization of the ordinary least squares

The ordinary linear model is the straightforward solution of the least squares, solving
the linear problem of m unknowns (assuming the local points are centered first) in k
equations, where k is the number of neighbors. The problem has a least norm solution
for k ≥ m but when m is close to k the solution has a large variance. The solution
deteriorates significantly and systematically when there is noise in the data, and then
there is need for regularization of the ordinary least square (OLS) solution. This is the
subject of paper 8.

In linear regression analysis, a number of regularization techniques have been de-
veloped but they have been overlooked, or at least not yet applied, in local linear pre-
diction. Many of these techniques are well established in various application areas, as
the principal component regression (PCR) and the partial least squares (PLS), while
others are less used in applications but have appealing statistical properties such as the
ridge regression (RR) and the truncated total least squares (TTLS). As shown in paper
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8, all these regularizations techniques have somehow different statistics but their com-
mon feature is that they reduce the variance of the solution offering some bias. Thus
they may give more confident predictions and perform better than OLS in the presence
of noise or with k close tom (see paper 8).

All the regularization techniques except TTLS seem to work better than OLS on
noisy data, and are actually compatible with other more sophisticated prediction tools
such as neural networks. Moreover, they compensate for the drawback of OLS with
few neighbor points (small k) and they are especially useful in applications with low
data density, i.e. time series of short length.

The most robust of the regularization techniques seems to be the PCR, which is
simply a rank reduction of the OLS. It gives often the best predictions on noisy data
when the rank reduction is properly selected. Applications on the real sunspot data
showed that the regularization techniques, and particularly PCR, is at least compatible
to neural networks and outperform the classical bench-mark threshold autoregressive
model. However, the results on local linear prediction should be considered preliminary
and there is ongoing work on this topic.

1.5 Conclusion and Suggestion for Future Work

The work in this thesis has been concentrated on three important topics in the study of
chaotic time series: state space reconstruction, correlation dimension and local linear
prediction. These topics were first reviewd by the author and his collaborators in two
review papers (paper 1 and paper 2).

The importance of the time window length τw in state space reconstruction was es-
tablished (paper 3). It was shown that the quality of the reconstruction is more depen-
dent on τw than on the reconstruction method, MOD or SSA, or its specific parameters
(paper 7). A new setup for reconstruction was designed selecting the τw from the mean
orbital period τp and the appropriateness of this reconstruction scheme was tested on
many types of data (paper 3).

In the estimation of the correlation dimension, the reconstruction has to vary in or-
der to evaluate the saturation property. According to the proposed reconstruction setup,
the saturation is expected to be observed for τw ≥ τp if it can be observed at all (paper
3). This approach was adopted in the estimation of the correlation dimension ν of the
optokinetic data. The estimation of ν was applied to time series of 10 healthy and 10
sick subjects and a significant difference between the two groups was found (paper 4).
However, the ensembles were small and a meta-analysis with many optokinetic data is
required to assess this result. The number of optokinetic data gathered to date are not
sufficient to start such an analysis.

Further, the focus was on the algorithm for the estimation of ν from noisy data. It
was shown that the use of different norms to measure the distances of the noisy points
may give different results (paper 5). The statistical analysis of the L1, L2 and L∞
norm, showed that L1 and L∞ are sensitive to some particular directions in state space
while L2 is not. The estimation of ν with the three norms on different reconstruction
setups and different data types confirmed the robustness of the L2 norm (paper 5).
Then a correction scheme for the estimation of ν from noisy data was designed based
on the systematic bias of the L2 norm (paper 6). The correction scheme performs well
on data corrupted with white noise but in some applications the measurements may
involve correlated noise. Further work is needed here, to modify the correction scheme
or fix the reconstruction properly to account for correlated noise. Applications of the
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correction scheme to data from the Taylor Couette experiment and from the epileptic
EEG gave promising results. It would be interesting to apply the corrected estimation
of ν together with the proposed reconstruction setup to other real world time series
that are expected to have a moderate level of observation noise. There is a continuing
communication with the State Center of Epilepsy and a project along these lines will
soon start focusing on EEG data before and at epileptic seizure.

Concerning local linear prediction, the main contribution was to introduce the regu-
larization techniques, which are well known in other areas, but little referred to or used
in chaotic time series analysis. It turned out that these techniques are actually very use-
ful when the data are corrupted with noise and outperform the ordinary least squares
model (paper 8). The preliminary results on local linear prediction using regulariza-
tion are promising and there is ongoing work on this topic. It seems that for one-step
prediction, a small time window length τw (or embedding dimension m for fixed de-
lay τ ) is appropriate but for predictions further into the future a larger τw (or m) is
required. The latter suggests the use of τw up to the mean orbital period τp, which was
found to be optimal for the invariant estimation. For large m (close to the number of
neighbors k), the ordinary least squares suffers and is not suitable for predictions while
the regularization techniques seem to be robust to the increase of m. Thus a topic for
investigation is whether a large m, such that τw � τp, would improve the predictabil-
ity of the regularization methods for prediction times larger than τp. Moreover, in the
multi-step prediction, an a priori estimate of the uncertainty of the prediction in each
step may be taken into account to design an automatic scheme that changes between
direct and iterative prediction. There is ongoing work also on this topic.

There are still other topics for further investigation, especially on the local linear
prediction, but any further research should be accompanied with a broad application to
real world data.

13



Bibliography

[1] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring. Analy-
sis of observed chaotic data in physical systems. Reviews of Modern Physics,
65(4):1331 – 1392, 1993.

[2] D. K. Arrowsmith and C. M. Place. An Introduction to Dynamical Systems. Cam-
bridge University Press, 1990.

[3] O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall. Networks and Chaos –
Statistical and Probabilistic Aspects. Chapman & Hall, 1993.

[4] P. Bergè, Y. Pomeau, and C. Vidal. Order within Chaos: Towards a Deterministic
Approach to Turbulence. Wiley, New York, 1984.

[5] A. Brandstater and H. Swinney. Strange attractors in weakly turbulent Couette-
Taylor flow. Physical Review A, 35:2207 – 2220, 1987.

[6] J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors.
Reviews of Modern Physics, 57(3):617 – 656, 1985.

[7] P. Grassberger and I. Procaccia. Characterization of strange attractors. Physical
Review Letters, 50:346 – 349, 1983.

[8] P. Grassberger, T. Schreiber, and C. Schaffrath. Non-linear time sequence analy-
sis. International Journal of Bifurcation and Chaos, 1:521 – 547, 1991.

[9] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.

[10] M. Hénon. A two-dimensional map with a strange attractor. Communications in
Mathematical Physics, 50:69 – 77, 1976.

[11] K. Ikeda. Multiple-valued stationary state and its instability of the transmitted
light by a ring cavity system. Optics Communications, 30:257, 1979.

[12] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge, 1997. in
press.

[13] J. H. K. Kim and Stringer J. Applied Chaos. John Wiley & Sons, Inc, 1992.

[14] E. J. Kostelich and T. Schreiber. Noise reduction in chaotic time-series data: A
survey of common methods. Physical Review E, 48(3):1752 – 1763, 1993.

[15] A. J. Lichtenberg and M. A. Liebermann. Regular and Chaotic Dynamics.
Springer-Verlag, New York, second edition, 1992.

14



[16] E. N. Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences,
20:130, 1963.

[17] H. Madsen. Non-linear methods for the analysis of electroencephalograms
(EEG). Master’s thesis, Department of Informatics, Oslo, 1995. 186 pages (in
Norwegian).

[18] R. M. May. Simple mathematical models with very complicated dynamics. Na-
ture, 261:459, 1976.

[19] G. Mayer-Kress, editor. Dimensions and Entropies in Chaotic Systems. Springer-
Verlag, Berlin, 1986.

[20] A. Medio. Chaotic Dynamics: Theory and Applications to Economics. Cam-
bridge University Press, Cambridge, 1992.

[21] F. C. Moon. Chaotic and Fractal Dynamics: an Introduction for Applied Scien-
tists and Engineers. John Wiley and Sons, New York, 1992.

[22] A. H. Nayfeh and B. Balachandran. Applied Nonlinear Dynamics: Analytical,
Computational, and Experimental Methods. Wiley & Sons, 1995.

[23] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, Cambridge,
1993.

[24] E. Ott, T. Sauer, and J. A. Yorke, editors. Coping with Chaos. Wiley & Sons,
1994.

[25] M. I. Rabinovich and A. L. Fabrikant. Stochastic self-modulation of waves in
nonequilibrium media. Soviet physics, Journal of experimental and theoretical
physics, 50:311, 1979.

[26] O. E. Rössler. An equation for continuous chaos. Physics Letters A, 57:397 –
398, 1976.

[27] D. Ruelle and F. Takens. On the nature of turbulence. Communications in Math-
ematical Physics, 20:167 – 192, 1971.

[28] T. Sauer, J. A. Yorke, and M. Casdagli. Embedology. Journal of Statistical
Physics, 65:579 – 616, 1991.

[29] H.G. Schuster. Deterministic Chaos: An Introduction. Verlagsgesellschaft, Wein-
heim, 1989.

[30] S. D. Skipitaris. Nonlinear time series analysis of ECG (electrocardiogram) sig-
nals. Master’s thesis, Department of Informatics, Oslo, 1995. 113 pages.

[31] S. Smale. Diffeomorphisms with many periodic points. In S. S. Cairns, editor,
Differential and Combinatorial Topology, pages 63 – 80. Princeton University
Press, Princeton, 1963.

[32] S. Smale. Differentiable dynamical systems. American Mathematical Society
Bulletin, 73:747 – 817, 1967.

[33] S. H. Strogatz. Nonlinear Dynamics and Chaos: with Applications to Physics,
Biology, Chemistry, and Engineering. Addison-Wesley, 1994.

15



[34] F. Takens. Detecting strange attractors in turbulence. In D. A. Rand and L. S.
Young, editors, Dynamical Systems and Turbulence, Warwick 1980, Lecture
Notes in Mathematics 898, pages 366 – 381. Springer, Berlin, 1981.

[35] J. Theiler. Estimating fractal dimension. Journal of the Optical Society of Amer-
ica A, 7(6):1055 – 071, 1990.

[36] J. Theiler, S. Eubank, A. Longtin, and B. Galdrikian. Testing for nonlinearity in
time series: the method of surrogate data. Physica D, 58:77 – 94, 1992.

[37] H. Tong, editor. Dimension Estimation and Models, Singapore, 1993. World Sci-
entific.

[38] A. A. Tsonis. Chaos: From Theory to Applications. Plenum Press, New York,
1992.

[39] A. A. Tsonis and J. B. Elsner. Nonlinear prediction as a way of distinguishing
chaos from random fractal sequences. Nature, 358:217 – 220, 1992.

[40] A. S. Weigend and N. A. Gershenfeld. Time Series Prediction: Forecasting the
Future and Understanding the Past. Addison-Wesley Publishing Company, Read-
ing, 1994.

[41] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos.
Springer-Verlag, New York, 1990.

16



Chapter 2

Thesis papers

17





Paper 1

Chaotic Time Series Part I:

Estimation of Some Invariant Properties in State Space

D. Kugiumtzis, B. Lillekjendlie, and N. Christophersen

Modeling, Identification and Control, Vol. 15, pp 205 – 224, 1994

19





Paper 2

Chaotic Time Series Part II:

System Identification and Prediction

B. Lillekjendlie, D. Kugiumtzis, and N. Christophersen

Modeling, Identification and Control, Vol. 15, pp 225 – 243, 1994

41





Paper 3

State Space Reconstruction Parameters

in the Analysis of Chaotic Time Series

– the Role of the Time Window Length

D. Kugiumtzis

Physica D, Vol. 95, pp 13 – 28, 1996

63





Paper 4

Procedure for Estimating the Correlation

of Optokinetic Nystagmus Signal

T. Aasen, D. Kugiumtzis, and S. H. G. Nordahl

Computers and Biomedical Research, in press, 1997

81





Paper 5

Assessing Different Norms in Nonlinear

Analysis of Noisy Time Series

D. Kugiumtzis

Physica D, in press, 1997

107





Paper 6

Correction of the Correlation Dimension

for Noisy Time Series

D. Kugiumtzis

International Journal of Bifurcation and Chaos,

in press, 1997

129





Paper 7

State Space Reconstruction:

Method of Delays vs Singular Spectrum Approach

D. Kugiumtzis, and N. Christophersen

Research Report 0806-3036, No 236, 1997

149





Paper 8

Regularized Local Linear Prediction

of Chaotic Time Series

D. Kugiumtzis, O. C. Lingjærde, and N. Christophersen

submitted to Physica D, 1997

163





Department of Informatics

February 1997

Chaotic Time Series Analysis: Improving the Procedures

Dimitris Kugiumtzis

Dr. Scient. thesis

Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO


