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Chaotic universe model
Ekrem Aydiner  

In this study, we consider nonlinear interactions between components such as dark energy, dark 

matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and 

propose a simple interaction model based on the time evolution of the densities of these components. 

By using this model we show that these interactions can be given by Lotka-Volterra type equations. 

We numerically solve these coupling equations and show that interaction dynamics between dark 

energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 

0 > wde >−1, wdm ≥ 0, wm ≥ 0 and wr ≥ 0 values. These strange attractors with the positive Lyapunov 
exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These 
results provide that the time evolution of the universe is chaotic. The present model may have potential 
to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big 

rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization 

of the universe. The model also connects between dynamics of the competing species in biological 
systems and dynamics of the time evolution of the universe and offers a new perspective and a new 
different scenario for the universe evolution.

�e formation, structure, dynamics and evolution of the universe has always been of interest. It is commonly 
accepted that modern cosmology began with the publication of Einstein’s seminal article in 19171. Applying 
the general relativity to the entire universe, Einstein suggested that the universe was static, and spatially curved. 
Following from this, to explain the structure and dynamics of the universe many interesting models based on 
Einstein model have been proposed such as �at and expanding universe2, expanding �at space model, spherical 
and hyperbolic expanding space3, original big-bang model4–6, expanding �at space7, kinematic expanding mod-
els8, oscillating or cyclic universe models9,10, buble universe and in�ation bubble universe models9–12, chaotic 
in�ation model13 etc. Amongst these models, the big-bang model has been the most accepted one. �is is due 
to the cosmic microwave background (CMB), and cosmic red shi� discovered by Hubble observations as well 
as observations con�rming the abundance of light elements in the universe supporting the big-bang scenario. 
However, new experimental �ndings such as Type Ia supernovae (SNIa) data14–17, CMB anisotropy18,19, and large 
scale structure (LSS)20–22, showing that the universe does not only expand but does this with an acceleration 
makes this cosmic scenario more exciting. �ere is no explanation to this expansion with an acceleration yet. 
Cosmologists are still working on new models and scenarios to address this situation. One of the best scenarios 
attempting this is the dark energy. Unfortunately, there is no con�rmation of the physical source of this dark 
energy. Although the origin of the dark energy is not known yet, it is well known that mater is not the only ingre-
dient of the universe. According to what is known today, at present, the universe is composed of approximately 
75% dark energy, 20% cold dark matter, 5% baryonic matter and negligible amount of radiation14–22. To explain 
the nature of the dark energy, there are various dark energy models and mechanisms such as the cosmologi-
cal constant Λ (vacuum or dark energy) proposed. �e cosmological constant-cold dark matter-matter model 
(ΛCDM) works very well and is in agreement with a large number of recent observations. However, to state 
without considering highly hypothetical models and their problematic propositions, some of the questions to 
be answered are the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, emergence of the 
galaxies, matter distribution and large scale organization of the universe. Despite the great success of the modern 
cosmology, it is obvious that there can be no success in the development of an integrated theory on the dynamics 
and evolution of the universe without answering these questions.

�ere are many proposed models attempting to answer questions above mentioned emerge from the big-bang 
and other theories based on the theory of the modern cosmology founded by Einstein. For example, oscillating or 
cyclic universe models, and dark-matter interaction model were proposed to solve the singularity, and �ne tuning 
problems respectively gaining importance in the �eld. However, no theoretical relationship has been established 
between the cyclic universe and the dark energy-dark matter interaction models so far, su�ciently addressing 
the evolution and dynamics of the universe. Questions on the past and future evolution of the universe, and 
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the mechanisms of the dynamics stemming from this evolution have not su�ciently been addressed. But until 
now, a more comprehensive scenario has not been developed that addresses the evolution of the universe and 
the existing cosmological problems. Work based on the interaction of dark energy and dark matter seems to 
bring optimism to the �eld23–48. �is is because the presence of such interactions may have hints that may help to 
understand the dynamics of the universe leading to a the development of a more realistic scenario. In this work, in 
contrast to well known popular models, it is assumed that there is a non-linear interaction between dark energy, 
dark matter, matter and radiation. Although somehow hypothetical, this assumption may have the potential of 
solving many important problems of cosmology such as the singularity, cosmic coincidence, big crunch, big rip, 
horizon, oscillation, emergence of galaxies, matter distribution and large scale organization of the universe.

�e idea of presence of a non-linear interaction between dark energy, dark matter, matter and radiation may 
enable the development of a new cosmology scenario on the evolution and dynamics of the universe. In this work, 
the interactions between components forming the universe is modeled and possible outcomes are discussed. 
�is model is a novel one. �e interaction models are based on Friedman-Robertson-Walker (FRW) framework 
leading to investigation of possible dynamics. We believe in the importance of this work because of the follow-
ing points: Firstly, the non-linear interaction between the components of the universe were �rst given by the 
Lotka-Volterra type equations49,50. It is known that the Lotka-Volterra equation and its variations are mathemati-
cal models proposed to model the competition between biological species. It is interesting that the Lotka-Volterra 
type equation written for cosmology is in the simplest di�erential form. Secondly, the Lotka-Volterra type equa-
tions written for cosmology can give chaotic solutions depending on the values of the parameters of interaction. 
�is is an important outcome for cosmology carrying a potential in helping us to understand questions men-
tioned above using the non-linear interaction dynamic. Furthermore, the model proposed here combines the 
big-bang and oscillating universe models in a di�erent way and a perspective.

Results
Interaction between dark energy - dark matter. Firstly we present the theoretical results in which we 
show that the interaction between dark energy and dark matter can be given a coupling equation likes Lotka-
Volterra. In order to obtain the coupling interaction equation we follow belove theoretical procedure. Based on 
the Friedman-Robertson-Walker metric, the interaction between dark matter and dark energy can be given as 
follows:

ρ ρ+ + =− H p Q3 ( ) (1a)de de de

ρ ρ+ + = H p Q3 ( ) (1b)dm dm dm

where Q is arbitrary coupling function and subscript stands for a generic dark energy model to be speci�ed23–41. 
�e conservation equations are subject to the Friedman constraint

κ
ρ ρ ρ

κ
ρ ρ= + =− + + + .H H p p

3
( ),

2
( )

(2)de dm de de dm dm
2

2 2

In this situation, the total energy conservation holds,

ρ ρ+ + = H p3 ( ) 0 (3)eff eff eff

where ρe� = ρde + ρdm and pe� = pde + pdm and the Friedman-Robertson-Walker Eq. (2) do change. In this model 
it is assumed that dark matter has a pressure. Assuming that dark matter has no pressure is purely hypothetical. 
Furthermore, the assumption of zero pressure contradicts the idea of the change in density. Recently, it is sug-
gested that dark matter has a pressure and various mechanisms have been proposed for this pressure51. In this 
work, it can be suggested that the dark matter’s contribution to pressure may be caused by volume exclusion just 
like the van der Walls gas. �at’s why the pressure of dark matter should not be zero. However small, the nonzero 
value of dark matter means that its EoS parameters should be nonzero too. In other words, for pdm > 0 the EoS 
parameter for dark matter can be given as wdm > 0. On the other hand, it is known that the form of Q is deter-
mined under phenomenological assumptions, mainly, the dimensional analysis is used to construct interactions. 
It is reasonable to consider interactions which could improve previously known results and at the same time will 
not make the mathematical treatment of the problems complicated. It is widely believed that deeper understand-
ing of the nature of dark energy and dark matter could give fundamental explanations of the phenomenological 
assumptions about interaction. �ere are di�erent Q de�nition in the literature23–45. A simple interaction coupling 
can be chosen as Q = ±γρdmρde. In this case, these questions can then be expressed as

ρ ρ γρ ρ+ + = − H p3 ( ) (4a)de de de dm de

ρ ρ γρ ρ+ + = H p3 ( ) (4b)dm dm dm dm de

if γ > 0, the interaction suggests that dark matter is converted into dark energy, while γ < 0 suggests the inverse 
process52. By setting pde = ρdewde and pdm = ρdmwdm these equations are given by

ρ
ρ γρ ρ=− + −

d

dt
H w3 (1 )

(5a)
de

de de de dm
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ρ
γρ ρ ρ= − + .

d

dt
H w3 (1 )

(5b)
dm

dm de dm dm

Now we can write r1 = −3H(1 + wde) > 0 for wde < −1, and r2 = 3H(1 + wdm) > 0 for wdm ≥ 0. Hence we obtain

ρ
ρ γρ ρ= −

d

dt
r

(6a)
de

de de dm1

ρ
γρ ρ ρ= − .

d

dt
r

(6b)
dm

dm de dm2

By using these relation

γ
ρ

γ
ρ= =x

r
x

r
,

(7)de dm1
2

2
1

for a constant or very slowly changing Hubble parameter H, Eq. (5) with help of Eqs (6) and (7) can be trans-
formed to

= −
dx

dt
r x x(1 )

(8a)
1

1 1 2

= −
dx

dt
r x x( 1)

(8b)
2

2 2 1

where r1 > 0 for wde < −1 and r2 > 0 for wdm ≥ 0. As it can be seen in Eq. (8), the choice of the interaction term 
leads us to Lotka-Volterra type equations. �is equation is a our main result. To recall, Lotka-Volterra equa-
tions49,50 represent the competition between two species and they are used widely in biology, chemistry and var-
ious other �elds. In this work, the interaction equations between dark energy and dark matter of cosmological 
systems are used corresponding to the competing prey and predator species in biology.

�e dynamic and stability analysis of the Eq. (8) are given belove. �e model reaches equilibrium when both 
of the derivatives are equal to zero.

− =r x x(1 ) 0 (9a)1 2 1

− = .r x x( 1) 0 (9b)2 1 2

When solved for x1 and x2 the above system of equations yields

= =S x x: { , } {0, 0} (10a)1 1 2

= = .S x x: { , } {1, 1} (10b)2 1 2

�ese are �xed points of the coupling equations. �e stability of the �xed points at the origin can be deter-
mined by performing a linearisation by using partial derivation. �e Jacobian matrix of the model is

=





− −

−






J
r x r x

r x r x

(1 )

( 1) (11)

1 2 1 1

2 2 2 1

where J = J (x1, x2). When evaluated at the steady state of (0, 0) the Jacobian matrix J becomes

=



 −






J
r

r
(0,0)

0

0 (12)

1

2

For fixed point S1 = (0, 0), the eigenvalues of this matrix are λ1 = r1 = −3H (1 + wde) for wde <−1 and 
λ2 = −r2 = −3H(1 + wdm) for wdm ≥ 0. Evaluating J at the second �xed point leads to

=





− 



.J

r

r
(1, 1)

0

0 (13)

1

2

For �xed point S2 = (1, 1), the eigenvalues are λ = + +iH w w3 1 1dm de1  and λ =− + +iH w w3 1 1
dm de2

 
in the case of wde < −1 and wde ≥ 0. In this model the value of eigenvalues depend on EoS parameters wdm and wde. 
�erefore characteristic properties of these eigenvalues are determined by sign of EoS parameters. �e stability of 
these �xed point are of signi�cance. For the �xed point S1 has two real eigenvalues. �e relation between eigenvalues 
is given as λ2 > 0 > λ1 which indicates �xed point S1 is a saddle point. However, the �xed point S2 has two nonzero 
imaginary eigenvalues as λ =± + +iH w w3 1 1dm de1,2  for wde < −1. Hence the linear analysis cannot tell more 
about nature of S2, since the eigenvalues may have null real part. �erefore to understand better how the limit cycles 
behave and on what they do depend on, let’s take the ratio of the two equation of the models, hence trying to solve
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=
−

−

dx

dx

r x x

r x x

( 1)

(1 ) (14)
2

1

2 2 1

1 1 2

by separating the variables, the equation reads:

−
=

−r x

x
dx

r x

x
dx

(1 ) ( 1)

(15)
1 2

2
2

2 1

1
1

integrating now from an arbitrary initial point (x10, x20) and an arbitrary point (x, y), one obtains

− + − =r x x r x x F x x(ln ) (ln ) ( , ) (16)1 2 2 2 1 1 1 2

where F(x1, x2) is the equation of a surface, which depends on the initial conditions (x10, x20) and represents an 
invariant of motion. Analyzing Hessian matrix H (F), one can show that F(x1, x2) is a convex function of (x1, x2), 
that S2 represents the critical points, and that the contour lines are close curves. �ese close curves ones are also 
the limit cycles of the system Eq. (8), and all the trajectories go onto them.

It must be noted that for wdm < −1 and wde < −1 the eigenvalues for S2 = (1, 1) are be real, hence S2 is the sad-
dle point. For this condition, the trajectory of dynamic will not be close. �is means that, since there will be no 
cyclic relationship between the two, dark matter and dark energy of the universe will be rapidly reduced to zero or 
one will be transformed to the other one and disappear completely. �eoretical and observational data indicates 
that approximately 5% of the universe is formed of matter and hence any dynamic that causes the disappearance 
of dark matter cannot be correct. In fact this model establishes lower and upper boundaries for the EoS parame-
ters of dark energy. Assuming that the interaction equations are correct, for a positive and �nite value for the dark 
matter pressure the EoS parameter is given as wdm > 0, and for negative pressure value of dark energy and cyclic 
relationships the EoS value should be wde < −1. Another point to be noted is the following: Here, the interaction 
parameter is chosen as Q = γρdmρde. �is implies that the transformation between dark energy and dark matter 
will be equal for both directions. However, a nonlinear transformation approach will be more realistic. �e inter-
action parameters may be chosen di�erent types. �is has also been considered in our research but not presented 
here. �e �ndings show that a di�erent interaction parameter does not a�ect the characteristic of the solution. 
�is is because of the fact that the interaction parameters lie in the eigenvalues determining the characteristics of 
the �xed point. A simple numerical solution of Eq. (8) is given in a phase space. Figure 1 shows the interchanges 
of the densities of dark energy x1 and dark matter x2 for r1 = 1.0, r2 = 1.0. �is cycle trajectory is independent of 
the interaction parameters between dark matter and dark energy but depends on EoS parameters. Cycle solu-
tions are obtained for all r1 > 0 and r2 > 0 values. �ese conditions can be satis�ed when taking wde < −1 for dark 
energy and wdm ≥ 0 for dark matter.

Here we examine the dynamics of dark energy density versus dark matter density. As it can be seen from Fig. 1, 
Eq. (8) has a closed cyclic trajectory solution for arbitrary parameters r1 = 1.0, r2 = 1.0. We mentioned above that 
the characteristic of the trajectory completely depends on eigenvalues λ = + +iH w w3 1 1dm de1  and 
λ = − + +iH w w3 1 1dm de2  instead of the parameters r1 and r2 since they directly determine the nature of the 

Figure 1. Dimensionless dark matter density x1 and dark energy density x2 for 1000 time step. �e parameters 
are set as r1 = 1.0, r2 = 1.0.
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�xed points. On the other hand, the Hubble parameter H behaves as a scaling parameter and it equally a�ects the 
time evolution of the densities. As it can be seen from Eq. (14) that the Hubble parameters in r1 and r2 are canceled 
at the both side of the Eq. (14). �erefore, we have to note that the interactions are independent of H.

Quadratic interactions in dark sector. Here we present contribution of the quadratic interaction terms 
to the dynamics of the dark energy and dark matter. In the previous subsection by using Eq. (32) we set EoS 
parameters as pdm = ρdmwdm, pde = ρdewde for the dark matter and dark energy. In Eq. (32) p = ρw is valid ideal �uid 
when it is homogeneously distributed in a volume. �is means that pressure at every point of the V. Whereas, in 
realistic systems, pressure may not homogeneously distribute in the volume. In this case pressure p can be written 
as p = p(ρ) in terms of ρ

∑ρ ρ ρ ρ= = = + + +… .
=

p p A p A A( )
(17)n

N

n
n

0
0 1 2

2

�is form of pressure is known as a perturbative pressure or barotropic EoS (See ref.53). Here we interested in 
the quadratic form of the EoS p = p0 + A1ρ + A2ρ

2 by ignoring higher order terms. �e usual scenario for a cosmo-
logical �uid is a standard linear EoS (p0 = A2 = 0), in which case A1 = w is usually restricted to the range between 
±1. In a high energy, regime restricted equation of state can be chosen as p = A1ρ + A2ρ

2 where the parameter A2 
set the characteristic energy scale of the quadratic term53.

In order to obtain more information about nature of the coupling interactions, equation of states can be mod-
i�ed as ρ ρ= +p A A

de de de de de1 2
2  and ρ ρ= +p A A

dm dm dm dm dm1 2
2  for inhomogeneous distributed dark energy and 

dark matter. By setting A1de = wde, = ′A wde de2  and A1dm = wdm, = ′A wdm dm2 , the Eq. (5a) and (5b) can be reor-
ganized as

ρ
ρ ρ γρ ρ= − + − ′ −

d

dt
H w Hw3 (1 ) 3

(18a)
de

de de de de de dm
2

ρ
γρ ρ ρ ρ= − + − ′

d

dt
H w Hw3 (1 ) 3

(18b)
dm

de dm dm dm dm dm
2

By using Eq. (7), these equation can be transformed to

= − − ′
dx

dt
r x x r x(1 )

(19a)
1

1 1 2 1 1
2

= − − ′
dx

dt
r x x r x( 1)

(19b)
2

2 2 1 2 2
2

where r1 = −3H (1 + wde) > 0 for wde < −1 and r2 = 3H (1 + wdm) > 0 for wdm ≥ 0 as well in the previous section. 
Additionally γ′ =− ′ + >−r H w w9 (1 ) 0de dm1

2 1  for ′ <−w 1de  and wdm > 0 values, and ′ =− ′r H w9 dm2
2

γ+ >−w(1 ) 0de
1  for wdm > 0 and wde < −1 values. As can be seen that the quadratic term in rhs of Eq. (19a) and 

(19b) correspond to self-interacting terms in between components of the universe54–59. One can clearly see that 
these equations are coupled two interacting species such as dark matter and dark energy in the universe and 
which looks like Lotka-Volterra equations. As a result, by using quadratic EoS we �nd that coupling interactions 
lead to self-interacting Lotka-Volterra equations. Our purpose here is to show the contribution of the quadratic 
terms to the dark energy and dark matter interaction. Here we have only studied the dark energy and the dark 
matter, however, this discussion can be extended to the number of the higher components.

Now we can brie�y give the stability analysis of the �xed points. �e two equation of the self-interacting mod-
els in the phase plane is given

=
+ ′ +

+ ′ −
.

dx

dx

x r r x r x

x r r x r x

( )

( ) (20)
2

1

2 2 2 2 2 1

1 1 1 1 1 2

Unlike Eq. (14), the phase plane di�erential equation in Eq. (20) is not separable. �e simple isoclines are

= → ′ − =−
dx

dx
r x r x r0

(21a)
2

1
1 1 1 2 1

= ∞ → + ′ =−
dx

dx
r x r x r

(21b)
1

2
2 1 2 2 2

Both of these isoclines are straight lines with positive x1 and x2 intercepts depending case of (i) > ′r r1 1 and 
< ′r r2 2, (ii) < ′r r1 1 and > ′r r2 2, (iii) < ′r r1 1 and < ′r r2 2, (iv) > ′r r1 1 and > ′r r2 2. From time-dependent di�er-

ential equations, one can see that there are two of three equilibrium population of species depending on the EoS 
parameters in the competing-species model in Eq. (19). In the �rst and second cases, there is only two equilib-
rium point which corresponds to the extinction of at least one of the species in the universe. However, in the cases 
of third and fourth, there are three equilibrium points in which both species in the universe coexist. This 
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equilibrium population is given by the intersection of the two straight lines ′ − =−r x r x rE E
1 1 1 2 1 and 

+ ′ =−r x r x rE E
2 1 2 2 2. �us these points are given

= −
+ ′ ′

+ ′
= −

+ ′

+ ′ ′
x

r r r r

r r r r
x

r r r r

r r r r

( )

( )
, ( )

( ) (22)

E E
1

1 2 1 2

1 2 1 2
2

1 2 1 2

1 2 1 2

Stability of the coexistent equilibrium population can be discussed for di�erent cases. We can also obtain tra-
jectories of coupling eq. (19). However, �e trajectory will shi� without changing its character.

Generalized equation for nonlinear interactions. We present the generalized equation for coupling 
interactions as a result. If we assume that there can be non-linear interactions among multiple components in the 
universe, then we can write a more general interaction equation. To achieve a more general equation, we start to 
write the interactions that a single component, such as dark energy, can perform �rst with itself and with other 
components, respectively.

= − ′
dx

dt
rx r x(1 )

(23a)
1

1 1

= − ′ + ″
dx

dt
rx r x r x(1 ( ))

(23b)
1

1 1 2

= − ′ + ″ + ″′
dx

dt
rx r x r x r x(1 ( ))

(23c)
1

1 1 2 3

and so on…, where r and r primes are interaction parameters between components. Finally, we can generalize to

∑η=





−






= ...

=

dx

dt
r x x i N1 1, ,

(24)

i
i i

j

N

ij j
1

where xi denotes the density of the i-th species, i.e., x1 is the dark energy, x2 is the dark matter x3 is the matter and 
x4 is the radiation. On the other hand, ri is its intrinsic growth (or decay) rate and the matrix ηij is called the inter-
action matrix. For i = 1, x1 corresponds to dark energy and rate parameter is = − +r H w3 (1 )de1 ; for i = 2, x2 
corresponds to dark matter and its parameter is r2 = −3H(1 + wdm) and so on. On the other hand, matrix elements 

ηij are given by η = −
+

+

′
Hw w

w11

3 (1 )

(1 )

de dm

dm

, η = 1
12

, η =
+

+

w

w13

(1 )

(1 )
dm

de

, and so on. �is equation can be called generalized 

interacting equation for all component such as dark energy, dark matter, radiation etc., and this equation likes the 
equation of competitive species in biological systems (See refs60,61). In other words, this equation for N compo-
nents is the counterpart of the Lotka-Volterra equation in cosmology.

Interaction dynamics of the dark energy - dark matter - matter. Here, we present the results of the 
coupling interactions among dark energy, dark matter, and matter. Firstly, to obtain numerical for N = 3 we can 
write the Eq. (24) in the form61

∑α= −
=

dx

dt
x x(1 )

(25)

i
i

j
ij j

1

3

where αij = ri ηij. Here we consider that EoS for dark energy wde is a little bit greater than −1 which means the dark 
energy density will slowly decrease as the universe expand. In order to numerically solve the Eq. (25) we chose 
0 > wde > −1, wdm ≥ 0 and wm ≥ 0 that provides the conditions r1 < 0, r2 > 0 and r3 > 0. �e parameters αij to solve 
Eq. (25) are given by

α
µ

=






− . − . .
. . .

. .







0 5 0 1 0 1
0 5 0 5 0 1

0 1 0 1 (26)
ij

For these αij parameters satisfy r1 = −0.5, r2 = 1.1 and r3 = µ + 0.2. By using data set (26) we obtain phase space 
solutions for two di�erent arbitrary µ > 0 values. Obtained numerical results for µ = 1.39 and µ = 1.43 are given 
in Figs 2 and 3, respectively. In Fig. 2 we set initial values for µ = 1.39 at t = 0 we set x1 = 0.2, x2 = 0.3 and x3 = 0.14. 
As it can be clearly seen from Fig. 2 for these initial conditions and data set given in (26) Eq. (25) has a strange 
attractor. By using TISEAN package program we compute the largest Lyapunov exponent as λ = 0.045. On the 
other hand in Fig. 3 for µ = 1.43 at t = 0 we set x1 = 0.3, x2 = 0.7 and x3 = 0.1. Figure 3 also shows that dynamics 
of Eq. (25) has a chaotic attractor with Lyapunov exponent λ = 0.091. �ese strange attractors provide that the 
dynamics of coupling interactions between dark energy, dark matter and matter is chaotic. �ese solutions are 
repeated for di�erent initial and di�erent data set provides the conditions 0 > wde > −1, wdm ≥ 0 and wm ≥ 0 and 
�nd similar chaotic behavior in the coupling dynamics. We also note that the numerical solution is independent 
from the Hubble parameter for mutual interactions between components since it lives in the factor of αij = ri ηij 
and is canceled. �us the parameter H does not appears in mutual interactions as well Eq. (8).
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Here obtained results shows that chaotic behavior appears in coupling interaction dynamics when dark energy 
parameter takes 0 > wde > −1 values. In cosmology, many experimental observations provide that dark energy 
EoS parameter wde bigger than minus one for the di�erent era of the universe. �erefore, these observations pro-
vide 0 > wde > −1 supports the idea that the universe may have chaotic behavior in any period. It is well known 
that if a physical system has a chaotic dynamics it creates an order according to the chaotic dynamics and does not 
easily leave itself in order. �e importance of chaotic dynamics for the universe discuss in next section.

We show that, unlike binary interactions, triple coupling interactions lead to chaotic dynamics. This 
is, of course, is a very simple model and is based entirely on the idea that the constituents of the universe are 

Figure 2. Chaotic attractor for interaction between the dark energy x1, dark matter x2 and matter x3 at µ = 1.39 
for wde > −1, wdm ≥ 0 and wm ≥ 0 for 5000 time step.

Figure 3. Chaotic attractor for interaction between the dark energy x1, dark matter x2 and matter x3 at µ = 1.43 
for wde > −1, wdm ≥ 0 and wm ≥ 0 for 5000 time step.
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transformed to each other through interactions. �is simple model, inspired by the competition of species in 
biological systems, o�ers remarkable results on the universe dynamics. If we go back to the biological systems, 
we know that the competing systems for N = 3 admit limit cycles behavior. Vano et al.60 studied the occurrence of 
chaos in basic Lotka-Volterra models of Lotka-Volterra models of four competing species. Apparently, for N ≤ 3 
chaos is not possible. However for N = 3 it is shown that chaotic behavior can appear in Eq. (25) for unphysi-
cal parameters61. Contrary to N = 3 Lotka-Volterra equations our equation in Eq. (25) shows that the chaotic 
behavior appears in the universe due to interactions between dark energy, dark matter and matter for realistic 
parameters.

Interaction dynamics of the dark energy - dark matter - matter - radiation. Finally we present 
the results of the coupling interaction between dark energy, dark matter, matter and radiation densities. For these 
interactions we set 0 > wde > −1, wdm ≥ 0, wm ≥ 0 and wr ≥ 0. To obtain numerical for N = 3 we can write the Eq. 
(24) in the form61

∑α= −
=

dx

dt
x x(1 )

(27)

i
i

j
ij j

1

4

where αij = ri ηij. �e parameters αij to solve Eq. (27) are given by

α =







− . − . . .
− . . . .
. . . − .
. . . .







0 5 0 1 0 1 0 1
0 5 0 5 0 1 0 2

0 3 0 1 0 1 0 3
0 1 0 1 0 1 0 1 (28)

ij

For these αij parameters satisfy r1 = −0.6, r2 = 0.6, r3 = 0.2 and x4 = 0.4. By using initial conditions x1(0) = 0.21, 
x2(0) = 0.35, x3(0) = 0.11 and x4(0) = 0.51 at t = 0, Eq. (27) for four species is solved. Obtained results is shown 
in Fig. 4. We also �nd positive Lyapunov exponent λ = 0.011 for these data. It can be clearly shown that coupling 
interactions for arbitrary but 0 > wde > −1, wdm ≥ 0, wm ≥ 0 values and wr ≥ 0 and arbitrary αij values has a chaotic 
solutions. Here these solutions are also repeated for di�erent initial and di�erent data set provides the conditions 
0 > wde > −1, wdm ≥ 0 and wm ≥ 0 and �nd similar chaotic behavior in the coupling dynamics.

Figure 4. Chaotic attractor for interaction between the dark energy x1, dark matter x2, matter x3 and radiation 
x4 for 2000 time steps.
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Discussion
In this study, we consider nonlinear interactions between components of the universe such as dark energy, dark 
matter, matter and radiation, and propose a new model to explain the dynamics of the universe. We numerically 
solve the model by using arbitrary EoS parameters and analyses the time-dependent behavior of densities of these 
components. Obtained results show that in the presence of the mutual interactions between components, our 
universe may have chaotic dynamics.

In summary several steps are followed in the study. In the first step, we consider only the interaction 
between dark energy and dark matter, and we show that this interaction can be represented by an equation of 
Lotka-Volterra type given in Eq. (8) for the conditions wde < −1, wdm ≥ 0 and wm ≥ 0. Results in Fig. 1 show that 
there is a limit cycle behavior between dark energy and dark matter for wde < −1, wdm ≥ 0 and wm ≥ 0. In the 
second step, we consider the quadratic contribution to the coupling interactions for the conditions wde < −1, 
wdm ≥ 0 and wm ≥ 0 and we show that these interactions can be given by Eq. (19). In the third step, we consider 
N coupling interactions between components of the universe. We generalized these interaction equations the 
help of quadratic interactions for arbitrary interaction parameters. We show that the generalized equation can 
be given in the form of (24) which is similar to the generalized Lotka-Volterra equation60,61. In the fourth step 
we consider triple coupling interactions between dark energy, dark matter and matter and we solve numerically 
Eq. (25) for the data set in (26) for two di�erent arbitrary µ > 0 values. Obtained numerical results are shown 
in Figs 2 and 3 that chaotic behavior appears in the dynamics of the coupling interactions for the conditions 
0 > wde > −1, wdm > 0, wm > 0 and and arbitrary αij parameter values. In last step, we study coupling interac-
tions between di�erent four species such as dark energy, dark matter, matter and radiation. We numerically 
analyses Eq. (27) for four species by using data in (28). We �nd in Fig. 4 that for N = 4 interactions also has 
chaotic behavior for the conditions 0 > wde > −1, wdm > 0, wm > 0, wr > 0 and arbitrary αij parameters. In the 
last two step, EoS parameter for the dark energy is set as wde > −1 which imply that dark energy density will 
slowly decreases while the universe expanding.

Here, we focus on the dynamic of the coupling eqs (25) and (27). �erefore, to obtain the numerical solu-
tion of these equations, we set arbitrary EoS parameters for components in the interaction matrices (26) and 
(28). In �gures, the mutual changing of the densities are given. When the eqs (25) and (27) are examined, one 
can see that the interaction dynamics in Figs 2–4 are completely dependent on the EoS parameters and the 
nonlinear coupling equations which produce chaotic dynamics. Similar results can be found for di�erent 
initial values and di�erent data set provided the conditions 0 > wde > −1, wdm ≥ 0 and wm ≥ 0. In �gures, the 
global oscillations between densities indicate that di�erent dominant periods exist. �erefore, it may not 
possible to compare all results in �gures with the experimental data available today. However, obtained 
numerical result in the present study are consistent with the constraints of the SNIa14–17, CMB anisotropy18,19 
and LSS20–22 experimental data although we set arbitrary EoS parameters. In order to see the experimental 
constraints on the our results, for example, it can be looked at the x1 − x2 plane in Figs 2 and 3. As it can be 
seen from these �gures that the dark energy density x1 and dark matter density x2 change roughly in the inter-
vals ∼ . − .x x( , ) {0 2 1 5}1 2  and ′ ′ ∼ . − .x x( , ) {1 5 0 2}1 2 . �is interval compatible with the SNIa data62 (Please 
see Figs 11–15 in this reference). On the other hand, it is possible to �nd more con�dential data interval in the 
x1 − x2 plane when the matter density x3 is roughly close to zero. It can be seen from �gures that there is an 
intersection between the large x1 ~ 0.5 − 0.7 and small x2 ~ 0.3 − 0.5. �e presence of this intersection indi-
cates that density dynamics of the coupling equations can be �tted to the experimental data CMB anisot-
ropy18,19, LSS20–22 and the combination of several data62.

�is interaction model, inspired by the Lotka-Volterra equation representing the competition of biological 
species, that the universe has chaotic dynamics. Although this competing model is very simple, it leads to very 
interesting results. �e chaotic universe model not only o�ers a new perspective and a di�erent scenario from 
well known popular model for the universe dynamics and its evolution but also may have the potential of solving 
many important problems of cosmology such as the singularity, cosmic coincidence, big crunch, big rip, horizon, 
oscillation, emergence of the galaxies, matter distribution and large-scale organization of the universe. We brie�y 
summarize the possible main results of the chaotic universe dynamics: (1) Chaotic universe model has a di�erent 
scenario from the well-known popular model such as the big-bang and oscillating universe models. According to 
the chaotic universe model, the universe oscillates in time with chaotic dynamics without repeating itself. In this 
universe model, there is no singularity, big crunch or big rip. �e universe evolves depending on the competing 
between components. In this scenario, for example; when the dark energy density increases, the universe begins 
to expand up to a critical dark energy density. However, when the dark energy begins to turn into dark matter or 
matter, the gravitational force becomes dominant and the universe shrinks again due to gravitational force. �is 
chaotic cycle continues without repeating itself. (2) �is scenario solves the cosmic coincidence problem. (3) �e 
model can explain the horizon problem. According to the relativistic physical theories, no information can travel 
faster than the speed of light. �is assumption leads to causality problem. Disconnected regions of the universe 
cannot have shared any sort of information since they are not in causal contact. It is generally expected that in the 
absence of common initial conditions that their physical properties would be di�erent. On the other hand, the 
CMB should not be isotropic if the universe started with even slightly di�erent temperatures in di�erent places. 
However disconnected regions of the universe may have similar structures and matter distributions even though 
they have the di�erent initial condition. Moreover, the CMB has the same temperature in the entire sky. �e cha-
otic universe model allows the local interactions between components. �ese interactions can lead to the similar 
formations and homogeneity of the CMB in disconnected regions of the universe. (4) Strong local interactions 
also provide a mechanism for galaxy formations in independent regions. (5) �e chaotic universe model allows 
us to explain why the fractal forms in the universe have emerged from the microcosmos to the macro cosmos 
at all scales. (6) �e model allows us to write equations that can represent the simplest possible dynamics of the 
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universe. (7) �e model suggests that the universe evolved by scaling itself in a similar way. (8) �e model con-
nects between dynamics of the competing species in biological systems and dynamics of the time evolution of the 
universe. (9) Finally, the model presents a new perspective and a di�erent scenario for the universe dynamics and 
evolution, unlike well known popular models.

Methods
In this study, in order to derive interaction equations, we consider Friedman-Robertson-Walker space-time. In 
this space-time, the line elements are given by

∑= − +
=

ds dt a t dx( ) ( )
(29)i

i2 2 2

1

3
2

where a(t) is the scale factor of the three-dimensional �at space, i indicates the spatial components. FRW equa-
tions due to the metric (29) are given by

κ
ρ

κ
ρ= = − +H H p

3
,

2
( )

(30)
2

2 2

where κ2 = 8πG is the gravitational constant, ≡ 
H

a

a
 is Hubble rate, ρ is energy density and p is pressure. �e 

energy density ρ and pressure p satisfy continuity equation, i.e, energy conservation equation

ρ ρ+ + = H p3 ( ) 0 (31)

where over-dot indicates the time derivative. �e relation between ρ and p is given by

ρ=p w (32)

where w is EoS parameter which is constant and equal to exactly −1 for the FRW framework. For the single �uid 
the energy conservation (31) is given in known form

ρ ρ+ + = . H w3 (1 ) 0 (33)

In this study we derived the coupling equations in (8) based on Eq. (33). By adding quadratic interaction into 
the Eq. (5) self-interacting equations in Eq. (19) are derived. On the other hand, with help of the eqs (5) and 
(8) generalized interaction equation in (24) is obtained for N components. �e special cases of the Eq. (24) are 
given in (25) and (27). Finally, the numerical solutions of the eqs (8), (25) and (27) are computed by using the 
Mathematica package program and all �gures are plotted with help of the same package. �e largest Lyapunov 
exponents are computed with help of the TISEAN package program.
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