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Chaotic Vibrations of Nonlinearly Supported Tubes

in Crossflow

by

Y. Cai and S. S. Chen

Abstract

By means of the unsteady-flow theory and a bilinear mathematical model, a

theoretical study is presented for chaotic vibrations associated with the
fluidelastic instability of nonlinearly supported tubes in a crossflow. Effective

tools, including phase portraits, power spectral density, Poincare maps,
Lyapunov exponent, fractal dimension, and bifurcation diagrams, are utilized to

distinguish periodic and chaotic motions when the tubes vibrate in the instability
region. The results show periodic and chaotic motions in the region

corresponding to fluid-damping-controlled instability. Nonlinear supports, with
symmetric or asymmetric gaps, significantly affect the distribution of periodic,
quasiperiodic, and chaotic motions of a tube exposed to various flow velocities in
the instability region of the tube-support-plate-inactive mode.

I Introduction

Extensive experimental and analytical studies have been performed on the
dynamic response of loosely held tubes and how the tube response is related to
wear (Chen, 1991; Cai et al., 1991). Chen et al. (1984) investigated the fluidelastic
behavior of loosely held tubes in the laboratory. They observed that as the flow
velocity is increased to a threshold value, or critical flow velocity, instability in the

tube-support-plate (TSP)-inactive mode may occur. Then, for a range of flow
velocities higher than the threshold flow velocity, the tube vibrates predominantly
in the TSP-inactive mode, with the response amplitude limited by the clearance

between the tube and the TSP. With a further increase in flow velocity, a second

threshold is reached and instability in the TSP-active mode begins. In this range,
large-amplitude oscillations occur and, in many cases, tubes may strike one
another. Additional experimental studies to determine the response of loosely
supported tubes in the TSP-inactive mode under specific flow conditions have
recently been published (Nakamura and Fujita, 1987; Fisher and Ingham, 1988;

Antunes et al., 1991).
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For the analysis of tube responses and impacting behavior of loosely

supported tubes, many nonlinear methods have been developed in recent years.

Numerical simulations were performed by Axisa et al. (1988), Fricker (1988), and

Rao et al. (1988); all used quasistatic- or quasisteady-flow theories, which are

applicable in specific parameter ranges. Chen and Chandra (1990) developed the

unsteady-flow model for fluidelastic instability of tubes in nonuniform flow. Cai et

al. (1991) presented a bilinear model based on the unsteady-flow theory. The

simulations by Cai et al. (1991) agreed reasonably well with the experimental data

of Chen et al. (1984) and demonstrated that the unsteady-flow theory and the

bilinear model are adequate to describe the nonlinear behavior of fluidelastic

instability associated with TSP-inactive modes of loosely supported tubes in

crossflow.

Because of the recent interest in chaotic motions of nonlinear systems (Moon,

1987) and the relationship of chaotic vibration to tube wear, it is appropriate to look

into the possible existence of chaos in tube arrays in crossflow. Related systems

without flow have been studied experimentally by several investigators. Moon

(1983), Shaw and Holmes (1983), and Shaw (1985a, 1985b) studied forced oscillation

of beams with motion constraints; chaos was found. A case study of chaos in a

marine application that involved impacting modeled by bilinear springs was

discussed by Thompson and Stewart (1986). Recently, it was realized that flow-

induced vibration of loosely supported tubes, which is one of the systems with

motion constraints, can display a wide variety of dynamic behaviors. For

example, chaotic fluidelastic vibrations of a constrained, fluid-conveying pipe

were examined by Paidoussis and Moon (1988 and 1989), both experimentally and

theoretically, with a two-degree-of-freedom system. A study of chaotic and

periodic motion of a nonlinear oscillator used to model flow-induced vibration of

loosely supported tubes was conducted by Langre et al. (1990).

Based on the unsteady-flow theory and a bilinear model, an analytical study

of the dynamics of loosely supported tubes in crossflow was performed by Cai and

Chen (1991). Many computations were conducted to confirm the existence of

chaotic motion and the route to chaos with the change of control parameters in

the instability region of the TSP-inactive mode. Indeed, it was demonstrated

through the use of several effective techniques, including bifurcation diagrams,

phase flow portraits, power spectral density, and Poincare maps, that chaotic

motion was possible for such an autonomous system. Also, a preliminary test

was conducted to obtain convincing evidence of periodic/chaotic dynamics. The

results of the test qualitatively agree with analytical results based on the response

spectral densities and observation.

The purpose of this report is to apply the mathematical models and other

techniques used in the earlier work of the authors (Cai et al., 1991; Cai and Chen,
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1991) to extensively analyze the periodic/chaotic dynamics of a tube nonlinearly

supported in crossflow. The interesting regions of periodic and chaotic motion
were expanded to the whole region of fluidelastic instability of tubes associated
with velocity-controlled negative damping between two threshold values of flow

velocity. A route of chaotic-periodic-chaotic motions was predicted when values of

negative damping vary with mean flow velocity in this region. Some new

measuring tools, e.g., the Lyapunov exponent and fractal dimensions, were added

to others such as the phase portrait, power spectral density, and Poincare maps,
for distinguishing periodic/chaotic motions. Indeed, those measuring tools
proved quite effective in predicting the existence of periodic and chaotic motion in

the instability region. Tube response characteristics with various symmetric or
asymmetric gap conditions were also studied. The nonlinearity of the symmetric
or asymmetric gaps significantly affects the distribution of periodic,

quasiperiodic, and chaotic motions of tubes exposed to various flow velocities in

the instability region of the TSP-inactive mode.

2 Equations of Motion

An unsteady-flow theory for fluidelastic instability of a row of tubes in

crossflow was described in detail by Chen (1983, 1989) and by Chen and Chandra
(1990). A bilinear mathematical model for loosely supported tubes vibrating in

crossflow was well defined by Cai et al. (1991). For completeness, the unsteady-
flow model for fluidelastic instability of loosely supported tubes is briefly described
here. Readers interested ii urther details of these theories can refer to our

previous work.

Consider the case of fluidelastic instability in which a velocity-controlled
negative damping mechanism is dominant. The stability of the tube row may be
analyzed approximately by considering only one flexible tube among other rigid
tubes and neglecting the coupling in the two directions. Therefore, a schematic
representation of a two-span flexible tube with one intermediate support, vibrating

in one direction, is shown in Fig. 1. When the right end (C3) of the tube does not

strike the stop, it is a pinned-pinned-free model (Model 1). When the right end

strikes the stop, it becomes a pinned-pinned-spring-supported model (Model 2).
Because the effects of impact force are represented by the linear springs at C3 in

Model 2, the vibratory system is autonomous. Gaps el and e2 at C3 provide
nonlinear support for the system, which may cause chaotic vibrations when some
system parameters vary within certain ranges.

The solutions of tube vibration by the normal-mode method can be described

as two models analyzed in two different time regions (Cai et al., 1991):
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Flow

S444111

1= 91.40 cm .L 2 =31.75cm

=123.15 cm

Fig. 1. Schematic representation of a tube and supports in crossflow

u(4,t)= IaUnft)(p1nft)
n=1

nl(4,t)=YAi n (t)(P1n (4)
n=1

u(4, t)=_ 1a2n (t)92n (4) +u(4, t)

n=1 t=ts

u(4,t)= A2n=(t)92n(4)

n=1

(Model 1)

ts < t < td (Model 2)

where u(4,t) and n(4,t) are tube displacement and velocity, respectively; ePin(4) and

92n() are the normal modes of Models 1 and 2 (see Appendix); 4 = z/t; ts is the
time when the right end of the tube strikes the stop, td is the time when the tube
end leaves the stop; and a1n(t) and a2 n(t) are the solutions of the equations

Cl C
2

71Ar

and

(1)

(2)

AIL AIL

C 3

e2
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(a + 2 i - co i n dt + 2- L-ae Jam = 0, (3)

i = 1 and 2 for Models 1 and 2, respectively, and

n 1, 2, 3, ... oo.

In Eq. 3,

pnR2  
(4)

m

Ur = nUn',(5)
wiR

and

w2 -YUr ae

in n=i . (6)
1+yain

Note that R is tube radius; p is fluid density; m is tube mass per unit length; Urn is
mean flow velocity; and ain, a in, and a are added-mass, fluid-damping, and

fluid-stiffness coefficients, respectively, and are based on the experimental data of
Tanaka (1980) and compiled and evaluated by Chen and Chandra (1990). Notice

that oi depends on the coefficients a , which depend on the reduced flow velocity

Ur (Eq. 5). Therefore, an iterated method is required to calculate oi.

3 Numerical Simulations

Numerical simulations of a loosely supported tube, schematically shown in
Fig. 1, were carried out with system parameters similar to those applied in

previous work (Cai and Chen, 1991). The span between supports C1 and C2 is
submerged in fluid but subjected to flow at the middle portion only. The tube in
Fig. 1 is brass, with a 1.59 cm outside diameter, 1.59 mm wall thickness, and

123.15 cm length. The modulus of elasticity E is 1.6 x 106 kg/cm2 . Impact stiffness
of springs at the TSP is assumed to be constant, namely, Ke = 107 N/m. Gaps el
and e2 are variable control parameters in the simulations and will range from

1.27 to 2.54 mm.
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The computations were carried out on a Sun workstation computer. Before
simulations wer performed, the natural frequencies of the first 10 modes for both

Models 1 and 2 were calculated. Fluid force coefficients ain, aO, and a were
calculated on the basis of Tanaka's data (1980) for a tube row with a pitch-to-

diameter ratio of 1.33. The natural frequencies of the first 10 modes of the two
models form the basis for determining the time-integration steps required during
simulation. As verified in previous studies (Cai et al., 1991; Cai and Chen, 1991),
10 modes (covering a frequency range of 0-1700 Hz) give sufficient accuracy for
this case. Therefore, 10 modes were used throughout, and the time-integration
step for the 10 modes was taken to be At = 0.0001 s to ensure the accuracy of
simulations. Furthermore, double-precision must be taken throughout the
simulations. Numerical integrations were run for a relatively long fixed time to
ensure that transient effects had died out before the output was examined. At
least 100,000 points were calculated for time histories of tube motions; then the
first 4,000 points in the calculated time histories we'e removed to eliminate

transient effects.

4 Measuring Chaotic Motion

As summarized in a previous study (Cai and Chen, 1991), when flow
velocity-which has been chosen as the main control parameter-is lower than

the critical flow velocity, system damping is positive and tube motion is stable.
When flow velocity exceeds the critical flow velocity, the tube loses its stability and
begins self-excitation oscillations corresponding to a Hopf bifurcation. If the tube
strikes the TSP irregularly in the instability region, tube motion depends on flow
velocity and other parameters and chaotic motion may occur. If the tube strikes
the TSP regularly after flow velocity exceeds some value in the instability region,
tube motion is almost independent of flow velocity and periodic oscillations will
occur with a fixed amplitude equal to the diametral clearance.

In this study, the focus was on the instability region, and more measurement
techniques than those in the previous study were used to distinguish periodic and
chaotic vibration of the tube. Although many computations were performed, only

some typical results are presented.

4.1 Phase Flow Portraits

First, the time histories of tube motion with symmetric clearance el = e2 =

1.27 mm at the TSP were calculated, and phase flow diagrams at different flow
velocities corresponding to periodic and chaotic motion, shown in Fig. 2, were
constructed. In the calculation, the transient was eliminated for clarity and the
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Fig. 2. Phase flow portraits at 4 = 1.0 with (a) Um = 2.1 m / s, (b) Um = 2.0 m / s,

(c) Un = 1.85 m/s, and (d) Un = 1.80 m/s

diagrams show only the dynamics of the "steady state." Because the span of the
tube support is asymmetric (see Fig. 1) and the system is considered a multiple-

degree-of-freedom system, 10 modes were utilized to obtain accurate simulations.
In Fig. 2a, the phase portrait at 4,= 1.0 for Ur = 2.1 m/s is not an ellipse (as is that
calculated by a single-degree-of-freedom system), but a complicated closed circle.
At this flow velocity, the tube strikes the TSP twice in each circle, corresponding to

periodic oscillations that repeat very well. As flow velocity decreased and the
absolute value of negative damping decreased, the number of tube strikes was
reduced and the strike period appeared to be irregular, at which time the phase
portraits (see Figs. 2b, 2c, and 2d, for flow velocities Um = 2.0, 1.85, and 1.80 m/s,

respectively) appeared chaotic, i.e., in a kind of limited-band chaos. These chaotic
motions apparently depend on the number of strikes during certain cycles, while

strikes depend on the flow velocity, initial conditions, and other parameters, such

as clearance and contact stiffness. Apparently, the number of strikes during

certain cycles is unpredictable in this region.
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4.2 Power Spectral Density

Figure 3 shows power spectra of tube motions at different flow velocities.

Because the fundamental oscillation frequencies within this flow velocity region

are approximately the same, i.e., f1 = 29.6 Hz for the system shown in Figure 1, a

nondimensional frequency f/fi was adopted in Fig. 3. Figure 3a shows the power

spectral density (PSD) of the displacement at Um= 2.1 m/s, which appears to be

periodic with super harmonic components, f/f1i= 1, 3, 5, .... This is caused by

regular striking of the tube. Figures 3b-3d for flow velocities Urn = 2.0, 1.85, and

1.80 m/s present characteristics of limited-band chaos; the power spectra show a

continuous process, although the fundamental frequency and superharmonic

frequencies are still discernible.
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f/fl

0
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Fig. 3. Power spectral density of tube displacement with (a) Urn = 2.1 m Is,
(b) Urn = 2.0 m Is, (c) U, 1 = 1.85 m Is, and (d) Um = 1.80 m Is
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4.3 Poincard Map

The use of a Poincard map is a powerful technique for distinguishing chaotic
responses from periodic responses. The map represents a discretization of a

continuous flow in the phase space of a dynamic system. A more general concept
of the Poincard map, valid for autonomous systems, has been given by Dowell
(1984). The strobed points in the Poincare map give an immediate answer about
the periodicity of the response. The Poincare map of a harmonic motion is a

single point in the phase plane. A subharmonic motion of order N has a Poincare
map comprising N points (its period is N times the period of excitation). While in
the case of chaos, the map has a complex fractal structure (Moon, 1987).

For an autonomous system, one must choose some plane in the phase space,

transverse to the flow, and then obtain a Poincard section (Moon, 1987). Using the

same technique to choose a plane as done in our previous study (Cai and Chen,
1991), we chose the sampling trigger signal, say when ii(1.0,t) = 0 and u(1.0,t) < 0,

shown in Fig. 4, at which point the values of U(0.371,t) and n(0.371,t) would be
saved (here E,= 0.371 means the midpoint in the first span of the tube between C1

and C2). Figures 5a-5d show such Poincar6 maps, corresponding to flow
velocities Urn = 2.1, 2.0, 1.85, and 1.80 m/s, respectively. Figure 5a presents

periodic motion because there is only a single point in the phase plane. However,
Figs. 5b to 5d show limited-band chaotic motion with points scattered over a wide

range. In these cases, although the Poincar6 sections do not display artistic merit
because there are a limited number of data points, they nevertheless seem to have
a certain structure and confirm the existence of chaotic motion in this flow

velocity range.

Another way to generate the Poincar6 maps in this study is to imagine the

tube motion as a trajectory in a three-dimensional phase space (Fig. 6). Thus, if
u and u are the displacement and velocity of tube motion, (u, u, wit) represents a

point in a cylindrical phase space where wi is fundamental frequency and $ = oit

represents the phase of tube motion. A Poincare map consists of sampled points

in this three-dimensional space, for example, [u(,,tn), u(4,tn), otn = $o + 2in].

Therefore, this map can be thought of as a slice through a torus (see Fig. 6).

As noted by Moon (1987), chaotic phase plane trajectories can often be

unraveled with the Poincard map by taking a set of pictures for different phase o.
This is tantamount to sweeping the Poincare plane in Fig. 6. While one Poincare

map can be used to expose the fractal nature of the attractor, a complete set of

maps varying $o from 0 to 2n is sometimes needed to obtain a complete picture of

the attractor on which the motion is riding.
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u(1,t)

O(1,t)

trigger
signal

MI
/7

7>\
v/f

/rN M

K4~ t

-- -t

7>\
<,1. K.ul

t

Fig. 4. Sampling trigger signal for PoincarO map

With flow velocity U1n = 1.80 m/s, at which tube motion has been predicted as

chaotic (see Fig. 5d), we chose $ = 0 at t = to when the transient has died out and

n(1.0, to) = 0. Then a series of pictures (Fig. 7) is produced of various cross

sections of a chaotic torus motion in the three-dimensional phase space.

4.4 Lyapunov Exponent

Lyapunov exponents have been shown to be the most useful dynamic

diagnostic tool in determining chaotic systems quantitatively. Lyapunov

exponents are the average exponential rates of divergence or convergence of

I

AV



11

0.85

Displacement, mm

0.90

0.02

0.00

0

E,

0.02

0.00

0.02

0.04

1-1 -0.08
0.95 0. 75 0.80 0.85

Displacement, mm

0.85

Displacement, mm

0.90

C,

E

U

_0
a,

0.95

0.02

0.00

-0.02

-0.04

-0.06

-0.08
0.7 75 0.80 0.85

Displacement, mm

0.90 0.95

Fig. 5. Poincarg map of tube motion at 4 = 0.371 with (a) Um = 2.1 m/s,

(b) Un = 2.0 m / s, (c) Un = 1.85 m / s, and (d) Un = 1.80 m / s

nearby orbits in phase space. This technique gives a quantitative measure of the

corresponding motions: for example, the motion is periodic if the exponent is

negative or zero, but chaotic if it is positive. Any system containing at least one

positive Lyapunov exponent is defined as chaotic. We use the algorithms proposed

by Wolf et al. (1985) to determine the Lyapunov exponents from a time series of

tube motion. Figure 8 shows the results of Lyapunov exponents at different flow

velocities. In Fig. 8a, with Um = 2.1 m/s, Lyapunov exponents are negative,

corresponding to periodic motion of the tube. In Figs. 8b-8d, with Um = 2.0, 1.85,
and 1.80 m/s, respectively, Lyapunov exponents are positive, constituting

convincing evidence for the existence of chaotic motion in this instability region of

the TSP-inactive mode.
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Poincard
Section

U

Fig. 6. Geometric interpretation of Poincare sections in the

three-dimensional phase space

4.5 Fractal Dimensions

Another approach for predicting chaotic motion quantitatively is the use of
fractal dimensions. A noninteger fractal dimension of the orbit in a phase space
implies the existence of a strange attractor. The basic idea is to characterize the

"strangeness" of the chaotic attractor. While practical use of the fractal
dimensions in measuring and characterizing chaotic moti n has yet to be fully

established, various definitions have been developed, including the capacity
dimension, correlation dimension, and information dimension (Baker and

Gollub, 1990). In many cases, it is sufficient to establish that the dimension is not
an integer or that the attractor is indeed strange. To our knowledge, this is the
first application of the attractor dimension to fluidelastic instability of a loosely
supported tube in crossflow.

Of the several methods available to estimate the attractor dimensions, we
used measurement of the correlation dimension, which has been used
successfully by many investigators in other fields (Moon, 1985). Grassberger and
Proccacia (1983) studied this definition of dimension extensively. In this method,

a correlation function C(r) can be calculated by constructing a sphere or length r

at each point xi in phase space and counting the number of points in each sphere,

that is,
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C(r) " H(r x; - x x5 p (7)
N0 i j

i~j

where H(s) = 1 if s > 0 and H(s) = 0 if s < 0. For many attractors, this function has

been found to exhibit a power law dependence on r as r -+ 0, that is

(8)

so that we may define a fractal or correlation dimension with the slope of the log C

versus log r curve
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dG =Tm logC(r)
logr

(9)

Using this technique, we can compute the correlation dimension of chaotic

motion of the tube from the data of the Poincare map in Fig. 5b (with flow velocity

Um = 2.0 m/s). Figure 9 shows the logarithm of the correlation function C(r)
versus log r, and Fig. 10 shows the local slope of C(r). The slope for the

intermediate values of r is =1.55. This fractal dimension is convincing evidence

that the attractor is indeeoi' strange when the tube is vibrating in this flow velocity

range.

Many investigators have suggested another definition of fractal dimension,
(i.e., the information dimension) that is similar to the capacity dimension but

attempts to account for the frequency with which tlh trajectory visits each
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covering cube. To calculate the information dimension, we ccunt the number of

points Ni in each of the N cells and the probability of finding a point in that cell P;,

where

P.
N-

N

lPi = 1 (10)

where No is the total number of points in the set. Note that No N. The

information entropy is defined by the expression

N

i(r) = -XP; log P;.

i=1

0 F
0

a -25 1

0.2 0.4 0.6

Evolution Time, s

0

(c) 

-

-

-

(b) 

-

0.8 1.0

rI I Id (d).

-75

100
0.0 0.8 1.0

(11)

'1 ' 1' ' ' ' 

'



16

0.50

0.00

0

-0.50
c
0

-1.00
U-

c

.2 -1.50

0 -2.00

-2.50 L'

-3.00 -2.00 -1.00 0.00

0.50

0.00 5

-0.50

-1.00 m

0

-1.50

-2.00 

-

J -2.50
1.00

log r

Fig. 9. Correlation function and information entropy for

set of points in Poincar map in Fig. 5b

V

C

C

0

1.5

1.0

0.5

0.0L
-3.0 -2.0 -1.0

log r

0.0 1.0

Fig. 10. Correlation dimension: local slope of

correlation function in Fig. 9

For small r, it is found that I behaves as

I ~~dI log (1/r)

so that for small r we may define a dimension

d lim I(r) _lim Pi log PiI -r-0 log(1/r) r-40 log r
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We calculated the information entropy I(r) from the Poincar6 section of

Fig. 5b (with flow velocity Um = 2.0 m/s). The result of I(r) is shown in Fig. 9 and

is compared with the correlation function log C(r). From the slopes of the

information entropy I(r) and the correlation function C(r), we find that the
information dimension and the correlation dimension are very close. These
results again display the existence of the strange attractor in the system.

4.6 Bifurcation Diagram

A widely used technique for examining the pre- or postchaotic changes in a
dynamic system under parameter variations is the bifurcation diagram, from
which we may find a route to chaos, namely a route from periodic to chaotic

motions through parameter changes. With fast computers available, it is easy
and helpful to vary the control parameters to obtain a bifurcation diagram. From

this diagram, we can see if the system displays steady, periodic, or chaotic
behavior for some continuous range of flow velocity to obtain a full understanding
of the system dynamics. In this way, we can have confidence in deciding more
definitely whether the system becomes chaotic. Also, we can observe and pinpoint
sudden changes in system behavior. Both the control parameter and the output
signal must be carefully chosen to ensure that they can provide sufficient
information.

In our case, flow velocity was chosen as the control parameter and tube

displacement as the output signal. The difficulty was in determining the
locations of the triggering and output signals to produce an easily interpreted

bifurcation diagram. After many results were examined, the velocity of tube
motion at location C3 ( = 1.0) was taken as the triggering signal and the

displacement at location 4 = 1.0 was taken as the output signal. When the

triggering signal was equal to zero, 6(1.0,t) = 0, and tube displacement at 4 = 1.0
was negative, u(1.0,t) < 0, the values of u(1.0,t) were recorded. By slow variation of

flow velocity, the bifurcation diagram shown in Fig. 11 was produced. In Fig. 11,

a symmetric clearance el = e2 = 1.27 mm at the TSP was applied.

It is clear in Fig. 11 that for flow velocity less than the first critical flow
velocity Um = 1.77 m/s or higher than the second critical flow velocity Um =

4.73 m/s (for details, see Cai and Chen, 1991), all oscillations died out as time

increased; when flow velocity reached the critical values, there was a jump in

displacement (i.e., the Hopf bifurcation occurred). When the tube lost its stability
and struck the TSP, chaotic motion occurred. But as flow velocity reached certain
values between 2.02 and 4.17 m/s, the tube struck the TSP regularly in a harmonic

periodic vibration because of the damping-controlled instability of the tube.
Therefore, tube motion with the above system parameters can be described as

follows: first a region of chaotic motion (Um = 1.77 to 2.02 m/s), a region of periodic
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Fig. 11. Bifurcation diagram of tube motion in

instability region

motion (Urn = 2.02 to 4.17 m/s), and a second region of chaotic motion (Um = 4.17 to

4.77 m/s). This distribution of periodic/chaotic motion corresponds to negative

system damping. According to Eq. 3, system damping depends on flow velocity

and fluid force coefficients, namely

(i = 2 nwin - 3 Oi a / (2wi) (14)
n

or

/=k -
3"' a / (2()i) (15)

nR w

i = 1,2,

where fluid force coefficients are also functions of flow velocity and os (Eq. 6).

When the flow velocity is in a certain range, system damping may become

negative and tube motion becomes unstable. System dampings as functions of

mean flow velocity for Models 1 and 2 are shown in Figs. 12a and 12b, respectively.

We find that the critical mean flow velocities ( i = 0) for Model 1 are Um = 1.77 m/s

and 4.73 m/s, corresponding to fundamental frequencies fl = 29.28 Hz and 33.85

Hz (Fig. 12a); and the critical mean flow velocities (2 = 0) for Model 2 are Um =

2.31 m/s and 7.41 m/s, corresponding to fundamental frequencies f2 = 41.58 Hz

and 52.03 Hz. Note that the fundamental frequencies are iterated from Eq. 6 and

are different from the natural frequencies (fin = oin/2n, for example, in our case

f11 = 32.73 Hz, f2 1 = 48.70 Hz). In our case, Model 1 dominates the tube motion.

Thus, instability of tube motion will depend on the system damping of Model 1, so



19

0.02

0.00

Um = 1.77 m/s Um = 4.73 m/s

-0.06

(a)

-0.08
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Flow Velocity Um, m/s

0.02

Um = 7.42 m/s-

0.00

.c Um = 2.31 m/s
-0.02 -

-

E -0.04

-0.06

(b)-0.06

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Flow Velocity Um, m/s
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that we find good agreement between the bifurcation diagram and system
damping when comparing Fig. 11 with Fig. 12a. When the absolute negative
damping is below certain values, tube motion is chaotic, but when it exceeds those
values it develops into periodic harmonic vibrations.

It is quite interesting that the second chaotic region seems to be wider than
the first and that there are windows in the second chaotic region. So far, we find

it difficult to interpret these phenomena. Figures 13 and 14 show PSDs, Poincare
maps, and Lyapunov exponents with flow velocities Ur = 4.6 m/s and 4.7 m/s,
respectively, in the second chaotic region. Apparently, Fig. 14 indicates a chaotic
motion for Urn = 4.7 m/s. However, Fig. 13 appears to be a typical quasiperiodic
case: (a) The PSD shows a period-4 motion, as described in the previous work (Cai

and Chen, 1991), and the frequencies appearing in the spectrum of quasiperiodic

motion can be a combination of two incommensurate frequencies, i.e.,
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f(m,n) = mf(1) + nf(2).

In Fig. 13a, f(1) = 1.0 f1 and f(2) = 1.5 f1. Therefore, peaks in Fig. 13a are f(1, 0), f(o, 1),

f(- 1,2), f(4 ,-1 ), f(3,o) .... (b) In Fig. 13b, four basins of attraction seem to exist in the
Poincard map. (c) The Lyapunov exponent in Fig. 13c is negative, indicating a
subharmonic motion.

4.7 measurements with Asymmetric Gaps at the TSP

Mrtny computations were carried out for various diametral clearances at the
TSP, symmetric or asymmetric, because we recognized that the nonlinearity of
the TSP plays a very important role in periodic and chaotic motions of the tube.
Bifurcation diagrams in Fig. 15 give some results of these computations when
asymmetric clearances were applied. In Fig. 15, we always set ei equal to 1.27
mm, but e2 changed from 2.54, to 1.45, to 1.40, and 1.35 mm, corresponding to
Figs. 15a, 15b, 15c and 15d, respectively. The flow velocity range and triggering

and output signals were the same as those in Fig. 11. From Fig. 15, we noted that
nonlinearity of those asymmetric gaps significantly affected the distribution of
periodic and chaotic motions of the tube with various flow velocities in the
instability region of the TSP-inactive mode. In Fig. 15a, the tube no longer struck
the stop with the gap of e2, because e2 = 2.54 mm is virtually an infinite gap under
these system parameters. Thus, chaotic motion seems possible over almost the
whole range when flow velocity varies. When e2 = 1.45 mm (Fig. 15b), the tube
begins to strike the stop irregularly at the e2 gap when flow velocity exceeds Ur =
2.30 m/s. Hence, there is another chaotic motion in this case. When e2 = 1.40 mm

and e2 = 1.35 mm (Figs. 15c and 15d), the tube begins to strike the stop regularly
when flow velocities exceed some values and periodic and quasiperiodic motion is
developing.

However, the situations in Fig. 15 are so complicated when asymmetric gaps
are applied that we cannot predict the clear criteria from the chaotic,
quasiperiodic-to-periodic motions by control parameters such as flow velocity,
system damping, and clearance. Figures 16 and 17 give PSD of tube motion for
Um = 2.35 and 2.80 m/s with clearance corresponding to that in Fig. 15. Because
the fundamental frequency and superharmonic frequencies are discernible in
Figs. 16 and 17, the motion under these parameters appears to be quasiperiodic.

Figure 16c (Urn = 2.35) and Fig. 17c (Urn = 2.80 m/s), with ei = 1.57 mm, e2 =
1.40 mm, appear to begin to develop chaotic motions because the spectra seem too

close to a broad response. However, Figs. 17b and 17d are clearly of period-2
motion when e2 = 1.45 and 1.35 mm and Ur = 2.80 m/s are applied.

(16)
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5 Conclusions

Based on a previously developed unsteady-flow theory and bilinear

mathematical model for fluidelastic instability of loosely supported tubes subjected

to nonuniform crossflow, an extensive analytical study was conducted of

fluidelastic instability of tubes in the unstable region associated with the TSP-

inactive mode. Particular attention was given to the possible existence of chaotic

oscillation. With typical nonlinear boundary conditions, i.e., symmetric or

asymmetric gaps at the TSP, tube motion can be expressed by a nonlinear

autonomous mechanical system in which chaotic motion is highly probable with

variation of control parameters.
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As suggested in most investigations on chaotic motion (Moon, 1987), it is

important to use more than one measurement in deciding on the existence of

chaos. Thus, we carried out many measurements in this study, including those

with phase flow portraits, PSD, Poincare maps, Lyapunov exponents, fractal

dimension, and bifurcation diagrams, to confirm the existence of chaotic motion

in the instability region. Fortunately, the measured results with those effective

tools were in perfect agreement to convincingly demonstrate that in a certain flow

velocity range, chaotic motions do arise: the phase portrait displays a band circle

to indicate limited-band chaotic motion; PSD presents a continuous limited-band

spectrum; the Poincare map gives a scattered structure; Lyapunov exponents

appear to be positive; and the fractal dimension is ~1.55 (not an integer). The

importance of this, to our best knowledge, is that this is the first application of so

many measurements that give consistent results in exploring the chaotic motion

of loosely supported tubes that is induced by fluidelastic instability in crossflow.
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The bifurcation diagrams show the route of chaotic-periodi;:-chaotic motion

in the instability region corresponding to the variations of negative damping

versus mean flow velocity. It is very important that the distribution of

chaotic/periodic motions depends on the negative damping of both Models 1 and 2.

When damping varies, the number of the tube strikes with the TSP changes. If

the tube strikes the TSP regularly, it is periodic (or quasiperiodic) motion; if the

tube strikes the TSP irregularly, chaotic motion may develop. This reminds us to

pay more attention to the striking situation when predicting chaotic/periodic

motions in further research. Also, we note that nonlinearity of the TSP, with

symmetric or asymmetric gaps, significantly affects the distribution of periodic,

quasiperiodic, and chaotic motion of the tube with varying flow velocity in the

instability region of the TSP-inactive mode. Chaotic motion will be continuously

subjected to parameter analysis to explore its behavior in more detail.
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In this study, a very complicated system, i.e., a tube with two asymmetric

spans subjected to nonuniform crossflow, was analyzed in 10 modes. Therefore,
the chaotic behavior of the system may be quite different from systems with one or

two degrees of freedom, as often investigated by researchers exploring chaotic

motions. Even though the analytical results in our studies demonstrated the

existence and identified some characteristics of chaotic motion in the instability

region of the TSP-inactive mode, we still have difficulties in completely
understanding why the chaotic motion occurs and how we can control it

economically.

Obviously, further research is needed on the effects of chaotic motion on the
fluidelastic instability of loosely supported tubes. A test is in progress at Argonne
National Laboratory to obtain experimental data on periodic/chaotic motion of a
loosely supported tube in crossflow. Detailed comparisons of the analytical and

experimental results will be published when testing is completed. This will bring
us more information on, and evidence of, the effects of chaos on the fluidelastic
instability of a loosely supported tube in crossflow.
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Appendix:
Modal Analysis of a Bilinear Model

We assume that during the time interval 0 t : ts, the tube displacements at

C3 are within the stop limits -e2 < u(l,t) < ei, and it is Model 1. The boundary

conditions at C1 and C3 (see Fig. 1) are

u(4,t (=0 =0,

(t ( =0=0,

(Al)

2(4,t =0,

a (4,) 1 = 

,

and the continuous conditions at the intermediate point C2 are

u(t,t) _ = 0,

d(

d4 

d 
d 2 (4) d p(4)

d4 = dt 4=V

where

= z/l,

p =l2/l=,

v= e2/e = 1 - p 

.

(A2)

(A3)

When t = ts, the right end of the tube strikes the stop and it becomes Model 2,
i.e.,
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u(4,t = el,

(A4)or

u(t,t 1 = -e2

ts<t<td,

where td is the time when the tube leaves the stop at C3.

The boundary conditions of Model 2 for t < t < td are

u(4,t)|4- =0,

(c4,t) = 0,

at =0w

(4,t) = U(4,9) 

,

(A5)

where Ke is the equivalent stiffness,

of inertia.

E is Young's modulus, and I is the moment

The continuous conditions at the intermediate point C2 are

u(t,t)| _ =0,

dq (~)

d4

=pV

(A6)
dp(d2 (')

d4 =

d2,,2( ) d2,(2i4

d4 d4
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pi )and <pf52(4) (i = 1, 2) are the normal modes of Models 1 and 2.

sinkng(% ) = sin kin - sink gpsh kin 

,

sh ki

0< <c, i=1,D2, n-=1, 2, 3, ....

<pfi ( ) = Di{D2[coskinj(1- k)+ ch kin(1- )+D3[sinkin(1-)+ sh kin(1-()

+D4[D5 sin kin (1-)+ D6 sh kin (1-)},

<4<1, i= 1, 2, n= 1,2, 3,...,

(A7)

(A8)

where

D-sink~i 2
D1-2

cosk invshkinv -sinkinv chkinv~ 3 sinki v shkv
in

D2 = sin kinv + sh kinv,

D3 = -cos kinv - ch kinv,

2K
D4 =

EI kn

D5 = -sh kinv,

D6 = sin kinv,

0

K=

JKe

for i=1

for i =2.

The eigenvalues kin are the solutions of the characteristic equation



sinking

cosking - sinking cth kinp

2K
cosk v h knv -sk k - 3sinkinv sh kinv

Ek

2K
2(l+ coskinv ch kv)+ 3 (cos kv sh kinv - sinking ch kinv)

EI k0

=0. (A9)

The eigenvalues of the first 10 modes for both Models 1 and 2, with tube

parameters shown in Fig. 1 and the impact stiffness of springs at the stops Ke =
107 N/m, are given in Table A.1.

Table Al.

n

1

2

3

4

5

6

7

8

9

10

Eigenvalues kin of first 10 modes

for Models 1 and 2

i=1

3.92

6.10

9.15
13.06
16.25

21.72

25.68

28.71

30.63

34.37

i=2

4.89

8.90

12.57

14.39

21.56

25.19

27.02

30.26

34.24

37.92

Cin (pi)(4)

(Pin -)=

Cinif()

i=1,2, n=1,2,3,...

where

Let

(A10)

pg <1



1

+4)J [4]+ d4

The solutions of the tube vibration by the normal-mode method are

0 < t < t8 for Model1,

u(4, t) = a 2 n(t)p 2 (() +u(4, t[ =t,
n=1 

-

n(4,t) = Xa2n(t)p2n(4)
n=1

ts<t<td

where ai, and a~n(t) are the normal coordinates,
following equations:

for Model 2, (A13)

which are the solutions of

(1+yai) dt" 

+

2 noin - U da 

+

(2) - aain=0,

i=1,2, n=1,2,3,...

and the initial conditions:

a in(0)= U(4, 2tt=OI(PIn(44d,'

din(0) = Jf(4,toIpln()dt,

Cin = (All)

u(4, t) = Y.in (t)<pin(4)
n=1

6l(yt) = in(t)9pin(S)
n=1.

and

(A12)

(A14)

(A15)
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and

a2 n(0) = 0,

(A16)

a2 n (0)= fln(,) 2n()d.
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