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1. Introduction 

Vectors and matrices played a minor role in the econometric literature published 

before World War II, but they have become an indispensable tool in the last 

several decades. Part of this development results from the importance of matrix 

tools for the statistical component of econometrics; another reason is the in- 

creased use of matrix algebra in the economic theory underlying econometric 

relations. The objective of this chapter is to provide a selective survey of both 

areas. Elementary properties of matrices and determinants are assumed to be 

known, including summation, multiplication, inversion, and transposition, but the 

concepts of linear dependence and orthogonality of vectors and the rank of a 

matrix are briefly reviewed in Appendix A. Reference is made to Dhrymes (1978), 

Graybill (1969), or Hadley (1961) for elementary properties not covered in this 

chapter. 

Matrices are indicated by boldface italic upper case letters (such as A), column 

vectors by boldface italic lower case letters (a),  and row vectors by boldface italic 

lower case letters with a prime added (a ' )  to indicate that they are obtained from 

the corresponding column vector by transposition. The following abbreviations 
are used: 

LS -~ least squares, 

GLS --- generalized least squares, 

ML = maximum likelihood, 

8ij = Kronecker delta ( = 1 if i = j ,  0 if i ~ j ) .  

2. Why are matrix methods useful in econometrics? 

2.1. Linear systems and quadratic forms 

A major reason why matrix methods are useful is that many topics in economet- 

rics have a multivariate character. For example, consider a system of L simulta- 

neous linear equations in L endogenous and K exogenous variables. We write Y~/ 

and x~k for the ~th observation on the /th endogenous and the k th  exogenous 

variable. Then t he j t h  equation for observation c~ takes the form 

L K 

v,jyo, + 2 = (2.1) 
/ = 1  k = l  
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where e, j  is a r andom disturbance and the 7 's a n d / 3 ' s  are coefficients. We can 

write (2.1) f o r j  = 1 . . . . .  L in the form 

y 'F  + x'~B = e',, (2.2) 

where y" = [Y,1--.Y,~L] and x" = [x,1 ... x~K ] are observation vectors on the endog- 

enous and the exogenous variables, respectively, e'~ = [e~v. .eel  ] is a dis turbance 

vector, and I" and B are coefficient matrices of  order L x L and K × L,  respec- 

tively: 

- =  

711 ]/12""-YIL 

]/21, T22" • • Y2 L 

[YL1 7L2.-'YLL 

B = 

/311 /312"" "/31L 
/321 /322.../32L 

/3 <1 /3K2.--/3I<L 

When there are n observations (c~ = 1 . . . . .  n), there are Ln equations of the form 

(2.1) and n equations of  the form (2.2). We  can combine  these equations 

compact ly  into 

v r  + x B  = E ,  (2.3) 

where Y and X are observation matrices of the two sets of  variables of  order 

n × L and n × K, respectively: 

y =  I 1 / 1 x .  
Y21 Y22.. "Y2L I X = x21 x22 

• : : ' 

LY:I £ 2  • "Y:,L Xm X,2...X,I< 

and E is an n × L disturbance matrix: 

E =  

1 
Ell El2" ' 'e lL / 

1 
/~21 E22" "'E2L 

Enl En2--- EnL 

Note  t h a t / "  is square ( L  × L).  I f / "  is also non-singular,  we can postmul t ipy 

(2.3) b y / - - 1 :  

Y = - X B I ' -  l + E F -  ~ ( 2 . 4 )  



Ch. 1: Linear Algebra and Matrix Methods 

This is the reduced form for all n observations on all L endogenous variables, each 

of which is described linearly in terms of exogenous values and disturbances. By 

contrast, the equations (2.1) or (2.2) or (2.3) from which (2.4) is derived constitute 

the structural form of the equation system. 

The previous paragraphs illustrate the convenience of matrices for linear 

systems. However, the expression "linear algebra" should not be interpreted in 

the sense that matrices are useful for linear systems only. The treatment of 

quadratic functions can also be simplified by means of matrices. Let g(z 1 ..... Zk) 
be a three times differentiable function. A Taylor expansion yields 

k Og 
g(Zl  . . . . .  Zk)  = g(i f l  . . . . .  if'k) + E ( Z i - - i f i )  OZ i 

i=1 

1 k k 

+~ E E(~i-2,)~ °~g 
i=, s - ,  , ~ % -  

if j ) -.I- O3 , (2.5) 

where 03 is a third-order remainder term, while the derivatives Og/Oz~ and 

OZg/Ozi Ozj are all evaluated at z 1 = if~ . . . . .  Zk = ifk- We introduce z and ~ as 

vectors with ith elements z i and if i, respectively. Then (2.5) can be written in the 

more compact form 

_~, Og 1 _., 02g 
g(~) = g(~)+ (z - z  ) ~ + ~(z  - z  ) o-~-~(z - ~ ) + o 3 ,  (2.6) 

where the column vector Og/Sz = [Og/Ozi] is the gradient of g(-)  at ~ (the vector 

of first-order derivatives) and the matrix 02g/OzOz'=[O2g/SziSzj] is the 

Hessian matrix of g(-)  at ~ (the matrix of second-order derivatives). A Hessian 

matrix is always symmetric when the function is three times differentiable. 

2.2. Vectors and matrices in stat&tical theory 

Vectors and matrices are also important in the statistical component of economet- 

rics. Let r be a column vector consisting of the random variables r 1 . . . . .  r n. The 

expectation Er  is defined as the column vector of expectations Er~ ..... Er n. Next 

consider 

I r I - ~r 1 ] 

( r -  Er)(r - E r ) ' =  r2 Er2 [ r  I - -  Er~ 

r. Er. 

r~ - ~ r ~ . . . r .  - ~ r . ]  
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and take the expectation of each element of this product matrix. When defining 

the expectation of a random matrix as the matrix of the expectations of the 

constituent elements, we obtain: 

var r, coy(r1, r 2) . . .  coy(r1, r n) ] 

E [ ( r - E v ) ( r - E r ) ' ] =  c °v ( r2 ' r ' )  varr2 "'" c°v(r2'rn) . .  ] 

cov(ln, r ,)  cov(r , ,  r 2) . . -  var r, j 

This is the variance-covariance matrix (covariance matrix, for short) of the vector 

r, to be written ~ ( r ) .  The covariance matrix is always symmetric and contains the 

variances along the diagonal. If the elements of r are pairwise uncorrelated, ~ ( r )  

is a diagonal matrix. If these elements also have equal variances (equal to o 2, say), 

<((r) is a scalar matrix, o21; that is, a scalar multiple 0 2 of the unit or identity 

matrix. 

The multivariate nature of econometrics was emphasized at the beginning of 

this section. This will usually imply that there are several unknown parameters; 

we arrange these in a vector 0. The problem is then to obtain a "good" estimator 

/~ of 0 as well as a satisfactory measure of how good the estimator is; the most 

popular measure is the covariance matrix ~7(~). Sometimes this problem is 

simple, but that is not always the case, in particular when the model is non-linear 

in the parameters. A general method of estimation is maximum likelihood (ML) 

which can be shown to have certain optimal properties for large samples under 

relatively weak conditions. The derivation of the ML estimates and their large- 

sample covariance matrix involves the information matrix, which is (apart from 

sign) the expectation of the matrix of second-order derivatives of the log-likeli- 

hood function with respect to the parameters. The prominence of ML estimation 

in recent years has greatly contributed to the increased use of matrix methods in 

econometrics. 

2.3. Least squares in the standard linear model 

We consider the model 

y = X/3 + e, (2.7) 

where y is an n-element column vector of observations on the dependent (or 

endogenous) variable, X is an n x K observation matrix of rank K on the K 

independent (or exogenous) variables, fl is a parameter vector, and e is a 
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disturbance vector. The standard linear model postulates that e has zero expecta- 

tion and covariance matrix o21, where 0 2 is an unknown positive parameter, and 

that the elements of X are all non-stochastic. Note that this model can be viewed 

as a special case of (2.3) fo r / "  = I and L = 1. 

The problem is to estimate/3 and 0 2. The least-squares (LS) estimator of/3 is 

b = ( x ' x ) - l x ' y  (2.8) 

which owes its name to the fact that it minimizes the residual sum of squares. To 

verify this proposition we write e = y -  Xb for the residual vector; then the 

residual sum of squares equals 

e' e = y '  y - 2  y ' X b  + b ' X ' X b  , (2.9) 

which is to be minimized by varying b. This is achieved by equating the gradient 

of (2.9) to zero. A comparison of (2.9) with (2.5) and (2.6), with z interpreted as b, 

shows that the gradient of (2.9) equals - 2 X ' y  + 2 X ' X b ,  from which the solution 

(2.8) follows directly. 

Substitution of (2.7) into (2.8) yields b - 13 = ( X ' X )  IX'e. Hence, given Ee--  0 

and the non-randomness of X, b is an unbiased estimator of/3.  Its covariance 

matrix is 

= ( x ' x )  o 2 ( x ' x )  =' (2.10) 

because X ' ~ ( e ) X  = o 2 X t X  follows from ~ ( e ) =  o21. The Gauss -Markov  theo- 

rem states that b is a best linear unbiased estimator of/3,  which amounts to an 

opt imum LS property within the class of 13 estimators that are linear in y and 

unbiased. This property implies that each element of b has the smallest possible 

variance; that is, there exists no other linear unbiased estimator of 13 whose 

elements have smaller variances than those of the corresponding elements of b. A 

more general formulation of the Gauss -Markov  theorem will be given and 

proved in Section 6. 

Substitution of (2.8) into e = y - Xb  yields e = My,  where M is the symmetric 

matrix 

M : I - X ( X ' X ) - I X  ' (2.11) 

which satisfies M X  = 0; therefore, e = M y  = M(X/3  + e) = Me.  Also, M is 

idempotent, i.e. M 2 = M. The LS residual sum of squares equals e 'e  = g M ' M e  = 

e'MZe and hence 

e'e = g M e .  (2.12) 



10 H.  The i l  

It is shown in the next paragraph that E ( e ' M e )  = a2(n - K )  so that (2.12) implies 

that 0 2 is estimated unbiasedly by e ' e / ( n  - K):  the LS residual sum of squares 

divided by the excess of the number of observations (n) over the number  of 

coefficients adjusted (K) .  

To prove E ( g M e )  = o2(n - K )  we define the trace of a square matrix as the 

sum of its diagonal elements: t r A =  a~l + • • • + ann. We use t r A B  = t rBA ( i fAB 

and BA exist) to write g a l e  as trMee' .  Next we use tr(A + B ) =  trA + t r B  (if A 

and B are square of the same order) to write t r M e g  as t r e e ' - t r X ( X ' X ) - ~ X ' e e '  

[see (2.11)]. Thus, since X is non-stochastic and the trace is a linear operator, 

E ( e ' M e )  : tr E (ee') - t r X ( X ' X )  - 1 X ' E  (ee') 

= o Z t r l  - a 2 t r X ( X , X )  - 1 X ,  

= o2n - o Z t r ( X ' X )  1XtX, 

which confirms E(e 'Me )  = o 2 ( n  - K )  because ( X ' X )  1X'X = I of order K X K. 

If, in addition to the conditions listed in the discussion following eq. (2.7), the 

elements of e are normally distributed, the LS estimator b of 13 is identical to the 

ML estimator; also, (n - K ) s 2 / o  2 is then distributed as X 2 with n - K degrees of 

freedom and b and s 2 are independently distributed. For a proof of this result see, 

for example, Theil (1971, sec. 3.5). 

If  the covariance matrix of e is o2V  rather than o21, where V is a non-singular 

matrix, we can extend the Gauss -Markov  theorem to Aitken's (1935) theorem. 

The best linear unbiased estimator of fl is now 

1~ = ( X ' V -  I X ) -  J X ' V -  ly, (2.13) 

and its covariance matrix is 

~(1~ ) = oZ( X 'V- 1X)-1. (2.14) 

The estimator/~ is the generalized least-squares (GLS) estimator of r ;  we shall see 

in Section 7 how it can be derived from the LS estimator b. 

2.4. Vectors and matrices in consumption theory 

It would be inappropriate to leave the impression that vectors and matrices are 

important  in econometrics primarily because of problems of statistical inference. 

They are also important for the problem of how to specify economic relations. We 

shall illustrate this here for the analysis of consumer demand, which is one of the 

oldest topics in applied econometrics. References for the account which follows 
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include Barten (1977), Brown and Deaton (1972), Phlips (1974), Theil (1975-76), 

and Deaton's chapter on demand analysis in this Handbook (Chapter 30). 

Let there be N goods in the marketplace. We write p = [p;] and q = [qg] for the 

price and quantity vectors. The consumer's preferences are measured by a utility 

function u(q) which is assumed to be three times differentiable. His problem is to 

maximize u(q) by varying q subject to the budget constraints p'q = M, where M is 

the given positive amount of total expenditure (to be called income for brevity's 

sake). Prices are also assumed to be positive and given from the consumer's point 

of view. Once he has solved this problem, the demand for each good becomes a 

function of income and prices. What can be said about the derivatives of demand, 

Oqi/OM and Oqi/Opj? 

Neoclassical consumption theory answers this question by constructing the 

Lagrangian function u ( q ) - h ( p ' q -  M )  and differentiating this function with 

respect to the qi's. When these derivatives are equated to zero, we obtain the 

familiar proportionality of marginal utilities and prices: 

Ou 
iOq-- = Xp,, i= 1 . . . . .  N, (2.15) 

or, in vector notation, OU/&l = Xp: the gradient of the utility function at the 

optimal point is proportional to the price vector. The proportionality coefficient 

has the interpretation as the marginal utility of income.1 

The proportionality (2.15) and the budget constraint p'q = M provide N +  1 

equations in N + 1 unknowns: q and )t. Since these equations hold identically in 

M and p, we can differentiate them with respect to these variables. Differentiation 

of p'q = M with respect to M yields ~ p~(Oqi/OM ) = 1 or 

P 'O-~  =1 ,  (2.16) 

where Oq/OM=[Oqi /OM ] is the vector of income derivatives of demand. 

Differentiation of P ! / =  M with respect to pj yields ~i  Pi( Oqi/OPj)+ qj = 0 ( j  = 

1 . . . . .  N )  or 

p, 0q (2.17) 
Op' = - q "  

where Oq/Op'= [Oqi/Opj ] is the N × N matrix of price derivatives of demand. 

Differentiation of (2.15) with respect to M and application of the chain rule 

IDividing both sides of (2.15) by Pi yields Ou/O(piqi)= h, which shows that an extra dollar of 
income spent on any of the N goods raises utility by X. This provides an intuitive justification for the 
interpretation. A more rigorous justification would require the introduction of the indirect utility 
function, which is beyond the scope of this chapter. 
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yields: 

N 02U Oqk 07, 

~ OqiOqk OM Pi-OM' 
k = l  

i = 1  . . . . .  N. 

Similarly, differentiation of (2.15) with respect to pj yields: 

N 02U Oqk 07, 
Y. Pi~pj + ?,~iS, i, j = 1 . . . . .  N, 

k = 1 Oqi Oqk Opj 

where 8ij is the Kronecker delta ( = 1 if i = j ,  0 if i ~ j ) .  We can write the last two 

equations in matrix form as 

aq 0?` a a  0?, 
U U-~7_ ~, = ?,I + p (2.18) 

OM = OM p'  Op ~ p "  

where U = 02u/OqOq t is the Hessian matrix of the consumer's utility function. 

We show at the end of Section 3 how the four equations displayed in (2.16)-(2.18) 

can be combined in partitioned matrix form and how they can be used to provide 

solutions for the income and price derivatives of demand under appropriate 

conditions. 

3. Partitioned matrices 

Partitioning a matrix into submatrices is one device for the exploitation of the 

mathematical structure of this matrix. This can be of considerable importance in 

multivariate situations. 

3.1. The algebra of partitioned matrices 

We write the left-most matrix in (2.3) as Y =  [Y~ Y2], where 

Y I  

lYl112] I3YI41L 1 Yzl Y22 723 Y24 "Y2L 

• ~ Y 2  ~ . . • 

The partitioning Y=  [Y~ Y2] is by sets of columns, the observations on the first 

two endogenous variables being separated from those c,n the others. Partitioning 
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may take place by row sets and column sets. The addition rule for matrices can be 
applied in partitioned form, 

A21 

A31 

A12 
A22 + 
A32 

BI, BI2] ja i l  + BI1 AI2 + BI2] 

B21 B221 = /A21+B21 A22+B221 ' 
B31 B321 LA31+ B3, A32 + B32J 

provided A ij and B,j have the same order for each (i, j).  A similar result holds for 
multiplication, 

PI, P12][Ql, Q , 2 ] = [ P l l Q I , + P 1 2 0 2 ,  P,1Q,z+P12Q22] 

P2~ P22] [ Q2, Q22] P2iQ~l+P22Q2, P21Q,2+P22Q221 ' 

provided that the number of columns of Pll and P2~ is equal to the number of 

rows of Qll and Qi2 (similarly for Pl2, P22, Qzl, Q22)- 
The inverse of a symmetric partitioned matrix is frequently needed. Two 

alternative expressions are available: 

,lli  o o , c ,  I 
' C - C - 1 B ' D  C 1 + C  l B ' D B C - 1  ' 

where O = (A  - B C  1B') l and E = ( C  - B ' A  - I B ) -  i. The use of (3.1) requires 
that C be non-singular; for (3.2) we must assume that A is non-singular. The 
verification of these results is a matter of straightforward partitioned multiplica- 
tion; for a constructive proof see Theil (1971, sec. 1.2). 

The density function of the L-variate normal distribution with mean vector/x 
and non-singular covariance matrix ~ is 

1 
f ( x )  (2~r)L/21Xil/2 exp( -  ½(x - /x ) 'X- l (x  - /~)) ,  (3.3) 

where 12~ I is the determinant value of ~. Suppose that each of the first L' variates 
is uncorrelated with all L - L' other variates. Then/~ and ~ may be partitioned, 

where (/~l,~l) contains the first- and second-order moments of the first L' 
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variates and (~2, ~2) those of the last L - L'. The density function (3.3) can now 

be written as the product of 

/ I ( X l )  = 1 exp(-½ ( x l - / ~ , ) ' Z ( ~ ( x  I - /~ l ) )  
(2~r)L'/2l~ll 1/2 

and analogous function f2(x2). Clearly, the L-element normal vector consists of 

two subvectors which are independently distributed. 

3.2. Block- recursive systems 

We return to the equation system (2.3) and assume that the rows of E are 

independent L-variate normal vectors with zero mean and covariance matrix Z, as 

shown in (2.4), Zl being of order L 'X  L'. We also assume that /" can be 

partitioned as 

r3], (3.5) 
/'2 

with/ ' l  of order L '  × L'. Then we can write (2.3) as 

0 ~-X[BI  B2] = [El E2] 

or 

(3.6) 

(3.7) 

E2] with Y1 and E 1 of order 

Y~F 1 + X B  t = El ,  

Y2Fz+[X Y1][ Bz]F3 =E2'  

where Y=[Yl Y2], B = [ B  l B2], a n d E = [ E  1 
n × L'  and B l of order K X L'. 

There is nothing special about (3,6), which is an equation system comparable to 

(2.3) but of smaller size. However, (3.7) is an equation system in which the L'  

variables whose observations are arranged in Y1 can be viewed as exogenous 

rather than endogenous. This is indicated by combining Yl with X in partitioned 

matrix form. There are two reasons why Yi can be viewed as exogenous in (3.7). 

First, Yl is obtained from the system (3.6) which does not involve Y2. Secondly, 

the random component E 1 in (3.6) is independent of E 2 in (3.7) because of the 

assumed normality with a block-diagonal Z. The case discussed here is that of a 
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block-recursive system, with a block-triangular/" [see (3.5)] and a block-diagonal Z 

[see (3.4)]. Under appropriate identification conditions, ML estimation of the 

unknown elements of F and B can be applied to the two subsystems (3.6) and 

(3.7) separately. 

3.3. Income and price derivatives revisited 

It is readily verified that eqs. (2.16)-(2.18) can be written in partitioned matrix 

form as 

-O)~/OM -O)~ /Op ' ]=[~  )~I _ q t  

which is Barten's (1964) fundamental matrix equation in consumption theory. All 

three partitioned matrices in (3.8) are of order (N + 1)× (N + 1), and the left-most 

matrix is the Hessian matrix of utility function bordered by prices. If U is 

non-singular, we can use (3.2) for the inverse of this bordered matrix: 

Premultiplication of (3.8) by this inverse yields solutions for the income and price 

derivatives: 

Oq_ 1 _ 0 ~ _  1 

OM p'U- lp U lp, OM p'U- lp 

Oq ?~u_ , ~ U _ l p ( U _ , p ) ,  1 
op' p'v '1, p'v-'p 

- - u - ' p q ' .  

(3.9) 

(3.10) 

It follows from (3.9) that we can write the income derivatives of demand as 

Oq 07~ U_lp ' (3.11) 
OM OM 

and from (3.9)~ and (3.10) that we can simplify the price derivatives to 

_ ~ u _  ~ ~ ~ 0q' 
Op' O?~/OM OM OM q'" (3.12) 

The last matrix, -(Oq/OM)q', represents the income effect of the price changes 
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on demand. Note that this matrix has unit rank and is not symmetric. The two 

other matrices on the right in (3.12) are symmetric and jointly represent the 

substitution effect of the price changes. The first matrix, XU-~, gives the specific 
substitution effect and the second (which has unit rank) gives the general substitu- 
tion effect. The latter effect describes the general competition of all goods for an 

extra dollar of income. The distinction between the two components of the 

substitution effect is from Houthakker (1960). We can combine these components 

by writing (3.12) in the form 

= p a q '  1 aq , Oq X U - ' ( I -  (3.13) 
Op' ff--M ] - - ~  q ' 

which is obtained by using (3.1 l) for the first Oq/OM that occurs in (3.12). 

4. Kronecker products and the vectorization of matrices 

A special form of partitioning is that in which all submatrices are scalar multiples 

of the same matrix B of order p x q. We write this as 

A ® B  = 

allB alzB...alnB ] 

a2:B az2B...a2nB , 

aml B am2B...amnB 

and refer to A®B as the Kronecker product of A = [aij ] and B. The order of this 

product is mp × nq. Kronecker products are particularly convenient when several 

equations are analyzed simultaneously. 

4.1. The algebra of Kronecker products 

It is a matter of straightforward partitioned multiplication to verify that 

(A®B)(C®D) = AC®BD, (4.1) 

provided A C and BD exist. Also, if A and B are square and non-singular, then 

( A e B ) - '  = A - I ® B  - 1  (4.2) 

because (4.1) implies (A®B)(A -~®B - l)  = AA -~®BB -1 = 1®1 = I, where the 

three unit matrices will in general be of different order. We can obviously extend 
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(4.1) to 

( A,®Bi)(  Az®Bz)( A3®B3) = AIAzA3®BIBzB 3 

provided AIA2A 3 and BIBzB3 exist. 
Other useful properties of Kronecker products are: 

( A ® B ) ' = A ' ® B ' ,  (4.3) 

A ® ( B  + C) = A®B + a®C,  (4.4) 

( B + c ) ® a  = B e A  + C e A ,  (4 .5)  

A®( B ® C )  = ( A®B )®C. (4.6) 

Note the implication of (4.3) that A®B is symmetric when A and B are 

symmetric. Other properties of Kronecker products are considered in Section 7. 

4.2. Joint generalized least-squares estimation of several equations 

In (2.1) and (2.3) we considered a system of L linear equations in L endogenous 

variables. Here we consider the special case in which each equation describes one 

endogenous variable in terms of exogenous variables only. If the observations on 

all variables are a = 1 . . . . .  n, we can write the L equations in a form similar to 

(2.7): 

y/= Xj~j + e/, j = 1 ..... L,  (4.7) 

where yj = [y:j] is the observation vector on the j t h  endogenous variable, ej = 

[e:j] is the associated disturbance vector with zero expectation, Xj is the observa- 

tion matrix on the Kj exogenous variables in the j t h  equation, and fij is the 

K:element parameter vector. 
We can write (4.7) for a l l j  in partitioned matrix form: 

I i] 
X 1 0. . .0 

o x2. . .o  

0 O...XL 

~2 e2 
+ 

L eiL 

(4.8) 

or, more briefly, as 

y = Z/3 + e, (4.9) 
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where y and e are Ln-element vectors and Z contains Ln rows, while the number  

of columns of Z and that of the elements of /3 are both K 1 + . . .  + K L. The 

covariance matrix of e is thus of order Ln × Ln and can be partitioned into L 2 

submatrices of the form E(eje~). For j = l this submatrix equals the covariance 

matrix ~V(ej). We assume that the n disturbances of each of the L equations have 

equal variance and are uncorrelated so that ~V(e/) = ojiI, where og = var e~/(each 

a). For j ~ l the submatrix E(e/e~) contains the "contemporaneous"  covariances 

E (e,je~t) for a = 1 . . . . .  n in the diagonal. We assume that these covariances are all 

equal to ~l and that all non-contemporaneous covariances vanish: E(e~/%l ) = 0 

for a :~ ~/. Therefore, E(eje~) = ojfl, which contains cV(e/) = o//I as a special case. 

The full covariance matrix of the Ln-element vector e is thus: 

o111 012I...O1LI 

~ ( e ) =  °211 02~I'"°2LI 

OLII OL2I.. .OLLI 

= Z ® I ,  (4.10) 

where N =  [o/1 ] is the contemporaneous covariance matrix, i.e. the covariance 

matrix of [e~l...e~/.] for ot = 1,... ,n. 

Suppose that N is non-singular so that N -  1 ® I  is the inverse of the matrix (4.10) 

in view of (4.2). Also, suppose that X1,... ,Xt. and hence Z have full column rank. 

Application of the GLS results (2.13) and (2.14) to (4.9) and (4.10) then yields 

(4.11) 

as the best linear unbiased estimator of/3 with the following covariance matrix: 

= ' ® / ) z ]  ' (4.12) 

In general,/~ is superior to LS applied to each of the L equations separately, but 

there are two special cases in which these estimation procedures are identical. 

The first case is that in which X 1 . . . . .  X L are all identical. We can then write X 

for each of these matrices so that the observation matrix on the exogenous 

variables in (4.8) and (4.9) takes the form 

Z =  

X 0...0 

0 X . . . O  

0 O . . . X  

= l ® X .  (4.13) 
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This implies 

Z ' ( Z - ' ® I ) Z =  ( I ® X ' ) ( Z - ' ® I ) ( I ® X ) = Z  '®X'X 

and 
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[ z ' ( z - ' ® I ) z ] - ' z ' ( z - ' ® 1 ) =  

= 10 ( x ' x ) - ' x ' .  

It is now readily verified from (4.11) that fi consists of L subvectors of the LS 

form (X 'X) -  ~X'yj. The situation of identical matrices Xl , . . .  ,Xz, occurs relatively 

frequently in applied econometrics; an example is the reduced form (2.4) for each 

of the L endogenous variables. 

The second case in which (4.11) degenerates into subvectors equal to LS vectors 

is that of uncorrelated contemporaneous disturbances. Then 2~ is diagonal and it 

is easily verified that/~ consists of subvectors of the form ' - ~ ' (X/iXi) Xjyj. See Theil 

(1971, pp. 311-312) for the case in which ~ is block-diagonal. 

Note that the computation of the joint GLS estimator (4.11) requires ,~ to be 

known. This is usually not true and the unknown ~ is then replaced by the 

sample moment matrix of the LS residuals [see Zellner (1962)]. This approxima- 

tion is asymptotically (for large n) acceptable under certain conditions; we shall 

come back to this matter in the opening paragraph of Section 9. 

4.3. Vectorization of matrices 

In eq. (2.3) we wrote Ln equations in matrix form with parameter matrices F and 

B, each consisting of several columns, whereas in (4.8) and (4.9) we wrote Ln 
equations in matrix form with a "long" parameter vector 13. If Z takes the form 

(4.13), we can write (4.8) in the equivalent form Y =  XB + E, where Y, B, and E 

are matrices consisting of L columns of the form yj, flj, and ej. Thus, the elements 

of the parameter vector 13 are then rearranged into the matrix B. On the other 

hand, there are situations in which it is more attractive to work with vectors 

rather than matrices that consist of several columns. For example, if /~ is an 

unbiased estimator of the parameter vector fl with finite second moments, we 

obtain the covariance matrix of/~ by postmultiplying/~ - 13 by its transpose and 

taking the expectation, but  this procedure does not work when the parameters are 

arranged in a matrix B which consists of several columns. It is then appropriate to 

rearrange the parameters in vector form. This is a matter of designing an 

appropriate notation and evaluating the associated algebra. 

Let A = [a l . . . aq]  be a p x q matrix, a,. being the ith column of A. We define 

vecA = [a'  1 a'2...aq]', which is a pq-element column vector consisting of q 
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subvectors, the first containing the p elements of a ~, the second the p elements of 

a2, and so on. It is readily verified that vec(A + B) = vecA + vecB, provided that 

A and B are of the same order. Also, if the matrix products A B  and B C  exist, 

vecAB = ( I ® A ) v e c B  = (B'  ®I)vecA,  

vec A B C  = ( I ® A B  )vec C = ( C' ® A )vecB = ( C 'B '  ® I )vec a . 

For proofs and extensions of these results see Dhrymes (1978, ch. 4). 

5. Differential demand and supply systems 

The differential approach to microeconomic theory provides interesting compari- 

sons with equation systems such as (2.3) and (4.9). Let g(z )  be a vector of 

functions of a vector z; the approach uses the total differential of g(-), 

Og 
dg  = Oz-- ~ dz,  (5.1) 

and it exploits what is known about Og/az ' .  For example, the total differential of 

Consumer demand is dq = ( 0 q / a M )  d M  + (Oq/Op')  dp .  Substitution from (3.13) 

yields: 

which shows that the income effect of the price changes is used to deflate the 

change in money income and, similarly, the general substitution effect to deflate 

the specific effect. Our first objective is to write the system (5.2) in a more 

attractive form. 

5.1. A differential consumer demand system 

We introduce the budget share wi and the marginal share O~ of good i: 

P'q' O, O(piqi)  (5.3) 
Wi-- M '  OM ' 

and also the Divisia (1925) volume index d(logQ) and the Frisch (1932) price 

index d(log P'): 

N N 

d ( l o g Q ) =  2 wid(logqi) ,  d( loge ' )  = ~ O,d(logp~), (5.4) 
i = 1  i ~ l  
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where log (here and elsewhere) stands for natural logarithm. We prove in the next 
paragraph that (5.2) can be written in scalar form as 

w~ d(log q~) = 0 r d(log Q) + q, ~. 0ij d log ~7 , 
j= l  

where d[log(pj/P')] is an abbreviation of d ( logp / ) -d ( logP ' ) ,  while q~ is the 
reciprocal of the income elasticity of the marginal utility of income: 

OlogX )--~ 
* =  OlogM ' (5.6) 

and Oij is an element of the symmetric N × N matrix 

O) = 7 M P U  - 1e, (5.7) 

with P defined as the diagonal matrix with the prices p ~,... ,PN on the diagonal. 

To verify (5.5) we apply (5.1) tO M =  P!/, yielding dM=q'dp  + p'dq so that 
d M - q ' d p  = Md( logQ)  follows from (5.3) and (5.4). Therefore, premultiplica- 

tion of (5.2) by (1/M)P gives: 

_( Oq' ,], 
1 p d q = P - ~ d ( l o g Q ) + ~ P U - ' P [ P - ' d p  \-0---~ d p )  (5.8) 

where ~ = P -  ~p is a vector of N unit dements. The ith element of (1/M)Pdq 
equals (p~/M)dq~ = wid(log q,), which confirms the left side of (5.5). The vector 

P(Oq/OM) equals the marginal share vector 0 = [Oi], thus confirming the real- 

income term of (5.5). The j t h  element of the vector in brackets in (5.8) equals 

d(log p / ) -d ( log  P'), which agrees with the substitution term of (5.5). The verifica- 

tion of (5.5) is completed by (X/M)PU-1P=eo@ [see (5.7)]. Note that @e= 

(X/OM)PU- lp = P(Oq/Om) [see (3.11) and (5.6)]. Therefore, 

O~ = 0 ,  e'OL = L'0 = 1, ( 5 . 9 )  

where t'O = ~ iOi  = 1 follows from (2.16). We conclude from Ot = 0 that the 0i/s  
of the ith equation sum to the ith marginal share, and from gOL = 1 that the Otj's 
of the entire system sum to 1. The latter property is expressed by referring to the 

Oij's as the normalized price coefficients. 
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5.2. A comparison with simultaneous equation systems 

The N-equation system (5.5) describes the change in the demand for each good, 

measured by its contribution to the Divisia index [see (5.4)], 2 as the sum of a 

real-income component and a substitution component. This system may be 

compared with the L-equation system (2.1). There is a difference in that the latter 

system contains in principle more than one endogenous variable in each equation, 

whereas (5.5) has only one such variable if we assume the d(logQ) and all price 

changes are exogenous. 3 Yet, the differential demand system is truly a system 

because of the cross-equation constraints implied by the symmetry of the normal- 

ized price coefficient matrix O. 

A more important difference results from the utility-maximizing theory behind 

(5.5), which implies that the coefficients are more directly interpretable than the 

-{'s and fl 's  of (2.1). Writing [0 U] = 0 -1 and inverting (5.7), we obtain: 

Oi j = epM 02U 
X O(p, qg) 3 ( p j q j ) '  (5.10) 

which shows that 0 ij measures (apart from ~ M / X  which does not involve i and j )  

the change in the marginal utility of a dollar spent on i caused by an extra dollar 

spent on j.  Equivalently, the normalized price coefficient matrix O is inversely 

proportional to the Hessian matrix of the utility function in expenditure terms. 

The relation (5.7) between O and U allows us to analyze special preference 

structures. Suppose that the consumer's tastes can be represented by a utility 

function which is the sum of N functions, one for each good. Then the marginal 

utility of each good is independent of the consumption of all other goods, which 

we express by referring to this case as preference independence. The Hessian U is 

then diagonal and so is O [see (5.7)], while O, = 0 in (5.9) is simplified to Oii= 0 i. 

Thus, we can write (5.5) under preference independence as 

wid(log qi ) = Old(logO)+ dp0id(log~-~l ), (5.11) 

which contains only one Frisch-deflated price. The system (5.11) for i = 1 , . . . ,N  

contains only N unconstrained coefficients, namely ~ and N -  1 unconstrained 

marginal shares. 

The application of differential demand systems to data requires a parameteriza- 

tion which postulates that certain coefficients are constant. Several solutions have 

2Note that this way of measuring the change in demand permits the exploitation of the symmetry of 
O. When we have d(log qi) o n  the left, the coefficient of the Ffisch-deflated price becomes 8ij/wi, 
which is an element of an asymmetric matrix. 

3This assumption may be relaxed; see Theil (1975-76, ch. 9-10) for an analysis of endogenous price 
changes. 
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been proposed, but these are beyond the scope of this chapter; see the references 

quoted in Section 2.4 above and also, for a further comparison with models of the 

type (2.1), Theil and Clements (1980). 

5.3. An extension to the inputs of a firm." A singularity problem 

Let thepi 's  and qi's be the prices and quantities of N inputs which a firm'buys to 

make a product, the output of which is z. Let z = g(q) be the firm's production 

function, g(-)  being three times differentiable. Let the firm's objective be to 

minimize input expenditure p~/subject to z = g(q) for given output z and input 

prices p. Our objective will be to analyze whether this minimum problem yields a 

differential input demand system similar to (5.5). 

As in the consumer's case we construct a Lagrangian function, which now takes 

the form p'q - O[ g ( q ) -  z]. By equating the derivative of this function with respect 

to q to zero we obtain a proportionality of Og/Oq to p [compare (2.15)]. This 

proportionality and the production function provide N + 1 equations in N + 1 

unknowns: q and O. Next we differentiate these equations with respect to z and p, 

and we collect the derivatives in partitioned matrix form. The result is similar to 

the matrix equation (3.8) of consumption theory, and the Hessian U now becomes 

the Hessian 02g/OqOq ' of the production function. We can then proceed as in 

(3.9) and following text if O2g/OqOq ' is non-singular, but this is unfortunately not 

true when the firm operates under constant returns to scale. It is clearly 

unattractive to make an assumption which excludes this important case. In the 

account which follows 4 we solve this problem by formulating the production 

function in logarithmic form. 

log z = h (q) ,  (5.12) 

and using the following N × N Hessian matrix: 

°2h ] (5.13) 
H = 0 (log qi) O (log q j) " 

5.4. A differential input demand system 

The minimum ofp'q subject to  (5.12) for given z a n d p  will be a function of z and 

p. We write C(z,  p )  for this minimum: the cost of producing output z at the input 

4Derivations are omitted; the procedure is identical to that which is outlined above except that it 
systematically uses logarithms of output, inputs, and input prices. See Laitinen (1980), Laitinen and 
Theil (1978), and Theil (1977, 1980). 
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prices p. We define 

01ogC 1 1 021ogC 
- -  = 1 + ( 5 . 1 4 )  

"{ 01ogz ' ~ ~2 0(log z)2 ' 

so that "/ is the output elasticity of cost and ~ < 1 ( >  1) when this elasticity 

increases (decreases) with increasing output; thus, ~p is a curvature measure of the 
logarithmic cost function. It can be shown that the input demand equations may 
be written as 

N 

f id(logqi)=~'Oid(logz)-q~ ~ Oijd(log~7, ), (5.15) 
j = l  

which should be compared with (5.5). In (5.15), fi is the factor share of input i (its 
share in total cost) and 0 i is its marginal share (the share in marginal cost), 

f~ = P'q' O, -  O(p ,q , ) /Oz  ( 5 . 1 6 )  
C ' aC/Oz ' 

which is the input version of (5.3). The Frisch price index on the far right in (5.15) 

is as shown in (5.4) but with 0 i defined in (5.16). The coefficient 0ij in (5.15) is the 
(i, j ) th  element of the symmetric matrix 

O= +F(F- yH)-IF, (5.17) 

where H is given in (5.13) and F is the diagonal matrix with the factor shares 

f l  . . . . .  fN on the diagonal. This 0 satisfies (5.9) with 0 = [Oi] defined in (5.16). 

A firm is called input independent when the elasticity of its output with respect 
to each input is independent of all other inputs. It follows from (5.12) and (5.13) 

that H is then diagonal; hence, O is also diagonal [see (5.17)] and Ot = 0 becomes 
O. = 0 i so that we can simplify (5.15) to 

fid(log qi) = "[Oid(l°gz)- ~Oid(log ~ ), (5.18) 

which is to be compared with the consumer's equation (5.11) under preference 

independence. The Cobb-Douglas  technology is a special case of input indepen- 
dence with H =  0, implying that F ( F - y H ) - I F  in (5.17) equals the diagonal 

matrix F. Since Cobb-Douglas  may have constant returns to scale, this illustrates 
that the logarithmic formulation successfully avoids the singularity problem 
mentioned in the previous subsection. 
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5.5. Allocation systems 

Summation of (5.5) over i yields the identity d ( logQ)= d(logQ), which means 

that (5.5) is an allocation system in the sense that it describes how the change in 

total expenditure is allocated to the N goods, given the changes in real income 

and relative prices. To verify this identity, we write (5.5) for i = 1 . . . .  ,N in matrix 
form as 

WI¢ = ( (W~)O + ~,O( I - ,O')~r, (5.19) 

where W is the diagonal matrix with wl, . . . ,  w~ on the diagonal and ~r = [d(log Pi)] 

and ~ = [d(log qi)] are the vectors logarithmic price and quantity changes so that 

d(log Q ) =  (Wg, d(log P ' ) =  0'~r. The proof is completed by premultiplying (5.19) 

by (, which yields (W~ = (Wx in view of (5.9). Note that the substitution terms 

of the N demand equations have zero sum. 

The input demand system (5.15) is not an allocation system because the firm 

does not take total input expenditure as given; rather, it minimizes this expendi- 

ture for given output z and given input prices p. Summation of (5.15) over i 
yields: 

d(log Q) = v d(log z),  (5.20) 

where d(log Q) = ~,ifid(log qi) = t'FK is the Divisia input volume index. Substitu- 
tion of (5.20) into (5.15) yields: 

f id ( logqi )=Oid( logQ)-+ ~ Oijd(log~7,). (5.21) 
j = l  

We can interpret (5.20) as specifying the aggregate input change which is required 

to produce the given change in output, and (5.21) as an allocation system for the 

individual inputs given the aggregate input change and the changes in the relative 

input prices. It follows from (5.9) that we can write (5.19) and (5.21) for each i as 

w ,  = + , o (  t -  (5 .22)  

= + o ( x  - (5 .23)  

which shows that the normalized price coefficient matrix O and the scalars q~ and 

are the only coefficients in the two allocation systems. 

5. 6. Extensions 

Let the firm adjust output z by maximizing its profit under competitive condi- 

tions, the price y of the product being exogenous from the firm's point of view. 
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Then marginal cost OC/Oz equals y, while 0 i of (5.16) equals O(piqi) /O(yz):  the 

additional expenditure on input i resulting from an extra dollar of output 

revenue. Note that this is much closer to the consumer's 0~ definition (5.3) than is 

(5.16). 

I f  the firm sells m products with outputs z 1,..., z m at exogenous prices y~ . . . . .  Ym, 

total revenue equals R = Y'.rYrZr and gr = Y r Z J  R is the revenue share of product  

r, while 

m 
d ( l o g Z ) =  ~ grd(logz~) (5.24) 

r = l  

is the Divisia output volume index of the multiproduct firm. There are now m 

marginal costs, OC/Oz r for r = 1 . . . . .  m, and each input has m marginal shares: 0, r 

defined as O(piqi)/OZr divided by OC/Oz,., which becomes 0f = O(piqi)/O(Y~Zr) 

under profit maximization. Multiproduct input demand equations can be for- 

mulated so that the substitution term in (5.15) is unchanged, but the output term 

becomes 

m 

y ~. Orgrd(logzr), (5.25) 
r ~ l  

which shows that input i can be of either more or less importance for product  r 

than for product s depending on the values of 0i ~ and 07. 

Maximizing profit by adjusting outputs yields an output supply system which 

will now be briefly described. The r th supply equation is 

m , (  Ys) ( 5 . 2 6 )  grd(log Zr) = ~* F. 0L d log - ~  , 
s=l  

which describes the change 5 in the supply of product r in terms of all output price 

changes, each deflated by the corresponding Frisch input price index: 

N 

d ( logP  'r) = Z O[d(logpi). (5.27) 
i=l 

Asterisks are added to the coefficients of (5.26) in order to distinguish output 

supply from input demand. The coefficient +* is positive, while 0~* is a normal- 

ized price coefficient defined as 

1 
* = c r *  , (5.28) 0;.~ + , R y  r y~ 

5This change is measured by the contribution of product r to the Divisia output volume index 
(5.24). Note that this is similar to the left variables in (5.5) and (5.15). 
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where c rs is an element of the inverse of the symmetric m × m matrix 

[02C/OZr Oz s]. The similarity between (5.28) and (5.7) should be noted; we shall 

consider this matter further in Section 6. A multiproduct firm is called output 

independent when its cost function is the sum of m functions, one for each 

product. 6 Then [02C/Ozr Oz,] and [0;*] are diagonal [see (5.28)] so that the change 

in the supply of each product depends only on the change in its own deflated 

price [see (5.26)]. Note the similarity to preference and input independence [see 

(5.11) and (5.18)]. 

6. Definite and semidefinite square matrices 

The expression x ' A x  is a quadratic form in the vector x. We met several examples 

in earlier sections: the second-order term in the Taylor expansion (2.6), e 'Me in 

the residual sum of squares (2.12), the expression in the exponent in the normal 

density function (3.3), the d e n o m i n a t o r p ' U - l p  in (3.9), and t'Ot in (5.9). A more 

systematic analysis of quadratic forms is in order. 

6.1. Covariance matrices and Gauss-Markov further considered 

Let r be a random vector with expectation Er  and covariance matrix Z. Let w'r be 

a linear function of r with non-stochastic weight vector w so that E (w'r) = w'Er. 

The variance of w'r is the expectation of 

[ w ' ( r  - 2 = w ' ( r -  

SO that var w'r = w ' ~ ( r ) w  = w',~w. Thus, the variance of any linear function of r 

equals a quadratic form with the covariance matrix of r as matrix. 

If the quadratic form x ' A x  is positive for any x ~ 0, A is said to be positive 

definite. An example is a diagonal matrix A with positive diagonal elements. If 

x ' A x  >~ 0 for any x, A is called positive semidefinite. The covariance matrix ~ of 

any random vector is always positive semidefinite because we just proved that 

w ' Z w  is the variance of a linear function and variances are non-negative. This 

covariance matrix is positive semidefinite but not positive definite if w ' Z w  = 0 

holds for some w ~ 0, i.e. if there exists a non-stochastic linear function of the 

random vector. For example, consider the input allocation system (5.23) with a 

6Hall (1973) has shown that the additivity of the cost function in the m outputs is a necessary and 
sufficient condition in order that the multiproduct firm can be broken up into m single-product firms 
in the following way: when the latter firms independently maximize profit by adjusting output, they 
use the same aggregate level of each input and produce the same level of output as the multiproduct 
firm. 
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disturbance vector e added: 

H. Theil 

e ~  = ( , ' r ~ ) o , -  + o ( t  - , , ' o ) , ~  + ~. (6.1) 

Premultiplication by L' and use of (5.9) yields t'FK = t'FK + t'e, or t'e = 0, which 

means that the disturbances of the N equations sum to zero with unit probability. 

This property results from the allocation character of the system (6.1). 

We return to the standard linear model described in the discussion following 

eq. (2.7). The Gauss-Markov theorem states that the LS estimator b in (2.8) is 

best linear unbiased in the following sense: any other estimator/~ of fl which is 

also linear in y and unbiased has the property that ~( /~)-CV(b)  is a positive 

semidefinite matrix. That is, 

w'[C~-(fl)-~V(b)]w>~O for any w, 

or w'C~(fl)w >1 w'CV(b)w. Since both sides of this inequality are the variance of an 

estimator of w'fl, the implication is that within the class of linear unbiased 

estimators LS provides the estimator of any linear function of fl with the smallest 

possible variance. This is a stronger result than the statement in the discussion 

following eq. (2.10); that statement is confined to the estimation of dements  

ra ther  than general linear functions of ft. 
To prove the Gauss-Markov theorem we use the linearity of/~ in y to write 

= By, where B is a K × n matrix consisting of non-stochastic elements. We 

define C = B - ( X ' X ) -  i x '  so that/~ = By can be written as 

[c  + ( x ' x ) - ' x ' ]  y= [c +(x'x)-'x'](xa + ~) 

= (CX+ I)fl + [C+(X'X) lX']e. 

The expectatio~a of/~ is thus (CX + I) f l ,  which must be identically equal to fl in 

order that the estimator be unbiased. Therefore, C X = O  and /~ = f l  + [ C +  

( X ' X ) - l x ' ] e  so that ~V(/~) equals 

[c +(x,x)-'x']v(~)[c +(x'x)-'x']' 

: o~cc'+ o~(x'x)-'+ ,,~cx(x'x)='+ o~(x'x)-'x'c'. 

It thus follows from (2.10) and C X =  0 that ~ ( / ~ ) - C ~ ( b ) =  o2CC ,, which is a 

positive semidefinite matrix because o2w'CC'w = (oC'w)'(oC'w) is the non-nega- 

tive squared length of the vector oC'w. 
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6.2. Max ima  and minima 

29 

The matrix A is called negative semidefinite if x ' A x  <~ 0 holds for any x and 

negative definite if x ' A x  < 0 holds for any x ~ 0. If A is positive definite, - A is 

negative definite (similarly for semidefiniteness). If A is positive (negative) 

definite, all diagonal elements of A are positive (negative). This may be verified 

by considering x ' A x  with x specified as a column of the unit matrix of ap- 

propriate order. If A is positive (negative) definite, A is non-singular because 

singularity would imply the existence of an x ~ 0 so that A x  = 0, which is 

contradicted by x ' A x  > 0 ( < 0). If A is symmetric positive (negative) definite, so 

is A - 1, which is verified by considering x ' A x  with x = A - ly for y = 0. 

For the function g(-) of (2.6) to have a stationary value at z = ~ it is necessary 

and sufficient that the gradient Og/Oz at this point be zero. For  this stationary 

value to be a local maximum (minimum) it is sufficient that the Hessian matrix 

OZg/OzOz ' at this point be negative (positive) definite. We can apply this to the 

supply equation (5.26) which is obtained by adjusting the output vector z so as to 

maximize profit. We write profit as y'z  - C, wherey is the output price vector and 

C = cost. The gradient of profit as a function of z is y - OC/Oz ( y is indepen- 

dent of z because y is exogenous by assumption) and the Hessian matrix is 

- -  02C/OzOZ t so that a positive definite matrix 32C/OzOz ' is a sufficient condi- 

tion for maximum profit. Since qJ* and R in (5.28) are positive, the matrix [0"] of 

the supply system (5.26) is positive definite. The diagonal elements of this matrix 

are therefore positive so that an increase in the price of a product raises its 

supply. 

Similarly, a sufficient conditions for maximum utility is that the Hessian U be 

negative definite, implying q~ < 0 [see (3.9) and (5.6)], and a sufficient condition 

for minimum cost is that F -  yH  in (5.17) be positive definite. The result is that 

[0ij ] in both (5.5) and (5.15) is also positive definite. Since q~ and - q, in these 

equations are negative, an increase in the Frisch-deflated price of any good 

(consumer good or input) reduces the demand for this good. For two goods, i and 

j,  a positive (negative) 0ij = 0ji implies than an increase in the Frisch-deflated 

price of either good reduces (raises) the demand for the other; the two goods are 

then said to be specific complements (substitutes). Under preference or input 

independence no good is a specific substitute or complement of any other good 

[see (5.11) and (5.18)]. The distinction between specific substitutes and comple- 

ments is from Houthakker (1960); he proposed it for consumer goods, but it can 

be equally applied to a firm's inputs and also to outputs based on the sign of 

0* = 0* in (5.26). 

The assumption of a definite U or F -  •H is more than strictly necessary. In 

the consumer's case, when utility is maximized subject to the budget constraint 

p'q = M,  it is sufficient to assume constrained negative definiteness, i.e. x ' U x  < 0 

for all x ~ 0 which satisfy p ' x  = 0. It is easy to construct examples of an indefinite 
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or singular semidefinite matrix U which satisfy this condition. Definiteness 

obviously implies constrained definiteness; we shall assume that U and F -  7 / /  

satisfy the stronger conditions so that the above analysis holds true. 

6.3. Block-diagonal definite matrices 

If a matrix is both definite and block-diagonal, the relevant principal submatrices 

are also definite. For example, if N of (3.4) is positive definite, then x ~ , l x  1 + 

x'2~,2x 2 > 0 if either x I ~ 0 or x 2 :~ 0, which would be violated if either N1 or N2 

were not definite. 

Another example is that of a logarithmic production function (5.12) when the 

inputs can b e  grouped into input groups so  that the elasticity of output with 

respect to each input is independent of all inputs belonging to different groups. 

Then H of (5.13) is block-diagonal and so is @ [see (5.17)]. Thus, if i belongs to 

input group Sg (g  = 1,2 . . . .  ), the summation over j in the substitution term of 

(5.15) can be confined t o j  ~ Sg; equivalently, no input is then a specific substitute 

or complement of any input belonging to a different group. Also, summation of 

the input demand equations over all inputs of a group yields a composite demand 

equation for the input group which takes a similar form, while an appropriate 

combination of this composite equation with a demand equation for an individual 

input yields a conditional demand equation for the input within their group. 

These developments can also be applied to outputs and consumer goods, but they 

are beyond the scope of this chapter. 

7. Diagonalizations 

7.1. The standard diagonalization of a square matrix 

For some n × n matrix A we seek a vector x so that A x equals a scalar multiple 2t 

of x. This is trivially satisfied by x = 0, so we impose x 'x  = 1 implying x ~ 0. Since 

A x  = Xx is equivalent to (A - X I ) x  = 0, we thus have 

( A - X l ) x = O ,  x ' x = l ,  (7.1) 

so that A - XI  is singular. This implies a zero determinant value, 

IA - XI[ = 0, (7.2) 

which is known as the characteristic equation of A. For example, if A is diagonal 
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with d I . . . . .  d n on the diagonal, (7.2) states that the product of d i - ~  o v e r  i 

vanishes so that each d~ is a solution of the characteristic equation. More 

generally, the characteristic equation of an n × n matrix A is a polynomial of 

degree n and thus yields n solutions ~ . . . .  ,~n- These ?~i's are the latent roots of A; 

the product of the ?~'s equals the determinant of A and the sum of the ?~'s equals 

the trace of A. A vector xi which satisfies Ax~ = ?~ix~ and x~x~ = 1 is called a 

characteristic vector of A corresponding to root 2~. 

Even if A consists of real elements, its roots need not be real, but these roots 

are all real when A is a real symmetric matrix. For suppose, to the contrary, that ?~ 

is a complex root and x + i y is a characteristic vector corresponding to this ?~, 

where i = v rZ- 1. Then A (x  + i y ) = 2~ (x  + i y),  which we premultiply by (x - i y) ' :  

x ' A x  + y ' A y  + i ( x ' A y  - y ' A x )  = X ( x ' x  + y ' y ) .  (7.3) 

But x ' A y  = y ' A x  if A is symmetric, so that (7.3) shows that ?, is the ratio of two 

real numbers, x ' A x  + y ' A y  and x ' x  + y ' y .  Roots of asymmetric matrices are 

considered at the end of this section. 

Let X i and ?~j be two different roots (2,, ~ ?~j) of a symmetric matrix A and let 

x i and xj  be corresponding characteristic vectors. We premultiply A x  i = Xixg by xj 

and A x j  = ?~jxj by x; and subtract: 

x'jax,-  x;Axj = (X , -  Xj)x;xj. 

Since the left side vanishes for a symmetric matrix A, we must have x~xj = 0 

because ~,~ * Xj. This proves that characteristic vectors of a symmetric matrix are 

orthogonal when they correspond to different roots. When all roots of a symmet- 

ric n × n matrix A are distinct, we thus have x~xj = 6ij for all (i, j ) .  This is 

equivalent to 

x ' x = l ,  w h e r e X =  Ix,  x 2 . . . x , ] .  (7.4) 

Also, 

A X  = [ A x  I . . . A X n ]  : [ ~ l X l  . . .~knXn],  

o r  

A X  = X a ,  (7 .5 )  

where A is the diagonal matrix with X 1 . . . . .  X, on the diagonal. Premultiplication 

of (7.5) by X '  yields X ' A X  = X ' X A ,  or 

X ' A X  = A (7.6) 
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in view of (7.4). Therefore, when we postmultiply a symmetric matrix A by a 

matrix X consisting of characteristic vectors of A and premultiply by X',  we 

obtain the diagonal matrix containing the latent roots of A. This double multipli- 

cation amounts to a diagonalization of A. Also, postmultiplication of (7.5) by X'  

yields A X X ' =  X A X '  and hence, since (7.4) implies X ' =  X -1 or X X ' =  I,  

?/ 

A = X A X ' =  ~, )~x~x;. (7.7) 
i = 1  

In the previous paragraph we assumed that the ~ ' s  are distinct, but it may be 

shown that for any symmetric A there exists an X which satisfies (7.4)-(7.7), the 

columns of X being characteristic vectors of A and A being diagonal with the 

latent roots of A on the diagonal. The only difference is that in the case of 

multiple roots ()~ = )~j for i :~ j )  the associated characteristic vectors (x~ and x j )  

are not unique. Note that even when all )~'s are distinct, each xi may be arbitrarily 

multiplied by - 1 because this affects neither Ax~ = )~x~ nor x~xj = 0 for any 

(i, j ) ;  however, this sign indeterminacy will be irrelevant for our purposes. 

Z2. Special cases 

Let A be square and premultiply A x  = ~ x  by A to obtain A2x  = ~ A x  = ~2x. This 

shows that A 2 has the same characteristic vectors as A and latent roots equal to 

the squares of those of A. In particular, if a matrix is symmetric idempotent,  such 

as M of (2.11), all latent roots are 0 or 1 because these are the only real numbers 

that do not change when squared. For  a symmetric non-singular A, premultiply 

A x  = ~ x  by (?,A) t to obtain A - ix = ( 1 / ~ ) x .  Thus, A -~ has the same character- 

istic vectors as those of A and latent roots equal to the reciprocals of those of A. 

If the symmetric n X n matrix A is singular and has rank r, (7.2) is satisfied by 

= 0 and this zero root has multiplicity n - r. It  thus follows from (7.7) that A 

can then be written as the sum of r matrices of unit rank, each of the form ~.ix~x~, 

with ?~i :~ 0. 

Premultiplication of (7.7) by y '  and postmultiplication by y yields y ' A y  = 

~ ?~ic~, with c~ = y ' x  i. Since y ' A y  is positive (negative) for any y ~ 0 if A is 

positive (negative) definite, this shows that all latent roots of a symmetric positive 

(negative) definite matrix are positive (negative). Similarly, all latent roots of a 

symmetric positive (negative) semidefinite matrix are non-negative (non-positive). 

Let A m be a symmetric m x m matrix with roots ?~ . . . . .  ?~,, and characteristic 

vectors x~ . . . . .  xm; let B n be a symmetric n x n matrix with roots #~ . . . .  ,/~, and 

characteristic vectors y~ . . . . .  Yn. Hence, A m ® B  n is of order mn x mn and has mn 

latent roots and characteristic vectors. We use A m x  ~ = ?~x~ and Bn yj = l~jyj in 

(Am®B, , ) (x ,®~)  = (Amx,)® (no y j )  = (~ ,x~)® ( ~ j y j )  = ~ j ( x ~ ® ~ j ) ,  
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which shows that xi®y j is a characteristic vector of A m ® n  n corresponding to root 

Xi/~ j. It is easily verified that these characteristic vectors form an orthogonal 

matrix of order mn × ran: 

(xl®yl) ' (xl®yl)  = (X'l®y~)(x,®yl) = (X' lX,)  ® ( y ~ y , )  = 1, 

( x , e y l ) ' ( x 2 ® Y l )  = (x~x2)® ( y~ Yl)  = 0.  

Since the determinant of Am®B ~ equals the product of the roots, we have 

[h,.®g,I = [ I  l q  ~ , , t~j  = l q  = IAml Ig.I . 
. =  

i = l j = l  t 1 j 

It may similarly be verified that the rank (trace) of A m ® B  n equals the product of 

the ranks (traces) of A m and B,. 

7.3. Aitken's theorem 

Any symmetric positive definite matrix A can be written as A = QQ', where Q is 

some non-singular matrix. For example, we can use (7.7) and specify Q = XA 1/2, 

where A ~/2 is the diagonal matrix which contains the positive square roots of the 

latent roots of A on the diagonal. Since the roots of A are all positive, A 1/2 is 

non-singular; X is non-singular in view of (7.4); therefore, Q = XA 1/2 is also 

non-singular. 

Consider in particular the disturbance covariance matrix oZv in the discussion 

preceding eq. (2.13). Since o2>  0 and V is non-singular by assumption, this 

covariance matrix is symmetric positive definite. Therefore, V- 1 is also symmetric 

positive definite and we can write V - l =  QQ' for some non-singular Q. We 

premultiply (2.7) by Q': 

Q' y = (Q 'X) f l  + Q'e. (7.8) 

The disturbance vector Q'e has zero expectation and a covariance matrix equal to 

02Q,VQ = 02Q,( QQ,  ) - I Q  = 02Q,( Q , ) -  I Q_ 1Q = 021, 

so that the standard linear model and the Gauss-Markov theorem are now 

applicable. Thus, we estimate/3 by applying LS to (7.8): 

[ ( Q ' X ) ' Q ' X ] - ' ( Q ' X ) ' Q ' y  = ( X ' Q Q ' X )  ' X ' Q Q ' y =  ( x ' v  I x ) - l x ' v - l y ,  

which is the GLS estimator (2.13). The covariance matrix (2.14) is also easily 

verified. 
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7.4. The Cholesky decomposition 

The diagonalization (7.6) uses an orthogonal matrix X [see (7.4)], but it is also 

possible to use a triangular matrix. For example, consider a diagonal matrix D 

and an upper triangular matrix C with units in the diagonal, 

1 c12 c13 ] 

C =  0 1 c a , D =  

0 0 

d 1 0 0 [ 

0 d 2 0 

J 0 0 d 3 ' 

yielding 

C'DC = 

dl dlCl2 dlCl3 ] 

d~cl2 dlC~2 + d 2 dlC12C13 + d2c23 . 

dlCl3 dlC12C13 + d2c23 dlC23 + d2c23 + d 3 

It is readily verified that any 3 × 3 symmetric positive definite matrix A = [aij ] 

can be uniquely written as C'DC (d~ = a l l ,  C~2 =al2/a~l ,  etc.). This is the 

so-called Cholesky decomposition of a matrix; for applications to demand analysis 

see Barten and Geyskens (1975) and Theil and Laitinen (1979). Also, note that 

O = (C')-1AC-1 and that C-1 is upper triangular with units in the diagonal. 

7.5. Vectors written as diagonal matrices 

On many occasions we want to write a vector in the form of a diagonal matrix. 

An example is the price vector p which occurs as a diagonal matrix P in (5.8). An 

alternative notation is/$, with the hat indicating that the vector has become a 

diagonal matrix. However, such notations are awkward when the vector which we 

want to write as a diagonal matrix is itself the product of one or several matrices 

and a vector. For example, in Section 8 we shall meet a nonsingular N × N matrix 

X and the vector X -  1~. We write this vector in diagonal matrix form as 

(X- lt)za = 

E j x  is 0 ... o 

o E j x  2: .. .  0 

0 0 .. .  E j x  Nj 

(7.9) 

where x ij is an element of X-1 and all summations are over j  = 1 . . . . .  N. It is easily 
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verified that 

( X - ' , ) ~ , = X - ' , ,  , ' ( X -  1,)~ = , ' (X ' )  - '  

35 

(7.10) 

7.6. A simultaneous diagonafization of  two square matrices 

We extend (7.1) to 

(A-Xn)x=O, x'nx=l, (711) 

where A and B are symmetric n × n matrices, B being positive definite. Thus, B -  

is symmetric positive definite so that B-~ = QQ'  for some non-singular Q. I t  is 

easily seen that (7.11) is equivalent to 

( Q ' A Q - X I ) y = O ,  y ' y = l ,  y = Q - l x .  (7.12) 

This shows that (7.11) can be reduced to (7.1) with A interpreted as Q'A Q. If A is 

symmetric, so is Q'AQ.  Therefore, all results for symmetric matrices described 

earlier in this section are applicable. In particular, (7.11) has n solutions, )~1 . . . . .  7~, 

and x I . . . . .  x , ,  the x~'s being unique when the )~i's are distinct. From y ' y / =  6+j 

and y~ = Q -  lx~ we have x~Bxj = 8;/ and hence X ' B X  = I ,  where X is the n × n 

matrix with xi as the ith column. We write ( A  - )~B)x  = 0 as A x  i = )~+Bx~ for the 

i th solution and as A X  = B X A  for all solutions jointly, where A is diagonal with 

)~ . . . . .  )~, on the diagonal. Premultiplication of A X = B X A  by X '  then yields 

X ' A X  = X ' B X A  = A .  Therefore, 

X ' A X  = A ,  X ' B X  = I ,  (7.13) 

which shows that both matrices are simultaneously diagonalized, A being trans- 

formed into the latent root matrix A, and B into the unit matrix. 

It  is noteworthy that (7.11) can be interpreted in terms of a constrained 

extremum problem. Let us seek the maximum of the quadratic form x ' A x  for 

variations in x subject to x ' B x  = 1. So we construct the Lagrangian function 

x ' A x -  I ~ ( x ' B x -  1), which we differentiate with respect to x, yielding 2 A x -  

2~Bx .  By equating this derivative to zero we obtain A x  = I~Bx, which shows that 

/~ must be a root X i of (7.11). Next, we premultiply A x  = i.tBx by x' ,  which gives 

x ' A x  = I~x'Bx =/~ and shows that the largest root )~t is the maximum of x ' A x  

subject to x ' B x  = 1. Similarly, the smallest root is the minimum of x ' A x  subject to 

x ' B x  = 1, and all n roots are stationary values of x ' A x  subject to x ' B x  = 1. 



36 

7. 7. L a t en t  roots o f  an asymmetr ic  ma t r i x  

H. Theil 

Some or all latent roots of an asymmetric square matrix A may  be complex. If 

(7.2) yields complex roots, they occur in conjugate complex pairs o f  the form 

a _+ bi. The absolute value of such a root  is defined as ~ +  b 2 , which equals [a[ 

if b = 0, i.e. if the root is real. I f  A is asymmetric,  the latent roots of  A and A '  are 

still the same but a characteristic vector of A need not  be a characteristic vector  of 

A'.  If  A is asymmetric and has multiple roots, it may  have fewer characteristic 

vectors than the number  of  its rows and columns. For  example, 

is an asymmetric  2 x 2 matrix with a double unit root, but  it has only one 

characteristic vector, [1 0]'. A further analysis of  this subject involves the Jo rdan  

canonical  form, which is beyond the scope of  this chapter;  see Bellman (1960, ch. 

11). 

Latent  roots of  asymmetric matrices play a role in the stability analysis of 

dynamic  equations systems. Consider the reduced form 

y t = a + A y t  l + A * x t + u t ,  (7.14) 

where Yt is an L-element observation vector on endogenous variables at t ime t, a is 

a vector of  constant  terms, A i s  a square coefficient matrix, A* is an L × K 

coefficient matrix, x t is a K-element observation vector on exogenous variables at 

t, and u~ is a disturbance vector. Al though A is square, there is no  reason why it 

should be symmetric so that  its latent roots may include conjugate complex pairs. 

In  the next paragraph we shall be interested in the limit of A '  as s - ,  ~ .  Recall 

t h a t  .4 2 has roots equal to the squares of those of A;  this also holds for the 

complex roots of an asymmetric A. Therefore, A '  has latent roots equal to the s th 

power  of those of A. If  the roots of A are all less than 1 in absolute value, those of 

A s will all converge to zero as s ~ ~ ,  which means that the limit of  A s for s ~ 

is a zero matrix. Also, let S = I + A + • • • + AS; then, by  subtract ing A S  = A + 

A 2 + • • • + A '+1 we obtain ( I  - A ) S  = I - A ~+1 so that  we have the following 

result for the limit of S when all roots  of  A are less than 1 in absolute value: 

lim ( I + A +  . . .  + A ~ ) = ( I - A )  -1 
S ~ O 0  

(7.15) 

We proceed to apply these results to (7.14) by lagging it by  one period, 

Yt l = a + A y  t 2 -{- A * x t - 1  q- igt-1, and substituting this into (7.14): 

y, = ( I  + A ) a  + h 2 y t _  2 q- A * x  t + A A * x  t_ 1 -~- Ut -~- A u t - 1  
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When we do this s times, we obtain: 

y t = (  l + A + . . .  + A S ) a +  A S + l y t _ s _  1 

+ A * x t  + A A * x t -  l + " " " + A S A * x t - s  

+ u t +  A u t - I  + " "" + A S u t  ~" (7.16) 

If all roots of A are less than 1 in absolute value, so that A s converges to zero as 

s ---> ~ and (7.15) holds, the limit of (7.16) for s ---> c~ becomes 

y, = ( I  -- A )  la -4.- E A S A * x t - s  + A~'u, ~, ( 7 . 1 7 )  

s = 0  s = 0  

which is the f i n a l  f o r m  of the equation system. This form expresses each current 

endogenous variable in terms of current and lagged exogenous variables as well as 

current and lagged disturbances; all lagged endogenous variables are eliminated 

from the reduced form (7.14) by successive lagged application of (7.14). The 

coefficient matrices ASA * of x t _  s for s = 0, 1,2 . . . .  in (7.17) may be viewed as 

matrix multipliers; see Goldberger (1959). The behavior of the elements of A~A * 

as s ---, ~ is dominated by the root of A with the largest absolute value. If  this 

root is a conjugate complex pair, the behavior of these elements for increasing s is 

of the damped oscillatory type. 

Endogenous variables occur in (7.14) only with a one-period lag. Suppose that 

Aye_  1 in (7.14) is extended t o  A 1 Y t - I  q- " ' "  + A . c y t - ~ - ,  where ~" is the largest lag 

which occurs in the equation system. It  may be shown that the relevant de- 

terminantal equation is now 

I x , ( - 1 ) + x  • 1A,+ . . .  + A , I = 0 .  (7.18) 

When there are L endogenous variables, (7.18) yields L~- solutions which may 

include conjugate complex pairs. All these solutions should be less than 1 in 

absolute value in order that the system be stable, i.e. in order that the coefficient 

matrix of x t , in the final form converges to zero as s ~ oc. It  is readily verified 

that for ~- = 1 this condition refers to the latent roots of A l, in agreement with the 

condition underlying (7.17). 

8. Principal components and extensions 

8.1. Pr inc ipa l  c o m p o n e n t s  

Consider an n × K observation matrix Z on K variables. Our objective is to 

approximate Z by a matrix of unit rank, vc ' ,  where v is an n-element vector of 
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values taken by some variable (to be constructed below) and c is a K-element 

coefficient vector. Thus, the approximation describes each column of Z as 

proportional to v. It is obvious that if the rank of Z exceeds 1, there will be a 

non-zero n × K discrepancy matrix Z - vc' no matter  how we specify v and c; we 

select v and c by minimizing the sum of the squares of all Kn discrepancies. Also, 

since vc' remains unchanged when v is multiplied by k ~= 0 and c by 1 / k ,  we shall 

impose v'v = 1. It  is shown in the next subsection that the solution is v = v~ and 

c = c I, defined by 

( Z Z ' -  ~ , I  ) v, = 0, (8.1) 

c l  = Z ' v l ,  (8.2) 

where )~1 is the largest latent root of the symmetric positive se~nidefinite matrix 

Z Z ' .  Thus, (8.1) states that v~ is a characteristic vector of Z Z '  corresponding to 

the largest latent root. (We assume that the non-zero roots of Z Z '  are distinct.) 

Note  that v I may be arbitrarily multiplied by - 1 in (8.1) but that this changes c~ 

into - c I in (8.2) so that the product VlC ~ remains unchanged. 

Our next objective is to approximate the discrepancy matrix Z -  vLc ~ by a 

matrix of unit rank v2e~, so that Z is approximated by vlc ~ + v2c ~. The criterion is 

again the residual sum of squares, which we minimize by varying v 2 and c 2 subject 

to the constraints v~v 2 = 1 and v~v~ = 0. It  is shown in the next subsection that the 

solution is identical to (8.1) and (8.2) except that the subscript 1 becomes 2 with 

X2 interpreted as the second largest latent root of ZZ ' .  The vectors v~ and v 2 are 

known as the first and second principal components of the K variables whose 

observations are arranged in the n x K matrix Z. 

More generally, the i th principal component  v i and the associated coefficient 

vector c, are obtained from 

( Z Z ' - -  XiI)v~ = 0, (8.3) 

ei = Z '  v i ,  " (8.4) 

where Xi is the ith largest root of ZZ ' .  This solution is obtained by approximating 

Z -  vie ~ . . . . .  vi-lc;-1 by a matrix vice, the criterion being the sum of the 

squared discrepancies subject to the unit length condition v~v i = 1 and the 

orthogonality conditions v;~ = 0 for j = 1 . . . . .  i - 1. 

8. 2. Derivations 

It  is easily verified that the sum of the squares of all elements of any matrix A 

(square or rectangular) is equal to t rA 'A .  Thus, the sum of the squares of the 
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elements of the discrepancy matrix Z - vc '  equals 

t r ( Z  - v c ' ) ' (  Z - vc ' )  = tr Z ' Z  - tr cv 'Z - tr Z '  ve '  + tr cv'  vc '  

= t r Z ' Z  - 2 v ' Z c  + ( v ' v ) ( c ' c ) ,  

which can be simplified to 

t r Z ' Z  - 2 v ' Z c  + c'  c (8.5) 

in view of v ' v  = 1. The derivative of (8.5) with respect to c is - 2 Z ' v  + 2c so that 

minimizing (8.5) by varying c for given v yields c = Z ' v ,  in agreement with (8.2). 

By substituting c = Z ' v  into (8.5) we obtain t r Z ' Z  - v ' Z Z ' v ;  hence, our next step 

is to maximize v ' Z Z ' v  for variations in v subject to v ' v  = 1. So we construct  the 

Lagrangian funct ion v ' Z Z ' v - / * ( v ' v -  1) and differentiate it with respect to v and 

equate the derivative to zero. This yields Z Z ' v = / * v  so that  v must  be a 

characteristic vector of Z Z '  corresponding to root/*. This confirms (8.1) if we can 

prove that/* equals the largest root  X~ of  Z Z ' .  For  this purpose we premult iply 

Z Z ' v  = / * v  by  v', which gives v ' Z Z ' v  = / * v ' v  =/*. Since we seek the maximum of 

v ' Z Z ' v ,  this shows that/* must  be the largest root  of  Z Z ' .  

To  verify (8.3) and (8.4) for i = 2, we consider 

t r ( Z -  v,c~ - v2c'2)'( Z - v,c~ - v2c~) 

= t r ( Z -  v,c~ ) ' ( Z -  v , c ' l ) - 2 t r ( Z -  v ,c ' l ) 'v2c ~ + trc2v~v2c ~ 

= t r ( Z  - v , c ' , ) ' ( Z  - v , c ~ ) - 2 c ~ Z ' v  2 + c~c 2 , (8.6) 

where the last step is based on v'lv 2 = 0 and v'2v 2 = 1. Minimizat ion of (8.6) with 

respect to c 2 for given v 2 thus yields c2 = Z ' v 2 ,  in agreement  with (8.4). Substitu- 

t ion of c 2 = Z ' v  2 into (8.6) shows that the funct ion to be minimized with respect 

to v 2 takes the form of a constant  [equal to the trace in the last line of (8.6)] minus 

v ~ Z Z ' v  2. So we maximize v ~ Z Z ' v  2 by varying v 2 subject to v~v 2 = 0 and v~v 2 = 1, 

using the Lagrangian funct ion v ~ Z Z ' v  2 - /* lv~v2  - /*2 (v~v2  - 1). We take the de- 

rivative of this function with respect to v 2 and equate it to zero: 

2 Z Z '  v 2 - / * l V l  - 2 / . 2 v  2 = 0. (8.7) 

We premultiply this by v], which yields 2 v ' l Z Z ' v  2 = / * l l ) ] V l  = ILl because v'lv 2 = O. 

But v ' l Z Z ' v  2 = 0 and hence/*1 = 0 because (8.1) implies v '2ZZ 'v  1 = )~lv;v 1 = 0. We 

can thus simplify (8.7) to Z Z ' v  2 =/*2Vz so that  v 2 is a characteristic vector of  Z Z '  

corresponding to root/*2.  This vector must  be or thogonal  to the characteristic 

vector v~ corresponding to the largest root  X1, while the root/*2 must  be as large 

as possible because the objective is to maximize v ~ Z Z ' v  2 =/*2v;v2 =/*2- Therefore, 
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/~2 must be the second largest root ~2 of Z Z ' ,  which completes the proof of (8.3) 

and (8.4) for i = 2. The extension to larger values of i is left as an exercise for the 

reader. 

8. 3. Further discussion of principal components 

If  the rank of Z is r, (8.3) yields r principal components corresponding to positive 

roots ~ . . . . .  ?~r- In what follows we assume that Z has full column rank so that 

there are K principal components corresponding to K positive roots, X~ . . . . .  ~K" 

By premultiplying (8.3) by Z '  and using (8.4) we obtain: 

( z ' z  - x , t )  ei = o ,  (8 .8 )  

so that the coefficient vector c i is a characteristic vector of Z ' Z  corresponding to 

root Xi. The vectors c~ . . . . .  c K are orthogonal, but they do not have unit length. To 

prove this we introduce the matrix V of all principal components and the 

associated coefficient matrix C: 

V = [I) 1 . . -VK] ,  C = [ c  1 . . . C K ] ,  

so that (8.3) and (8.4) for i = 1 . . . . .  K can be written as 

(8.9) 

z z ' v =  va, ( 8 . 1 0 )  

c = z ' v ,  (8.11) 

where A is the diagonal matrix with ~'t,---, 2tK on the diagonal. By premultiplying 

(8.10) by V' and using (8.11) and V ' V =  I we obtain: 

C ' C = A ,  (8.12) 

which shows that Cl , . . . ,e  K are orthogonal vectors and that the squared length of 

e i equals X i. 
If  the observed variables are measured as deviations from their means, Z ' Z  in 

(8.8) equals their sample covariance matrix multiplied by  n. Since Z ' Z  need not 

be diagonal, the observed variables may be correlated. But the principal compo- 

nents are all uncorrelated because v~vj = 0 for i * j. Therefore, these components 

can be viewed as uncorrelated linear combinations of correlated variables. 

8.4. The independence transformation in microeconomic theory 

The principal component  technique can be extended so that two square matrices 

are simultaneously diagonalized. An attractive way of discussing this extension is 
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in terms of the differential demand and supply equations of Section 5. Recall that 
under preference independence the demand equation (5.5) takes the form (5.11) 

with only one relative price. Preference independence amounts to additive utility 
and is thus quite restrictive. But if the consumer is not preference independent 

with respect to the N observed goods, we may ask whether it is possible to 

transform these goods so that the consumer is preference independent with 
respect to the transformed goods. Similarly, if a firm is not input independent, 

can we derive transformed inputs so that the firm is input independent with 

respect to these? An analogous question can be asked for the outputs of a 
multiproduct firm; below we consider the inputs of a single-product firm in order 

to fix the attention. 
Consider the input allocation equation (5.21) and divide by fi: 

q, 
d(log q,) = ~ d(log Q ) - ~  

N 

y '  0i/d(log pP--~J, ). (8.13) 
j = l  

This shows that Oi/fi is the elasticity of the demand for input i with respect to the 
Divisia input volume index; we shall express this by referring to O~/f~ as the 

Divisia elasticity of input i, which is the firm's input version of the consumer's 

income elasticity of the demand for a good]  Also, (8.13) shows that - ~/Oij/f~ is 
the elasticity of input i with respect to the Frisch-deflated price of inputj .  Under 

input independence the substitution term is simplified [see (5.15) and (5.18)] so 

that (8.13) becomes 

d(l°gqi)=~ii d(lOgQ)-~bOi~i d(l°gPP---~")" (8.14) 

Hence, all price elasticities vanish except the own-price elasticities; the latter take 

the form - + 0 i / f i  and are thus proportional to the Divisia elasticities with - ~b as 

the (negative) proportionality coefficient. 

Next consider the input allocation system in the form (5.23): 

rK = ( , ' r K ) o , -  q,o(  I -  (8.15) 

Our objective is to define transformed inputs which diagonalize O. We perform 
this under the condition that total input expenditure and its Divisia decomposi- 

tion are invariant under the transformation. The derivation is given in Appendix 
B and the result may be described by means of a simultaneous diagonalization 

VThe consumer's version of Oi/fi is Oi/w,; it is easily verified [see (5.3)] that Oi/w ~ equals the 
elasticity of q~ with respect to M. 
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similar to(7.13): 

X'OX=A,  X'FX=I,  (8.16) 

where A is the diagonal matrix with the roots XI,...,XN on the diagonal. These 

roots are the Divisia elasticities of the transformed inputs. The allocation equa- 

tion for transformed input i takes the form 

d(logq,ri)=Xid(logQ)-+Xid(log-~,i), (8.17) 

where the subscript T stands for "transformed". A comparison of (8.17) and 

(8.14) shows that the Divisia volume and Frisch price indexes and q~ are all 

invariant under the transformation. 

Recall from (7.11) and (7.13) that any column x~ of the matrix X in (8.16) 

satisfies 

(0  - XiF)x i = 0. (8.18) 

We premultiply this by - ~pF-I: 

[ -  ~pF-lO- ( -  +Xi)I]x~ = O. (8.19) 

Since - q~F-IO = [ -  ~Oq/fi ] is the price elasticity matrix of the observed inputs 

[see (8.13)] and -q'?~i is the own-price elasticity of transformed input i [see 

(8.17)], (8.19) shows that the latter elasticity is a latent root of the price elasticity 

matrix - q~F-~O of the observed inputs. This is an asymmetric matrix, but the 

X i's are nevertheless real. To prove this we premultiply (8.18) by F - t / 2  and write 

the result as 

(F-1/20F-1/2-~iI)F1/2xi=O. (8.20) 

Since F - l / 2 0 F  -1/2 is symmetric positive definite, the Xi's are all real and 

positive. Hence, all transformed inputs have positive Divisia elasticities. The 

diagonalization (8.20) is unique when the Xi's are distinct. This means that the 

transformed inputs are identified by their Divisia elasticities. 

These elasticities can be used as a tool for the interpretation of the transformed 

inputs. Another tool is the so-called composition matrix 

r = - ' ,  (8.21) 

where (X-I/,)A is defined in (7.9). The column sums of T are the factor shares 

f l  . . . . .  fN of the observed inputs and the row sums are the factor shares of the 
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transformed inputs. Each row of T gives the composition of the factor share of a 

transformed input in terms of observed inputs; each column of T shows the 

composition of the factor share of an observed input in terms of transformed 

inputs. For proofs of these results we refer to Appendix B; below we consider an 

example illustrating these results, after which a comparison with principal compo- 
nents will follow at the end of this section. 

8.5. An example 

We consider a two-input translog specification of (5.12): 

log z = constant + a log K + fllog L + ~gc~  log K log L, (8.22) 

where K is capital, L is labor, and a, fl, and ~ are constants satisfying a > 0, 13 > 0, 
and - 1 < ~ < 1 ;  units are chosen so that K = L = I  holds at the point of 

minimum input expenditure. Then it may be shown that the 2 × 2 price coefficient 
matrix - +O = [ -  +0ij] of (8.15) equals 

~O = - 1  [ fK ~ l  capital 
- - -  ( 8 .23 )  

2 A ] l a b o r '  

where fK is the factor share of capital and fL that of labor (fK + fL = 1). Recall 
from Section 6 that inputs i and j are called specific complements (substitutes) 

when 0ij = 0ji is positive (negative). Thus, (8.23) combined with ~b > 0 shows that 

capital and labor are specific complements (substitutes) when ~ is positive 

(negative), i.e. when the elasticity of output with respect to either input is an 
increasing (decreasing) function of the other input [see (8.22)]. 

The input independence transformation eliminates all specific substitutability 

and complementarity relations. The mathematical tool is the simultaneous di- 
agonalization (8.16). It may be verified that, for - ~kO given in (8.23); the matrix 

1 

X = ~ [ / f f ~  K ~ j ( 8 . 2 4 )  

satisfies X'FX= I and that X ' ( ~ O ) X  is a diagonal matrix whose diagonal 

elements are 1/(1 - ~) and 1/(1 + ~). A comparison with (8.16) and (8.17) shows 

that the own-price elasticities of the transformed inputs are 

- 1  - 1  
- ~ba, = 1 -  ~'  - ~bx2 = 1 + ~" (8.25) 
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Multiple roots occur when ~ = 0, but this is the uninteresting case in which (8.22) 

becomes Cobb-Douglas, which is in input independent form and thus requires no 
transformation. 

Substitution of (8.24) into (8.21) yields the composition matrix 

1 [ fK + fK~f~ fL + ~f~/~-] (T1) 

• = JL- 1 (T2) 
(capital) (labor) 

(8.26) 

The column sums are the factor shares of the observed inputs: fK for capital and 

fL for labor. The row sums are the factor shares of the transformed inputs: ½ 

+ fK~f~ for the input T L corresponding to root Xl and ½ - ~  for T 2 

corresponding to ?t 2. The following is a numerical specification of (8.26), bordered 

by row and column sums, for fK = 0.2 and fL = 0.8: 

0.3 0.6 0.9 (Tl) 
-0 .1  0.2 0.1 (T2) 

0.2 0.8 1 
(capital) (labor) 

Both observed inputs are positively represented in TI, whereas T 2 is a contrast 
between labor and capital. When the firm buys more T2, its operation becomes 

more labor-intensive, each dollar spent on T 2 being equivalent to two dollars 

worth of labor compensated by one dollar worth of capital services which is given 
up. 

8.6. A principal component interpretation 

We return to (8.8) with Z 'Z  interpreted as n times the matrix of mean squares and 

products of the values taken by the observed variables. In many applications of 

the principal component technique, the observed variables have different dimen- 

sions (dollars, dollars per year, gallons, etc.). This causes a problem, because 

principal components change in value when we change the units in which the 

observed variables are measured. To solve this problem, statisticians frequently 

standardize these variables by using their standard deviations as units. This 

amounts to replacing Z 'Z  in (8.8) by D-~/2Z'ZD-i/2, where D is the diagonal 

matrix whose diagonal is identical to that of Z'Z. Thus, h i of (8.8) is now 

obtained from the characteristic equation 

11 ) -  I / 2 Z t Z D  - 1 / 2  _ Xii[ = 0. (8.27) 



Ch. 1: Linear Algebra and Matr ix  Methods 

It is of interest to compare this with 

IF 1/2@F- 1/2 _ h i l l  = O, 

45 

(8.28) 

which is the characteristic equation associated with (8.20). In both cases, (8.27) 

and (8.28), we determine a latent root of a symmetric positive definite matrix 

(Z'Z or @) pre- and postmultiplied by a diagonal matrix. However, the diagonal 

elements of F are not identical to those of O, which is in contrast to D and Z'Z in 

(8.27). The diagonal elements of F describe the expenditure levels of the inputs 

(measured as fractions of total expenditure), whereas each diagonal element of O 

describes the change in the demand for an input caused by a change in its 

Frisch-deflated price. 

Thus, while D in (8.27) is directly obtained from Z'Z, the analogous matrix F 

in (8.28) is unrelated to @. Why do we have this unrelated F, which describes 

expenditure levels, in (8.28) and in the simultaneous diagonalization (8.16)? The 

answer is that the input independence transformation is subject to the constraint 

that that total input expenditure and its Divisia decomposition remain invariant. 

We may view this transformation as a cost-constrained principal component 

transformation. Similarly, when the transformation is applied to the consumer 

demand system (5.5) or to the output supply system (5.26), it is budget-con- 

strained in the first case and revenue-constrained in the second. Such constraints 

are more meaningful from an economic point of view than the standardization 

procedure in (8.27). 

9. The modeling of a disturbance covariance matrix 

We mentioned in Section 4 that the disturbance covariance matrix ~ which occurs 

in the GLS estimator (4.11) is normally unknown and that it is then usually 

replaced by the sample moment matrix of the LS residuals. Although this 

approximation is acceptable under certain conditions when the sample is suffi- 

ciently large, it is less satisfactory when the number of equations, L in (4.7) and 

(4.8), is also large. The reason is that ~ contains many unknowns when L is large 

or even moderately large. In fact, the sample moment matrix S of the residuals 

may be singular so that ~ - I  in (4.11) cannot be approximated by S ~. This 

situation often occurs in applied econometrics, e.g. in the estimation of a fairly 

large system of demand equations. One way of solving this problem is by 

modeling the matrix Z. Below we describe how this can be performed when the 

equations are behavioral equations of some decision-maker. 
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9.1. Rational random behavior 

Let x = [x~...xk]' be the vector of variables controlled by this decision-maker. We 

write J for the feasible region of x; 2 for the optimal value of x (.~ ~ J) ;  and 

l(x, 2) for the loss incurred when the decision is x rather than 2: 

l ( x , . ~ ) = 0  i f x = ~ ,  ' (9.1) 

> 0  if x :* ~. 

We assume that the optimal decision .~ depends on numerous factors, some of 

which are unknown, so that 2 is only theoretically optimal in the sense that it is 

optimal under perfect knowledge. The decision-maker can improve on his 

ignorance by acquiring information. If he does not do this, we describe the 

decision made as random with a differentiable density function po(X), to be 

called the prior density function. (The assumption of randomness is justified 

by the decision-maker's uncertainty as to the factors determining 2.) If he does 

acquire information, P0( ' ) i s  transformed into some other density function p (.)  

and the amount of information received is defined as 

I= fjP(x)log ~ dx,...dxk, (9.2) 

which is a concept from statistical information theory [see Theil (1967)]. We write 

c(I) for the cost of information and 

i= fj(x,  )p(x)dx,...dxk (9.3) 

for the expected loss. If c(I) and [are measured in the same unit (dollars or any 

other unit), the natural solution is the decision distribution with density function 

p ( . )  which minimizes c(I)+ L This p(-)  was derived by Barbosa (1975) and the 

result (see Appendix C) is 

p(x) P0(x)exp( l(x, 2) cx c' ) i f x ~ J ,  (9.4) 

where ~x means "is proportional to", the proportionality coefficient being inde- 

pendent of x, and e' is the marginal cost of information dc/dI at the solution 

(9.4). 

Behavior generated by the distribution which density function (9.4) is called 

rational random behavior. This distribution is determined by three factors: the 

prior density function Po(X), the loss function l(x, ~), and the marginal cost of 
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information c'. For example, let x be a scalar and the loss function quadratic: 

l(x,  2) = l ( x  - ~)2. Then, if po(X) equals a constant independent of x for each 

x ~ J, (9.4) becomes 

( 1 ( x - x ) 2 }  i f x ~ J ,  (9.5) 
p ( x )  cx exp 2 c' 

which is the density function of a truncated normal decision distribution over the 

interval J. 

9.2. The asymptotics of rational random behavior 

The case of a small marginal cost of information is of particular interest. Imagine 

that the prices of the goods and services which the decision-maker buys in order 

to acquire information decline so that e' converges to zero; it is shown in 

Appendix C that the random decision with density function (9.4) then converges 

in probability to the theoretically optimal decision 2. Also, if the loss function has 

a zero gradient and a symmetric positive definite Hessian matrix A at x = 2, 

~ x  02 
l ( x , ~ ) = O  and Oxox, l ( x , ~ ) = A  a t x = . ~ ,  (9.6) 

then as c'---, 0 the density function p ( x )  of (9.4) converges to 

1 1 A  1/2 f 
(9.7) 

which is the density function of the multinormal decision distribution [see (3.3)] 

with mean vector • and covariance matrix e 'A-  1. Note that (9.7) is completely 

determined by c' and two characteristics of the loss function: the theoretically 

optimal decision 2 at which the loss vanishes [see (9.1)] and the Hessian matrix A 

of this function at this point. The relationship between the covariance matrix 

c 'A-  1 and the Hessian matrix A of the loss function enables us to model the 

disturbance covariance matrix of the decision-maker's behavioral equations; 

examples will follow in the next subsection. 

The prior density function P0(') does not occur in the asymptotic result (9.7). 

This reflects the fact that when information is cheap in the sense that its marginal 

cost ¢' is small, the decision-maker acquires information to such an extent that his 

behavior becomes independent of his prior notions. Thus, whereas we obtained 

(9.5) under the assumption that po(X) is a constant independent of x, this 

assumption is unnecessary in the asymptotic case e' ~ 0. Also, (9.5) is the density 
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function of a truncated normal distribution, but the truncation becomes irrelevant 

as c'---, 0. The asymptotic version of (9.5) is the univariate normal density 

function with mean equal to the theoretically optimal decision ~ and variance 

equal to the marginal cost of information c'. The declining variance as c ' ~  0 

reflects the attractiveness of a more extensive search for the theoretical optimum 

when information becomes cheaper. 

It is of interest to compare the density function (9.7) of the asymptotic normal 

decision distribution with the asymptotic normal density of a statistical estimator. 

In fact, it is not difficult to prove that rational random behavior for small c' is 

equivalent to large-sample ML estimation of the theoretically optimal decision 2, 

with a large sample interpreted as a small marginal cost of information. The clue 

for this equivalence is the similarity of the roles played by the Hessian matrix of 

the loss function and the information matrix in ML theory. 

A second statistical comparison is that with Kadane's (1971) small-o asymp- 

totics, which consists of an asymptotic series of a multiple o of the variance of the 

disturbance of a structural equation. If this equation is a behavioral equation of a 

decision-maker, Kadane's approach is equivalent to the asymptotic version of 

rational random behavior when we identify o with c'. 

Another statistical comparison of interest is that with the theorem which states 

that out of all distributions with range ( -  ~ ,  ~ )  and a given mean vector and a 

given covariance matrix, the multinormal distribution has the largest entropy. The 

link between this theorem and the normal density function (9.7) is the informa- 

tion definition (9.2); both (9.2) and the entropy are measures from information 

theory. However, note that the normal density (9.7) is not obtained by imposing a 

given mean vector and covariance matrix a priori.  The mean vector and covari- 

ance matrix (9.7) are determined by the loss function, apart from the scalar c'. 

Yet another statistical comparison is with Bayesian inference. There is consid- 

erable similarity between the exact (i.e., non-asymptotic) result (9.4) and the 

Bayesian derivation of the posterior density function of a parameter vector. The 

occurrence of the prior density function on the fight in (9.4) provides one 

similarity. Another is the presence of c' (which depends on the information 

acquired) in the exponent of (9.4); this should be compared with the role of the 

likelihood function (representing the information obtained from the sample) in 

the Bayesian formula. A third similarity is the disappearance of the prior density 

function from the asymptotic result (9.7). In Bayesian analysis, too, the posterior 

density function is dominated by the likelihood function and is no longer affected 

by the prior density function when the sample is large. All these similarities reflect 

the fact that rational random behavior and Bayesian inference both describe 

learning processes based on acquiring ~nformation. Nevertheless, the two theories 

are not equivalent because of the occurrence of the unknown constant ~ in (9.4). 

The likelihood function in Bayesian analysis involves no unknown constants; this 

function is determined by the parameter vector, which is viewed as random, and 
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the sample, which is viewed as a set of known constants for the derivation of the 

posterior density function. 

9. 3. Applications to d e m a n d  and  supply 

When we apply the theory of rational random behavior to the utility-maximizing 

consumer or the cost-minimizing firm, we must take into consideration that the 

criterion function is subject to a constraint (a budget or technology constraint). 

This can be solved by using the constraint to eliminate one of the goods. The 

consumer's loss function in (9.4) then involves N -  1 quantities and its derivation 

from an algebraically specified utility function is straightforward. However, the 

differential approach provides no such specification so that (9.4) cannot be used; 

the same holds for the firm because the approach provides no algebraic specifica- 

tion of the production function. But it is possible to use the asymptotic result 

(9.7) which requires only the theoretically optimal decision and the Hessian 

matrix of the loss function. The account which follows is therefore based on the 

asymptotic decision distribution (9.7) rather than (9.4); this also has the ad- 

vantage of not requiring a specification of the prior density function P0(')- 

Consider the input allocation system in the form (6.1), 

r ~  = ( , ' r ~ ) o , -  , o ( i  - , , ' o ) , ~  + ~, (9.8)  

or in scalar form, using Ot = 0 = [0 i], 

<9.9) f i d ( l o g q i )  = O,d(logQ)- ~ ~ 0,jd log ~ + ~,, 
j = l  

where [e~] = e. The left variable in (9.9) is the ith decision variable of the firm. The 

right side, excluding ei, is the theoretical optimum of this variable, while e~ is the 

random deviation from this optimum which is predicted by the theory of rational 

random behavior. Since (9.7) implies normality with a mean equal to the 

theoretically optimal decision, the ei's are multinormal with zero mean. Their 

covariance matrix (see Appendix C) is 

~r(~) = ° 2 ( 0  - o , , ' o ) ,  (9.10) 

or in scalar form, 

cov(~,, +) = o:(0,+ - o i o j ) ,  (9.11) 

w h e r e  0 2 is a coefficient which is proportional to the marginal cost of information 
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c'. The covariance matrix (9.10) equals a scalar multiple of the coefficient matrix 

of ~r =[d(logpi)] in (9.8) so that the covariance (9.11) is proportional to the 

substitution effect (specific plus general) of a change in the price of j on the 

demand for i. 

The above result also holds when (9.7) is applied to the consumer; the only 

modification required is that fi and ~ in (9.9) become w i and - q~, respectively [see 

(5.5)]. Note in particular that the disturbance covariance matrix (9.10) involves 

only unknown (a 2) in addition to O which already occurs in the systematic part 

of the equations. Thus, the implications of rational random behavior are quite 

strong. We obtain even stronger implications for the demand and supply equa- 

tions of the multiproduct firm; a brief account follows below. 

Recall that when the firm makes m products, the output term of the input 

demand system (5.15) takes the form (5.25). So, by adding a disturbance e, we 

obtain: 

f id( logqi)=7 Oirgrd(logzr)-~b Y'~ 0ijd log~-7 +e, .  
r = l  j = l  

(9.12) 

Application of (9.7) yields the result that the e i's of this input demand system are 

multinormal with zero means and that their variances and covariances take the 

same form (9.11) which also holds for the consumer and the single-product firm. 

Next, by assuming that the firm adjusts its outputs so as to maximize profit, we 

obtain the output supply system (5.26) which we reproduce with a disturbance e* 

added: 

grd(logzr)=qJ*~O*d(log~,~)+~ *. (9.13) 

By applying (9.7) we find that the e*'s are multinormal with zero means and the 
following variance-covariance structure: 

a2+ * 

cov(e*, e*) = ,-~--0;*. (9.14) 

Since a 2 already occurs in (9.11) for the input demand disturbances, (9.14) 

provides no further unknowns. In addition, (9.7) implies that the input demand 
disturbances (the ei's ) are stochastically independent of the output supply dis- 
turbances (the e*'s). This independence has important implications for statistical 

inference in demand and supply models; it implies that grd(log zr) can be viewed 

as predetermined in the input demand system (9.12). It is also important for the 

problem of how to organize the firm in terms of its input and output manage- 

ment, but such matters are beyond the scope of this chapter. 
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10. The Moore -Penrose  inverse 

A mat r ix  has  an inverse on ly  if it  is square and  nonsingular ,  bu t  any  m x n mat r ix  

A of  rank  r has  a unique  M o o r e - P e n r o s e  inverse, w r i t t e n A  +, which is de te rmined  

b y  the fol lowing four  condi t ions :  

A A + A  = A ,  (10.1) 

A +AA + = A +, (10.2) 

A A  + and  A + A  a r e s y m m e t r i c .  (10.3) 

It  m a y  be verif ied that  these condi t ions  are sat isf ied b y  A + = A - 1 in the special  

case m = n = r. Our  first object ive  is to prove  tha t  A + exists and  is unique.  8 

10.1. Proof  o f  the existence and uniqueness 

The  uniqueness  of  A + is es tabl ished b y  assuming tha t  condi t ions  (10.1)-(10.3) 

have two solut ions,  A + =  B and A + =  C, and  ver i fying the fol lowing 16 steps 

based  on (10.1)-(10.3):  

B = B A B  = B ( A B ) ' =  B B ' A ' =  B B ' ( A C A )  ' =  BB'A'C'A'  

= B ( n n ) ' ( A  C ) '  = n A n A C  = n A C  = B A C A C  = ( B A ) ' ( C A ) ' C  

= A ' n ' A ' C ' C  = ( a  n a ) ' C ' C  = A ' C ' C  = ( C A ) ' C  = C A  C = C .  

Therefore,  B = C, which proves  that  A + is un ique  when  it  exists. 

To prove the existence of  A + we consider  first  a zero mat r ix  A of  order  m X n; 

then  A + equals  the n X m zero matr ix ,  which m a y  be  verif ied by  checking 

(10.1)-(10.3).  Nex t  cons ider  a non-zero  mat r ix  A so tha t  its r ank  r is posit ive.  

Then  A'A  is a symmet r ic  posi t ive  semidef ini te  mat r ix  of  order  n x n and r ank  r, 

and  i t  is poss ib le  to express A + in terms of the posi t ive  la tent  roots  of A'A  and  

the character is t ic  vectors  associa ted  wi th  these  roots.  Wr i t e  D for  the d iagonal  

r x r mat r ix  which  conta ins  the posi t ive  roots  of A ' A  on the d iagonal  a n d / / f o r  

an  n x r ma t r ix  whose  co lumns  are character is t ic  vectors  cor respond ing  to these 

roots.  Then (7.7) app l ied  to A'A  yields 

A'A  = H D t t ' ,  (10.4) 

8There are other generalized inverses besides the Moore-Penrose inverse, most of which are 
obtained by deleting one or more of the four conditions. For example, using (10.1) and (10.2) but 
deleting (10.3) yields the reflexive generalized inverse, which in not unique; see Laitinen and Theil 
(1979) for an application of this inverse to consumption theory. Monographs on applications of 
generalized inverses to statistics include Albert (1972), Ben-Israel and Greville (1974), Boullion and 
Odell (1971), Pringle and Rayner (1970, and Rao and Mitra (!971). 
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and the result for A + is 

A + = H D - ~ H ' A ' ,  (10.5) 

which is an n × m matrix of rank r. 

To verify (10.5) we introduce an n x ( n -  r)  matrix K whose columns are 

characteristic vectors of A'A  corresponding to the zero roots: 

A ' A K  = 0. (10.6) 

The n × n matrix [ H  K]  consists of characteristic vectors of A'A  corresponding 

to all roots and is therefore an orthogonal matrix, which can be expressed in two 

ways. Premultiplying [ H  K] by its transpose and equating the product to the 

unit matrix yields 

H ' H  = I ,  K ' K  = I ,  H ' K  = 0, (10.7) 

while postmultiplying [ H  K] by its transpose and equating the product to the 

unit matrix gives 

n n ' +  x x '  = t .  ( 1 0 . 8 )  

The verification of (10.5) is now a matter  of checking conditions (10.1)-(10.3). 

Premultiplying (10.5) by A yields AA ÷ = A H D -  1H'A', which is symmetric. Next  

we postmultiply (10.5) by A, A+A = H D - 1 H ' A ' A ,  and hence in view of (10.4) 

and (10.7), A ÷A = H D -  1H'HDH'  = H H ' ,  which is also symmetric. We postmulti- 

ply this by (10.5): 

A +AA + = H H ' H D -  IH'A'  = l i D -  1H'A' = A +, 

which confirms (10.2). Finally, we postmultiply A A  + = A H D -  1H'A' by A : 

A A  + A  = A H D -  1 H ' A ' A  = A H D -  1 H ' H D H '  = A H H '  = A . 

To verify the last step, A H H ' =  A', we premultiply (10.6) by K ' ,  which gives 

( A K ) ' A K  = 0 or A K  = 0. Therefore, A K K ' =  0 so that premultiplication of (10.8) 

by A yields A H H ' =  A. 

10.2. Special cases 

If  A has full column rank so that ( A ' A )  -1 exists, A + = ( A ' A )  1A', which may 

either be verified from (10.4) and (10.5) for r = n or by checking (10.1)-(10.3). We 

may thus write the LS coefficient vector in (2.8) as b = X + y ,  which may be 
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viewed as an extension of b = X -  ly in the special case of  a square non-singular X 

(as many  regressors as observations). 

I f  A is a symmetric  n × n matrix of rank r, then 

r f 

A =  2 X i x i x ; ,  A +  = 2 ~ X i X ; ,  (10.9) 
i=l  i = 1  

where X~,...,Xr are the non-zero latent roots of A and x~ , . . . ,x  r are characteristic 

vectors associated with these roots. Also, A x  i = 0 and A +x i = 0 for i = r + 1,... ,n, 

where Xr+ 1 . . . . .  X,, are characteristic vectors of  A corresponding to the zero roots. 

Thus, if A is symmetric, A ÷ has characteristic vectors identical to those of A, the 

same number  of zero roots, and non-zero roots equal to the reciprocals of  the 

non-zero roots of A. The verification of  these results is again a matter  of checking 

(10.1)-(10.3) and using x;xj  = 8~j. Since a symmetric idempotent  matrix such as 

M in (2.11) has only zero and unit  roots, it thus follows as a corollary that such a 

matrix is equal to its own Moore -Pen rose  inverse. 

10.3. A generalization of Aitken's theorem 

We return to the linear model  (2.7), reproduced here: 

y = Xfl  + e. (10.10) 

As before, we assume that  X is an n × K matrix of rank K consisting of 

non-stochast ic elements and that e has zero expectation, but  we now assume that 

the covariance matrix of e takes the singular form o 2 V, the n x n matrix V having 

rank r < n. Hence, the Aitken estimator (2.13) does not  exist, but  is seems 

reasonable to ask whether 

[3 = ( X 'V+ X ) -  I X 'V+ y (10.11) 

exists and is a best linear unbiased estimator of  ft. I t  will appear that  each of  these 

properties (the existence and the best linear unbiasedness) requires a special 

condit ion involving both  V and X. 

The matrix V is comparable  to A 'A  in (10.4) and (10.6) in that both  are 

symmetric positive semidefinite n x n matrices of rank r. Therefore, we can apply 

(10.4) and (10.6) to V rather than A'A:  

V =  H D H ' ,  (10.12) 

V K = O ,  (10.13) 
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where D is now the r X r diagonal matrix with the positive latent roots of V on the 

diagonal, H is an n × r matrix whose columns are characteristic vectors of V 

corresponding to these roots, and K is an n × ( n - r )  matrix consisting of 

characteristic vectors of V that correspond to the zero roots. The results (10.7) 

and (10.8) are also valid in the present interpretation. In addition, (10.9) and 

(10.12) imply 

V + = H D - 1 H ' .  (10.14) 

Our strategy, similar to that of the proof of Aitken's theorem in Section 7, will 

be to premultiply (10.10) by an appropriate matrix so that the transformed 

disturbance vector has a scalar covariance matrix. We select D-~/2H' ,  where 

D-1/2 is the diagonal matrix with the reciprocals of the positive square roots of 

the diagonal elements of D in the diagonal: 

D I / 2 H ' y =  (D I / 2 H ' X ) f l + D  1/2H'e. (lO.15) 

The covariance matrix of D -  I/2H'e is 

E ( D  1/2H'ee'HD t / 2 ) = o Z D  1/2H'VHD 1/2:021, 

where the last step is based on H ' V H  = D, which is obtained by premultiplying 

(10.12) by H '  and postmultiplying b y / / a n d  using H ' H  = ! [see (10.7)]. Since 

D-1/2H'e  thus has a scalar covariance matrix, let us apply LS to (10.15). 

Assuming that H ' X  and hence D - ~ / 2 H ' X  have full column rank, we find the 

following estimator of fl: 

( D -  t / 2H 'X)  + D -  1 / 2 H ' y  = ( X ' H D -  1 H ' X )  - 1X 'HD-  lH' y.  (10.16) 

This is indeed identical to (10.11) in view of (10.14). 

Two considerations are important for the appraisal of this procedure. First, we 

assumed that H " X  has full column rank; if the rank is smaller, the matrix product 

in parentheses on the right in (10.16) is singular so that (10.11) does not exist. 

Therefore, a necessary and sufficient condition for the existence of the estimator 

(10.11) is that H ' X  have maximum rank, where H consists of r characteristic 

vectors of V corresponding to the positive roots. Secondly, we obtained (10.15) by 

premultiplying (10.10) by D I/2H', which reduces the number of observations 

from n to r. We can recover the "missing" n - r observations by premultiplication 

by K',  yielding K ' y  = K'Xf l  + K'e. The covariance matrix of K'e is ozK ' VK  = 0 

[see (10.13)] so that K'e vanishes with unit probability. Therefore, 

K'  y = K'Xf l ,  

which amounts to a linear constraint on fl unless K ' X  = O. 

(10.17) 
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To clarify this situation, consider the following example for K = 1, n = 3, and 

r = 2 :  

I1°°1 X =  , V= 0 1 , 

1 0 0 0 

Here X has full column 

H =  1 , K =  . 

0 

(10.18) 

rank but H ' X =  0 so that the matrix product in 

parentheses on the right in (10.16) is singular; in fact, the underlying equation 

(10.15) does not contain fl at all when H ' X  = O. Thus, the estimator (10.11) does 

not exist, but in the case of (10.18) it is nevertheless possible to determine/3 (a 

scalar in this case) exactly! The reason is that (10.18) implies K ' y = y  3 and 

K ' X  = 1 so that (10.17) states that Y3 equals the parameter. Ultimately, this results 

from the zero value of the third diagonal element of V in (10.18) and the non-zero 

third element of X. 

Under the assumptions stated in the discussion following eq. (10.10), the 

estimator (10.11) exists when H ' X  has full column rank and it is a best linear 

unbiased estimator of fl when K ' X  = 0 [so that (10.17) is not a real constraint on 

fl]. A proof of the latter statement follows in the next paragraph. If K ' X  is a 

non-zero matrix, (10.17) is a linear constraint on/3 which should be incorporated 

in the estimation procedure; see Theil (1971, sec. 6.8). 

We can write any linear estimator of/3 as 

[3= [A + ( X ' V + X ) - I X ' V  + ] y, (10.19) 

where A is some K × n matrix consisting of non-stochastic elements. By substitut- 

ing X/3 + e for y in (10.19) and taking the expectation we find that the unbiased- 

ness of/~ requires 

A X  = 0, (10.20) 

so that/~ - / 3  = [A + ( X ' V + X )  - 1X'V+ ]e and the covariance matrix of/~ equals 

For A = O  we have /~=/~ in view of (10.19). Thus, using V + V V + = V  + and 

(10.21), we obtain: 

~ (  ~ ) = o2( X,V+ X ) -  l, (10.22) 

which is a generalization of (2.14). The excess of (10.21) over (10.22) equals a 

multiple o 2 of A VA' + A VV + X(  X ' V  + X ) -  1 + ( X , V  + X ) -  IX'V + VA'. B u t  A V V  + X 

= 0  so that ~ ( /~) -cV( /~)=o2A VA', which is positive semidefinite and thus 
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establishes that/~ is best linear unbiased. To verify that A V V + X  is a zero matrix 

we use (10.12) and (10.14) in 

V V  + = H D H ' H D -  1H' = H H '  = I - K K ' ,  

where the last two steps are based on (10.7) and (10.8). So, using (10.20) and 

K ' X  = 0 also, we have 

A V V + X  = A X -  A K K ' X  = 0 - 0 = O. 

The matrix ~ ( ( ~ ) -  ~ ( ~ )  = o2A VA' is obviously zero when we select A = 0, but 

it may also be zero for A ~ 0 when V is singular, which suggests that there is no 

unique best linear unbiased estimator of ft. This is not true, however; if the 

estimator (10.11) exists, i.e. if H ' X  has full column rank, it is the unique best 

linear unbiased estimator of fl when K ' X  = 0. The reason is that A V A ' =  0 is 

equivalent to E[Ae(Ae) ' ]  = 0 so that Ae  is a zero vector with unit probability. 

Using (10.20) also, we obtain A y  = A ( X f l  + e ) =  0, which in conjunction with 

(10.19) shows that the best linear unbiased estimator of fl must be of the form 

(10.11), even though A may be a non-zero matrix. 

10.4. Deleting an equation from an allocation model 

The Moore-Penrose  inverse can also be conveniently used to prove that when we 

estimate an N-equation allocation system such as (6.1), we can simply delete one 

of the N equations (it does not matter  which). The clue is the fact that each 

equation can be obtained by adding the N -  1 others. We prove this below for an 

allocation system which is linear in the parameters. The strategy of the proof will 

be to start with GLS estimation of N - 1  equations with a non-singular dis- 

turbance covariance matrix, followed by  adding the deleted equation (so that the 

disturbance covariance matrix becomes singular), and then proving that the 

resulting estimator (10.11) is identical to the original GLS estimator. 

We can formulate the problem in the following more general way. Let y = Xfl  + e 

have a non-singular covariance matrix ~ (e )  = o 2V of order n X n. We premultiply 

by a matrix B of order (n + n') X n and rank n: 

By = BXf l  + Be.  (10.23) 

For example, take B ' =  [ I  C], which means that we add to the original n 

observations n'  linear combinations of these observations. The covariance matrix 

of Be takes the singular form a 2 B V B  '. Thus, the matrix V of the previous 

subsection becomes B VB'  here, while X becomes B X .  We conclude that condition 
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K!X = 0 is now K'(BX) = 0, where K is a ma t r ix  whose n '  co lumns  are character -  

ist ic vectors of BVB' cor respond ing  to the zero roots:  (BVB')K = 0 and K'K = I. 
Evident ly ,  a suff icient  condi t ion  for K is B'K = 0 and  K'K = I. Such a K can  be 

ob ta ined  as a mat r ix  whose columns  are  character is t ic  vectors of  the i dempo ten t  

ma t r ix  I -  B (B 'B) - IB '  cor respond ing  to the unit  roots :  

[ 1 -  n ( e ' n ) - ' e ' ] x =  x .  

The  GLS es t imator  (10.11) of  B in (10.23) is then 

[X'B'(BVB')+ B X ] - ' X ' B ' ( n v n ' ) +  ny. (10.24) 

This  is ident ica l  to (X'V-IX)-~X'V-~y,  and  hence to the G L S  es t imator  ob- 

ta ined  f rom the or iginal  n observat ions ,  because  

B ' ( B V B ' ) +  B = V 1, 

which follows f rom BVB'(BVB')+BVB '= BVB' [see (10.1)] p remul t ip l i ed  by  

V-1(B'B)-1B' and pos tmul t ip l i ed  by  B( B'B )-1V-1. It  is unnecessary  to check 

the condi t ion  that  H'(BX)  has full co lumn rank,  H be ing  a mat r ix  whose n 

co lumns  are character is t ic  vectors of BVB' cor respond ing  to the  posi t ive roots.  

The  reason is that  the es t imator  (10.24) would  not  exist if the condi t ion  were not  

satisfied, whereas  we know that  (10.24) equals  (X 'V-  1X)- IX'V- ly. 

Appendix A: Linear independence and related topics 

Cons ider  a mat r ix  V =  [vL...vn] and  a l inear  combina t i on  Vc of its n columns.  

The  vectors v 1 . . . .  ,v n are said to be  linearly independent if Vc = 0 implies  c = 0, i.e. 

if there  exists no non- t r iv ia l  l inear  combina t ion  of the  ~ ' s  which is a zero vector. 

F o r  example ,  the co lumns  of the 2 × 2 uni t  ma t r ix  are l inear ly  i ndependen t  

because  

imp.e  

but  v 1 = [1 0]' and  v 2 = [2 0]' are no t  l inear ly  i ndependen t  because  cLv 1 + c2v 2 

= 0 if (for example)  c I = 2 and c 2 = - 1. 

F o r  any m × n mat r ix  A the co lumn rank  is def ined  as the largest  n u m b e r  of  

l inear ly  i ndependen t  columns,  and  the row rank  as the largest  number  of  l inear ly  

independen t  rows. I t  can be  shown that  these two ranks  are always equal;  we can 

thus speak abou t  the rank r of A,  which obvious ly  satisfies r ~ m, n. I f  all 
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columns (rows) of A are linearly independent, A is said to have full column (row) 

rank. For any A, the ranks of A,  A', A 'A ,  and A A '  are all equal. Also, the rank of 

A B is at most equal to the rank of A and that of B. For example, 

which illustrates that the rank of A B  may be smaller than both that of A and that 

of B. (A zero matrix has zero rank.) If  A is square (n x n) and has full rank 

( r  = n), it is called non-singular and its inverse A 1 exists. 

For any vector v =  [v~], its length is defined as the positive square root of 

v'v = ~ v 2. If v'v = 1, v is said to have unit length. The inner product of two 

vectors v = [v,] and w = [w~] consisting of the same number of elements is defined 

as v' w = ~ i  viwi- If  v' w = O, v and w are called orthogonal vectors. 

A square matrix X which satisfies X ' =  X-~ is called an orthogonal matrix. 

Premultiplication of X'  = X -  l by X gives X X '  = I, which shows that each row of 

X has unit length and that any two rows of X are orthogonal vectors. Postmulti- 

plication of X'  = X -  ~ by X gives X ' X  = ! so that each column of X (each row of 

X')  also has unit length and any two columns of X are also orthogonal vectors. 

Appendix B: The independence transformation 

The independence transformation is based on three axioms, the first being the 

invariance of total expenditure. Let a dollar spent on observed i npu t j  result in ris 

dollars spent on transformed input i, so that the expenditure on i equals ~ i  r~ iPiqi 

and the total expenditure on all transformed inputs equals E j  ( E  i r i j )p jq j  wlflch 

must be identical to ~ j p j q j  because of the invariance postulated. Therefore, 

~ir i j  = 1 for each j ,  or 

,'R =,',  (B.1) 

where R = [rij ]. By dividing the expenditure ~_ajFijpjqj o n  transformed input i by 

total expenditure C (which is invariant) we obtain the factor share f x i  of this 

input. Therefore, fTi = Y~i rijfJ ' or 

eT, = Re, ,  (B.2) 

where F T is the diagonal factor share matrix of the transformed inputs. 

The second axiom states that the logarithmic price and quantity changes of the 

transformed inputs are linear combinations of their observed counterparts, ~r T = 

Slur and I¢T = S2K, so that the associated Divisia indexes are invariant. The Divisia 
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volume index is d ( logQ)=  ,'Fx and its transformed counterpart is dFTgT = 

d F T S 2 ~ = d F ( R ' S 2 ) x  [see (B.2)]. Thus, the invariance of this index requires 

R ' S  2 = I or S 2 = (R ' ) -  1. We can proceed similarly for the price index dF~r, which 

yields the same result for S~, so that the price and quantity transformations use 

the same matrix, ,r T = Srr and K T = Sg, where S = ( R ' ) -  1. See remark (3) below 

for the case of a singular R. 

The third axiom diagonalizes O. We premultiply (8.15) by R, which yields 

R F x  = R F R ' S ~  = RFR'K T on the left because R ' S  = I and SK = K x. When we 

proceed similarly on the right and use (B.1) also, we obtain: 

R F R ' g  m = ( dFK )(  R ~g R ' ) ,  - 6 R~gR'[  I - td(R@R')]  efT, (B.3) 

which is an allocation system of the same form as (8.15), with logarithmic price 

and quantity changes Ir T and XT, provided R F R '  on the left equals the diagonal 

factor share matrix F T. The new normalized price coefficient matrix is R O R ' ,  

which occurs in the same three places in (B.3) as O does in (8.15). [The matrix 

R O R '  is indeed normalized because dROR'L  = t'OL = 1 follows from (B.1).] There- 

fore, R F R ' =  F T and R O R ' =  diagonal are the conditions under which (B.3) is an 

input independent allocation system. These are two conditions on R, which must 

satisfy (B.1) also. 

We proceed to prove that 

R : ( X - l , ) a X  ' (B.4) 

satisfies these three conditions, with X defined in (8.16) and (X lt)a in (7.9). 

First, dR = d is true for (B.4) in view of (7.10). Secondly, R F R ' =  

( X - I O a X ' F X ( X - l t ) a  = (X-1L)~  [see (8.16)] so that 

R F R ' =  F T = ( X - t , ) ~  = diagonal. (B.5) 

Thirdly, using @ = ( X ' ) - l A X  i [see (8.16)], we have R ~ k R ' =  ( X  1L)a2A, which is 

diagonal. So, using (B.5) also and premultiplying (B.3) by ( R F R ' ) - 1  = ( X - I L ) S 2 ,  

we obtain: 

• x T = ( d F x ) A t -  + A ( I  - tdR~gR') ~rT, (B.6) 

which is the matrix version of (8.17). The expression which is subtracted in 

parentheses in the substitution term of (B.6) represents the deflation by the Frisch 

price index, which is invariant. To prove this we note that the marginal share 

vector of the transformed inputs equals ROt = RO in view of the real-income term 

in (B.3) and R't = L; the invariance of the Frisch index then follows from 

( R O ) ' ~ r  T = O'R'STr  = O'er. 
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The expenditure on transformed input i equals r~jpjqj dollars insofar as it 

originates with observed input j .  By dividing this amount by total expenditure C 

we obtain %fj, which is thus the factor share of transformed input i insofar as it 

originates with observed input j .  This r~jfj is an element of the matrix RF,  to be 

written T: 

T = R F =  ( X - 1 1 ) A X  -1 , (B.7) 

where the last step is based on (B.4) and F = (X ' ) -  IX 1 [see (8.16)]. Postmulti- 

plication of (B.7) by t gives TL = RFt = FTt [see (B.2)]; hence the row sums of T 

are the factor shares of the transformed inputs. Also, ~'T = t 'RF = ~'F, so that the 

column sums of T are the factor shares of the observed inputs. Note that (B.7) 

and its row and column sums confirm the results on the composition matrix. Note 

further that F =  ( X ' ) - I X  -1 and @ = ( X ' ) - I A X  - l  [see (8.16)] imply that the price 

elasticity matrix - ~F-1@ in (8.19) equals - ~pXAX 1. So, using (B.7) also, we 

have 

r ( -   r-1o) = - + ( x - ' , ) a a x  = - = - + a t .  

Combining the first and last member yields t~(-  ~pF 10) = - ~p?~it~,.where t~ is 

the ith row of T, or 

t ; [ - ~ p e - ' O - ( - ~ p ) ~ i ) I ]  =O. 

Therefore, each row of the composition matrix is a characteristic row vector of the 

(asymmetric) price elasticity matrix of the observed inputs. 

We conclude with the following remarks. 

(1) Although the solution (B.4) satisfies all three conditions, it is not unique. 

However, it may be shown that this solution is unique up to premultiplication by 

an arbitrary permutation matrix; such a multiplication affects only the order in 

which the transformed inputs are listed. 

(2) We proved in the second paragraph that the price and quantity transforma- 

tions take the form ~r T = S~r and gT = S•, where S = (R ' ) -  1. It thus follows from 

(B.1) that S-I~ = ~ or St = L. Therefore, when the prices of the observed inputs 

change proportionately, ~r being a scalar multiple k of L, the price of each 

transformed input changes in the same proportion: ~r a- = S ( k t ) =  kSL = kt .  The 

quantities have the same desirable property. 

(3) It follows from (B.4) that R is singular when ( X -  l~)a contains a zero diagonal 

element, and from (B.5) that this implies a zero factor share of one of the 

transformed inputs. In that case S = (R')-1 does not exist. The simplest way to 

interpret this situation is by means of a perturbation of the firm's technology so 
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that the ith element of X -  1~ converges from a small non-zero value to zero. It may 

be shown that d(log Pa-i) then increases beyond bounds. If  the increase is toward 

oo, transformed input i is priced out of the market;  if it is toward - oo, i becomes 

a free good; in both cases no money is spent on i in the limit. In  particular, if 

(5.12) represents a homothetic technology, N -  1 elements of X-1L are zero and all 

observed inputs collectively behave as one transformed input with unitary Divisia 

elasticity; no money is spent on any transformed input whose Divisia elasticity 

differs from 1. For  proofs of these results see Theil (1977). 

(4) The independence transformation was first formulated by Brooks (1970) and 

axiomatically justified by Theil (1975-76, ch. 12) for a finite-change version of 

the consumer demand system (5.22). The )ti's are then income elasticities of 

transformed consumer goods. Rossi (1979a) proved that when all observed goods 

are specific substitutes, the transformed good with the smallest income elasticity 

represents all observed goods positively and that all other transformed goods are 

contrasts between observed goods similar to T 2 in (8.26). The former transformed 

good serves to satisfy the consumer's wants associated with the observed goods in 

the least luxurious manner; this result is of particular interest when the transfor- 

mation is applied to a group of goods which satisfy similar wants such as different 

brands of the same type of commodity. 9 For  an integrated exposition of the 

independence transformation in consumption and production theory see Theil 

(1980, ch. 10-11). 

Appendix C: Rational random behavior 

To verify (9.4) we write p*(x)= p(x)+ 6f (x)  for some density function other 

that the p(x)  of (9.4), where 8 is independent of x so that f ( . )  must satisfy 

f J ( x ) d x , . . . d x k = O .  

The information I* and the expected loss l * associated with p*(-)  are 

(C.1) 

1" = f j [ p ( x ) +  6 f ( x ) ] l o g  p ( x ) +  6 f ( x )  po(x ) dXl ...dx~, 

[* = [+ 6 f j l(  x, Yc) f ( x )dx ,  ...dXk, 

(c.2) 

(c.3) 

9When O is block-diagonal, so is X in (8.16), which means that the independence transformation 
can be applied to each block separately. We have a block-diagonal O under block independence. See 
the end of Section 6 for block independent inputs; the extension to block independent consumer 
goods is straightforward. 
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where [ is the expected loss (9.3) associated with the p( . )  of (9.4). We apply a 

Taylor expansion to (C.2) as a function of & 

I* = I + k,3 + ½k232 + O(33), (C.4) 

where I is the information (9.2) associated with (9.4) and 

p(x) 
k, = f f  (x)log p o - ~  dx 1 . . .dx  k , (C.5) 

k2 = f j  [ f ( x ) ]~  dx 1 ...dxz~. (C.6) 

Next we apply a Taylor expansion to c(I*), writing c '=  dc/dI and c" = d2c/dI 2 
for the derivatives of c(.) at the I of (9.4): 

c( I*) = c( I )+ 3klC' + 132( k2ct + k2c t') -~- 0(33 ) 

and we add this to (C.3): 

c(I*)+[*=c(I)+[+3[klc'+ fJ(x ,~) f (x)dxl . . .dxk]  

+ 32(k2c' + + o (33  ) ( c .7 )  

For c(I)+ [ to be minimal we require the coefficient of 3 in (C.7) to vanish for 

any f ( . )  satisfying (C.1) and that of 32 to be positive. The latter condition is 

satisfied when c '>  0 and c">~ 0 (a positive nondecreasing marginal cost of 

information) because (C.6) implies k 2 > 0 when f (x)  * 0 for some x. It follows 

from (C.5) that the former condition amounts to a zero value of 

This integral vanishes, given (C. 1), when the expression in brackets is a constant 
independent of x, which yields (9.4) directly. 

To prove the asymptotic results for small c' we take the logarithm of (9.4): 

l o g p ( x )  = constant+logpo(X ) l(x, Yc) c' ' ( c .8 )  

and substitute ~ for x, using (9.1): 

log p (X:) = constant + log P0 ( ~ ). 
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Since the constants in these equations are equal, subtraction yields 

p ( 2 )  , po(YC) l (x ,  2) 
og P (x)  = log ~ + c' 
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(C.9) 

It follows from (9.1) that as c ' ~  0 the last term increases beyond bounds for any 

x * ~, so that the same holds for p ( ~ ) / p ( x )  on the left. Hence, as c ' ~  0 the 

density p ( x )  becomes zero for each x * 2 and the random decision with density 

function (9.4) thus converges in probability to ~. 

To verify the asymptotic distribution (9.7), we define 

1 
v =  ~ c ,  ( x -  ~), (C.10) 

so that l ( x, ~ ) = l ( Yc + vrc' v, ~ ). We apply a Taylor expansion to l ( x, Yc ) / c', using 

(9.6): 

l ( x , ~ )  1 r i ,  rr7 
¢, = t tw 

= ½ v'Av + O(x/~). (C.11) 

We assume that po(x) is positive and differentiable around 2. Hence, we can 

apply a Taylor expansion to logp0(x ) and write it as logp0(.~ ) plus a linear 

remainder term in x - i .  Therefore, in view of (C.10), 

log p0(x ) -- logp0(~)  + O(vCeT), 

which in conjunction with (C.8) and (C. 11) shows that log p ( x )  equals a constant 

minus ½v'Av plus two remainder terms which both converge to zero as c' ~ 0. The 

result (9.7) is then obtained by substitution from (C.10) for v in lv 'Av.  

We obtain (9.11) from (9.7) by using the budget or technology constraint to 

eliminate one of the decision variables from the criterion function. Let these 

variables be the quantities bought by the consumer; it was shown by Theil 

(1975-76, sec. 2.6-2.7) that (9.7) then yields variances and covariances of the 

form 

_ k ( k u ,  j X Oqi Oqj t cov(qi, q j)  = 
t OX/OM OM OM]' 

(C.12) 

where k > 0 is proportional to the marginal cost of information c'. A comparison 

of (C.12) with (3.12) shows that cov(qi, qj) is proportional to the substitution 
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component (specific plus general) of Oqi/Opj. We obtain (9.11) from (C.12) by 

rearrangements required by the left variable in (5.5). 

The results (9.11) and (9.14) for the multiproduct firm and the stochastic 

independence of the input demand disturbances and the output supply dis- 

turbances were derived by Laitinen and Theil (1978). Reference should also be 

made to Bowman et al. (1979) and to Rossi (1979b, 1979c) for a comparison of 

rational random behavior and search theory. 
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