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ChAPTer 1

SUbSPeCieS rePreSeNT GeOGrAPhiCAlly PArTiTiONed 
VAriATiON, A GOld MiNe Of eVOlUTiONAry biOlOGy,  

ANd A ChAlleNGe fOr CONSerVATiON

Abstract.—in this review i summarize the history of the subspecies concept and the major 
debates and issues surrounding its use, with an emphasis on ornithology, in which the concept 
originated. The study of subspecific variation in birds has been an important driving force in the 
development of evolutionary biology. Subspecific study has also been essential in the description 
and preservation of biodiversity. Although controversy has surrounded the concept of subspecies 
since its inception, it continues to play an important role in both basic and applied science. i cover 
10 relevant issues that have been largely resolved during this 150-year controversy, although 
not all are widely appreciated or universally accepted. These include nomenclature, sampling 
theory, evolutionary biology, and the heterogeneity of named subspecies. i also address three big 
unresolved questions and some of the philosophy of science related to them: What are subspecies, 
how do we diagnose them, and what does subspecific variation mean? discordance between 
genotypic and phenotypic data at these shallow evolutionary levels should be expected. The 
process of diagnosing states that exist along a continuum of differentiation can be difficult and 
contentious and necessarily has some arbitrariness; professional standards can be developed so 
that such diagnoses are objective. Taxonomies will change as standards do and as more data accrue. 
Given present evidence, our null hypothesis should be that subspecific variation probably reflects 
local adaptation. in looking forward, it seems assured that geographically partitioned variation—
and the convenient label “subspecies”—will continue to play an integral role in zoology.
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Las Subespecies Representan Variación Estructurada Geográficamente, una Mina de 
Oro de la Biología Evolutiva y un Desafío para la Conservación

Resumen.—en esta revisión hago un resumen sobre la historia del concepto de subespecie y los 
principales debates y asuntos que rodean su uso con énfasis en la ornitología, en donde el concepto 
se originó. el estudio de la variación subespecífica en las aves ha sido una fuerza importante 
que ha impulsado el desarrollo de la biología evolutiva. el estudio de las subespecies también 
ha sido esencial en la descripción y la preservación de la biodiversidad. Aunque la controversia 
ha rodeado el concepto de subespecie desde que fue acuñado, éste continúa jugando un papel 
importante tanto en la ciencia básica como en la aplicada. Abordo 10 asuntos relevantes que han 
sido resueltos en buena parte a lo largo de esta controversia de 150 años, aunque no todos son 
apreciados ampliamente ni aceptados de manera universal. entre éstos se incluye la nomenclatura, 
la teoría sobre muestreos, la biología evolutiva y la heterogeneidad de las subespecies nombradas. 
También abordo tres preguntas grandes no resueltas y parte de la filosofía de la ciencia relacionada 
con ellas: ¿qué son las subespecies, cómo establecemos su diagnosis y qué significa la variación 
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The iMPOrTANCe Of SUbSPeCieS 7

The very first volume of The Auk contained de-
bates about subspecies, and it is noteworthy that 
125 years later the subject still draws considerable 
interest. Unresolved issues in science remain so 
either because they are neglected or because they 
represent fundamentally difficult areas. Subspe-
cies have by no means been neglected in zoologi-
cal research, which leads one to conclude that this 
phenomenon of geographically partitioned mor-
phological variation within species—to which 
we commonly apply the label “subspecies”—has 
some inherently interesting and difficult proper-
ties. here, i first summarize the history of avian 
subspecies and consider the many relevant is-
sues—from nomenclature, to sampling theory, to 
evolutionary biology—that have been largely re-
solved as the biological sciences have matured. i 
then examine several major questions that remain 
unresolved, including what subspecies are, how 
we should diagnose them, and the meaning of 
subspecific variation. This discussion requires con-
sideration of the philosophy of science surround-
ing these issues. finally, i consider likely aspects of 
the future use of subspecies.

History

The 19th century.—The concept of geographi-
cally partitioned variation below the species level 
was born of evidence and of need. The typologi-
cal species concept of linnaeus and taxonomists 
of his era did not explain geographic variation 
within putative species. An assortment of terms 
was used to label these variants: varieties, races, 
forms, subspecies, con-species, geographical 
races, incipient species, and other terms (Coues 
1884, Cutright and brodhead 1981, Mayr 1982a). 
linnaeus’s own term “variety” was applied to 
within-population variation and to variation 
among populations (e.g., breeds of dogs), and 
by the mid-1800s the term “subspecies” began 
to become established, taxonomically embodied 
by the trinomial: the addition of a third latin 
name to the traditional binomial nomenclature 

established by linnaeus in the previous century 
(Mayr 1982a). interestingly, this practice was per-
haps first formally encoded in zoological nomen-
clature by the American Ornithologists’ Union 
[AOU] in the first edition of the Check-list of North 
American Birds (AOU 1886).

The recognition of geographically partitioned 
variation (geographical varieties) was integrally 
important in stimulating scientific progress away 
from an essentialist, typological view of biologi-
cal diversity and toward an evolutionary, popu-
lational perspective (Mayr 1982a). Thus, the 
variation now largely encompassed by the rubric 
“subspecies” played an important historical role 
in the development of evolutionary biology. Or-
nithologists were among the leaders in this scien-
tific progress (Cutright and brodhead 1981, Mayr 
1982a), producing important work on the subject 
before and after darwin’s (1859) On the Origin of 
Species. darwin used this type of variation in de-
veloping the theory of evolution (darwin 1859, 
1895), and its presence there is important:

Certainly no clear line of demarcation has as yet 
been drawn between species and sub-species—
that is, the forms which in the opinions of some 
naturalists come very near to, but do not quite 
arrive at, the rank of species: or, again, between 
sub-species and well-marked varieties, or be-
tween lesser varieties and individual differences. 
These differences blend into each other by an in-
sensible series; and a series impresses the mind 
with the idea of an actual passage.

hence i look at individual differences, though 
of small interest to the systematist, as of the high-
est importance for us, as being the first steps to-
wards such slight varieties as are barely thought 
worth recording in works on natural history. 
And i look at varieties which are in any degree 
more distinct and permanent, as steps towards 
more strongly-marked and permanent varieties; 
and at the latter, as leading to sub-species, and 
then to species. The passage from one stage of 
difference to another may, in many cases, be the 
simple result of the nature of the organism and 
of the different physical conditions to which it 

subespecífica? la discordancia entre datos genotípicos y fenotípicos a estos niveles pandos de 
diferenciación evolutiva debería ser esperable. el proceso de establecer rasgos para diagnosis 
a partir de un continuo de diferenciación puede ser difícil y controvertido y necesariamente 
incluye algo de arbitrariedad; es posible establecer estándares profesionales para que el proceso 
de diagnosis se haga objetivo. las taxonomías cambiarán conforme cambien los estándares y se 
acumulen más datos. Con base en la evidencia actual, nuestra hipótesis nula debería ser que la 
variación subespecífica probablemente refleja adaptación a nivel local. Mirando hacia el futuro, 
parece seguro que la variación estructurada geográficamente—y el nombre conveniente de 
“subespecie”—continuará jugando un papel integral en la zoología.
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8 OrNiThOlOGiCAl MONOGrAPhS  NO. 67

has long been exposed; but with respect to the 
more important and adaptive characters, the 
passage from one stage of difference to another, 
may be safely attributed to the cumulative action 
of natural selection. . . . (darwin 1895:38–39)

darwin (1859:47) emphasized a focus on sub-
specific variation that approached full species:

Those forms which possess in some consider-
able degree the character of species, but which 
are so closely similar to some other forms, or are 
so closely linked to them by intermediate grada-
tions, that naturalists do not like to rank them as 
distinct species, are in several respects the most 
important for us.

from these passages it is clear why subspecies 
were important very early in the field of evolu-
tionary biology, and indeed they address topics 
that are at the forefront of the discipline today.

Stejneger (1884) considered that the Swedish 
ornithologist Carl Sundevall was the first to use 
trinomialism in a modern sense in ornithology 
when, in 1840, he treated poorly delimited spe-
cies as geographic varieties, to which he gave a 
third name in addition to the binomial specific 
name. Although Stejneger (1884) stated that Sun-
devall’s use of trinomials was closely followed 
by herman Schlegel (1844), his own copy of his 
bound works at the U.S. National Museum in 
Washington, d.C., bears numerous annotations 
regarding his subsequent discoveries about the 
use of subspecific nomenclature in the 1840s and 
1850s. in these annotations, Stejneger (loc. cit.) 
pointed to the early use of trinomials by Keyser-
ling and blasius (1840) and to the importance of 
Sélys longchamps (1842). Mayr (1982a) omitted 
detailed historical discussion and considered that 
Schlegel (1844) was the first to routinely use tri-
nomials. The use of trinomials grew rapidly dur-
ing the remainder of the 19th century.

As Cutright and brodhead (1981) summarized, 
the development and use of subspecies in the 
New World was particularly strong, likely for 
two reasons. first, North American ornitholo-
gists had a larger continent to understand, with 
more geographic and ecological variation than 
europe, producing greater phenotypic variation 
in widespread taxa. Second, as darwin (1859, 
quoted above) made clear, understanding this 
geographic variation provided insight into the 
process of natural selection and the origin of spe-
cies. developing an understanding of geographic 
variation was indeed rich ground, and a panoply 

of the North American ornithologists of the day 
have been highlighted as practitioners, includ-
ing Cassin (1856), baird (1858), lawrence (1864), 
Coues (1866, 1871, 1872, 1884), Allen (1871), and 
ridgway (1881; Stejneger 1884, Cutright and 
brodhead 1981).

Although subspecies were less accepted in eu-
rope than in North America, important ornitholo-
gists there were also using trinomialism during 
this period; bonaparte (Parzudaki 1856, Stejneger 
loc. cit.), blasius (Newton 1862), dubois (1871; 
Stejneger 1884), and Seebohm (1881) were among 
them. Curiously, although it may have been his 
irritation with the credit that Coues had been 
given for winning widespread acceptance of the 
use of subspecies that caused Stejneger to write 
his brief history (Cutright and brodhead 1981; cf. 
Stresemann 1975), his 1884 paper (especially with 
his own annotations) remains one of the most im-
portant foundations for a detailed history of the 
development of the concept and use of subspecies 
in ornithology. The North American precedence 
in the widespread use of subspecies was largely 
one of promotion and acceptance only, however, 
for as haffer (2001) observed, there were conti-
nental european workers who covered vast areas 
of eurasia and adopted similar views; however, 
they were not associated with museums and thus 
were not leaders in taxonomy. The conservatism 
of the latter prolonged the practice of “essentialis-
tic microtaxonomy” in europe until well into the 
20th century (haffer 2001).

elliott Coues’s visit to europe in 1884, where 
he was well received for his prominence in scien-
tific ornithology (Cutright and brodhead 1981), 
was an important event in the spread of the use of 
subspecies and trinomial nomenclature (Strese-
mann 1975). but Coues’s visit alone was not 
unique in promoting subspecies in europe; see, 
for example, Seebohm’s (1881) introduction and 
his treatment of Hypolais [sic]. Nor was Coues’s 
visit sufficient to overcome staunch opposition 
(haffer 2001). Much of the debate over subspe-
cies was related not to their existence, but to the 
adoption of trinomial nomenclature to denote 
these often minor variants. As r. bowdler Sharpe 
wrote near the end of his life, “That races or sub-
species of birds exist in nature, no one can deny, 
but, to my mind, a binomial title answers every 
purpose . . .” (Sharpe 1909:v; cf. Seebohm’s [1881] 
treatment of subspecies as binomials, which he 
was forced to do by the editorial dictates of that 
publication). Philip l. Sclater, one of the world’s 
most important and influential ornithologists 

OM67_01.indd   8 4/6/10   6:28:48 PM



The iMPOrTANCe Of SUbSPeCieS 9

during the second half of the 19th century and 
editor or co-editor of the journal Ibis from 1859 
to 1864 and again from 1877 to 1912 (and thus an 
important gatekeeper for the publication of eu-
ropean ornithology in english), was also a major 
opponent of trinomialism (elliott 1914, Strese-
mann 1975). The objections of Sharpe, Sclater, 
and others opposed to trinomialism stemmed 
largely from conservatism (the linnaean bino-
mial system was accepted tradition and suffi-
cient) and from concern over “the danger of an 
outbreak of frivolous names given by scribblers 
who were only eager to publish and had no criti-
cal judgement . . .” (Stresemann 1975:252). Coues  
(1884:246) himself recognized this potential draw-
back, considering that trinomialism

is so sharp a tool that without great care in han-
dling, one is apt to cut his fingers with it. it is 
of such pliability and elasticity, and lends itself 
so readily to little things, that in naming forms 
one is tempted to push discrimination beyond 
reasonable and due bounds. . . . This is the real 
difficulty . . . its abuse in the hands of immature 
specialists.

The recognition and use of subspecies in the 
New World was standard by the late 1800s, and, 
despite such prominent opponents as Sclater and 
Sharpe, in europe the use of subspecies by such 
careful and important workers as ernst hartert, 
Karl Jordan, Walter rothschild, and others even-
tually prevailed (Stresemann 1975, Mayr 1982a, 
rothschild 1983, Mallet 2007). but an important 
change was implemented in the process. Under 
the morphological species concept of the late 19th 
century, evidence of intergradation was key to 
the recognition of subspecies, whereas morpho-
logically distinct isolates were usually treated as 
full species (Mayr 1982a).

in 1891, hartert wrote

i believe it is right to regard as subspecies forms 
that differ only in a small variation in size, lighter 
or darker coloring, or small variations in pattern, 
even though one does not have the intermediate 
forms at hand. This type of nomenclature shows 
the closeness of the relationship, whereas the 
simple specific name gives no indication whether 
the species are poles apart or very nearly related. 
(Stresemann 1975:259)

in 1892, hartert met Walter rothschild and was 
soon thereafter hired as a curator at the Tring 
Museum (rothschild 1983). At Tring, the orni-
thologists and entomologists rothschild, hartert, 

and Jordan produced a body of work that effec-
tively expanded the definition of subspecies to 
include geographically isolated, closely related 
populations (rothschild 1983, Mallet 2007). Mayr 
(1982a) considered this development to be based 
on the biological species concept, which had yet 
to be defined, but which decades later came to 
dominate taxonomy and systematics.

The 20th century.—The recognition of closely 
related but geographically isolated populations 
as subspecies was an important turning point 
in how the concept of subspecies was applied; 
it now encompassed both distinct but intergrad-
ing populations and distinct geographic isolates 
not sufficiently differentiated to warrant recogni-
tion as full species. Several more decades were 
required (until the 1940s) for modern terminol-
ogy and concepts to be fully developed, but this 
concept of subspecies was an integral part of that 
process. bernhard rensch, Julian huxley (who 
contributed, among other things, the term “poly-
typic species”), and ernst Mayr were important 
contributors during this period (Mayr 1982a, 
Mallet 2007). Ultimately, the hierarchical levels 
of differentiation (populations, subspecies–poly-
typic species, superspecies) that could be seen 
within many taxa, among populations that were 
separated to greater or lesser degrees geographi-
cally, provided a framework for understanding 
biological diversity that contributed several key 
tenets to the evolutionary Synthesis of the 1930s 
and 1940s (futuyma 1998).

in taxonomy, the effects of adopting this ex-
panded view of subspecies were also profound. 
recognition of polytypic species (species that 
comprise two or more subspecies) and adop-
tion of the biological species concept caused a 
major reduction in the number of species-level 
taxa, from >20,000 in the 1920s to ~9,000 in the 
1980s (Mayr 1982a). but there was overlumping, 
with perfectly good allopatric species lumped 
into polytypic species and treated as subspecies. 
We are still rebounding from this process as an 
increasing number of allopatric subspecies are, 
with additional data, being recognized as full 
biological species.

Mayr (1982a) considered that birds were well 
suited to this new taxonomy that included poly-
typic species and that its application to Aves 
caused the group to be especially valuable for 
both evolutionary and ecological studies. but 
here he omitted mention of further disagreement 
over the utility of the subspecies concept, which 
has waxed and waned since its inception.
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10 OrNiThOlOGiCAl MONOGrAPhS  NO. 67

Wilson and brown (1953) wrote an important 
and influential critique of subspecies, their main 
concerns being that (1) characters varied in dif-
ferent and nonconcordant ways, and that, de-
pending on which character was used, different 
subspecific delineations could result; (2) there 
was a great deal of arbitrariness in defining sub-
species, especially in delimiting the lower limits; 
and (3) subspecific taxonomy was getting in the 
way of real research (e.g., on geographic varia-
tion) by demanding an artificial formality and a 
system that lacked sufficient flexibility.

Mayr (in inger 1961:283) observed that when 
Wilson and brown (1953)

recognized that these subspecies of the literature 
were not subspecies they acted just like the little 
boy who knocks himself against the corner of the 
chair and beats the chair for being so bad: they 
let out against the subspecies their anger at the 
specialist of ants for having mistreated and mis-
used the subspecies concept.

Wilson (1994:208) later wrote that he and brown 
had overstated their case. Concordant changes 
in multiple characters often occur; this is the geo-
graphically partitioned variation that is the hall-
mark of good subspecies. Wilson and brown (1953) 
were correct that subspecific taxonomy is probably 
most difficult and arbitrary at the lower limits of 
the subspecies category and that undue focus on 
subspecific taxonomy had, in effect, created what 
they termed a “subspecies mill.” indeed, the fears 
of Sharpe came to pass, and even Mayr (1951:94) 
had to admonish ornithologists to put less effort 
into describing minor subspecies and more into 
studying the trends of geographic variation.

in 1982, an invited forum on avian subspecies 
by 11 authors was published in The Auk (Wiens 
1982). As might have been expected, although this 
forum provided a series of strong essays on the 
subject, together they did not provide definitive 
resolution of the key issues debated in relation to 
subspecies since darwin (Wiens 1982); such reso-
lution remains evasive.

in sum, the use of trinomials in the literature 
of the time shows that, in referring to subspecies 
and subspecific variation, darwin (1859, 1895) was 
communicating effectively with the leading scien-
tists of the time on a subject important to them. Or-
nithologists were in the vanguard in adopting the 
use of subspecies, both because the concept helped 
researchers understand biological diversity and its 
generation (Cutright and brodhead 1981, Mallet 

2007) and because in many other taxa describing 
species-level diversity remained (or remains) a 
dominant pursuit (Mayr 1982a). The problem of 
an accepted definition, however, alluded to by the 
passages of darwin (1859, 1895) quoted above, has 
persisted within and among taxa to the present 
(Mayr 1982a, haig et al. 2006). examples of how 
definitions have progressed are given below in my 
discussion of unresolved issues.

Sharpe’s and others’ fears that subspecies names 
would be inappropriately applied to many dubi-
ously distinct forms (Stresemann 1975) were pro-
phetic, and many unwarranted named subspecies 
remain to be eliminated. however, a certain na-
ivete is evident among many authors in the second 
half of the 20th century, who seemed to desire that 
scientists forgo describing their discoveries and 
observations (in describing subspecies in this case) 
until enough specimens and data were in hand to 
understand true patterns of geographic variation. 
Or, conversely, they felt that such studies should 
be restricted to hypothesis-testing approaches 
rather than the descriptive approach most often 
used in subspecies-level, discovery science. These 
views do not sufficiently acknowledge the impor-
tant stepwise progress of science in describing and 
understanding biodiversity at its finest levels. in 
addition to changing techniques and differences 
in data interpretation, specimen limitations alone 
have long precluded a shortcut to accurately sum-
marizing biodiversity (e.g., might an apparent dis-
continuity instead represent clinal variation as yet 
insufficiently sampled?). Not only is the job not yet 
done (e.g., Zink and remsen 1986), but the decline 
of taxonomy as a discipline in major universities 
during the second half of the 20th century has 
caused much of the unresolved mass of dubious 
names, questionable species limits, and pheno-
typically undescribed or unexamined populations 
to languish. And if new generations of students 
are not being trained in this presently less popu-
lar aspect of biodiversity science, we postpone a 
full understanding of biodiversity and hobble our 
abilities to document and manage this diversity 
during a period of major global changes. This is a 
huge challenge for 21st-century biology. how will 
we meet it?

Issues That Are Largely Resolved

Numerous issues have been largely resolved 
in the long debate over subspecies, even if all are 
not widely appreciated or universally accepted.
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Nomenclature.—As Mallet (2007) pointed out, the 
international Code of Zoological Nomenclature 
(iCZN) regulates just that—nomenclature—and  
does not treat the difficult problem of how one 
determines what taxonomic rank a lineage or 
group of specimens represents. The subspecies 
concept thus comprises two important but now 
largely separate issues: trinomial nomenclature 
(that battle is over and is encoded in the Code; 
iCZN 1999) and the thornier question of what 
constitutes a subspecies—that is, in what cases 
do we apply trinomialism? The nomenclatural 
tool is here to stay; we as taxonomists and sys-
tematists simply need to do as darwin (1859:47) 
suggested and come to some agreement on how 
and where to apply it.

Subspecies can be genuine biological units.—There 
are many examples of good subspecies, cases in 
which multiple species concepts would agree 
that populations that exhibit diagnosable (see 
below) differentiation from their nearest related 
population(s) in more than one phenotypic char-
acter do not achieve the threshold required of full 
species. Some of the best examples of subspecies 
occur among Song Sparrow (Melospiza melodia) 
populations in northwestern North America 
(Pruett and Winker, this volume). One reason 
i think that Song Sparrows are a good example 
is that there are no obvious species limits in this 
group under the phylogenetic species concept; 
probably because of the apparent recent coloni-
zation and ongoing gene flow (though frequently 
low), reciprocally monophyletic units (using any 
character) would be difficult to recover in this 
species when good samples (numerically and 
geographically) are examined. yet the popula-
tions in Alaska recognized as legitimate subspe-
cies exhibit increasingly concordant divergence 
in multiple characters as isolation increases (Pru-
ett and Winker, this volume). Another good series 
of subspecies occurs in rock Ptarmigan (Lagopus 
muta) across the holarctic; some of the more pro-
nounced occur among the Aleutian islands (fig. 
1). Some of these subspecies might be considered 
phylogenetic species, but evidence of gene flow 
and the capacity for gene flow among popula-
tions in this species causes the taxonomic fit to be 
better with the polytypy of the biological species 
concept. importantly, in both of these examples 
the recognized variation is discontinuous (i.e., it 
does not occur in a smoothly clinal way). Popula-
tions that exhibit clinal variation in one or more 
characters are likely to be legitimately subdivided  

fig. 1. Summer adult male rock Ptarmigan (Lagopus 
muta) from the Aleutian islands, Alaska. from left to 
right are ventral and dorsal images of L. m. evermanni 
(from Attu island), L. m. townsendi (from Kiska island), 
and L. m. atkhensis (from Tanaga island).

into subspecies only when discontinuities occur  
(classically termed “step clines”; Mayr 1963, Mayr 
and Ashlock 1991).

Sampling error.—The problem of sampling 
error—that summaries of diversity change with 
increased sampling—was recognized quite specifi-
cally by the first AOU Committee on Classification 
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12 OrNiThOlOGiCAl MONOGrAPhS  NO. 67

and Nomenclature in formally adopting trino-
mialism (AOU 1886:31). What has yet to be fully 
appreciated (though see funk and Omland 2003, 
brumfield 2005, deSalle et al. 2005) by researchers 
using rather small data sets of dNA sequence in 
phylogeographic and barcoding studies is that 
this same problem of sampling error exists here, 
too. The parallels between the historic naming 
and lumping of subspecies and the recognition 
and subsequent (or future) loss of monophyletic 
mitochondrial dNA (mtdNA) clades are obvious 
but are nevertheless overlooked by many research-
ers today.

in the description of phenotypic diversity, 
initial specimens or data sets might indicate 
sufficient geographic variation to name subspe-
cies (fig. 2A). increased geographic sampling 
might show clinal variation, necessitating the 
elimination of recognized subspecies (fig. 2b), 
or sufficient discontinuous variation to warrant 
continued recognition of the subspecies initially 
described (fig. 2C). increased numeric sampling 
might show that individual variation within 
populations is too high to enable credible diag-
noses of the individuals in each population and, 
thus, that they do not warrant subspecific labels 
(fig. 2d), or that such variation is sufficiently 
low to enable a high degree of diagnosability 
between populations for which subspecies des-
ignation is appropriate (fig. 2e).

Similarly, in the description of the distribution 
of genetic variation, initial data sets may indi-
cate highly partitioned variation in the form of 
monophyletic clades (fig. 3). it may be appropri-
ate to label these clades with names (although i 
disagree that species or subspecies limits should 
be diagnosed using a locus or two of dNA se-
quence data alone; Winker et al. 2007). Such trees 
can be reconstructed from genetic or phenotypic 
data, but the same sampling-error issues remain. 
increased geographic sampling might uncover 
a population that has characteristics of more 
than one described population (fig. 3b) or lend 
further support to the initial summary by find-
ing continued geographic partitioning of pop-
ulation-defining characters (fig. 3C). increased 
numeric sampling might reveal that one or more 
populations comprise an admixture of what were 
thought to be population-defining characters 
(fig. 3d), or that these clade-defining characters 
are segregated, warranting continued recognition 
of these units (fig. 3e). Power analyses address-
ing this problem are considered below.

Fig. 2. A simple diagram of how initial sampling 
of biological diversity across geographic space might 
indicate (A) the existence (and cause the description) 
of multiple subspecies. Subsequently increased geo-
graphic sampling might show (b) that variation is cli-
nal and the recognition of subspecies is unwarranted 
or (C) that variation occurs in a discontinuous (here, 
stepwise) manner and that continued recognition of 
subspecies is warranted. Similarly, increased numeric 
sampling might reveal (d) such degrees of intrapopu-
lation variation that reliable diagnoses of previously 
described subspecies are not possible or (e) that such 
variation is sufficiently low to enable reliable subspe-
cific diagnoses.
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Fig. 3. A simple diagram of how initial sampling of biological diversity across geographic space might reveal 
two monophyletic clades, indicating (A) the existence (and possibly causing the naming) of different (sub)spe-
cific units. Subsequently increased geographic sampling might show (b) that a newly sampled population (here, 
n = 2, circled individuals) has individuals from each clade, suggesting that named units are not warranted, or 
(C) that this newly sampled population retains the initially described geographic partitioning of variation and 
that continued recognition of those units is warranted. increased numeric sampling might reveal (d) that one or 
more populations comprise a mix of individuals that possess what initially seemed to be population-defining 
characters (e.g., wherein an individual from the β population is found with α population characters and two 
individuals from the α population possess β characters). Conversely, increased numeric sampling might con-
tinue to show (e) strong separation of these clade-defining characters, warranting continued recognition of these 
monophyletic units.

importantly, both increased geographic and 
numeric sampling are usually needed to as-
certain the veracity of initial diagnoses. for ex-
ample, isolation-by-distance effects might cause 
increased numeric sampling to support unit 
recognition, but a lack of increased geographic 
sampling might cause zones of intergradation to 

be overlooked. incomplete data will affect diag-
noses and ensure continued modifications of tax-
onomies as understanding improves.

Diagnosable units.—it is important to emphasize 
that i use the term “diagnosable” in a probabilis-
tic sense and not in a cladistic sense. Consider the 
now classic “75% rule” (Amadon 1949, Patten and 
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Unitt 2002) as our probabilistic threshold in rec-
ognizing subspecies (discussed more below). This 
level of diagnosability falls considerably short of 
the 100% diagnosability criterion of cladistics. in 
other words, reciprocal monophyly (two groups 
monophyletic with respect to each other), no mat-
ter what characters one chooses to use, provides 
a level of unit diagnosability in cladistics that is 
not appropriate as a lower threshold for evalua-
tion of subspecies. Why? because a probabilistic 
framework of diagnosability is more concordant 
with the processes of divergence between popu-
lations: gene flow can and often does still occur 
between populations, leading to an evolution-
arily important relationship between diverging 
forms (in this case a lack of independence) that 
must be accounted for in assessing and manag-
ing biodiversity. The working hypothesis of the 
biological species concept (which allows some 
hybridization; Johnson et al. 1999, Winker et al. 
2007, Price 2008) accounts for limited gene flow 
between species; subspecies, by definition, must 
also allow some gene flow to occur.

Typological thinking has no place in defining 
and recognizing subspecies. further, in recog-
nizing the populational processes of divergence, 
simple statistically significant differences between 

populations are expected and are decidedly not 
sufficient grounds for the recognition of subspe-
cies (Mayr et al. 1953, Patten and Unitt 2002).

Gene flow.—it is widely accepted that gene flow  
inhibits divergence between populations. What 
is not often remembered, however, is that to the 
best of our knowledge the effects of gene flow 
on the process of divergence are highly nonlin-
ear (fig. 4). even at low rates, gene flow can pre-
vent speciation and even local adaptation under 
strong selection (rice and hostert 1993, hostert 
1997, Postma and van Noordwijk 2005). Another 
consideration is that populations may evolve col-
lectively when alleles of high selective advantage 
spread among them at even very low levels of 
gene flow (Morjan and rieseberg 2004). because 
low rates of gene flow can act as a sort of evo-
lutionary glue that prevents populations from 
diverging, sampling error becomes particularly 
important in assessing data on the distribution 
of genetic variation. Using sequence data from 
a genetic locus such as mtdNA and the coales-
cent, 10 individuals from each of two populations 
provide a good sample size for analyses of gene 
lineage histories and lineage sorting (harding 
1996, rosenberg 2007). but gene flow is not ade-
quately surveyed with such samples, because even 

Fig. 4. The relationship of Wright’s (1943) FST, an index of interpopulation genetic differentiation, to the prod-
uct of effective population size (Ne) and the rate of gene flow (migration, or rate of effective gene flow), m. Note 
the highly nonlinear relationship and that the inflection point, at Nem = 1.0 (one migrant per generation), marks 
a transition under neutral conditions between populations that are diverging and populations that are effectively 
fused. After Cabe and Alstad (1994).
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moderate levels of gene flow could escape detec-
tion. Using Gregorius (1980) for power analysis, 
a sample size of 11 gives a 95% probability of de-
tecting all alleles (or haplotypes) in a population 
that occur at ≥30% frequency. from figure 4, it 
can be seen that this level of power does not come 
anywhere near the inflection point of divergence 
under neutral conditions (nor, likely, under strong 
divergent selection; rice and hostert 1993, hos-
tert 1997). This observation of the limited power 
of most phylogeographic studies is not meant to 
deter them, for more are urgently needed. rather, 
it is to focus interpretation of these studies on the 
populational processes of divergence (for a good 
example in birds, see brumfield 2005). Gene flow 
and phenomena such as clinal variation, isolation-
by-distance, reticulation, and polyphyly and pa-
raphyly are to be expected when populations are 
in the process of diverging (cf. funk and Omland 
2003). Knowing when these phenomena can be 
ruled out in explaining the distribution of genetic 
variation is very important.

Subspecies are interesting and have value.—insofar  
as subspecific labels for geographic variation 
have not only been deemed necessary by histori-
cal leaders in biological research but have also 
been used as guides for both historic and mod-
ern research, the value of the concept has been 
proven despite a lack of agreement over what 
exactly a subspecies is. The continuing value of 
the concept can be seen in both applied and basic 
research. Two examples will demonstrate this.

Outside of game species, the classic study of 
museum specimens (subspecies) has provided 
most of our knowledge of the nonbreeding dis-
tributions of the birds of North America. identi-
fication of population movements, especially of 
migratory forms during the nonbreeding season 
(except for game species, in which hunters effec-
tively provide large band-recovery efforts), has 
been accomplished mostly on the basis of sub-
specific plumage characters. Classic examples 
are summarized throughout the fifth edition of 
the AOU Check-list (AOU 1957), exhibiting this 
practical utility of subspecies very well.

in basic research, one of the best examples of 
the interest and value of subspecies is a research 
program that ends up questioning the utility of 
the concept itself. in reviewing 18 species stud-
ied by r. M. Zink and colleagues (Table 1), it 
can be seen that the species they chose to work 
with had an average of 13.5 recognized subspe-
cies each. The congeneric species not chosen 

for these studies averaged about 3.1 recognized 
subspecies (Peters et al. 1931–1987). in 10 of 
these 18 studies, the species with the most rec-
ognized subspecies of any in the genus was the 
focal taxon (Peters et al. 1934–1987). The prob-
ability of this occurring randomly is quite small 
(P ≈ 0.008). regardless of why these species were 
chosen as the focal taxon of their respective gen-
era, if subspecies were not often used as a guide 
for this body of research (and in some studies 
they clearly were not), then they were at least an 
important component.

i am not using this analysis to condemn the 
approach of Zink and his colleagues (Table 1). 
Whether they chose to work with species that 
have above-average subspecific diversity (in con-
trast with congeners) or whether this was merely 
an accidental (though highly significant) corre-
lation, their research nevertheless tells us some-
thing about avian subspecies. Where i differ with 
Zink’s (2004) conclusion is in our perspective on 
what the evidence tells us, a difference that is not 
simply a glass-half-empty versus glass-half-full 
situation. Zink’s (2004) message was that the ves-
sel itself (subspecies) is faulty, a condemnation 
reminiscent of that of Wilson and brown (1953; cf. 
Mayr in inger 1961:283). As Zink (2004) showed, 
much of this body of work could be focused 
around the concept of subspecies, and therefore 
that concept had scientific interest and some 
merit. in the process of speciation, discordant dis-
tributions of largely neutral genetic variation and 
phenotypic variation (which for many if not most 
characters will have a substantial non-neutral, 
adaptive component) are to be expected, as Price 
(2008), Winker (2009), and others have pointed 
out. Phillimore and Owens (2006), using a larger 
and geographically more diverse data set than 
Zink (2004), found a greater level of mtdNA and 
subspecies concordance. in fact, a large body of 
research has used subspecific designations to bet-
ter understand diversity and its distribution and 
to ask important questions of microevolutionary 
processes (e.g., remsen 1984).

Subspecies represent a heterogeneous taxonomic 
category.—Since the end of the 19th century, when 
allopatric forms that showed relatively small dif-
ferences were included with intergrading forms 
as subspecies, the category has been one of het-
erogeneous named populations (e.g., fig. 1 in fitz-
patrick, this volume). This fact remains an irritant 
to many of those concerned with subspecies. The 
basis for subspecific names is not and never has 
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been reserved exclusively for evolutionary units 
(Mayr 1969:41). The existence of or potential for 
gene flow between subspecies precludes this ex-
clusivity. in this, subspecies differ from higher 
taxonomic ranks, but as Smith and White (1956) 
pointed out, this is fully consistent with nomen-
clatural theory, which is based on denoting differ-
ences. And because most species have probably 
passed through some sort of subspecies stage of 
differentiation, darwin’s (1959, 1895) insight that 
this passage is important remains a stimulus for 
studying subspecies. As eloquently put by Smith 
and White (1956:190), “The gap from non-species 
to recognizable species is necessarily bridged by 
stages of major evolutionary import.” Also, our 
recognition of a nomenclatural category in which 
some units may very well become full species 
and others will not gives us a conceptual tool of 
inestimable value in understanding the process 
of speciation (Smith and White 1956). Subspecies 
and their heterogeneity therefore do not repre-
sent a problem to basic science so much as they 
represent an opportunity.

We should not eliminate subspecies altogether.—
Smith and White (1956) presented one of the 
best rebuttals to the condemnation of subspecies 
by Wilson and brown (1953), and most of their 
observations remain applicable today. for those 
who study speciation, recognition of units only at 
the species level and above ignores stages of dif-
ferentiation that are clearly important in the spe-
ciation process. Subspecies have a demonstrated 
utility if only for this research purpose alone, 
making their use largely unstoppable. This does 
not mean that they must be used by all. however, 
it must be recognized that the work that goes 
into subspecific taxonomic revision has become 
rather unpopular, leaving something of a mess of 
unresolved subspecific names, species limits, and 
specimens and data that remain to be critically 
reexamined in this context.

Subspecies are a challenge to conservation.— 
Subspecies represent a challenge to conserva-
tion that might be summed up in a relatively sim-
ple way: homogeneity is more easily managed 
than heterogene ity. recognizing the conservation 

Table 1. eighteen species chosen for research by r. M. Zink and colleagues, showing the study, the number of 
subspecies in the focal taxon, total species in the genus, average number of subspecies among species in that 
genus (minus the focal taxon), and whether the focal taxon had the highest number of recognized subspecies in 
the genus. Taxonomy is an amalgam of American Ornithologists’ Union (1998) and Peters et al. (1934–1987).

Source Species
Subspecies 

(n)

Species  
in 

genus  
(n)

Subspecies  
in genus a

Study  
species  
highest

Zink et al. 1987 Callipepla californica 4 5 2.25
Karl et al. 1987 Larus californicus 0 35 0.91
Zink et al. 2002a Dendrocopos major 27 33 5.44 X
Zink et al. 2002b Picoides tridactylus 11 2 — X
Johnson and Zink 1985 Vireo olivaceus (complex) 14 25 2.58
Zink et al. 2000 Polioptila melanura (or californica) 6 8 4.14
drovetski et al. 2004 Troglodytes troglodytes 35 5 12.75 X
Zink et al. 2001 Campylorhynchus brunneicapillus 7 11 3 X
Zink et al. 2003 Luscinia svecica 7 25 1.83
Zink and blackwell- 
 rago 2000

Toxostoma curvirostre 7 10 1.89 X

Pavlova et al. 2003 Motacilla flava 18 9 3.13 X
Zink and Klicka 1990 Geothlypis trichas 13 13 1.75 X
Zink 1988 Pipilo fuscus 18 7 5.5
Zink and dittmann 1993a Spizella passerina 6 6 2.4 X
Zink et al. 2005 Passerculus sandwichensis 21 9 4.25 X
Zink 1994 Passerella iliaca 18 9 9.25
Zink and dittmann 1993b Melospiza melodia 39 9 6.63 X
Zink et al. 1991 Quiscalus quiscula 3 8 4

a Average excluding the focal taxon.
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implications of a taxon that exhibits no structured 
geographic variation (the no-trinomial view) is 
much simpler than responding effectively to the 
complexity that exists when different adaptive 
space is likely occupied by subsets of populations 
(fig. 5). Use of subspecies in this context includes 
an important assumption: that subspecies labels 
are applied to populations that possess unique 
properties in an evolutionary, adaptive sense. 
Although many populations that possess very 
minor differences (i.e., invalidly considered di-
agnosable) have been named as subspecies and 
remain to be eliminated, this is probably a useful 
null hypothesis (see below).

Human imperfections play a considerable role.—
Our own human tendencies have had predict-
able influences on the subspecies phenomenon. 
Sharpe’s concern about the dangers posed by 
authors who lack critical judgment yet are ea-
ger to publish accurately anticipated what Smith 
and White (1956) termed the “mihi” itch of tax-
onomists to describe new taxa, and what Wilson 
and brown (1953) called the “subspecies mill” 
generated a surfeit of names to describe, at times, 
even the most minor differences among museum 
specimens (i.e., differences that are not useful for 

diagnosing populations at levels even less strin-
gent than that of the 75% rule). but the opposite 
side of that proverbial coin—the bracketing hu-
man condition to writing up trivial phenomena— 
is laziness among those not wanting to recog-
nize subspecies because of the work necessary 
to accurately determine and describe geographic 
variation (Smith and White 1956). detailed study 
and description of biological diversity at and be-
low the level of species is fundamentally hard 
work, whether one is performing a pioneering 
study or reevaluating the work of others with 
new data. Knowing that we scientists have both 
of these tendencies might help temper action at 
the extremes.

Unresolved Issues and Philosophy 
 of Science

What is a subspecies?—in summarizing some of 
the key views on subspecies between darwin (1859) 
and now, we might conclude that we have not come 
remarkably far from darwin’s (1859) view that in 
determining the taxonomic rank of a form that is 
near the species level we will have to be guided by 
scientists with judgment and experience.

The debate now is not over binomialism or tri-
nomialism (taxonomy) but over how to diagnose 
and recognize geographically partitioned varia-
tion that may or may not exhibit intergradation. 
Allopatric populations that show comparatively 
minor differences but with no evidence of inter-
gradation are common, especially among islands. 
Parapatric, intergrading populations (e.g., step 
clines) also occur. No species concept can deci-
sively solve this problem; some subjectivity will 
be involved (e.g., Winker et al. 2007).

Allen (1871), in focusing on the fact that in-
tergrading forms should not be considered full 
species, hastened adoption of the acceptance that 
“subspecies are distinguishable forms which in-
tergrade, while species do not intergrade” (Stej-
neger 1884:75; cf. Coues 1871:371–372). in Allen 
(1871) and Coues (1871), one can see the begin-
ning stages of what eventually would comprise 
the AOU’s early views in adopting formal use of 
subspecies (Allen and Coues were members of 
the committee), which were summarized pith-
ily: “in a word, intergradation is the touchstone 
of trinomialism” (AOU 1886:31). This school of 
subspecies was soon enhanced by including dis-
continuous forms that did not intergrade but that 
differed to a degree similar to that found among  

Fig. 5. Subspecies represent a challenge for conser-
vation. The conservation implications of a taxon that 
(A) exhibits no structured geographic variation (the 
no-trinomial view) is a much simpler situation than 
that implied by (b) the more complex adaptive space 
likely occupied when trinomials are applicable.
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parapatric subspecies. As Hartert defined sub-
species in 1903:

We describe as subspecies the geographically 
separated forms of one and the same type, which 
taken together make up a species. Therefore not 
just a small number of differences, but differences 
combined with geographic separation, permit us 
to determine a form as a subspecies, naturally 
when there is general agreement of the main 
characters. (Stresemann 1975:262)

Amadon (1949) felt that if subspecies names 
were applied conservatively they would call at-
tention to geographic variation and incipient 
speciation, which recalls Darwin’s (1859, 1895) 
points quoted above. To help achieve that con-
servatism, he formalized the 75% rule, a popular 
lower limit for the delineation of subspecies. He 
defined this rule

to mean that 75 per cent of a population must be 
separable from all (99+ per cent) of the members 
of overlapping populations to qualify as a subspe-
cies. An equivalent statement is that 97 percent 
of one of two overlapping populations must be 
separable from 97 per cent of the other. (Amadon 
1949:258)

Rand and Traylor (1950) recognized that sub-
species were based on natural phenomena but 
that their delimitation was subjective, and they 
suggested that a less conservative quantitative 
rule be applied: to be recognizable, just 80–90% 
of one subspecies should be separable from the 
same amount of another. Amadon’s (1949) more 
conservative rule seems to be the most widely 
adopted quantitative criterion (e.g., Mayr 1969, 
Patten and Unitt 2002).

Mayr (1982a:289) stated that

A subspecies is now defined as “an aggregate 
of phenotypically similar populations of a spe-
cies, inhabiting a geographic subdivision of the 
range of a species, and differing taxonomically 
from other populations of the species (Mayr, 
1969:41).”

He also considered subspecies to be a category 
of convenience for taxonomists (Mayr 1982a), re-
flecting precisely the views of Darwin (1895:39) 
on the terms applied to what he called this “in-
sensible series” of differentiation. In Mayr’s (1969, 
1982) usage, “differing taxonomically” meant dif-
fering “by sufficient diagnostic morphological 

characters.” He felt that taxonomic differences 
have to be observable in museum specimens 
(Mayr 1951:93) and that “what is taxonomically 
different can be determined only by agreement 
among taxonomists” (Mayr et al. 1953:31). Impor-
tantly, “no nonarbitrary criterion is available to 
define the category subspecies. Nor is the subspe-
cies a unit of evolution, except where it happens 
to coincide with a geographical or other genetic 
isolate” (Mayr 1969:41).

Principles of Systematic Zoology (Mayr 1969, Mayr 
and Ashlock 1991) and its precursor, Methods and 
Principles of Systematic Zoology (Mayr et al. 1953), 
represented one of the most important touchstones 
of animal taxonomy for the second half of the 20th 
century, and they are still heavily used (although 
out of print). These works gave important com-
mon ground to the taxonomic practices among 
researchers working on various animal taxa. Be-
tween Mayr (1969) and Mayr and Ashlock (1991), 
however, there was a decrease in the detail with 
which subspecific diagnoses were treated, reflect-
ing both a greater conservatism in the use and rec-
ognition of the category and the fact that standards 
for recognizing subspecies had become more rig-
orous (Mayr and Ashlock 1991:98). In ornithology 
(and vertebrate taxonomy in general), that rigor 
may be best expressed in the assertion of the 75% 
rule (Mayr et al. 1953, Simpson 1961, Patten and 
Unitt 2002); critically, however, determinations 
still depend on the material available and how it is 
used (e.g., Cicero and Johnson 2006).

Simpson (1961) corrected two misapprehen-
sions about subspecies. First, he stated that they 
are not what he termed “little species” and usually 
are not incipient species: “They are taxa of a mark-
edly different kind from species, and relatively few 
of them will ever become species although some 
are, to be sure, approaching that status” (Simpson 
1961:175). Second, he observed that

subspecies do not express the geographic varia-
tion of the characters of a species and are only 
partially descriptive of that variation. They are 
formal taxonomic population units, usually ar-
bitrary, and cannot express or fully describe the 
variation in those populations any more than clas-
sification in general can express or fully describe 
phylogeny. They are not, for all that, any less use-
ful in discussing variation. (Simpson 1961:175)

Simpson also observed that

When there are semiarbitrary groups in a 
species, their designation as subspecies should 
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hardly raise a question if the data are adequate 
and the taxonomist finds the subspecies valuable 
for his purposes. it is no argument against such 
usage that recognizable subgroups do not occur 
in all species, because the subspecies is a nonob-
ligate category and need not, even in principle, 
be used throughout the whole of a classification. 
(Simpson 1961:173)

Avise (2004:362–363) suggested a phyloge-
netic approach to intraspecific taxonomy that 
united strengths of the biological and phyloge-
netic species concepts, and he proposed that sub-
species are

groups of actually or potentially interbreeding 
populations (normally mostly allopatric) that are 
genealogically highly distinctive from, but repro-
ductively compatible with, other such groups. 
importantly, the empirical evidence for genea-
logical distinction must come, in principle, from 
concordant genetic partitions across multiple, in-
dependent, genetically based molecular (or phe-
notypic; Wilson and brown 1953) traits.

The strongest disagreements over the taxo-
nomic category of subspecies have tended to oc-
cur at both the lower and upper bounds of the 
unit: when does geographic variation become suf-
ficiently partitioned (and in which and how many 
characters) to warrant a named subspecies; and 
when do allopatric populations (recognized as 
subspecies) achieve sufficient differentiation to be 
considered full species? The 75% rule is a widely 
accepted quantitative definition for the lower 
limits (Amadon 1949, Mayr et al. 1953, Simpson 
1961, Mayr 1969, Mayr and Ashlock 1991, Patten 
and Unitt 2002, haig et al. 2006). for the upper 
limits there are a series of now classic compara-
tive criteria in which the phenomena that occur 
at contact zones (e.g., degrees of intergradation or 
hybridization) and/or in similar cases in closely 
related taxa are used to infer subspecies or species 
status (Stresemann 1921 [as translated by haffer 
2007:46], Mayr 1969, Mayr and Ashlock 1991). 
Advances in genetics and the allure of molecular 
taxonomy can provide insights (e.g., Petit and ex-
coffier 2009), but these tools still do not alleviate 
the difficulty of diagnosing allopatric taxa and 
will likely just be added to the taxonomist’s tool-
box and used in traditional ways. These classic 
comparative methods are not an exact methodol-
ogy, nor are they purely objective, but they have 
proved highly effective in zoology for describing 
and categorizing diversity (e.g., remsen 2005).

Biodiversity diagnoses.—in many respects, the 
diagnosis of subspecies is similar to determina-
tions in other fields that are, of necessity, based 
on arbitrary thresholds. importantly, objective 
criteria can be applied to diagnoses of conditions 
that occur on continua and bear arbitrarily deter-
mined thresholds. hey et al. (2003), in discussing 
uncertainties in species determinations, made the 
important observation of parallels in other disci-
plines, but in their limited treatment emphasizing 
the social (or philosophical) over the scientific as-
pects they did not fully develop those parallels.

in biology we work daily with a hierarchical 
scale of differentiation: populations, subspecies, 
species, genera, families, and a succession of 
higher taxonomic categories. Parallels abound 
in everyday phenomena and in our language to 
describe them. There is always some water in the 
air; at what point does it become fog? Or when 
does a heavy fog or a drizzle become rain, or light 
rain become moderate or heavy? When do physi-
cal symptoms become full-blown pneumonia? 
When does a breeze become a wind, and when 
do strong winds become storms, and when do 
storms such as tornadoes and hurricanes reach 
certain force strengths? When is a celestial body 
a planet? in each of these examples we can point 
to genuine cases of rain, pneumonia, wind, and 
planets and recognize that there are precursors 
that do not qualify. As we have seen with sub-
species and planets (Margot 2006), arguing over 
where to place the threshold (and what gets ex-
cluded) can be contentious.

These debates over how to categorize phenom-
ena cannot effectively call into question the exis-
tence of real states that exist along a continuum 
(in the case of subspecies, a biological continuum 
of differentiation). Among cases, discontinuities 
usually exist that help us understand the nature 
of these phenomena. it is left to practitioners to 
work out the finer details of generally agreed-
upon thresholds and diagnoses. Those who do not 
find these details useful are free to ignore them 
and simply use (or not) the products of this work 
(cf. inger 1961 and the comments therein). but for 
those who study these phenomena, or affect (or 
are affected by) them, attention is warranted, and 
the finer details of diagnoses become important. 
And, because biodiversity is not an ephemeral 
phenomenon and is threatened by anthropogenic 
forces, when geographically partitioned variation 
is present it should be properly assessed and, if 
warranted, managed for retention. This latter is 
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in fact legally mandated at critical levels in some 
countries (e.g., U.S. department of the interior and 
U.S. department of Commerce 1996, Committee 
on the Status of endangered Wildlife in Canada 
2005), and subspecies designations can be objec-
tively assessed within multiple legal and biologi-
cal frameworks (e.g., Topp and Winker 2008).

yes, there are many differences among me-
teorologists, astronomers, physicians, and zo-
ologists in subject matter and in methodologies, 
but there are commonalities as well in our efforts 
to diagnose conditions that often exist between 
agreed-upon states. it should not be a surprise 
that meteorologists, physicians, and astronomers 
have professional criteria that they use to make 
their diagnoses. As zoologists we can point to 
clear discontinuities that might tempt us to con-
sider that we are different from these other fields, 
but there are definite similarities when we come to 
the cases that do not fall clearly into one category 
or another, when thresholds and criteria are often 
fervently debated. data, existing and new, and 
reexaminations (second opinions) effectively en-
able us to treat diagnoses as hypotheses. Placing 
thresholds at points along continuous processes 
will always have an arbitrary component, and we 
can expect difficulties when knowledge is incom-
plete or when there are not clear boundaries (hey 
et al. 2003). but we can agree as professionals that 
exemplary, real states exist along such continua 
and that there are professional guidelines to help 
us determine where particular cases fall.

One of the beauties of science is the way in 
which we scientists contribute to determining 
the details of such evolving guidelines. The his-
tory of the subspecies concept exhibits utilitarian 
changes made through time that enhanced both 
the concept’s usefulness and its acceptability 
among professionals. interestingly, and not sur-
prisingly, a similar process occurred in the defi-
nition and widespread adoption of the beaufort 
Scale, which is used to categorize air movements 
when reporting the weather (huler 2004). if the 
past 150 years are any indication, we can look for-
ward to a continued spirited discussion of sub-
species as a long-recognized state in the processes 
of adaptation and speciation and in the state of 
biodiversity.

What does subspecific variation mean?—There are 
two aspects to the question of what subspecific 
variation means: the conceptual tool itself and 
the phenomena that cause the variation that it 
attempts to categorize. With regard to the labels, 

subspecies represent a heterogeneous assemblage 
of units, reflecting the nomenclatural application 
of denoting differences; this has been true since 
the inception of the concept (see above). Although 
the application of subspecific names needs ongo-
ing reevaluation, even an ideal taxonomy will not 
change this unresolvable aspect of subspecies; for 
example, it is not possible to make them all what 
Simpson (1961) termed “little species.” Also, as 
long as data remain incomplete, the hypothetical 
ideal taxonomy of one moment will continue to 
undergo change as our data and science improve.

With respect to the variation that these labels 
attempt to denote, a deceptively simple answer is 
that such variation represents evolutionary and 
developmental responses to geographically het-
erogeneous phenomena (biotic and abiotic). The 
phenomena involved in creating geographically 
partitioned variation are the very building blocks 
of biological evolution, the details of which re-
main the basis for research programs throughout 
evolutionary biology. As we know, differentiation 
can be affected by geography (e.g., isolation-by-
distance, parapatry, allopatry, and their effects on 
gene flow), by selection (natural and sexual), and 
by neutral processes (e.g., mutation and lineage 
sorting or drift). Added to this are uncertain in-
fluences from environmental effects and develop-
mental plasticity. At present it is safe to say that, 
except perhaps in a very few well-studied in-
stances, we cannot accurately predict how these 
phenomena are responsible for any specific case 
of partitioned phenotypic variation in wild popu-
lations. Not knowing the answer at this level of 
detail, however, is not particularly problematic. 
Although we can answer this question only in the 
broadest terms, the fact that we can only rarely 
provide a highly detailed answer is more an in-
dication of the exciting research to be done at the 
subspecific level than a problem of the concept 
itself.

it seems that, to a considerable degree, the de-
bate over the subspecies concept comes from not 
being satisfied with this broad answer and yet not 
having, or being able to develop, a detailed one 
in a particular system or organismal group. This 
philosophical discord has often stemmed from 
discord in data sets, for example among those 
studying some attribute of subspecific variation 
and finding that their focus does not accord with 
the named subspecies of a previous worker. This 
has perhaps never been as pronounced as with 
the advent of genetic data. however, at shallow 
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levels of divergence, small genetic data sets in 
which variation is largely dominated by neutral 
or near-neutral processes (Kimura 1983, Ohta 
2002) should be expected to be discordant with 
phenotypic data sets, in which variation is likely 
dominated by processes that are not selectively 
neutral. Thus, evidence of decoupled genotypic 
and phenotypic marker systems may not be par-
ticularly informative when using one data type to 
ask questions of the other at species and subspe-
cies levels.

however, as genomic data sets have improved, 
the genetic bases (protein coding and regulatory) 
for local, intraspecific adaptation are being re-
vealed in many taxa (Mitchell-Olds et al. 2007). 
further, phenotypic attributes of the sort used to 
describe subspecies are being shown to be adap-
tive (Mumme et al. 2006) and genetically based 
(hoekstra et al. 2006). Genomic studies suggest 
that changes in color intensity (often an impor-
tant attribute of described subspecies) can be ge-
netically simple, but pattern changes are likely to 
involve cis-regulatory elements and mosaically 
pleiotropic loci rather than coding-sequence 
changes (Carroll 2008). further, interspecific 
morphological differences appear to involve cis- 
regulatory element changes more than intraspe-
cific ones do, which led Stern and Orgogozo 
(2008) to conclude that speciation causes fixation 
of a certain subset of the genetic variation that 
causes phenotypic variation within species. This 
not only echoes Simpson’s (1961), Mayr’s (1969), 
and others’ views that only some subspecies will 
become species, but it provides us with important 
tools and hypotheses for examining the genetic 
bases of partitioned geographic variation and 
understanding them in a better collective sense 
in relation to speciation. And we should not lose 
sight of what a rich harvest subspecies and their 
characteristics can continue to provide for these 
frontiers of research in evolutionary biology.

how frequently might neutral phenotypic 
variation occur among populations? We do not 
know. remsen (1984) demonstrated that among 
subspecies of many birds in the Andes of South 
America, there is a pronounced stochasticity in 
the among-species distributions of a leapfrog 
pattern of subspecific variation in plumage color 
and pattern. This led him to conclude that pheno-
typic differentiation at this scale had a strongly 
random component (remsen 1984). even though 
leapfrog patterns of subspecific variation are rare, 
the stochastic component to geographic variation 

that remsen’s study revealed confirms that evo-
lution within populations can proceed at different 
rates and in different directions; it does not tell us 
how (or whether) selection (natural and sexual) 
within the subspecies involved has affected these 
processes or their outcomes. if multiple charac-
ters are involved, the role for selection is likely 
enhanced.

The question of neutral phenotypic evolution 
at the population and subspecies levels remains 
open, but even a putatively exemplary case for 
neutral phenotypic evolution has proved with 
greater study to be driven instead by selection 
(Schemske and bierzychudek 2007). We cannot 
blindly attribute all partitioned phenotypic varia-
tion to local adaptation (which historically oc-
curred to excess; Gould and lewontin 1979, Mayr 
1983), because factors such as environment and 
developmental plasticity can cause divergence 
between populations. The influences of these 
factors are not yet well understood, but progress 
is being made (Price et al. 2003, West-eberhard 
2003, Suzuki and Nijhout 2007). Two things are 
important to realize. first, phenotypic variation 
caused by environmental factors and the devel-
opmental plasticity underlying it can be under 
selection and be adaptive (James 1991, West- 
eberhard 2003). Second, the processes of diver-
gence are dominated more by selection than by 
neutral changes (Coyne and Orr 2004). Partitioned 
phenotypic variation in multiple characters is 
likely to reflect partitioned genetic variation and 
thus extend into unmeasured attributes of popu-
lations; thus, even if the characters used to define 
a particular subspecies should prove not to be 
under local adaptive selection, they may well be 
concordant with such.

Looking Forward

recognition of the reality of geographically 
partitioned phenotypic variation within species 
is so ubiquitous that biologists confront it daily, 
from the legal and ethical promotion of protect-
ing and enhancing diversity (even within hu-
mans) to taxonomic nomenclature (iCZN 1999). 
That this phenotypic reality is not predictably 
variable using simple tools (e.g., mtdNA data or 
other single-character attributes) is the problem 
of the tools and the practitioners, not of the con-
cept of partitioned intraspecific variation.

Subspecies represent a rather crude depiction 
of among-population patterns without regard to 
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the processes underlying the geographic varia-
tion they attempt to describe. Two convenient 
ways to consider subspecies are as hypotheses 
and as taxonomic bookmarks. both views allow 
one to proceed with the understanding that a 
presumed expert found sufficient variation that 
“something more should be done than merely to 
lock together into one heterogeneous fold forms 
so different” (T. Gill, in Coues 1884). As with all 
scientific hypotheses, such determinations are 
subject to further study and testing. And as with 
bookmarks, subspecific labels highlight items of 
note below the species level.

Perhaps the most useful academic purpose to 
which subspecific variation has been put is as a 
frame of reference for posing questions about ani-
mals and evolution. The most practical purpose is 
undoubtedly to describe biodiversity and, since 
the mid-20th century, to focus management and 
conservation efforts upon intraspecific units above 
the level of populations but below the level of spe-
cies. in both cases, an often unspoken assumption 
is that the partitioned morphological variation 
upon which subspecies are based reflects an adap-
tive component—that these populations, although 
not fully species, possess unique attributes with 
local adaptive value. Whether the variation that 
subspecies denote reflects important local adapta-
tion is an unresolved issue, but increasing evidence 
suggests that we would be safer in both basic and 
applied biology not to dismiss such an assump-
tion outright. indeed, our null hypothesis should 
be that subspecific differentiation is indicative of 
local adaptation, not the converse.

if we think of partitioned geographic variation 
as a species’ fit to a variable environmental (and 
adaptive) landscape (a natural extension of the 
null hypothesis that such variation reflects local 
adaptation), then we can gain insights both into 
the processes of biological divergence and, from 
the applied perspective, into the likely retention of 
biodiversity during periods of global change. On 
a global scale, populations are currently so chal-
lenged by anthropogenically forced environmen-
tal changes that we would be foolish indeed if we 
failed to recognize that trying to maintain a fit to a 
variety of geo-environmental facets is a better ap-
proach than one-size-fits-all. it would be a grave 
mistake to think that subspecific variation that 
does not lead to speciation is not of evolutionary 
importance; such variation might be critical for re-
silience and persistence, preventing extinction of 
existing species during episodes of environmental 

change. it would also be a mistake to think that, 
if lost, such variation could be regenerated under 
similar environmental conditions.

Although for over half a century we have 
had wide acceptance of a quantified lower limit 
for subspecific recognition (the 75% rule; Ama-
don 1949, Mayr et al. 1953, Simpson 1961, Mayr 
1969, Mayr and Ashlock 1991, Patten and Unitt 
2002, haig et al. 2006), this limit became widely 
accepted after most avian subspecies had been 
described (remsen, this volume). further, accep-
tance of this quantified approach grew during a 
period of waning traditional taxonomy and a de-
cline in the collection of specimens upon which 
this research is based (e.g., Winker 1996). inas-
much as the simple description of biodiversity is 
no longer considered cutting-edge research, some 
might be tempted to dismiss the entire subject as 
a historical fad that has little place in modern sci-
ence. That would be an error. in fact, the underly-
ing reasons for studying such subjects have never 
been stronger. in the past few decades, we have 
experienced not only a resurgence in systematics, 
but also robust growth in evolutionary and con-
servation biology and ecology as well as increased 
interdisciplinarity in wildlife biology. in addition, 
entirely new disciplines such as phylogeography 
(Avise 2000) and landscape genetics (Manel et al. 
2003, holdregger and Wagner 2006) continue to 
provide a modern cachet to the fundamental as-
pects of geographic variation that caused the sub-
species concept to be developed in the first place. 
Subspecific variation in each of these areas is core 
material; it may only be taxonomic housekeeping 
that has not been kept up.

Using subspecies to help us understand funda-
mental aspects of biological differentiation, a long-
standing tradition (remsen 1984), continues in 
fields as diverse as ecology, evolutionary biology, 
wildlife management, and genetics, demonstrat-
ing both that subspecies retain heuristic value in 
research and that they are indeed often correlated 
with phenomena of longstanding interest. for ex-
ample, belliure et al. (2000) found that dispersal 
distances in birds were correlated with subspecies 
richness. irwin et al. (2001, 2005), focusing on the 
classic case of the ring species in Phylloscopus tro-
chiloides (Mayr 1942b), showed how song (a trait 
used in mate choice) exhibited parallel changes 
concordant with subspecific divergence as the ring 
progressed north into Siberia and that genetic evi-
dence supported a cessation of gene flow between 
these most-diverged populations. Sol et al. (2005) 
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found that among holarctic passerines, species 
with relatively larger brains tended to have more 
subspecies; these authors used subspecies as an 
index of intraspecific phenotypic diversification 
and relative brain size as a correlate of a pro-
pensity for behavioral changes, and their results 
strongly implicate behavioral change as a driving 
force in evolutionary diversification. in a global 
survey of avian subspecies, Phillimore and Ow-
ens (2006) found that ~36% were phylogenetically 
distinct (monophyletic with respect to individu-
als of different subspecies when using mtdNA 
sequence data), and further study revealed that 
biogeographic factors such as breeding range and 
habitat heterogeneity explained ~30% of subspe-
cies richness (Phillimore et al. 2007). Also using 
subspecies, Martin and Tewksbury (2008) found 
that phenotypic differentiation within bird species 
is greater at lower latitudes, which fits evolution-
ary hypotheses for the latitudinal gradient in spe-
cies diversity. darwin (1859) was right in pointing 
out the importance of subspecies, and these and 
other recent efforts (e.g., see Price 2008) continue 
to show this.

Martin and Tewksbury (2008) summarized 
three lines of evidence that support using sub-
species as an index of divergence in speciation 
research. The first, that subspecific variation 
ranges from subtle character differences to that 
approaching allopatric species and therefore re-
flects intermediate stages in the process, has been 
a mainstay of the use of subspecies in this context 
since darwin (1859). The second, that ring spe-
cies show the temporal progression of speciation 
with subspecific differentiation accruing to the 
point of reproductive isolation at the tips, has 
been another important focus in evolutionary bi-
ology (Mayr 1942b, 1963; irwin et al. 2001, 2005; 
Coyne and Orr 2004). Their third point, which 
they demonstrated, is that the maximum number 
of subspecies in a species within a genus cova-
ries positively with the number of species in that 
genus, which likely indicates that a lineage’s pro-
pensity to differentiate is an attribute that it holds 
for a substantial period of evolutionary time (well 
through the speciation process and observable at 
the subspecies level).

because in using subspecies we are trying to 
label and understand something that occurs at an 

interval along an inherently continuous process 
(divergence and differentiation), incomplete data 
and differing views, not to mention disagreement 
on species concepts, combine to produce ongoing 
debates about what subspecies are, what they re-
flect, and whether a particular example is one or 
not. but this debate can overthrow neither the bio-
logical reality that the concept embodies nor the 
utility that it has demonstrated for over 150 years.

both hypothesis testing and descriptive (dis-
covery science) approaches to our study of bio-
diversity continue to make subspecies useful. 
Consequently, the use of subspecies in ornithol-
ogy remains strong. for example, major works 
such as del hoyo et al. (1992–2008), dickinson 
(2003), Poole and Gill (1992–2002), Cramp et al. 
(1977–1994), and Marchant et al. (1990–2006) all 
used the biological species concept and treated 
polytypic species at the subspecific level. Al-
though the AOU has not given detailed treatment 
to the subspecies of North American birds since 
1957 (AOU 1957), its commitment to that level of 
diversity remains strong (AOU 1986, 1998; AOU 
Check-list Committee pers. comm.). indeed, le-
gally mandated management obligations are be-
ginning to push back on this neglect, and not just 
in birds (e.g., haig et al. 2006). Moreover, there 
are hundreds of papers published each year in 
peer-reviewed journals with subspecies as a topic 
(haig and Winker, this volume).

Subspecies have enthralled and frustrated zo-
ologists—and especially ornithologists—since the 
inception of the concept. To rail against this con-
cept, however, is as ineffective as railing against 
the wind. Subspecies have been and remain an 
important conceptual tool—and a taxonomic 
label—that can help zoologists categorize, study, 
and conserve biodiversity. As eternally contro-
versial as politics, subspecies will likely remain 
integral to research and management in zoology.
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