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Abstract

We describe the basic principles of ranking and selection, a collection of experiment-
design techniques for comparing “populations” with the goal of finding the best
among them. We then describe the challenges and opportunities encountered in
adapting ranking-and-selection techniques to stochastic simulation problems, along
with key theorems, results and analysis tools that have proven useful in extending
them to this setting. Some specific procedures are presented along with a numerical
illustration.

1 Introduction

Over the last twenty years there has been considerable effort expended to de-
velop statistically valid ranking-and-selection (R&S) procedures to compare a
finite number of simulated alternatives. There exist at least four classes of com-
parison problems that arise in simulation studies: selecting the system with
the largest or smallest expected performance measure (selection of the best),
comparing all alternatives against a standard (comparison with a standard),
selecting the system with the largest probability of actually being the best
performer (multinomial selection), and selecting the system with the largest
probability of success (Bernoulli selection). For all of these problems, a con-
straint is imposed either on the probability of correct selection (PCS) or on
the simulation budget. Some procedures find a desirable system with a guar-
antee on the PCS, while other procedures maximize the PCS under the budget
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constraint. Our focus in this chapter is on selection-of-the-best problems with
a PCS constraint. A good procedure is one that delivers the desired PCS effi-
ciently (with minimal simulated data) and is robust to modest violations of its
underlying assumptions. Other types of comparison problems and procedures
will be discussed briefly in Section 7. In this chapter “best” means maximum
expected value of performance, such as expected throughput or profit.

Traditional roles for R&S are selecting the best system from among a (typi-
cally small) number of simulated alternatives and screening a relatively large
number of simulated alternatives to quickly discard those whose performance
is clearly inferior to the best. More recently, R&S procedures are playing an
important role in optimization via simulation. Many algorithms for optimiza-
tion via simulation search the feasible solution space by some combination of
randomly sampling solutions and exploring the neighborhood of good solu-
tions (see Chapters 18–21). R&S procedures can be embedded within these
algorithms to help them make improving moves correctly and efficiently. In
addition, at the end of an optimization-via-simulation search, R&S procedures
can be applied to those solutions that were visited by the search to provide a
statistical guarantee that the solution returned as best is at least the best of
all the solutions actually simulated. See, for instance, Boesel et al. (2003) and
Pichitlamken and Nelson (2001) for more on the application of R&S in this
context.

Rather than present a comprehensive survey of R&S procedures, or provide a
guide for applying them, our goal is to explain how such procedures are con-
structed, emphasizing issues that are central to designing procedures for com-
puter simulation, and reviewing some key theorems that have proven useful in
deriving procedures. We do, however, present three specific R&S procedures
as illustrations. See Goldsman and Nelson (1998) and Law and Kelton (2000)
for detailed “how to” guides, Bechhofer et al. (1995) for a comprehensive sur-
vey of R&S procedures, and Hochberg and Tamhane (1987) or Hsu (1996) for
closely related multiple comparison procedures (MCPs).

The chapter is organized as follows: In Section 2 we show how R&S procedures
are derived in an easy, but unrealistic, setting. Section 3 lists the challenges
and opportunities encountered in simulation problems, along with key the-
orems and results that have proven useful in extending R&S procedures to
this setting. Three specific procedures are presented in Section 4, followed by
a numerical illustration in Section 5. Section 6 reviews asymptotic analysis
regimes for R&S. Section 7 describes other formulations of the R&S problem
and gives appropriate references. Section 8 closes the chapter by speculating
on future research directions in this area.
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2 Basics of Ranking and Selection

In this section we employ the simplest possible setting to illustrate how R&S
procedures address comparison problems. This setting (i.i.d. normal data with
known, common variance) allows us to focus on key techniques before moving
on to the technical difficulties that arise in designing procedures for realistic
simulation problems.

R&S traces its origins to two papers: Bechhofer (1954) established the indifference-
zone formulation, while Gupta (1956, 1965) is credited with the subset selec-
tion formulation of the problem. Both approaches are reviewed in this section,
and both were developed to compensate for the limited inference provided
by hypothesis tests for the homogeniety of k population parameters (usually
means). In many experiments, rejecting the hypothesis H0 : µ1 = µ2 = · · · =
µk, where µi is the parameter associated with the ith population, leads natu-
rally to questions about which one has the largest or smallest parameter. R&S
tries to answer such questions. MCPs also provide inference beyond rejection
of homogeniety; there is a close connection between R&S and MCPs, as we
demonstrate later.

Suppose that there are k systems. Let Xij represent the jth output from
system i and let Xi = {Xij ; j = 1, 2, . . .} denote the output sequence from
system i. In this section, we assume that the Xij are i.i.d. normal with means
µi = E[Xij] and variances σ2

i = Var[Xij]. Further, we assume that the pro-
cesses X1,X2, . . . ,Xk are mutually independent, and the variances are known
and equal; that is, σ2

1 = σ2
2 = · · · = σ2

k = σ2. These are unrealistic assumptions
that will be relaxed later, but we adopt them here because we can derive R&S
procedures in a way that illustrates the key issues. Throughout the chapter
we assume that a larger mean is better, and we let µk ≥ µk−1 ≥ · · · ≥ µ1, so
that (unknown to us) system k is the best system.

2.1 Subset-Selection Formulation

Suppose that we have n outputs from each of the systems. Our goal is to use
these data to obtain a subset I ⊆ {1, 2, . . . , k} such that

Pr{k ∈ I} ≥ 1 − α (1)

where 1/k < 1 − α < 1. Ideally |I| is small, the best case being |I| = 1.
Gupta’s solution was to include in the set I all systems ` such that

X̄`(n) ≥ max
i 6=`

X̄i(n) − hσ

√
2

n
(2)
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where X̄i(n) is the sample mean of the (first) n outputs from system i, and h
is a constant whose value will depend on k and 1−α. The proof that rule (2)
provides guarantee (1) is instructive and shows what the value of h should be:

Pr{k ∈ I}=Pr



X̄k(n) ≥ max

i 6=k
X̄i(n) − hσ

√
2

n





=Pr



X̄k(n) ≥ X̄i(n) − hσ

√
2

n
,∀i 6= k





=Pr





X̄i(n) − X̄k(n) − (µi − µk)

σ
√

2/n
≤ h − (µi − µk)

σ
√

2/n
,∀i 6= k





≥Pr {Zi ≤ h, i = 1, 2, . . . , k − 1} = 1 − α

where (Z1, Z2, . . . , Zk−1) have a multivariate normal distribution with means
0, variances 1, and common pairwise correlations 1/2. Therefore, to provide
the guarantee (1), h needs to be the 1−α quantile of the maximum of such a
multivariate normal random vector, a quantile that turns out to be relatively
easy to evaluate numerically. Notice the inequality in the final step where we
make use of the fact that µk ≥ µi.

A theme that runs throughout much of R&S is first using appropriate standard-
ization of estimators and then bounding the resulting probability statements in
such a way that a difficult multivariate probability statement becomes one that
is readily solvable.

2.2 Indifference-Zone Formulation

A disadvantage of the subset-selection procedure in Section 2.1 is that the
retained set I may, and likely will, contain more than one system. However,
there is no procedure that can guarantee a subset of size 1 and satisfy (1) for
arbitrary n. Even when n is under our control, as it is in computer simulation,
the appropriate value will depend on the true differences µk − µi,∀i 6= k. To
address this problem, Bechhofer (1954) suggested the following compromise:
guarantee to select the single best system, k, whenever µk − µk−1 ≥ δ, where
δ > 0 is the smallest difference the experimenter feels is worth detecting.
Specifically, the procedure should guarantee

Pr{select k|µk − µk−1 ≥ δ} ≥ 1 − α (3)

where 1/k < 1 − α < 1. If there are systems whose means are within δ of
the best, then the experimenter is “indifferent” to which of these is selected,
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leading to the term indifference-zone (IZ) formulation.

The procedure is as follows: From each system, take

n =

⌈
2h2σ2

δ2

⌉
(4)

outputs, where h is an appropriate constant (determined below) and dxe means
to round x up; then select the system with the largest sample mean as the
best. Assuming µk − µk−1 ≥ δ,

Pr{select k}= Pr
{
X̄k(n) > X̄i(n),∀i 6= k

}

= Pr





X̄i(n) − X̄k(n) − (µi − µk)

σ
√

2/n
< −(µi − µk)

σ
√

2/n
,∀i 6= k





≥Pr





X̄i(n) − X̄k(n) − (µi − µk)

σ
√

2/n
<

δ

σ
√

2/n
,∀i 6= k





≥Pr





X̄i(n) − X̄k(n) − (µi − µk)

σ
√

2/n
< h,∀i 6= k





= Pr {Zi < h, i = 1, 2, . . . , k − 1} = 1 − α

where again (Z1, Z2, . . . , Zk−1) has a multivariate normal distribution with
means 0, variances 1, and common pairwise correlations 1/2, implying h needs
to be the 1−α quantile of the maximum of such a multivariate normal random
vector.

Notice that the first inequality results from the assumption that µk − µk−1 ≥
δ, while the second occurs because

√
n ≥

√
2hσ/δ. Both of these tricks are

standard: the first frees the probability statement of dependence on the true
means, while the second frees it of dependence on the value of the variance.

It is worth noting that, over all configurations of the true means such that
µk − µk−1 ≥ δ, the configuration µi = µk − δ,∀i 6= k minimizes the PCS; it
is therefore known as the least-favorable configuration (LFC). In this chapter
we break from the statistics literature in that we will not be concerned with
identifying the LFC; our only interest is insuring that (3) is met.

Bechhofer’s procedure is essentially a power calculation: how large a sample is
required to detect differences of at least δ? When true differences are greater
than δ, Bechhofer’s n may be much larger than needed. By taking observa-
tions and making decisions sequentially, it is often possible to reach an earlier
decision. Sequential selection procedures can be traced back at least to Wald
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(1947), but here we present a procedure due to Paulson (1964) that better
illustrates the approach that has had the most impact in computer simula-
tion. Paulson’s procedure takes observations fully sequentially—meaning one
at a time—and eliminates systems from continued sampling when it is sta-
tistically clear that they are inferior. Thus, simulation for a problem with a
single dominant alternative may terminate very quickly.

Using the same notation as above, let X̄i(r) be the sample mean of the first
r outputs of system i. At each stage r = 1, 2, . . . , n, one output is taken from
each system whose index is in I, where initially I = {1, 2, . . . , k}. At stage r,
system ` is retained in I only if

X̄`(r) ≥ max
i∈I

X̄i(r) − max{0, a/r − λ} (5)

where a > 0 and 0 < λ < δ are constants to be determined, and n = ba/λc,
with b·c meaning round down. The procedure ends when |I| = 1, which re-
quires no more than n + 1 stages. Parallels with Gupta’s subset selection
and Bechhofer’s IZ ranking are obvious: At each stage a subset selection is
performed, with the hedging factor (a/r − λ) decreasing as more data are
obtained. In the end, if the procedure makes it that far, the system with the
largest sample mean is selected.

The following result is used to establish the PCS: Suppose Z1, Z2, . . . are i.i.d.
N(µ, σ2) with µ < 0. Then it can be shown that

Pr
{
Z̄(r) >

a

r
, for some r < ∞

}
≤ exp

(
2µ

σ2
a
)

. (6)

This result is a consequence of Wald’s lemma (Wald, 1947, p. 146). Large
deviation results, frequently based on the analysis of approximating Brownian
motion processes, are central to the design of fully sequential procedures that
involve frequent looks at the data.

The approach in this case is to bound the probability of an incorrect selection
(ICS). An ICS event occurs if system k is eliminated at some point during the
procedure. Let Pr{ICSi} be the probability of an incorrect selection if only
systems i and k are included in the competition.

The first key inequality is

Pr{ICS} ≤
k−1∑

i=1

Pr{ICSi}. (7)
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Decomposition into some form of paired comparisons is a key step in many
sequential procedures.

This decomposition allows us to focus only on Pr{ICSi}. Notice that

Pr{ICSi}
≤Pr

{
X̄k(r) < X̄i(r) + λ − a/r, for some r ≤ n + 1

}

= Pr
{
X̄i(r) − X̄k(r) + λ > a/r, for some r ≤ n + 1

}

≤Pr
{
X̄i(r) − X̄k(r) + λ > a/r, for some r < ∞

}

≤ exp

(
(µi − µk + λ)

σ2
a

)

≤ exp

(
(λ − δ)

σ2
a

)
.

The third inequality comes from the large deviation result (6), while the fourth
inequality exploits the indifference-zone assumption. If we set

a = ln

(
k − 1

α

)
σ2

δ − λ
(8)

then Pr{ICSi} ≤ α/(k − 1) and

Pr{ICS} ≤ (k − 1)
α

(k − 1)
= α.

2.3 Connection to Multiple Comparisons

MCPs approach the comparison problem by providing simultaneous confidence
intervals on selected differences among the systems’ parameters. Hochberg and
Tamhane (1987) and Hsu (1996) are good comprehensive references. As noted
by Hsu (1996, pp. 100-102), the connection between R&S and MCPs comes
through multiple comparisons with the best (MCB). MCB forms simultaneous
confidence intervals for µi − max 6̀=i µ`, i = 1, 2, . . . , k, the difference between
each system and the best of the rest. Specialized to the known-variance case,
the intervals take the form

µi − max
6̀=i

µ` ∈

−


X̄i(n) − max

6̀=i
X̄`(n) − hσ

√
2

n




−

,
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X̄i(n) − max

6̀=i
X̄`(n) + hσ

√
2

n




+
 (9)

where h is the same critical value used in Bechhofer’s and Gupta’s proce-
dures, −x− = min{0, x} and x+ = max{0, x}. Under our assumptions these k
confidence intervals are simultaneously correct with probability ≥ 1 − α.

Consider the set I containing the indices of all systems whose MCB upper
confidence bound is greater than 0. Thus, for i ∈ I,

X̄i(n) > max
6̀=i

X̄`(n) − hσ

√
2

n

meaning these are the same systems that would be retained by Gupta’s subset-
selection procedure. Since µk − max 6̀=k µ` > 0, and these intervals are simul-
taneously correct with probability ≥ 1 − α, system k will be in the subset
identified by the MCB upper bounds with the required probability.

Now suppose that n has been selected such that n ≥ 2h2σ2/δ2, implying that

hσ

√
2

n
≤ δ

as in Bechhofer’s procedure. Let B be the index of the system with the largest
sample mean. Then the MCB lower bounds guarantee with probability ≥ 1−α
that

µB − max
6̀=B

µ` ≥−

X̄B(n) −max

6̀=B
X̄`(n) − hσ

√
2

n




−

≥−δ.

The final inequality follows because X̄B(n)−max 6̀=B X̄`(n) ≥ 0 by the defini-

tion of B, and hσ
√

2/n ≤ δ because of our choice of n. This establishes that
the system selected by Bechhofer’s procedure is guaranteed to be within δ of
the true best, with probability ≥ 1−α, under any configuration of the means.
Further, if µk − µk−1 > δ, then Pr{B = k} ≥ 1 − α as required.

As a consequence of this analysis both Bechhofer’s and Gupta’s procedures
can be augmented with MCB confidence intervals “for free,” and Bechhofer’s
procedure is guaranteed to select a system within δ of the best. Nelson and
Matejcik (1995) establish very mild conditions under which these results hold
for far more general R&S procedures.
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3 Simulation Issues and Key Results

In the previous section we illustrated different approaches to the R&S prob-
lem under assumptions such as independence, normality, and known and equal
variances. Unfortunately, such assumptions rarely hold in simulation experi-
ments. There are also opportunities available in simulation experiments that
are not present in physical experiments. In the following subsections we de-
scribe these issues and opportunities, and present key theorems and results
that have been useful in deriving R&S procedures that overcome or exploit
them.

3.1 Unknown and Unequal Variances

Unknown and unequal variances across alternatives is a fact of life in system
simulation problems, and the variances can differ dramatically. In the simple
inventory model presented in Section 5 the ratio of the largest to smallest
variance is almost 4.

There are many subset-selection procedures that permit an unknown, com-
mon variance (see Goldsman and Nelson 1998 for one). When variances are
unknown and unequal, however, the subset-selection problem is essentially
equivalent to the famous Behrens-Fisher problem. One approach is to work
with the standardized random variables

X̄i(n) − X̄k(n) − (µi − µk)
(

S2
i

n
+

S2
k

n

)1/2
, i = 1, 2, . . . , k − 1 (10)

where S2
i is the sample variance of the outputs from system i. Neither the joint

nor marginal distributions of these quantities are conveniently characterized. If
we break the required joint probability statement up into statements about the
individual terms, using techniques described below, then there are at least two
solutions available. Welch (1938) suggested approximating each term in (10) as
having a tν̂ distribution, where the degrees of freedom ν̂ is an approximation
based on the values of S2

i and S2
k . Banerjee (1961) proposed a probability

bound that we specialize to our case:

Theorem 1 (Banerjee 1961) Suppose Z is N(0, 1) and independent of Yi

and Yk, which are themselves independent χ2
ν random variables. Then for ar-

bitrary but fixed 0 ≤ γ ≤ 1,

Pr

{
Z2

γ Yi

ν
+ (1 − γ)Yk

ν

≤ t21−α/2,ν

}
≥ 1 − α (11)
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where t1−α/2,ν is the 1 − α/2 quantile of the t distribution with ν degrees of
freedom.

To employ Banerjee’s inequality in our context, identify

Z =
X̄i(n) − X̄k(n) − (µi − µk)

(
σ2

i

n
+

σ2
k

n

)1/2

and

γ
Yi

ν
+ (1 − γ)

Yk

ν
=

S2
i

n
+

S2
k

n
σ2

i

n
+

σ2
k

n

=

(
σ2

i

σ2
i + σ2

k

)
S2

i

σ2
i

+

(
σ2

k

σ2
i + σ2

k

)
S2

k

σ2
k

.

This inequality is used in Procedure NSGS presented in Section 4.

For some time it has been known that it is not possible to provide a guar-
anteed PCS, in the IZ sense, with a single stage of sampling when variances
are unknown (see Dudewicz 1995 for a comprehensive discussion of this re-
sult). Thus, practically useful IZ procedures work sequentially—meaning two
or more stages of sampling—with the first stage providing variance estimates
that help determine how much, if any, additional sampling is needed in the
succeeding stages. However, one cannot simply substitute variance estimators
into Bechhofer’s or Paulson’s procedures and hope to achieve a guaranteed
PCS. Instead, the uncertainty in the variance estimators enters into the deter-
mination of the sample sizes, invariably leading to more sampling than would
take place if the variances were known.

A fundamental result in parametric statistics is the following: If X1,X2, . . . ,Xn

are i.i.d. N(µ, σ2), then X̄ and S2 are independent random variables. The result
extends in the natural way to random vectors Xj that are multivariate normal.
An extension of a different sort, due to Stein (1945), is fundamental to R&S
procedures with unknown variances:

Theorem 2 (Stein 1945) Suppose X1,X2, . . . ,Xn are i.i.d. N(µ, σ2), and
S2 is σ2χ2

ν/ν and independent of
∑n

i=1 Xj and of Xn+1,Xn+2, . . . .

(1) If N ≥ n is a function only of S2 then

X̄(N) − µ

S/
√

N
∼ tν. (12)
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(2) If ξ > 0 and

N = max

{⌈
S2

ξ2

⌉
, n + 1

}

then for any weights w1, w2, . . . , wN satisfying
∑N

j=1 wj = 1, w1 = w2 =

· · · = wn, and S2∑N
j=1 w2

j = ξ2 we have

∑N
j=1 wjXj − µ

ξ
∼ tν . (13)

In the usual case where S2 is the sample variance of the first n observations,
ν = n−1. The importance of this result in R&S is that it allows determination
of a sample size large enough to attain the desired power against differences
of at least δ without requiring knowledge of the process variance.

If comparisons of only k = 2 systems were necessary, then Stein’s result would
be enough (at least in the i.i.d. normal case). But our problem is multivariate
and requires joint probability statements about

X̄i(Ni) − X̄k(Nk) − (µi − µk)

Sik
, i = 1, 2, . . . , k − 1 (14)

where S2
ik is a variance estimate of the difference between systems i and k

based on an initial sample of size (say) n, and Ni and Nk are the final sample
sizes from systems i and k. The joint distribution of these random variables
is quite messy in general, even if all systems are simulated independently (as
we assume in this section). One approach is to condition on Sik and X̄k(Nk)
and apply inequalities such as the following to bound the joint probability:

Theorem 3 (Kimball 1951) Let V1, V2, . . . , Vk be independent random vari-
ables, and let gj(v1, v2, . . . , vk), j = 1, 2, . . . , p, be nonnegative, real-valued
functions, each one nondecreasing in each of its arguments. Then

E




p∏

j=1

gj(V1, V2, . . . , Vk)


 ≥

p∏

j=1

E [gj(V1, V2, . . . , Vk)] .

Kimball’s theorem is actually only for the case k = 1; see Hochberg and
Tamhane (1987) for the extension.

Theorem 4 (Slepian 1962) Let (Z1, Z2, . . . , Zk) have a k-variate normal
distribution with zero mean vector, unit variances, and correlation matrix
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R = {ρij}. Let ξ1, ξ2, . . . , ξk be some constants. If all the ρij ≥ 0, then

Pr

{
k⋂

i=1

(Zi ≤ ξi)

}
≥

k∏

i=1

Pr{Zi ≤ ξi}.

Notice that, conditional on the S2
ik, the terms in (14) are positively correlated

(due to the common X̄k(Nk) term), providing the opening to apply Slepian’s
inequality. Kimball’s inequality then can be applied to simplify the uncondi-
tioning on S2

ik. Both of these ideas are employed in the design of Procedure
NSGS in Section 4.

3.2 Initial Sample Size Problem

When variances are unknown, then at least two stages of sampling are required
to deliver a guaranteed PCS. In a typical two-stage R&S procedure, such as
Rinott’s (1978) procedure, the total sample size required of, say, system i is:

Ni = max



n0,




(
hSi

δ

)2





 (15)

where h = h(k, 1−α, n0) is a constant determined by k, the number of systems
being compared; 1−α, the desired confidence level; and n0, the number of first-
stage observations used to produce the variance estimator, S2

i . The constant
h increases in k, and decreases in α and n0. The experiment design factor that
is under our control is n0.

Figure 1 presents the typical form of E[Ni] as a function of n0. The figure
shows that increasing n0, up to a point, decreases E[Ni], but if n0 is too large
then more data are obtained in the first stage than required to deliver the PCS
guarantee. Unfortunately, the location of the minimizing value of n0 depends
on the unknown variance. Nevertheless, it is clear that there is a huge penalty
for selecting n0 too small, which forces an excessive second-stage sample to
compensate for the highly unstable variance estimator. Taking n0 ≥ 10 is a
common recommendation.

3.3 Non-normality of Output Data

Raw output data from industrial and service simulations are rarely normally
distributed. Surprisingly, non-normality is usually not a concern in simulation
experiments that (a) are designed to make multiple independent replications,
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Fig. 1. Illustration of the impact of n0 on E[N ].

and (b) use a within-replication average of a large numbers of raw simulation
outputs as the basic summary measure. This is frequently the situation for so-
called “terminating simulations” in which the initial conditions and stopping
time for each replication are an inherent part of the definition of the system.
A standard example is a store that opens empty at 6 AM, then closes when
the last customer to arrive before 9 PM leaves the store. If the output of
interest is the average customer delay in the checkout line over the course of
the day, and comparisons will be based on the expected value of this average,
and the average is over many individual customer delays, then the Central
Limit Theorem suggests that the replication averages will be approximately
normally distributed.

Difficulties arise in so-called “steady-state simulations” where the parame-
ter of interest is defined by a limit as the time index of a stochastic process
approaches infinity (and therefore forgets its initial conditions). Some steady-
state simulations are amenable to multiple replications of each alternative and
within-replication averages as summary statistics, in which case the preceding
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discussion applies. Unfortunately, severe estimator bias due to residual effects
of the initial conditions sometimes force an experiment design consisting of
a single, long replication from each alternative. The raw outputs within each
replication are typically neither normally distributed nor independent. For
example, waiting times of individual customers in a queueing system are usu-
ally dependent because a long delay for one customer tends to increase the
delays of the customers who follow. The best we can hope for is an approxi-
mately stationary output process from each system, but neither normality nor
independence.

The most common approach for dealing with this problem is to transform
the raw data into batch means, which are averages of large number of raw
outputs. The batch means are often far less dependent and non-normal than
the raw output data. There are problems with the batching approach for R&S,
however. If a “stage” is defined by batch means rather than raw output, then
the simulation effort consumed by a stage is a multiple of the batch size.
When a large batch size is required to achieve approximate independence—
and batch sizes of several thousand are common—then the selection procedure
is forced to make decisions at long intervals, wasting outputs and time. This
inefficiency becomes serious when fully sequential procedures are employed
because the elimination decisions for clearly inferior systems must wait for an
entire batch to be formed. Therefore, for steady-state simulations, selection
procedures that use individual raw outputs as basic observations are desirable.

Although no known procedures provide a guaranteed PCS for single-replication
designs, some procedures have shown good empirical performance (e.g., Sul-
livan and Wilson 1989), while others have been shown to be asymptotically
valid (e.g., Procedure KN++ in Section 4). See Law and Kelton (2000) or
Chapter 15 for a general discussion of replications versus batching, Glynn and
Iglehart (1990) for conditions under which the batch means method is asymp-
totically valid for confidence intervals, and Section 6 for a review of asymptotic
analysis of R&S procedures.

3.4 Common Random Numbers

The procedures described in Section 2 assume that data across the k alter-
native systems are independent. In simulation experiments this assumption
can be made valid by using different sequences of random numbers to drive
the simulation of each system (see Chapter 3). However, since we are making
comparisons, there is a potential advantage of using common random numbers
(CRN) to drive the simulation of each system because

Var[Xij − X`j ] = Var[Xij] + Var[X`j] − 2Cov[Xij,X`j ].
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If implemented correctly (see Banks, et al. 2005), CRN tends to make Cov[Xij,X`j ] >
0 thereby reducing the variance of the difference.

R&S procedures often need to make probability statements about the collec-
tion of random variables

X̄i(n) − X̄k(n) − (µi − µk), i = 1, 2, . . . , k − 1. (16)

The appearance of the common term X̄k(n) causes dependence among these
random variables, but it is often easy to model or tightly bound. The intro-
duction of CRN induces dependence between X̄i(n) and X̄k(n) as well. Even
though the sign of the induced covariance is believed known, its value is not,
making it difficult to say anything about the dependence among the differ-
ences (16).

Two approaches are frequently used. The first is to replace the basic data
{Xij ; i = 1, 2, . . . , k; j = 1, 2, . . . , n} with pairwise differences {Xij − X`j ; i 6=
`; j = 1, 2, . . . , n} because the variance of the sample mean of the difference
includes the effect of the CRN-induced covariance. The second is to apply
the Bonferroni inequality to break up joint statements about (16) into state-
ments about the individual terms. Recall that for events E1, E2, . . . , Ek−1, the
Bonferroni inequality states that

Pr

{
k−1⋂

i=1

Ei

}
≥ 1 −

k−1∑

i=1

Pr {Ec
i } . (17)

In the R&S context Ei corresponds to an event like {X̄i(n)−X̄k(n)−(µi−µk) ≤
h}.

Approaches based on the Bonferroni inequality make no assumption about the
induced dependence, and therefore are very conservative. A more aggressive
approach is to assume some structure for the dependence induced by CRN.
One standard assumption is that all pairwise correlations ρ = Corr[Xij,X`j ]
are positive, and identical, and all variances are equal; this is known as com-
pound symmetry. Nelson and Matejcik (1995) extended Rinott’s procedure
(1978)—one of the simplest and most popular IZ procedures—in conjunction
with CRN under a more general structure called sphericity. The specific as-
sumption is

Cov[Xij ,X`j ] =





2βi + τ 2, i = `

βi + β`, i 6= `
(18)
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with τ 2 > 0, which is equivalent to assuming that Var[Xij −X`j ] = 2τ 2 for all
i 6= `, a type of variance balance. This particular structure is useful because
there exists an estimator τ̂ 2 of τ 2 that is independent of the sample means
and has a χ2 distribution (allowing a pivotal quantity to be formed and Stein’s
theorem to be applied). Nelson and Matejcik (1995) showed that procedures
based on this assumption are robust to departures from sphericity, at least in
part because assuming sphericity is like assuming that all pairwise correlations
equal the average pairwise correlation.

3.5 The Sequential Nature of Simulation

Suppose an IZ ranking procedure is applied in the study of k new blood
pressure medications. Then “replications” correspond to patients, and the idea
of using a fully sequential procedure (assign one patient at a time to each drug,
then wait for the results before recruiting the next patient) seems absurd. In
simulation experiments, however, data are naturally generated sequentially, at
least within each simulated alternative, making multi-stage procedures much
more attractive. However, there are some issues:

• In multiple-replication designs, sequential sampling is particularly attrac-
tive. All that needs to be retained to start the next stage of sampling is the
ending random number seeds from the previous stage. In single-replication
designs it can be more difficult to resume sampling from a previous stage,
since the entire state of the system must be retained and restored.

• A hidden cost of using multi-stage procedures is the computational over-
head in switching among the simulations of the k alternatives. On a single-
processor computer, switching can involve saving output, state and seed
information from the current system; swapping the program for the current
system out of, and for the next system into, active memory; and restoring
previous state and seed information for the next system. Thus, the over-
all computation effort includes both the cost of generating simulated data
and the cost of switching. Hong and Nelson (2005) look at sequential IZ
procedures that attempt to minimize the total computational cost.

• If k processors are available, then an attractive option is to assign each
system to a processor and simulate in parallel. This is highly effective in
conjunction with R&S procedures that require little or no coordination be-
tween the simulations of each system, such as subset-selection procedures
or IZ-ranking procedures that use only variance information (and not differ-
ences among the sample means). Unfortunately, a fully sequential procedure
with elimination would defeat much of the benefit of parallel processing be-
cause communication among the processors is required after generating each
output.
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Many sequential procedures are based on results for Brownian motion pro-
cesses. Let B(t;∆) be a standard Brownian motion process with drift ∆. Con-
sider the partial sum of the pairwise difference Di(r) =

∑r
j=1(Xkj − Xij),

r = 1, 2, . . . . If the Xij are i.i.d. normal, and µk − µi = δ, then {Di(r), r =

1, 2, . . .} D
= {σB(t; δ/σ), t = 1, 2, . . .}, where σ2 = Var[Xkj − Xij ] (with or

without CRN). In other words, Di(r) is a Brownian motion process with drift
observed only at discrete (integer) points in time. A great deal is known about
the probability of Brownian motion processes crossing boundaries in various
ways (see, for instance, Siegmund 1985 or Jennison and Turnbull 2000); we
display one specific result below. Thus, it seems natural to design R&S pro-
cedures for σB(t; δ/σ) and apply them to Di(r).

Let c(t) be a symmetric (about 0) continuation region for σB(t; δ/σ), and let
an incorrect selection correspond to the process exiting the region in the wrong
direction (down, when the drift is positive). If T = inf{t ≥ 0 : |σB(t; δ/σ)| >
c(t)}, then

Pr{ICSi} = Pr{σB(T ; δ/σ) < 0}.

Of course σB(t; δ/σ) is only an approximation for Di(r). However, Jennison,
et al. (1980) show that under very general conditions, Pr{ICSi} is no greater
if the Brownian motion process is observed at discrete times; thus, procedures
designed for σB(t; δ/σ) provide an upper bound on the probability of incor-
rect selection for Di(r). In conjunction with a decomposition into pairwise
comparisons, as in (7), this result can be used to derive R&S procedures for
k ≥ 2.

Fabian (1974) tightened the triangular continuation region used by Paulson,
and this was exploited by Hartmann (1988, 1991), Kim and Nelson (2001,
2005) and Hong and Nelson (2005).

Theorem 5 (Fabian 1974) Let {B(t,∆), t ≥ 0} be a standard Brownian
motion with drift ∆ > 0. Let

l(t)=−a + λt

u(t)= a − λt

for some a > 0 and λ = ∆/(2b) for some positive integer b. Let c(t) denote the
continuation region (l(t), u(t)) and let T be the first time that B(t,∆) /∈ c(t).
Then

Pr{B(T,∆) < 0} ≤
b∑

j=1

(−1)j+1
(
1 − 1

2
I(j = b)

)
exp{−2aλ(2b − j)j}.
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Fabian’s bound on Pr{ICS} is particularly useful because a is the term that
depends on the sample variance (see Paulson’s a in Equation (8) for intuition).
Thus, appropriately standardized, exp(−a) is related to the moment generat-
ing function of a chi-squared random variable, which simplifies unconditioning
on the sample variance.

3.6 Large Number of Alternatives

The number of alternatives of interest in simulation problems can be quite
large, with 100 or more being relatively common. However, Bechhofer-like IZ
procedures were developed for relatively small numbers of alternatives, say no
more than 20. They can be inefficient when the number of alternatives is large
because they were developed to protect against the LFC—the configuration of
system means under which it is most difficult to correctly select the best—to
free the procedure from dependence on the true differences among the means.
The Slippage Configuration (SC), µi = µk − δ for i = 1, 2, . . . , k − 1, is known
to be the LFC for many procedures.

When the number of systems is large we rarely encounter anything remotely
like the SC configuration, because large numbers of alternatives typically result
from taking all feasible combinations of some controllable decision variables.
Thus, the performance measures of the systems are likely to be spread out,
rather than all clustered near the best. Paulson-like procedures with elimina-
tion might seem to be a cure for this ill, but the inequalities used to decompose
the problem of k systems into paired comparisons with system k are typically
quite conservative and become much more so with increasing k (although Kim
and Nelson’s (2001) fully sequential procedure KN , described in the next sec-
tion, has been shown to work well for up to k = 500 systems).

To overcome the inefficiency of IZ approaches for large numbers of alterna-
tives, one idea is to try to gain the benefits of screening, as in Paulson-like
procedures, but avoid the conservatism required to compensate for so many
looks at the data. Nelson, et al. (2001) proposed spending some of the α for
incorrect selection on an initial screening stage (using a Gupta-like subset-
selection procedure), and spending the remainder on a second ranking stage
(using a Bechhofer-like IZ procedure). Additive and multiplicative α spend-
ing is possible, depending on the situation (see Nelson, et al. 2001 and Wilson
2001). The resulting procedure, named NSGS, is presented in the next section.

This so-called “α-spending” approach—spreading the probability of incorrect
selection across multiple stages—is a general-purpose tool, and there is no
inherent reason to use only a single split. See Jennison and Turnbull (2000)
for a thorough discussion.
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4 Example Procedures

In this section we present three specific procedures to illustrate the concepts
described in earlier sections. The NSGS procedure, due to Nelson, et al. (2001),
and the KN procedure, due to Kim and Nelson (2001), are appropriate for
terminating simulations or for steady-state simulations when multiple repli-
cations are employed. Procedure KN++, due to Kim and Nelson (2005), is
specifically designed for steady-state simulations employing a single replica-
tion from each alternative. All of the procedures employ the IZ approach and
utilize elimination to gain efficiency in the case of many systems. In all three
procedures variances are considered unknown and unequal.

The NSGS procedure requires that the output data from each system be i.i.d.
normal, and that outputs across systems be independent, which leaves out
CRN. NSGS is the combination of a Gupta-like subset-selection procedure, to
reduce the number of alternatives still in play after the first stage of sampling,
and a Bechhofer-like ranking procedure applied to the systems in the subset.
The procedure uses α-spending between the subset selection and ranking to
control the overall PCS. Banerjee’s inequality allows the subset-selection pro-
cedure to handle unequal variances.

Procedure NSGS

(1) Setup. Select the overall desired PCS 1−α, IZ parameter δ, and common
first-stage size n0 ≥ 2. Set

t = t
n0−1,1−(1−α/2)

1
k−1

and obtain Rinott’s constant h = h(n0, k, 1 − α/2) from the tables in
Wilcox (1984) or Bechhofer et al. (1995). See also Table 8.3 in Goldsman
and Nelson (1998).

(2) Initialization. Obtain n0 outputs Xij (j = 1, 2, . . . , n0) from each system
i (i = 1, 2, . . . , k) and let X̄i(n0) = n−1

0

∑n0
j=1 Xij denote the sample mean

of the first n0 outputs from system i. Calculate the marginal sample
variances

S2
i =

1

n0 − 1

n0∑

j=1

(
Xij − X̄i(n0)

)2
,

for i = 1, 2, . . . , k.
(3) Subset Selection. Calculate the quantity

Wi` = t

(
S2

i + S2
`

n0

)1/2
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for all i 6= `. Form the screening subset I, containing every alternative i
such that 1 ≤ i ≤ k and

X̄i(n0) ≥ X̄`(n0) − (Wi` − δ)+ for all ` 6= i.

(4) Ranking. If |I| = 1, then stop and return the system in I as the best.
Otherwise, for all i ∈ I, calculate the second-stage sample sizes

Ni = max
{
n0, d(hSi/δ)

2e
}

,

where d·e is the ceiling function.
(5) Take Ni − n0 additional outputs from all systems i ∈ I.
(6) Calculate the overall sample means X̄i(Ni) for all i ∈ I. Select the system

with the largest X̄i(Ni) as best.

Nelson et al. (2001) showed that any subset-selection procedure and any two-
stage IZ ranking procedure that satisfy certain mild conditions can be com-
bined in this way while guaranteeing the overall probability of correct selection.
The NGSG procedure can handle a relatively large number of systems because
the first-stage screening is pretty tight. Nelson et al. (2001) provide a revised
version of the NGSG procedure, the Group-Screening procedure, in which one
can avoid simulating all the systems simultaneously. Boesel et al. (2003) ex-
tended the Group-Screening procedure for “clean up” after optimization via
simulation.

The KN procedure is fully sequential because it takes only a single basic
output from each alternative still in contention at each stage. Also, if there
exists clear evidence that a system is inferior, then it will be eliminated from
consideration immediately—unlike the NSGS procedure, where elimination
occurs only after the first stage. KN also requires i.i.d. normal data, but does
allow CRN. KN exploits the ideas of using paired differences, and controlling
the Pr{ICS} on pairs to control it overall. Fabian’s result is used to bound the
error of a Brownian motion process that approximates each pair.

Procedure KN

(1) Setup. Select the overall desired PCS 1−α, IZ parameter δ and common
first-stage sample size n0 ≥ 2. Set

η =
1

2

[(
2α

k − 1

)−2/(n0−1)

− 1

]
.

(2) Initialization. Let I = {1, 2, . . . , k} be the set of systems still in con-
tention, and let h2 = 2η(n0 − 1).

Obtain n0 outputs Xij (j = 1, 2, . . . , n0) from each system i (i =
1, 2, . . . , k) and let X̄i(n0) = n−1

0

∑n0
j=1 Xij denote the sample mean of
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the first n0 outputs from system i.
For all i 6= ` calculate

S2
i` =

1

n0 − 1

n0∑

j=1

(
Xij − X`j −

[
X̄i(n0) − X̄`(n0)

])2
,

the sample variance of the difference between systems i and `. Set r = n0.
(3) Screening. Set Iold = I. Let

I =
{
i : i ∈ Iold and

X̄i(r) ≥ X̄`(r) − Wi`(r),∀` ∈ Iold, ` 6= i
}

,

where

Wi`(r) = max

{
0,

δ

2r

(
h2S2

i`

δ2
− r

)}
.

(4) Stopping Rule. If |I| = 1, then stop and select the system whose index is
in I as the best.

Otherwise, take one additional output Xi,r+1 from each system i ∈ I,
set r = r + 1 and go to Screening.

The KN procedure requires simulation of all systems simultaneously and a
lot of switching among them. As discussed in Section 3, the switching cost can
overwhelm the sampling cost, but this has become less of an issue in modern
computing environments.

Both NSGS and KN can be applied to steady-state simulations if one is willing
to use within-replication averages or batch means as the basic observations.
However, as discussed in Section 3, employing within-replication averages or
batch means as basic observations may be inefficient, so it is desirable to use
individual outputs from within a single replication of each system if possible.
Damerdji and Nakayama (1999) developed two-stage multiple-comparison pro-
cedures to select the best system for steady-state simulation that use batch
means in the first stage of sampling, but can use individual outputs thereafter.
Similarly, Goldsman et al. (2001) and Kim and Nelson (2005) proposed three
R&S procedures that make a single replication from each system and use in-
dividual output as basic observations. One is a two-stage procedure based on
Rinott’s procedure, and the others are extensions of KN to steady-state simu-
lation. One extension of KN , called KN++, updates the variance estimators
as more outputs are available and has been shown to be highly efficient. We
present the procedure below.

In KN++, we assume that the output from each system i, Xij, j = 1, 2, . . ., is
a stationary stochastic process that satisfies a Functional Central Limit Theo-
rem condition (see Kim and Nelson 2005 for detailed conditions), and further
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that the systems are simulated independently. Variance estimation centers on
the asymptotic variance constant v2

i = limr→∞ rVar[X̄i(r)]. See Goldsman et
al. (2001) and Chapter 15 for reviews of different methods for the estima-
tion of v2

i . KN++ extends KN to steady-state simulation by replacing its
first-stage variance estimator with an estimator of the appropriate asymptotic
variance constant. Moreover, KN++ updates the variance estimator as more
data are obtained based on a batching sequence mr which is an integer-valued
and nondecreasing function of r. The batching sequence needs to be carefully
chosen to guarantee the strong consistency of the variance estimator in use;
Goldsman et al. give three examples of such batching sequences. In general,
mr satisfies the property that mr → ∞ as r → ∞.

Procedure KN++

(1) Setup. Select the overall desired PCS 1 − α, indifference-zone parameter
δ, common first-stage sample size n0 ≥ 2 and initial batch size mn0 < n0.
Set r = n0. Calculate

η =
1

2

{[
2
(
1 − (1 − α)1/k−1

)]−2/f
− 1

}

(2) Initialization. Let I = {1, 2, . . . , k} be the set of systems still in con-
tention, and let h2 = 2ηf , where f is a function of the number of batches,
br that depends on the variance estimator in use.

Obtain n0 outputs Xij , j = 1, 2, . . . , n0, from each system i = 1, 2, . . . , k.
(3) Update. If mr has changed since the last update, then for all i 6= `, calcu-

late mrV
2
i`(r), the sample asymptotic variance of the difference between

systems i and ` based on br batches of size mr. Update f , η, and h2.
(4) Screening. Set Iold = I. Let

I =
{
i : i ∈ Iold and

X̄i(r) ≥ X̄`(r) − Wi`(r),∀` ∈ Iold, ` 6= i
}

where

Wi`(r) = max

{
0,

δ

2cr

(
h2mrV

2
i`(r)

δ2
− r

)}
.

(5) Stopping Rule. If |I| = 1, then stop and select the system whose index is
in I as the best.

Otherwise, take one additional output Xi,r+1 from each system i ∈ I
and set r = r + 1 and go to Update.

Even if the output data fed to KN++ were i.i.d. normal, the procedure does
not provide a guaranteed PCS in finite samples. However, using techniques
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Table 1
The Five Alternative Inventory Policies

Policy i s S Expected Cost

1 20 40 114.176

2 20 80 112.742

3 40 60 130.550

4 40 100 130.699

5 60 100 147.382

described in Section 6.1, KN++ can be shown to guarantee PCS ≥ 1 − α
asymptotically.

5 Application

This section illustrates NSGS and KN using an (s, S) inventory system with
the five inventory policies as described in Koenig and Law (1985). The goal
of this study is to compare the five policies given in Table 1 and find the one
with the smallest expected average cost per month for the first 30 months of
operation. Table 1 also contains the expected cost (in thousands of dollars) of
each policy, which can be analytically computed in this case. We set δ = $1
thousand, n0 = 10 initial replications, and 1 − α = 0.95.

Table 2 shows the results of the simulation study for each procedure, including
the total number of outputs taken and the sample average cost per month for
each policy. In NSGS, policies 3, 4, and 5 were eliminated after the first stage
of sampling, so only policies 1 and 2 received second-stage samples. In KN ,
only policies 4 and 5 were eliminated after the first stage, but the elimina-
tion of policies 3 and 1 occurred after they received 16 and 98 observations,
respectively. This illustrates the value of the tighter initial screen in NSGS,
which takes only one look at the data, and the potential savings from taking
many looks, as KN does. Both procedures chose policy 2 as the best (which
is in fact correct). Since the true difference is larger than δ, NSGS and KN
will choose the true best with 95% confidence. However, in general we do not
have any information about the true differences; therefore, the most we can
conclude without prior knowledge is that policy 2 is either the true best, or
has expected cost per month within $1 thousand of the true best policy, with
95% confidence.
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Table 2
Simulation Results of the (s, S) Inventory Example

NSGS KN

Policy i # Obs. Average # Obs. Average

1 209 114.243 98 114.274

2 349 112.761 98 113.612

3 10 130.257 16 130.331

4 10 128.990 10 128.990

5 10 147.133 10 147.133

Total 588 232

6 Asymptotic Analysis

In order of importance, the key performance measures for R&S procedures are
the ability to deliver the nominal PCS and the ability to deliver it efficiently.
Although many procedures provide a guaranteed PCS under ideal conditions
(e.g., i.i.d. normal outputs), and the expected sample size of simple procedures
can be explicitly calculated, when conditions are not ideal, or when the pro-
cedure is more complex (e.g., it includes early elimination), small-sample per-
formance may be difficult to derive. Fortunately, asymptotic analysis—driving
the sample sizes to infinity—can sometimes provide meaningful insights. The
power of asymptotic analysis is that many of the problem-specific details that
thwart small-sample analysis wash out in the limit. Appropriate asymptotic
analysis can establish conditions under which procedures work (at least ap-
proximately), and the superiority of one procedure over another. In the R&S
literature there are at least three asymptotic regimes:

PCS as δ → 0: To evaluate the ability of a procedure to provide a PCS guar-
antee under a range of conditions, the indifference-zone parameter δ may be
driven to zero. Done naively, this drives the sample sizes from all systems
to infinity and the PCS to 1. Therefore, to make the analysis useful, the
selection problem must become more difficult as δ → 0. We describe this
approach in Section 6.1.

Efficiency as δ → 0: The indifference-zone parameter δ may also be driven
to zero to evaluate the efficiency of a procedure that estimates unknown
variances, relative to a corresponding known-variance procedure. To date
this type of analysis has only been applied to procedures whose sample
sizes are independent of the true means (that is, the procedure does not
take advantage of a favorable configuration of the means, e.g., Bechhofer
1954), so there is no need to change the selection problem as δ → 0. We
briefly describe this approach in Section 6.2.
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Efficiency as (1 − α) → 1: To compare the efficiency of competing proce-
dures, the nominal PCS may be driven to 1. This, too, will drive the sample
sizes to infinity, but if the rate at which they grow can be determined then
that rate can be compared to the rate achieved by other procedures. We
describe this approach in Section 6.3.

See also Damerdji and Nakayama (1999) for a related asymptotic analysis of
multiple-comparison procedures.

6.1 Asymptotic Probability of Correct Selection

There is a close connection between the PCS in R&S and the power in statis-
tical hypothesis testing. Consider a hypothesis testing problem of the form

H0 : θ = θ0

H1 : θ > θ0

Suppose that the power of the test cannot be calculated explicitly. As the
sample size n goes to infinity, any reasonable test has asymptotic power 1
against any fixed alternative (say, θ = θ0 + δ). As noted by Lehmann (1999,
Section 3.3), the trick is to embed the actual situation into a suitable sequence
(n, θn) that makes the discrimination problem more difficult as the sample size
increases in such a way that a meaningful limit < 1 is reached. A sequence
that frequently works is

θn = θ0 +
δ√
n

+ o

(
1√
n

)

with δ > 0.

IZ R&S procedures are essentially power calculations, since their goal is to
detect the best with given probability (power) when the best is at least a
significant amount δ > 0 better than the rest (think H1 : µk > µk−1 + δ).
However, instead of n driving the parameter θn, as in the hypothesis test, it
makes more sense to have δ → 0 drive Ni, the number of observations to be
taken from system i; frequently

√
Ni ∝ 1/δ.

Mukhopadhyay and Solanky (1994) say that an IZ procedure is asymptotically
consistent if

lim inf
δ→0

PCS ≥ 1 − α
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for all µ1, µ2, . . . , µk such that µk − µk−1 ≥ δ. For a procedure that assumes
normally distributed output data, Dalal and Hall (1977) declare an IZ proce-
dure to be asymptotically robust if

lim inf
δ→0

inf
F∈F

PCS ≥ 1 − α

where F is a suitable family of location parameter distributions F (x − µi)
(containing the normal distribution) with µ1, µ2, . . . , µk such that µk −µk−1 ≥
δ.

An example of a procedure that does not provide a guaranteed PCS for finite
samples, but can be shown to be asymptotically consistent, is due to Rob-
bins, Sobel and Starr (1968). Their procedure generalizes Bechhofer’s (1954)
known, common-variance procedure in Section 2.2 to the unknown common
variance case (still assuming normally distributed data). They suggest taking
N observations from each system, where

N = N(δ) = inf{n ≥ n0 : n ≥ h2S2(n)/δ2}

with n0 ≥ 2 and S2(n) the usual pooled estimator of σ2 based on n observa-
tions. Notice that the variance estimator is updated as more data are collected,
which makes it impossible to establish the finite-sample PCS.

The proof of asymptotic consistency illustrates a key idea in this approach.
After some manipulation one can show that

PCS ≥ E




∞∫

−∞

{
Φ
(
y +

√
Nδ/σ

)}k−1
φ(y)dy


 (19)

where Φ and φ are the cdf and pdf, respectively, of the standard normal
distribution. Now since

√
Nδ/σ → h with probability 1 as δ → 0, the right-

hand side of (19) converges to

∞∫

−∞

{Φ(y + h)}k−1
φ(y)dy = 1 − α.

Notice that in the limit the unknown-variance procedure behaves like Bech-
hofer’s known-variance procedure. The asymptotic validity of KN++ (see
Section 4) is based on an analogous argument showing that as δ → 0 the (ap-
propriately standardized) output processes behave like (known variance and
drift) Brownian motion processes (Kim and Nelson 2005). See also Damerdji,
Glynn, Nakayama and Wilson (1996).
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6.2 Asymptotic Efficiency

Let n be the sample size (per system) of a Bechhofer-like, known-variance
R&S procedure, and let N be the sample size of a corresponding unknown-
variance procedure where an initial n0 observations from each system are used
to estimate the unknown variance. Typically N takes the form

N = max



n0,




(
hS

δ

)2







where S2 is a pooled estimator of the unknown variance, and h is an appro-
priately adjusted constant.

Mukhopadhyay and Solanky (1994) say that a procedure is asymptotically
first-order efficient if

lim
δ→0

E
(

N

n

)
= 1

and asymptotically second-order efficient if limδ→0 E (N − n) is bounded. They
show that the typical procedure for which n0 is a fixed value, the variance is
estimated only once, and N grows as 1/δ2 is neither asymptotically first-
nor second-order efficient. However, if N grows somewhat more slowly than
1/δ2 then an asymptotically first-order efficient procedure can be obtained,
while asymptotic second-order efficiency typically requires that the variance
estimator be updated as more data are obtained.

6.3 Asymptotic Sample Size

Suppose that we want to know the expected sample size of Paulson’s procedure
in Section 2.2. The fact that systems can be eliminated before the terminal
stage implies that the expected sample size depends on the differences between
the true means, and that we must account for the complication that any system
has a chance to eliminate any other. However, consider what happens as we
drive (1 − α) → 1 (the following heuristic argument is made precise by Perng
1969):

• As (1 − α) → 1, the procedure stops making mistakes; the best system
survives and all of the inferior systems are eliminated by the best one.

• As the sample sizes are driven to infinity, X̄i(r) behaves more and more like
µi. Thus, the stage at which system i 6= k is eliminated is the first r for
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which

µi ≤ µk − (a/r − λ).

This occurs (approximately) when ri = a/(µk − µi + λ).
• Recall that

a = ln

(
k − 1

α

)
σ2

δ − λ
.

Therefore, as (1 − α) → 1, the expected sample size from system i 6= k is
approximately

ri ≈ ln

(
k − 1

α

)
σ2

(δ − λ)(µk − µi + λ)

while for i = k it is

rk ≈ ln

(
k − 1

α

)
σ2

(δ − λ)(µk − µk−1 + λ)
.

Thus, the expected total sample size as, (1 − α) → 1, is ≈∑k
i=1 ri.

Notice that the impact of the true differences µk−µi and the choice of λ become
apparent from this analysis. The growth rate of ln((k − 1)/α) is common to
many procedures (see Dudewicz 1969), so the differences in their asymptotic
efficiency is the term that multiplies ln((k − 1)/α). For an example of this
type of analysis for a more complex procedure see Jennison, Johnstone and
Turnbull (1982).

7 Other Formulations

Throughout this chapter we have focused on the problem of finding the best
when the best is defined as the system with the largest or smallest mean
performance measure. As discussed in Section 1, there exist other types of
comparison problems. Here we briefly visit each type of comparison problem
and provide useful references.

7.1 Comparisons with a Standard

The goal of comparison with a standard is to find systems whose expected
performance measures are larger (or smaller) than a standard and, if there
are any, to find the one with the largest (or smallest) expected performance.
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For this type of problem, each alternative needs to be compared to the stan-
dard as well as the other alternative systems, and the standard may be a
known value or the expected value of a designated system (simulated or real).
Such procedures first appeared in Paulson (1952) and Bechhofer and Turnbull
(1978).

Clearly, the standard could be treated as just another system and the problem
formulated as selection of the best. Specially tailored procedures are required
when the standard is to be given special status, specifically a guarantee that
no alternative will be selected unless it beats the standard substantially.

Let µ0 denote the expected performance of the standard (which may be known
or unknown), and let µ1, µ2, . . . , µk be the unknown means of the alternatives,
as in selection of the best. In comparisons with a standard we require

Pr{select 0|µ0 ≥ µk}≥ 1 − α (20)

Pr{select k|µk − µ0 ≥ δ, µk − µk−1 ≥ δ}≥ 1 − α. (21)

Thus, we try to protect the standard, but if the best system is substantially
better then we want to select it.

Nelson and Goldsman (2001) proposed two-stage procedures for this prob-
lem that are specifically designed for computer simulation. Similar to Paulson
(1952) and Bechhofer and Turnbull (1978), at the end of their procedures the
standard is retained if X̄0 + c > X̄i for i = 1, 2, . . . , k, otherwise the sys-
tem with the largest sample mean is selected. The following result provides
guidance for designing the algorithm and specifying the value of c > 0:

Theorem 6 (Nelson and Goldsman 2001) If the distribution of X̄ij − µi

is independent of µi, for i = 0, 1, 2, . . . , k, and if

Pr{(X̄i − X̄0) − (µi − µ0) ≤ c, i = 1, 2, . . . , k} ≥ 1 − α

Pr{(X̄k − X̄0) − (µk − µ0) > c − δ,

(X̄k − X̄i) − (µk − µi) > −δ, i = 1, 2, . . . , k − 1} ≥ 1 − α

then (20) and (21) hold.

The two conditions are intuitive: The first insures that, when the standard
is best, no inferior system’s sample mean beats it by too much. The second
condition guarantees that when system k is best by δ or more, then its sample
mean is enough bigger than the standard’s sample mean, and is bigger than
the sample mean of every other system, so that it is selected.

Kim (2002) proposed fully sequential procedures for comparison with a stan-
dard. A procedure such as Paulson (1964) or KN is not directly applicable
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because it would require µ0 ≥ µk + δ, not just µ0 ≥ µk, for the standard to
be retained with the desired probability. But since KN and other procedures
that are similar to Paulson (1964) focus on all pairwise comparisons, and the
identity of the standard is known, the following reformulation in Kim (2005)
works: In any comparison with the standard, revise (5) from

X̄0(r) ≥ max
i∈I

X̄i(r) − max{0, a/r − λ}

to

X̄0(r) + δ/2 ≥ max
i∈I

X̄i(r) − max{0, a/r − λ} (22)

and further, select a and λ to detect differences of size δ/2 instead of δ.

Why does this work? Suppose that µ0 = µk so that the standard should be
retained. Then X̄0(r)+ δ/2 has expected value at least δ/2 better than all the
other systems and will be retained with the desired probability. On the other
hand, if µk = µ0 +δ, so that system k should be selected, then X̄0(r)+δ/2 has
expected value that is δ/2 inferior to the best and will be eliminated with the
appropriate probability. The procedure is set up for, and detects, differences
of size δ for comparisons among the alternatives, but whenever the standard
is involved in a comparison, the procedure is adjusted to detect δ/2.

7.2 Selecting the System Most Likely to be the Best

In multinomial selection problems, the definition of “best” is the system that is
mostly likely to be the best in a single trial. Historically, these procedures were
designed for experiments that have a categorical response (e.g., which among
5 soft drinks a subject will say that they prefer). If there are k categories, pi

is the probability that the ith category is selected in a single trial, and the
trials are independent, then the number of times each category is selected has
a multinomial distribution. More precisely, let Ni be the number of times that
category i is chosen in n independent trials. Then

Pr{N1 = n1, N2 = n2, . . . , Nk = nk} =
n!

∏k
i=1 ni!

k∏

i=1

pni
i

where
∑k

i=1 ni = n.

For convenience of notation (but unknown to us), assume that pk ≥ pk−1 ≥
· · · ≥ p1. Therefore, a correct selection in this context is selecting cate-
gory k. Multinomial selection procedures seek to provide a guaranteed PCS.
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The compromise that makes this possible is to guarantee the PCS whenever
pk/pk−1 ≥ θ, where θ > 1 is interpreted as the smallest pk/pk−1 ratio worth
detecting (and therefore defines another form of indifference zone). Bechhofer,
Elmaghraby, and Morse (BEM) (1959) proposed a single-stage procedure that
satisfies this requirement. Other work on this problem includes Bechhofer and
Goldsman (1986), who proposed a procedure that uses closed, sequential sam-
pling. See Bechhofer et al. (1995) for a review.

Goldsman (1984ab) first suggested the more general use of this type of proce-
dure to find the simulated system most likely to produce the “most desirable”
observation on a given trial, where “most desirable” can be almost any crite-
rion of goodness. This often means identifying the system i with the largest
value of pi, where pi = Pr{Xij > X`j ,∀` 6= i} for a problem in which a larger
simulation output response is better. For instance, in a reliability setting the
simulation output X might be the time to system failure and the goal is to
select the system that is most likely to survive the longest. The key differ-
ence from the categorical data context is that each trial involves obtaining a
response value from each simulated system and the winner is determined by
comparing these values. Stated differently, a trial or replication produces a
vector response (X1j,X2j , . . . ,Xkj) that is transformed into a categorical re-
sponse (0, 0, . . . , 0, 1, 0, . . . , 0) with the 1 indicating the system with the largest
output on the jth replication.

With this in mind, Miller et al. (1998) devised a single-stage procedure that
achieves a higher probability of correct selection than does BEM in the case
where both the replications (vector observations) and the systems themselves
are simulated independently (no common random numbers). The key in-
sight is that the formation of vector observations by replication number—
(X1j,X2j , . . . ,Xkj)—is arbitrary; any vector formed with one output from
each system has the same distribution. Thus, n replications from each system
can form nk vector observations. Of course, these vectors are no longer inde-
pendent, since they share observations, so this is not the same as having nk

independent replications. However, Miller et al. (1998) showed that forming
all vector comparisons increases the effective sample size by at least one third,
and their procedure exploits this additional information to achieve the desired
PCS with fewer total replications.

The role of CRN in multinomial selection is interesting and worthy of discus-
sion. In the means-based procedures that are the focus of this chapter, CRN
was introduced as an experiment design technique to increase efficiency but
it has no effect on the problem parameters, specifically µ1, µ2, . . . , µk. How-
ever, in multinomial selection the value of pi = Pr{Xij > X`j ,∀` 6= i} will, in
general, be different if the systems are simulated with CRN as opposed to in-
dependently, as noted by Mata (1993). Miller and Bauer (1997) observed that
the identity of the best is typically the same with or without CRN, although
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this is not guaranteed, but the relative dominance of the best can increase or
decrease even if the identity is unchanged. Thus, in multinomial selection the
decision as to whether or not to use CRN should be based on whether the
actual performance of the real systems would be affected by like or common
factors, or whether their actual performance would be independent.

7.3 Selecting the Largest Probability of Success

In Bernoulli selection problems, the basic output from each system on each
independent replication, denoted Xij , takes either the value 1 (“success”) or
0 (“failure”), and the best system is the one with the largest probability of
success, pi = Pr{Xij = 1}. Simulation applications include comparing systems
in terms of their ability to survive a mission or to meet a goal such as on-time
performance. To our knowledge there has been little research on, or application
of, Bernoulli selection in simulation despite the obvious relevance.

Assume that (unknown to us) pk ≥ pk−1 ≥ · · · ≥ p1 so that a correct selection
is choosing system k. At least three types of indifference-zone parameters have
been considered in Bernoulli selection:

Difference: pk − pk−1 ≥ δ

Odds Ratio:
pk/(1 − pk)

pk−1/(1 − pk−1)
≥ θ

Relative Risk: pk/pk−1 ≥ θ

where δ > 0 and θ > 1 are user-specified parameters. A PCS ≥ 1 − α is
desired in any case. Clearly the Difference formulation is analogous to the IZ
formulation for normal-theory procedures described throughout this chapter.
A concern about the Difference formulation is that it seems unnatural for a
significant difference not to be tied to the sizes of the success probabilities
themselves. The other two formulations attempt to incorporate this feature.
See Chapter 7 of Bechhofer, et al. (1995) for a discussion of this issue and a
list of procedures.

To obtain a sense of the analysis involved in developing Bernoulli selection
procedures, suppose that the IZ is of the odds-ratio form, there are only k = 2
systems and the two systems are simulated independently (no CRN). We want
to develop a procedure that terminates when

∑
j(X2j −X1j) = ±a, where a is

a nonnegative integer. Thus, the procedure terminates whenever system 2 has
a more successes than system 1, or vice versa. In this case a correct selection
will occur if

∑
j(X2j − X1j) = a.
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Let Sn =
∑n

j=1(X2j−X1j), n = 0, 1, . . ., a random walk on {−a,−a+1, . . . , a−
1, a} with initial state S0 = 0. Although we could work with this process, it
will be more useful to consider a related process

Ym = value of Sn after its mth change in state.

Stated differently, {Ym;m = 0, 1, 2, . . .} is the process that results from ignor-
ing the transitions of {Sn} that do not change its state. Assume that

pk/(1 − pk)

pk−1/(1 − pk−1)
= θ

so that the IZ condition is an equality. It is easy to show that {Ym;m =
0, 1, 2, . . .} is a time-homogeneous discrete-time Markov chain with one-step
transition probabilities

qij = Pr{Ym+1 = j|Ym = i} =





1, i = j = a,−a

θ
1+θ

, j = i + 1, i < a

1
1+θ

, j = i − 1, i > −a

0, otherwise

Notice that the IZ assumption leads to transition probabilities that are inde-
pendent of the actual values of p1 and p2.

Using standard Gambler’s ruin results (e.g., Ross 2000), the probability that
the process is absorbed in state a—the state that would cause us to declare
system 2 as best—is θa/(1 + θa). Therefore, to obtain PCS ≥ 1 − α we set

a =

ln
(

1−α
α

)

ln(θ)

 .

Random-walk analysis is at the heart of many sequential procedures for Bernoulli
selection, and Smith (1995) shows that it is often useful for evaluating the ef-
ficiency of such procedures.

The role of CRN in Bernoulli selection is largely unexplored. Continuing the
previous example, suppose now that the data are generated as follows:

Xij =





0, Uj ≤ 1 − pi

1, otherwise
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for i = 1, 2, where U1, U2, . . . are i.i.d. U(0, 1) random variables. This set up
induces the largest possible correlation between two Bernoulli random vari-
ables and has a profound effect on our procedure because now the outcome
(X2j = 0,X1j = 1) cannot occur. Therefore, the one-step transition probabili-
ties of {Ym} become

qij = Pr{Ym+1 = j|Ym = i} =





1, i = j = a,−a

1, j = i + 1, i < a

0, otherwise

and the PCS of the selection procedure is 1. This might seem like a desirable
outcome until you consider the efficiency of the procedure. Remember that
the cost of running the procedure is not the number of Ym’s that are required,
but rather the number of Xij ’s. In the independent case, the expected number
of Xij’s required for each transition of Ym is

2

p2 − p1 + 2p1(1 − p2)

but under CRN it is greater, specifically

2

p2 − p1
.

In many cases this is enough to make the procedure less efficient when CRN
is employed (assuming the value of a is not altered). For instance, if p2 =
4/5, p1 = 3/4, 1 − α = 0.95 and θ = 4/3, then we can show that the expected
number of outputs that must be generated under independent sampling is
about 357, while under CRN it is 400. Obviously a should be altered when
CRN is employed—in fact a = 1 is adequate in this illustration—but to date no
procedure has been developed. Tamhane (1980, 1985) does provide a procedure
for k = 2 systems, but it requires being able to provide an upper bound on
Pr{X1j 6= X2j}.

7.4 Bayesian Procedures

Instead of providing a PCS guarantee, Bayesian procedures attempt to allocate
a finite computation budget to maximize the posterior PCS of the selected sys-
tem. Chen, et al. (2000) and Chick and Inoue (2001) are two recent references;
see Chapter 9 for a thorough review of this approach
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8 Future Directions

The following are some directions in which future breakthroughs are most
needed:

• Procedures specifically designed for very large numbers of alternatives, par-
ticularly when the alternatives are not all available at the same time (such
as occurs during the search phase of an optimization-via-simulation algo-
rithm).

• Procedures that exploit common random numbers for very large numbers
of alternatives without employing such conservative inequalities that the
impact of CRN is overwhelmed.

• Development of constrained selection-of-the-best procedures; for instance,
procedures that select the best based on one performance measure, subject
to a constraint or condition on a different measure.
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