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We describe the nitrogen (N) gas (NH3, NOx , N20, N2) emission and N03 
leaching submodels used in the DAYCENT ecosystem model and demonstrate 

the ability of DAYCENT to simulate observed N20 emission and N03 leaching 

rates for various sites representing different climate regimes, soil types, and land 

uses. DAYCENT simulated seven major crops, grazing lands, and potential native 

vegetation at the county level for the United States. At the national scale, N03 
leaching was the major loss vector, accounting for 86%, 66%, and 56% of total 

N losses for cropped soils, grazed lands, and native vegetation, respectively. NH3 

volatilization + NOx emissions made up the majority of national N gas losses, 

accounting for 58%, 89%, and 86% of N gas losses from cropped soils, grazed 

lands, and native vegetation, respectively. However, there was considerable spa­

tial variability in the N loss vectors, with leaching accounting for less than 20% 

of total N losses and NOx + NH3 emissions accounting for less than 50% of N gas 

losses in some counties. Land use area weighted mean annual N losses were 43.9 

(SD = 26.8) and 12.3 (SD = 22.2)kg N/ha for cropped/grazed and native sys­

tems, respectively. Area weighted mean annual N gas losses were 11.8 (SD = 4.8) 

and 5.4 (SD = 2.1)kg N/ha for cropped/grazed and native systems, respectively. 

Total N losses and N03 leaching tended to increase as N inputs and precipitation 

increased, and as soils became coarser textured. Total N gas losses also increased 

with N inputs and as soils became coarser textured, but N20 and N2 made up a 

larger portion of N gas losses as soils became finer textured and as precipitation 

increased. 
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1. INTRODUCTION 

Flows of N between the atmosphere, soil, and biota strongly influence the car­

bon (C) cycle and atmospheric chemistry. Net primary productivity (NPP) is lim­

ited by N availability in most terrestrial ecosystems (Vitousek and Howarth, 1991; 

Vitousek et aI., 2002) and N transformations in soils are a major source of N gas 

emissions to the atmosphere (Davidson and Kingerlee, 1997; Kroeze et aI., 1999). 

Nitrous oxide (NzO) is a long lived, important greenhouse gas (Prather et aI., 1995). 

Nitric oxide (NO) and its oxidized counterpart, nitrite (NOz), (together referred 

to as NOx) are major ozone regulators and limit the overall oxidizing capacity of 

the troposphere (Williams et aI., 1992). Nitrate (N03) leaching is a major N loss 

vector for agroecosystems which contributes to aquatic eutrophication and can 

pose a risk to human health. Human activity has profoundly altered fixation rates 

of atmospheric Nz, emission rates of NzO and NOx to the atmosphere, and losses 

of N03 to waterways. The amount of reactive N induced into the biosphere from 

fertilizer production, N-fixation in crops and fossil fuel combustion exceeds the 

N fixed annually in natural systems (Vitousek et aI., 1997; Smil, 1999; Galloway 

et aI., 2003). Anthropogenic activities, mainly fossil fuel burning and agriculture, 

are major sources of atmospheric NOx (Prather et aI., 1995) while biogenic proc­

esses are the major source of N20 (Kroeze et aI., 1999). Agriculture is a primary 

source of N03 leaching into waterways (Howarth et aI., 1996; Goolsby et aI., 1999; 

Boesch et aI., 2001). 

The atmospheric concentration of N20 has been well documented for current 

and historical time periods (Prather et aI., 1995). In contrast, the amount of N in 

soils and the biota, as well as the flows of N that contribute to the observed changes 

in atmospheric N20, cannot be measured directly on the global scale. Ecosystem 

models are necessary to scale up results of plot sized experiments and calculate the 

contributions of natural and managed systems to global N budgets. Simple empir­

ical models correlate N fluxes with N additions (lPCC, 1997) or with soil water 

content (Davidson and Verchot, 2000). At the opposite extreme, highly mechanistic 

models explicitly simulate the biological, physical, and chemical processes involved 

in N transformations and flows (Grant and Pattey, 2003; Grant, 2004). Simple 

models tend to be over-generalized and cannot represent the heterogeneity of real 

world systems while mechanistic models require detailed parameterization and 

intensive computation. DAYCENT is an ecosystem model of intermediate com­

plexity; some processes are represented mechanistically but the model requires a 

relatively small number of site specific parameters. In this chapter we begin with a 

brief overview of the DAYCENT model and describe the N gas submodel of 

DAYCENT in detail. Then we present comparisons of simulated and observed val­

ues of N gas emissions and N03 leaching to demonstrate the validity of DAYCENT. 

Lastly, we use DAYCENT to compare annual N gas (NH3, NOx , N20, and N2) and 

N03 leaching losses associated with different land uses, soil textures, and water 

inputs. 
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2. DAYCENT MODEL DESCRIPTION 

DAYCENT (Parton et aI., 1998; Kelly et aI., 2000; Del Grosso et aI., 2001) 

is the daily time step version of the CENTURY model. CENTURY (Parton et aI., 

1994) operates on a monthly time step and was developed to simulate changes 

in soil organic matter (SOM), plant productivity, nutrient availability, and other 

ecosystem parameters in response to changes in land management and climate. 

However, finer time scale resolution is required to simulate N gas emissions from 

soils because the processes that result in N gas fluxes respond nonlinearly to impor­

tant controls such as soil water content. DAYCENT simulates exchanges of carbon, 

nutrients, and trace gases among the atmosphere, soil, and plants as well as events 

and management practices such as fire, grazing, cultivation, and organic matter or 

fertilizer additions. To run DAYCENT for a particular site, soil texture, current and 

historical land use, and daily maximum/minimum temperature and precipitation 

data are required. Soil water content, temperature, mineral N concentration, trace 

gas flux, and SOM decomposition are simulated on a daily time step while plant 

growth is updated weekly. 

DAYCENT (Figure 1) includes submodels for plant productivity, decomposi­

tion of dead plant material and SOM, soil water and temperature dynamics, and 

N gas fluxes. Flows of C and nutrients are controlled by the amount of C in the 

various pools, the N concentrations of the pools, abiotic temperature/soil water fac­

tors, and soil physical properties related to texture. NPP is a function of nutrient 

availability, soil water and temperature, shading, and vegetation type (Metherell 

et aI., 1993). NPP is divided among leafy, woody, and root compartments based 

on plant type. The root to shoot ratio of NPP allocation is a function of soil water 

content and mineral N availability. The death rate of plant compartments is control­

led by soil water, temperature, season, and plant specific senescence parameters. 

Structural detritus has a higher C:N ratio and is more difficult to decompose than 

metabolic detritus. Recent improvements in the plant submodel include the ability 

to make seed germination a function of soil temperature and plant harvest/senes­

cence a function of accumulated growing degree days. SOM is divided into three 

pools based on decomposition rates (Parton et aI., 1993; 1994). Decomposed detri­

tal material that has a low C:N ratio flows to the active SOM pool, which includes 

microbial biomass and the highly labile byproducts of decomposition that turnover 

in approximately 1 year or less. The products of detrital decomposition that have 

a wider C:N ratio flow to the slow SOM pool, which includes the relatively resist­

ant (l0-50 year turnover rate) byproducts of decomposition. The passive SOM 

pool consists of humus that is extremely resistant to further decomposition. As soils 

become finer textured a lower portion of SOM is respired as CO2 and more SOM 

is retained in stable form due to physical and chemical protection. Decomposition 

of SOM and external nutrient additions supply the nutrient pool, which is available 

for plant growth and microbial processes that result in trace gas fluxes. Ammonium 

(NH4 +) is modeled for the top 15 cm while nitrate (N03 -) is distributed throughout the 
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Figure 1. Conceptual diagram of the DAYCENT ecosystem model. Modified from 

Del Grosso et al. (2001). 

soil profile. Nutrients and SOM are concentrated near the soil surface and decrease 

exponentially with depth. The land surface submodel of DAY CENT simulates water 

flow through the plant canopy, litter and soil profile, as well as soil temperature 

throughout the profile (Parton et aI., 1998; Eitzinger et aI., 2000). Saturated water 

flow is simulated down the soil profile on days that it rains, snow melts, or a field 

is irrigated. Unsaturated flow is simulated on all days that do not have water inputs 

sufficient to saturate the profile and can be up or down the profile depending on 
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matric and gravitational potentials. If water inputs are sufficient, given a soil texture 

specific saturated hydraulic conductivity, excess water will not enter the profile and 

is assumed to be runoff. Coarse textured soils are assumed to have higher saturated 

conductivity than finer textured soils. As saturated conductivity increases, surface 

runoff decreases and water and N03 flow down the profile increase. Soil water and 

dissolved N03 that exit the deepest soil layer simulated are assumed to be leached 

into ground water or the subsoil but the model does not simulate lateral transfer of 

water or nutrients. DAYCENT has been shown to reliably model soil water con­

tent, N mineralization, and NPP for a shortgrass steppe in Colorado (Kelly et aI., 

2000). The SOM and N cycling submodels used in DAYCENT have been vali­

dated for various systems including grasslands and forests (Kelly et aI., 1997), as 

well as agricultural soils in Sweden (Paustian et aI., 1992) and Oregon (Parton and 

Rasmussen, 1994). 

The N gas submodel of DAYCENT (Figure 2) simulates soil N20 and NOx 

gas emissions from nitrification and denitrification as well as N2 emissions from 

denitrification. Nitrifying microbes oxidize NH4 + to N03 -, with some N20 and 

NOx released during the intermediate steps. N gas flux from nitrification is assumed 

to be a function of soil NH4 + concentration, water content, temperature, and 

pH (Parton et aI., 1996, 2001). Nitrification rates increase linearly with soil NH4 + 

H20soil, Tsoil 
Texture, pH 

NH4 + f--*-------+I 
Nitrification '----__ ---' 

N inputs 

C><J = Control 

Italics = Process 

N gasni! = N gas from nitrification 

N gasdeni! = N gas from denitrification 

DIDo = Index of gas diffusivity in soil 

PPT = Precipitation 

C = Labile carbon 

Figure 2. The N gas flux submodel of DAYCENT. Modified from Del Grosso et ai. 

(2001). 
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concentration. Nitrification is limited by moisture stress on biological activity when 

soil water-filled pore space (WFPS = % relative saturation) is too low and by O2 
availability when WFPS is too high. Nitrification increases exponentially with tem­

perature and stabilizes when soil temperature exceeds the site specific average high 

temperature for the warmest month of the year. Nitrification is not limited when pH 

is greater than neutral but decreases exponentially as soils become acidic. 

Denitrification is an anaerobic process in which heterotrophic microbes reduce 

N03 - to NOx , N20, and N2. Denitrification is a function of soil N03 - (e - accep­

tor) concentration, labile C (e- donor) availability, WFPS, and soil physical proper­

ties related to texture that influence gas diffusivity (Parton et aI., 1996; Del Grosso 

et aI., 2000). Denitrification increases exponentially with increasing soil N03-

concentration when N03 - concentration is low «50 ppm) and approximately lin­

early at higher N03 - levels. Denitrification increases approximately linearly with 

soil heterotrophic respiration, a proxy for labile C availability. No denitrification is 

assumed to occur until WFPS values exceed 50-60%, then denitrification increases 

exponentially until WFPS reaches 70-80% and it stabilizes as soil water content 

approaches saturation. The model calculates N2 + N20 emissions from denitrifi­

cation by assuming that the process is controlled by the input (N03 -, respiration, 

WFPS) that is most limiting. N20 emissions are calculated from N2 + N20 gas 

emissions and an N2:N20 ratio function. The ratio of N2:N20 gases emitted due 

to denitrification is assumed to increase as the ratio of e - acceptor (N03 -) to e­

donor (labile C) decreases and as soil gas diffusivity and O2 availability decrease. 

N20 can act as an alternative e- acceptor and be reduced to N2 when labile C is in 

excess compared to N03 -. DIDo, a relative index of gas diffusivity in soils, is cal­

culated as a function of WFPS and soil physical properties (bulk density and field 

capacity) that influence gas diffusion rates using equations presented by Potter et al. 

(1996). As DIDo decreases, the residence time of N20 in soil increases, thus 

increasing the probability that N 20 will be further reduced to N 2 before diffusing 

from the soil. 

NOx emissions from soil are a function of total N20 emissions, a NOjN20 

ratio equation, and a precipitation initiated pulse multiplier (Parton et aI., 2001). 

Simulated N20 gas emissions from nitrification and denitrification are summed to 

obtain total N20 flux. The NOjN20 ratio is high (maximum of ~20) when DIDo 

is high and decreases to a minimum of ~ 1 as DIDo decreases. This is based on the 

following observations. The majority of NOx emissions from soils are from nitri­

fication because NOx is highly reactive under the reducing conditions that facili­

tate denitrification (Conrad, 1996). Total N gas flux is due primarily to nitrification 

when soils are well aerated (high DIDo) and mainly to denitrification under anaero­

bic conditions (Linn and Doran, 1984; Davidson, 1993). Thus, the model assumes 

that NOx becomes a larger proportion of total N gas emissions as soil gas diffusiv­

ity increases. The modeled total N20 emission rate is multiplied by the ratio func­

tion to obtain a base NOx emission rate. The current version of DAYCENT includes 

canopy absorption of soil NOx emissions as a function of leaf area index. The model 
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also predicts that, other factors being equal, NOx emissions from cultivated soils 

will be lower than emissions if the soil was not cultivated. Plowing tends to distrib­

ute nutrients and organic matter to deeper depths, whereas nutrients tend to concen­

trate close to the surface in uncultivated soils. Consequently, nitrification is more 

likely to occur deeper in cultivated than undisturbed soils, NOx liberated must dif­

fuse through more layers before emitting from the soil surface, and the likelihood of 

NOx being reduced to N20 increases. The base NOx emission rate may be modified 

by a pulse multiplier. Large pulses of NOx are often initiated when precipitation 

falls on soils that were previously dry (Hutchinson et al., 1993; Martin et aI., 1998; 

Smart et al., 1999). The pulses are thought to be related to substrate accumulation 

and activation of water stressed bacteria upon wetting (Davidson, 1992). To account 

for these pulses the model incorporates the pulse multiplier submodel described by 

Yienger and Levy (1995). The magnitude of the multiplier is proportional to the 

amount of precipitation and the number of days since the latest precipitation event, 

with a maximum multiplier of 10. 

On a daily time step simulated values of soil NH4 +, N03 -, heterotrophic CO2 
respiration, water content, temperature, and site specific values for soil texture and 

physical properties are used to calculate N20 emissions from nitrification and deni­

trification and N2 emissions from denitrification. Total N20 emissions, a NOjN20 

ratio function, and a pulse multiplier are used to calculate NOx emissions. N bal­

ance is verified on a daily basis and calculated potential N gas emission rates are 

revised downward if there is not enough N03 - and NH4 + available to supply the 

potential N gas emissions for a particular time step. NH3 volatilization is simulated 

less mechanistically than the other N gas species. A soil texture specific portion of 

N excreted from animals is assumed to be volatilized (more volatilization as soils 

become coarser), and a plant specific portion of harvested or senesced biomass N is 

assumed to be volatilized. 

3. DAYCENT MODEL VALIDATION 

We first summarize results of previous tests of the DAYCENT model for vari­

ous natural and managed systems and then present results of tests with the latest 

version of the model. Frolking et al. (1998) compared simulated and observed 

values of soil water content, mineral N, and N20 emissions for soils in Colorado, 

Scotland, and Germany. The Colorado site is a dry shortgrass steppe (annual ppt. 

~36cm), the Scotland site is a fairly moist ryegrass pasture (annual ppt. ~85cm), 

and the German sites are perennially cropped (annual ppt. ~83cm). DAYCENT 

correctly simulated the observed low N20 fluxes for the' shortgrass steppe, the mod­

erate N20 emissions for the Scotland site and the high N20 emissions observed for 

the cropped soils. DAYCENT also simulated the observed daily variability in N20 

emission rates and soil water content reasonably well for the different sites. Parton 

et al. (2001) tested DAYCENT simulations of soil water content, soil tempera­

ture, and N20 and NOx gas emissions from rangeland soils of varying texture and 
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fertility levels. DAYCENT simulated soil temperature, WFPS, and NOx emissions 

generally well on daily and seasonal bases, although winter season WFPS values 

were not well represented. DAYCENT did not accurately represent the observed 

daily variability in N20 emissions. However, DAYCENT simulated the observed 

seasonality of N20 emissions fairly well, although winter season N20 emis­

sions tended to be underestimated. Del Grosso et al. (2001) tested the ability 

of DAYCENT to simulate soil water, temperature, NH4 +, N03 -, and N20 emis­

sions for irrigated, fertilized barley (Hordeum vulgare) and com (Zea mays) crops. 

Similar to the rangeland soils, soil temperature and water were generally simulated 

rather well, but winter season WFPS values were not accurately represented by the 

model. DAYCENT correctly simulated high values of NH4 + and N03 - after ferti­

lization in spring and decreasing values during the growing season. Simulated val­

ues of N20 emissions compared favorably with the data for the com crop, but N20 

emissions were overestimated for the barley crop. 

Results of tests with many soils show that the DAYCENT model does not 

always reliably simulate the observed daily variability in N20 fluxes but does accu­

rately simulate differences in N20 fluxes between different sites and among seasons 

for a given site. Difficulties in modeling soil water content in winter and spring are 

responsible for some of the errors in simulated N20 emission rates. WFPS is an 

important driver of the processes that control N20 emission rates but heterogeneity 

in snow drifting and snow melting make it difficult to simulate soil WFPS during 

winter and spring. This variability of important model drivers on smaller scales than 

are resolved by the model contributes to the observed model error. The ability of 

DAYCENT to reliably simulate NOx emissions has not been extensively tested but 

Parton et al. (2001) showed that the model represented observed monthly patterns 

of NOx flux and captured the observed differences in average NOx flux from range­

land soils of varying texture and fertility levels. The ability of DAYCENT to simu­

late N2 emissions has not been extensively validated because little field data for N2 

emissions exist. However, the denitrification submodel reliably modeled (? = 0.47) 

daily N2 + N20 emissions from agricultural soils in Pakistan (Del Grosso et aI., 

2000). The snow melt submodel has been improved and winter season soil water 

contents are now better represented. 

Table 1 lists data sources that were used to test the ability of the latest version 

of DAYCENT to simulate N20 emissions and N03 leaching. Various crops with 

different tillage practices and fertilization intensities are represented. Data from 

plots in grasslands and deciduous forest are also included in the data set. N20 emis­

sions from intensively cropped systems can exceed those of native systems by an 

order of magnitude or more so N20 values were log transferred. DAYCENT simu­

lated mean annual N20 emissions and N03 leaching well, with? values of 0.88 

and 0.98, respectively (Figure 3). We emphasize that although the latest version 

of DAYCENT was modified to represent plant growth and soil water flows more 

realistically, the model is still much better at simulating differences in mean fluxes 

for treatments within sites and across sites than it is at matching the daily patterns 
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Table 1. 

Sources of data used for model testing. 

Location Crops/vegetation 

Iowa Fertilized fallow/soybean 

Michigan Corn, soybean, wheat 

conventional till and no till, 

alfalfa, deciduous forest 

Nebraska Wheat/fallow, sod 

Colorado Wheat/fallow 

Colorado Irrigated corn, barley 

Colorado Irrigated corn, soybean, 

conventional till and no till 

Tennessee Corn, no till 

Ontario Corn 

Colorado Shortgrass steppe 

Iowa Corn, soybean 

Wisconsin Corn 

Wisconsin Corn, potato 
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Figure 3. Comparison of simulated versus observed annual N20 gas emission and 

N03 leaching rates from various field experiments listed in Table 1. 

in emissions exhibited by observed data. See Del Grosso et al. (2005) for further 

model validation results and comparisons of DAYCENT simulated N20 emis­

sions and N03 leaching with emissions and leaching calculated using IPCC (1997) 

methodology. 
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4. DAY CENT MODEL APPLICATION 

4.1. Model Simulations 

National DAYCENT simulations of potential native vegetation and differ­

ent cropping systems in the United States were used to investigate the effects of 

land use, soil texture, and climate on N loss vectors. DAYCENT is currently being 

used to estimate N20 emissions from agricultural soils for the US GHG inventory 

(EPA, 2005). Potential native vegetation, major crops [corn (Zea mays L.), soybean 

(Glycine max L. Merr.), wheat (Triticum aestivum L.), alfalfa (Medicago sativa L.) 

hay, other hay, sorghum (Sorghum hicolor L. Moench), and cotton (Gossypium hir­

sutum L.)], and grazed lands were simulated at county level resolution. Counties 

that reported less than 40ha of agricultural land were not simulated. Daily maxi­

mum/minimum temperature and precipitation were acquired from DAYMET 

(Thornton et aI., 1997,2000; Thornton and Running, 1999; http://www.daymet.org/). 

For each county, DAYMET climate from the 1 km2 cell that was closest to the geo­

graphical center of cropped land was used to drive DAYCENT. Soil texture data 

required by DAYCENT were obtained from the State Soil Geographic Database 

(STATSGO, http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/). The domi­

nant STATSGO map unit that intersected the geographical center of cropped land 

in each county was used to drive DAYCENT. Native vegetation was based on the 

Kuchler (1993) potential natural vegetation map. Before simulating modern crop­

ping systems, SOM and mineral N (NH4 +, N03 -) pools were initialized for the dif­

ferent counties by simulating ~ I,SOO years of native vegetation followed by ~200 

years of historical cropping practices. Data for crop management (e.g., timing and 

type of cultivation and fertilization, crop rotation schedules) were obtained from 

various sources (EPA, 2005). Separate simulations of 2,003 years of native vegeta­

tion were performed so that N losses under modern agriculture could be compared 

with those from native vegetation. DAYCENT outputs for annual N loss vectors 

were saved for the years 1990-2003. For details on how the county resolution simu­

lations were performed see EPA (2005) or Del Grosso et al. (2006). 

Annual DAYCENT outputs were processed to obtain national totals for N loss 

vectors and to obtain county level area weighted N losses that account for the areal 

distribution of cropped and grazed lands. N losses for each crop in each county 

were calculated by multiplying DAYCENT outputs for N03 leaching, NH3 volatili­

zation, and NOx , N20, and N2 emissions in units of gN/m2 by National Agricultural 

Statistics Service (NASS) reported county level crop area data (http://www.nass. 

usda.gov:S1/ipedbcnty/sso-mapc.htm). N losses for grazing lands in each county 

were calculated by multiplying DAYCENT outputs for the N loss vectors by graz­

ing land area estimates derived from the National Resources Inventory (NRI; 

USDA, 2000). N losses for potential native vegetation were obtained by multiplying 

the DAYCENT outputs for native vegetation by the sum of cropped and grazed land 

areas simulated in each county. Total county level N losses for cropped/grazed lands 

were obtained by summing losses from all the crops and grazed land simulated in 
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each county. National totals for N loss vectors were obtained by summing loss vec­

tors for each county simulated. Temporal mean annual national N loss vectors for 

1990-2003 were calculated from the annual national totals. 

County level crop/grazed land area weighted means were calculated from the 

DAYCENT outputs and from NASS reported county level crop area data and NRI 

grazing land data. That is, the area weighted means account for the land areal distri­

bution of major crops and grazed land in each county. Temporal mean annual out­

puts for 1990-2003 were calculated from the area weighted N03 leaching and N 

gas outputs. Mean outputs for potential native vegetation were calculated in a simi­

lar manner except it was not necessary to include area weighing because 100% of 

the cropped and grazed land in each county was assumed to be uniformly covered 

with native vegetation. 

4.2. Model Results 

DAYCENT simulations show that at the national scale, the majority of total N 

losses are due to N03 leaching, especially for cropped systems (Table 2). Although 

leaching is not the primary loss vector under native vegetation for most of the coun­

ties in the arid west, leaching is the major loss vector in wetter areas, where N 

inputs tend to be higher (Figure 4); hence leaching dominates at the national scale. 

Consideration of the processes that are responsible for soil N losses explains why 

most of the losses from mesic soils are from leaching. When nitrification occurs, the 

majority of NH4 N is converted to N03, with typically less than 10% of the N lost 

as NOx + N20. Once N03 is available in mesic soil, it is more likely to be taken up 

by plants or leached than denitrified to N20 or N2 because leaching is a physical 

process that is primarily a function of N03 availability, soil hydraulic properties, 

Table 2. 

Fractions for N loss vectors at the national scale for crops, pastures, and potential 

native vegetation simulated by DAYCENT. 

Cropped Lands Grazed Lands Native Vegetation 

N Leaching and N Gas Losses Compared to Total N Losses 

N03 leachedIN loss total 0.86 0.66 0.56 

N gaslN loss total 0.14 0.34 0.44 

N Gas Species Compared to Total N Gas Losses 

NH3 volatilizationlN gas 0.27 0.69 0.46 

N0xIN gas 0.31 0.19 0.39 
N20IN gas 0.24 0.04 0.10 

N2IN gas 0.18 0.07 0.04 
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soil profile depth, and water inputs. Denitrification, on the other hand, is a biologi­

cal process that is limited by labile C availability, soil O2 status, and enzyme kinet­

ics. Consequently, a single large rainfall event can leach more N below the rooting 

zone than is lost from denitrification during an entire year or more. Spring season 

snow melt events can also contribute to leaching losses because plant demand for N 

is low during the nongrowing season and N03 can accumulate in soil. 

DAYCENT predicts that as N inputs increase, the proportion of total N losses 

that are due to N03 leaching also increases (Table 2). N limitation and N cycling 

explain this trend. N is most limiting in native systems, less limiting in grazed sys­

tems (due to forage legumes and grazing enhanced N mineralization), and least 

limiting in cropped systems. As N becomes more limiting, N03 made available 

from nitrification is more likely to be taken up by plants and hence less likely to 

be leached. Also, N03 is a larger portion of total N inputs in cropped compared to 

native or grazed systems. Some synthetic fertilizers applied to crops contain N03 
whereas the vast majority of mineral N available in grazed or native systems is in 

the form of NH4 released from decomposition and urine from grazing animals and 

the only external source of N03 is from atmospheric deposition, which tends to be 

much lower than fertilizer inputs. 

Total N losses were over three times higher and N03 leaching almost five times 

higher for cropped/grazed land than native systems on a per area basis (Table 3). 

Native systems have smaller N leaching because inputs are low (Figure 4a) and 

N is more limiting. Leaching is higher for cropped/grazed systems due to high N 

inputs (Figure 4b), particularly synthetic fertilizers, and less than optimal synchrony 

between N availability in soil and plant nutrient demand. Standard deviations rela­

tive to means are high for all the N loss vectors, especially for leaching and N2 gas 

Table 3. 

Temporal (1990-2003) and area weighted means and standard deviations of 

DAYCENT simulated N loss vectors for cropped agricultural soils in the United 

States assuming potential native vegetation coverage and reported cropped and 

grazed land areas. 

Standard Deviation 

Mean (kg N/ha/year) (kg N/ha/year) 

N Loss Vector Native Cropped/grazed Native Cropped/grazed 

N031eached 6.90 32.12 21.49 23.83 

NH3 gas 2.49 6.26 1.29 2.64 

NOxgas 2.11 3.46 1.48 1.69 

N20 gas 0.55 1.36 0.31 0.82 

N2 gas 0.23 3.46 0.62 1.69 

Total N losses 12.27 43.95 22.21 25.81 



DAYCENT Simulated Effects of Land Use and Climate on N Loss Vectors 583 

emissions, because the processes that control N losses respond nonlinearly to the 

controls on the processes. For example, water inputs must exceed a threshold before 

large leaching events are possible. Similarly, the anaerobic conditions that facilitate 

denitrification and N2 emissions respond nonlinearly to soil water content which 

must exceed a threshold before significant N2 emissions will occur. 

Figure 5a shows total N losses per unit area assuming potential native vegeta­

tion coverage and for the present day areal distribution of major crops and pasture 

land at the county level. Total N losses are driven by interactions between N inputs, 

precipitation, and soil texture. For most native systems, the primary source of exter­

nal N inputs is atmospheric deposition so inputs tend to increase with precipitation 

(Figure 4a). Consequently, N losses are greater in the eastern, wetter half of the 

United States, than the arid west. N losses are higher in the Southeast compared 

to the Northeast and upper Midwest for two reasons: soils tend to be coarser in the 

Southeast so N03 leaching is facilitated and rainfall tends to decrease along a south 

to north gradient in the eastern half of the United States. One caveat is that our sim­

ulation of native vegetation represents pre-settlement conditions that do not account 

for N inputs associated with industry and transportation. In reality, atmospheric 

N inputs are higher in the Northeast and near the Great Lakes than the Southeast 

because population density is higher and industry is more concentrated. 

(a) 

4-8 
8-12 

_12-16 
_ 16-20 
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Figure 4. DAYCENT N inputs from atmospheric deposition and biological N-fixation 

for (a) native potential vegetation. 
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Figure 4 (Continued) (b) cropped/grazed land area weighted means. Values are 

annual means for 1990-2003. Note difference in scales. 

Interestingly, the highest N losses for native vegetation are in counties in 

Kansas, the Dakotas, and Colorado. The soils are loams in these areas, mean annual 

precipitation is between ~ 35 and 70 cm, and native vegetation class is grassland. 

The combination of moderate rainfall, soils with moderate hydraulic conductivity, 

and the relatively shallow rooting depth of grasses compared to trees allows N03 

to be leached below the rooting zone, but not out the bottom of the soil profile until 

very large rainfall events occur. That is, N03 can build up for many (> 10) years in 

soil layers below the grass rooting zone until a rainfall event of sufficient magni­

tude occurs to saturate the entire soil profile and leach N03 from the bottom layers. 

These large leaching values are only exhibited in a minority of the counties because 

of the stochastic nature of large precipitation events. We emphasize that in these 

arid soils, the model is not simulating N03 leaching into groundwater or streams 

but transport of N03 from the deepest soil layer simulated into the subsoil. This 

model behavior is consistent with data showing that large amounts (> 1 ,000 kg N/ 

ha) of N03 can be found in the subsoil of some arid soils (Walvoord et aI., 2003). 

A large portion of mineral N inputs to cropped and grazed lands is from exter­

nal sources (fertilizers and N-fixation) whereas most of the mineral N made avail­

able in native systems is supplied internally from decomposition of organic matter. 

Consequently, N losses from cropped/grazed lands are high in areas that grow crops 

which require high N inputs. DAYCENT predicts high N losses in the Corn Belt, 
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Figure 5. DAYCENT simulated county level mean N losses from N03 leaching and 

N gas emissions (NH3' NOx, N20, N2) for (a) potential native vegetation and (b) 

cropped/grazed land area weighted means. Values are annual means for 1990--2003. 
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where N inputs are high, in the Southeast, where soil texture is coarse, in the sand hills 

of Nebraska, and in some counties in Kansas and the Dakotas (Figure Sb). Losses 

are high in the Southeast and the sand hills of Nebraska because these sandy soils 

facilitate N03 leaching and NH3 and NOx gas losses. Similar to native vegetation 

N losses, losses are high in some counties in Kansas and the Dakotas due to N03 
accumulating in the deeper soil layers until a rainfall event of sufficient magnitude 

saturates the soil profile and leaches N03 into the subsoil. N losses per unit area in 

some counties in the western US are on par with losses in the central and eastern 

parts of the country because of high N and water inputs associated with irrigated 

agriculture. Some counties in the Northeast and Great Lakes regions have high N 

inputs (Figure 4b) but moderate N losses (Figure Sb). This is due to N inputs from 

N fixing forage legumes in pastures making up a large portion of total N inputs in 

these counties and the model assuming that fixed N is more efficiently cycled in the 

plant-soil system than N from fertilizer so losses are lower. 

N gas losses under native vegetation cover are highest in the central Great Plains 

region (Figure 6a). The majority of N gas losses are from NH3 volatilization and 

NOx emissions (Table 2). High N gas emissions in the central Great Plains are due 

to high nitrification rates in loam soils that receive moderate rainfall and have pH 

values close to neutral or basic. High precipitation and forest vegetation (particu­

larly conifers) in the eastern US lead to acid soils which inhibit nitrification rates 

and NOx emissions. In the arid western US, soil moisture is often insufficient to sup­

port activity of nitrifying microbes so NOx emissions are not large. N gas emissions 

for cropped/grazed systems are highest in the Corn Belt and some irrigated counties 

in the west,' where N inputs are high, and in the Southeast where coarse textured 

soils facilitate NOx emissions from nitrification and NH3 volatilization (Figure 6b). 

The DAYCENT simulated NOjNzO ratio is largely a function of land use, pre­

cipitation, and soil texture (Figure 7a,b). The model assumes that as soil gas diffu­

sivity increases, conditions become more oxic, and NOx is more likely to be emitted 

from the soil surface than to be reduced to NzO. Well drained, coarse textured soils 

in the Southeast have high gas diffusivity so the ratio is high and many counties 

in the arid west have high diffusivity because soils tend to be dry. The ratios are 

generally low in the Midwest and Northeast where soils tend to be medium to fine 

textured. The ratio is higher for native vegetation than agricultural systems because 

the model assumes that N is distributed with cultivation to deeper soil depths than 

native systems so it is more likely that NOx from nitrification will be transformed to 

other N species before diffusing from the soil. Ratios are lower for cropped/grazed 

systems in the west also because irrigation reduces soil gas diffusivity. 

The NzINzO ratio is less than O.S in most of the counties for both cropped, 

grazed systems and native vegetation (Figure 8a,b). This ratio is generally low 

because soil saturation is required to maintain the anaerobic conditions that are nec­

essary for complete reduction of more oxidized N species to Nz. Additionally, labile 

C must be available to support denitrification which is responsible for N2 emissions. 

The ratio is high for some fine textured soils in Texas, California, and along the 
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Lower Mississippi. Denitrification is more likely to be prevalent in poorly drained 

fine textured soils that maintain anaerobic microsites. It can also be high in some 

northern counties where melting of surface soil layers while deeper layers remain 

frozen can saturate soils and enhance denitrification. 

5. SUMMARY AND CONCLUSIONS 

We have described the DAYCENT ecosystem model and shown that annual N20 

emissions and N03 leaching can be reliably simulated for some managed and native 

systems. The model was used to explore how land use, precipitation, and soil texture 

impact total N losses and N gas emissions at the national scale using county level 

resolution simulations of cropped lands, grazed land, and native vegetation. Total N 

losses and the proportion of total losses due to N03 leaching both tended to increase 

with N inputs. At the national scale, N03 leaching was the major loss vector for both 

native and cropped/grazed systems because both N inputs and leaching are positively 

correlated with water inputs. However, leaching was responsible for less than half of 

total N losses for ~50% of the counties under native vegetation and ~ 15% of the 

counties for cropped/grazed systems. The counties where leaching did not make up 

the majority of N losses tended to be in the arid western half of the United States. 

At the national scale, NH3 volatilization and NOx emissions were responsible 

for more than 84% of N gas losses for grazed and native systems and about 58% 

of N gas losses for cropped systems. Similar to N03 leaching, there was consider­

able variability, for example, NH3 volatilization + NOx emissions were responsible 

for less than half of N gas emissions in ~ 3% of counties under native vegetation. 

Coarse textured soils tended to have both higher N03 leaching losses and higher 

N gas losses than finer textured soils. Large pores in coarse textured soils facili­

tate water infiltration and flow so leaching is enhanced. Large pores also allow air 

exchange so O2 is sufficient to support nitrification, the process primarily respon­

sible for soil NOx emissions. Volatilization of NH3 excreted by grazing animals is 

also higher for coarse compared to fine textured soils. In contrast to leaching and 

NOx losses, N20 and N2 emissions tended to increase as soils became finer tex­

tured. This is related to the effects of soil texture on gas diffusivity. As soil tex­

ture becomes finer water retention tends to increase and gas diffusivity tends to 

decrease. These conditions contribute to soil anoxia and increase the probability 

that N oxides produced from nitrification and denitrification will be reduced to N20 

or N2 before emission from the soil. Simulated N2 emissions are relatively insensi­

tive to soil texture for loam and coarser textured soils and the N21N20 ratio was 

greater than one only in some counties with clay loam and finer textured soils. Total 

N gas losses decreased as soil texture became finer because NOx and NH3 emis­

sions decreased and these gases formed a large portion of total N gas fluxes. From 

a greenhouse gas perspective, fine textured soils are expected to emit more N20, 

but from an N balance perspective, fine textured soils are expected to show smaller 

total N gas and leaching losses from the system. 
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Simulations show that N losses from soils respond nonlinearly to controls and 

that interactions among controls are important. We conclude that N losses from 

soils are strongly dependent on land management but that generalizations based 

solely on soil N and water inputs are likely to be limited because soil texture, soil C 

levels, and plant demand for nutrients are also important. 
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