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Abstract

This chapter describes how duality and approximate dynamic programming (ADP) methods can be
used in financial engineering. It focuses on American option pricing and portfolio optimization prob-
lems when the underlying state space is high-dimensional. In general, it is not possible to solve these
problems exactly due to the so-called “curse of dimensionality” and as a result, approximate solution
techniques are required. ADP and dual-based methods have been proposed for constructing and evalu-
ating good approximate solutions to these problems. In this chapter we describe these methods. Some
directions for future research are also outlined.

1 INTRODUCTION

Portfolio optimization and American option pricing problems are among the most important problems
in financial engineering. Portfolio optimization problems occur throughout the financial services as
pension funds, mutual funds, insurance companies, endowments and other financial entities all face the
fundamental problem of dynamically allocating their resources across different securities in order to
achieve a particular goal. These problems are often very complex owing to their dynamic and stochastic
nature, their high dimensionality and the complexity of real-world constraints. While researchers have
developed a number of sophisticated models for addressing these problems, the current state-of-the-art
is such that explicit solutions are available only in very special circumstances. (See, for example, Merton
1990, Cox and Huang 1991, Karatzas and Shreve 1997, and Liu 1998).

American option pricing has also presented several challenges to the field of financial engineering. Even
in the simple Black-Scholes framework (Black and Scholes 1973), a closed form expression for the price
of an American put option is not available and so it must therefore be computed numerically. This
does not present a challenge when there is just one or two underlying securities. However, as pricing an
American option amounts to solving an optimal stopping problem, Bellman’s curse of dimensionality
implies that pricing high-dimensional American options using standard numerical techniques is not

∗This chapter is a revised and extended version of Haugh (2003).



practically feasible. Unfortunately, the same conclusion also applies to solving general high-dimensional
portfolio optimization problems.

Because these high-dimensional problems occur frequently in practice, they are of considerable interest
to both researchers and practitioners. In recent years there has been some success in tackling these
problems using approximate dynamic programming (ADP) and dual-based methods. ADP methods
(see, for example, Bertsekas and Tsitsiklis 1996) have had considerable success in tackling large-scale
complex problems and have recently been applied successfully to problems in financial engineering
(Brandt et al. 2001; Longstaff and Schwartz 2001; and Tsitsiklis and Van Roy 2001). One difficulty
with ADP, however, is in establishing how far the sub-optimal ADP solution to a given problem is
from optimality. In the context of optimal stopping problems and pricing American options, Haugh
and Kogan (2004) and Rogers (2002) developed dual formulations1 which allows one to evaluate sub-
optimal strategies, including those obtained from ADP methods (see, for example, Haugh and Kogan
2004, Anderson and Broadie 2004, Glasserman and Yu 2004, Glasserman and Chen 2006). A stochastic
duality theory also exists for portfolio optimization problems and this has been developed by many
researchers in recent years (see, for example, Shreve and Xu 1992a and 1992b, He and Pearson 1991,
Cvitanic and Karatzas 1992, and Karatzas and Shreve 1997). While this theory has had considerable
success in characterizing optimal solutions, explicit solutions are still rare (see Rogers 2003). Recently
Haugh, Kogan and Wang (2003) have shown how some of these dual formulations can be used to evaluate
suboptimal policies by constructing lower and upper bounds on the true optimal value function. These
suboptimal policies could be simple heuristic policies or policies resulting from some approximation
techniques such as ADP.

Another promising approach to approximate solution of dynamic portfolio choice problems is based on
the equivalent linear programming formulation of the dynamic program (see, for example, Farias and Van
Roy 2003 and 2004). The approximate linear programming formulation provides an approximation to
the portfolio policy as well as an upper bound on the value function. This approach is computationally
intensive and its ability to handle large-scale practical problems still needs to be evaluated. Some
encouraging results in this direction are obtained by Han (2005).

Simulation techniques play a key role in both the ADP and dual-based evaluation methods that have
been used to construct and evaluate solutions to these problems. While it has long been recognized
that simulation is an indispensable tool for financial engineering (see the surveys of Boyle, Broadie and
Glasserman 1997, and Staum 2002), it is only recently that simulation has begun to play an important
role in solving control problems in financial engineering. These control problems include portfolio
optimization and the pricing of American options, and they are the focus of this paper.

The remainder of the paper is outlined as follows. Section 2 describes the American option pricing
problem. We briefly describe the ADP methods in Section 2.1 after which we will focus on the duality
theory for optimal stopping in Section 2.2. Section 2.3 discusses extensions and other applications of
these dual-based ideas. We then conclude Section 2 by outlining some directions for future research
in Section 2.4. Section 3 concentrates on portfolio optimization. In Sections 3.1 and 3.2, respectively,
we describe the portfolio optimization framework and review the corresponding duality theory. In
Section 3.3 we show how an upper bound on the portfolio optimization problem can be obtained and we
summarize the algorithm for obtaining lower and upper bounds in Section 3.4. We conclude by outlining
directions for future research in Section 3.5. Results will not be presented in their full generality, and
technical details will often be omitted as we choose to focus instead on the underlying concepts and
intuition.

1The dual formulation in these papers relies on an alternative characterization of an optimal stopping problem, which
can be traced back to Davis and Karatzas (1994).
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2 PRICING AMERICAN OPTIONS

The Financial Market: We assume there exists a dynamically complete financial market that is
driven by a vector-valued Markov process, Xt = (X1

t , . . . , Xn
t ). In words, we say a financial market is

dynamically complete if any random variable, WT , representing a terminal cash-flow can be attained
by using a self-financing trading strategy. (A self-financing trading strategy is a strategy where changes
in the value of the portfolio are only due to accumulation of dividends and capital gains or losses. In
particular, no net addition or withdrawal of funds is allowed after date t = 0 and any new purchases of
securities must be financed by the sale of other securities.) Xt represents the time t vector of risky asset
prices as well as the values of any relevant state variables in the market. We also assume there exists a
risk-free security whose time t price is Bt = ert, where r is the continuously compounded risk-free rate
of interest.2 Finally, since markets are assumed to be dynamically complete, there exists (see Duffie
1996) a unique risk-neutral valuation measure, Q.

Option Payoff: Let ht = h(Xt) be a nonnegative adapted process representing the payoff of the option
so that if it is exercised at time t the holder of the option will then receive ht.

Exercise Dates: The American feature of the option allows the holder of the option to exercise it at
any of the pre-specified exercise dates in T = {0, 1, . . . , T}.3

Option Price: The value process of the American option, Vt, is the price process of the option
conditional on it not having been exercised before t. It satisfies

Vt = sup
τ≥t

EQt

[
Bthτ

Bτ

]
. (1)

where τ is any stopping time with values in the set T ∩ [t, T ].

If Xt is high-dimensional, then standard solution techniques such as dynamic programming become
impractical and we cannot hope to solve the optimal stopping problem (1) exactly. Fortunately, efficient
ADP algorithms for addressing this problem have recently been developed independently by Longstaff
and Schwartz (2001) and Tsitsiklis and Van Roy (2001).4 We now briefly describe the main ideas behind
these algorithms, both of which rely on the ability to simulate paths of the underlying state vectors.

2.1 ADP for Pricing American Options

Once again, the pricing problem at time t = 0 is to compute

V0 = sup
τ∈T

EQ0

[
hτ

Bτ

]

2Note that we can easily handle the case where rt = r(Xt) is stochastic.
3Strictly speaking, we consider Bermudan options that may only be exercised at one of a finite number of possible dates.

While American options can be exercised at any time in a continuum of dates, in practice it is necessary to discretize
time when pricing them numerically. As a result, we do not distinguish between Bermudan and American options in this
chapter.

4See also Carriére (1996) for the original introduction of regression-based ideas for pricing American options.
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and in theory this problem is easily solved using value iteration. In particular, a standard recursive
argument implies

VT = h(XT ) and

Vt = max
(

h(Xt), EQt

[
Bt

Bt+1
Vt+1(Xt+1)

])
.

The price of the option is then given by V0(X0) where X0 is the initial state of the economy. As an
alternative to value iteration we could use Q-value iteration. If the Q-value function is defined to be
the value of the option conditional on it not being exercised today, i.e. the continuation value of the
option, then we also have

Qt(Xt) = EQt

[
Bt

Bt+1
Vt+1(Xt+1)

]
.

The value of the option at time t + 1 is then

Vt+1(Xt+1) = max(h(Xt+1), Qt+1(Xt+1))

so that we can also write

Qt(Xt) = EQt

[
Bt

Bt+1
max (h(Xt+1), Qt+1(Xt+1))

]
. (2)

Equation (2) clearly gives a natural analog to value iteration, namely Q-value iteration. As stated
earlier, if n is large so Xt is high-dimensional, then both value iteration and Q-value iteration are not
feasible in practice. However, we could perform an approximate and efficient version of Q-value iteration,
and this is precisely what the ADP algorithms of Longstaff and Schwartz (2001) and Tsitsiklis and Van
Roy (2001) do. We now describe their main contribution, omitting some of the more specific details
that can nevertheless have a significant impact on performance.

The first step is to choose a set of basis functions, φ1(·), . . . , φm(·). These basis functions define the linear
architecture that will be used to approximate the Q-value functions. In particular, we will approximate
Qt(Xt) with

Q̃t(Xt) = r1
t φ1(Xt) + . . . + rm

t φm(Xt)

where rt := (r1
t , . . . , r

m
t ) is a vector of time t parameters that is determined by the algorithm which

proceeds as follows:

Approximate Q-Value Iteration

generate N paths of state vector, X, conditional on initial state, X0

set Q̃T (Xi
T ) = 0 for all i = 1 to N

for t = T − 1 downto 1

regress BtṼt+1(Xi
t+1)/Bt+1 on (φ1(Xi

t), . . . , φm(Xi
t)) where

Ṽt+1(Xi
t+1) := max

(
h(Xi

t+1), Q̃(Xi
t+1)

)

set Q̃t(Xi
t) =

∑
k rk

t φk(Xi
t) where the rk

t ’s are the estimated regression coefficients
end for
generate M samples of state vector, X1, conditional on initial state, X0

set Ṽ0(X0) =
(∑M

j=1 max
(
h(Xj

1), Q̃1(X
j
1)

))
/MB1
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The key idea in this algorithm is the use of regression methods to estimate Q̃t(Xi
t). In practice,

standard least squares regression is used and because this technique is so fast the resulting Q-value
iteration algorithm is also very fast. For typical problems that arise in practice, N is often taken to
be on the order of 10, 000 to 50, 000. Obviously, many more details are required to fully specify the
algorithm. In particular, parameter values and basis functions need to be chosen. It is generally a good
idea to use problem-specific information when choosing the basis functions. For example, if the value
of the corresponding European option is available in closed form then that would typically be an ideal
candidate for a basis function. Other commonly used basis functions are the intrinsic value of the option
and the prices of other related derivative securities that are available in closed from.

Specific implementation details can also vary. While the algorithm described above is that of Tsitsiklis
and Van Roy (2001), Longstaff and Schwartz (2001) omit states Xi

t where h(Xi
t) = 0 when estimating

the regression coefficients, rk
t for k = 1, . . . , m. They also define Ṽt+1(Xi

t+1) so that

Ṽt+1(Xi
t+1) =

{
h(Xi

t+1) , h(Xi
t+1) ≥ Q̃(Xi

t+1)
Ṽt+2(Xi

t+2)Bt+1/Bt+2 , h(Xi
t+1) < Q̃(Xi

t+1).

In particular, they take Ṽt+1(Xi
t+1) to be the realized discounted payoff on the ith path as determined

by the exercise policy, τ̃ , implicitly defined by Q̃l(·), for l = t + 1, · · · , T .

In practice, it is quite common for an alternative estimate, V 0, of V0 to be obtained by simulating the
exercise strategy that is defined by τ̃ . Formally, we define τ̃ = min{t ∈ T : Q̃t ≤ ht} and

V 0 = EQ0

[
heτ
Beτ

]
.

V 0 is then an unbiased lower bound on the true value of the option. That the estimator is a lower bound
follows from the fact τ̃ is a feasible adapted exercise strategy. Typically, V 0 is a much better estimator
of the true price than Ṽ0(X0) as the latter often displays a significant upwards bias. Glasserman (2004,
Section 8.7) provides a very nice intuition for determining when Ṽ0(X0) performs poorly as an estimator
and, using the duality ideas of Section 2.2, he relates the quality of Ṽ0(X0) to the quality of the chosen
basis functions.

These ADP algorithms have performed surprisingly well on realistic high-dimensional problems (see
Longstaff and Schwartz 2001 for numerical examples) and there has also been considerable theoretical
work (e.g. Tsitsiklis and Van Roy, 2001, and Clemént, Lamberton and Protter 2002) justifying this.
Clemént Lamberton and Protter (2002), for example, show that the Longstaff and Schwartz algorithm
converges as the number of paths, N , goes to infinity and that the limiting price, Ṽ0(X0), equals the
true price, V0, if Qt can be written as a linear combination of the chosen basis functions.

Haugh and Kogan (2004) also show that for any approximation, Q̃t, the quality of the lower bound, V 0,
satisfies

V0 − V 0 ≤ EQ0

[
T∑

t=0

|Q̃t −Qt|
Bt

]
.

While this may suggest that the quality of the lower bound deteriorates linearly in the number of
exercise periods, in practice this is not the case. The quality of V 0, for example, can be explained in
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part by noting that exercise errors are never made as long as Qt(·) and Q̃t(·) lie on the same side of
the optimal exercise boundary. This means in particular, that it is possible to have large errors in Q̃t(·)
that do not impact the quality of V 0.

More recently, it has been shown (see Glasserman 2004 and Glasserman and Yu 2004) how the ADP -
regression methods relate to the stochastic mesh method of Broadie and Glasserman (1997). In addition,
Glasserman and Yu (2004) also study the trade-off between the number of paths, N , and the number
of basis functions, m, when there is a finite computational budget available.

To complete this section, it is worth mentioning that there is an alternative to approximating the value
function or Q-value function when using ADP methods (or indeed any other approximation methods).
That is, we could choose instead to approximate the optimal exercise frontier. The exercise frontier is
the boundary in X-space whereby it is optimal to exercise on one side of the boundary and to continue
on the other side. It is possible to construct ADP methods that directly approximate this exercise
boundary without directly approximating the value function. These methods often require work that is
quadratic in the number of exercise periods. That said, in general it is very difficult to conduct a formal
comparison between methods that approximate the exercise frontier and methods that approximate the
value function.

2.2 Duality Theory for American Options

While ADP methods have been very successful, a notable weakness is their inability to determine how
far the ADP solution is from optimality in any given problem. Haugh and Kogan (2004) and Rogers
(2002) independently developed duality-based methods that can be used for constructing upper bounds
on the true value function. Haugh and Kogan showed that any approximate solution, arising from ADP
or other5 methods, could be evaluated by using it to construct an upper6 bound on the true value
function. We also remark that Broadie and Glasserman (1997) were the first to demonstrate that tight
lower and upper bounds could be constructed using simulation techniques. Their method, however, does
not work with arbitrary approximations to the value function and does not appear to be as efficient as
the dual-ADP techniques. We now describe these duality-based methods.

For an arbitrary adapted supermartingale, πt, the value of an American option, V0, satisfies

V0 = sup
τ∈T

EQ0

[
hτ

Bτ

]
= sup

τ∈T
EQ0

[
hτ

Bτ
− πτ + πτ

]

≤ sup
τ∈T

EQ0

[
hτ

Bτ
− πτ

]
+ π0 ≤ EQ0

[
max
t∈T

(
ht

Bt
− πt

)]
+ π0, (3)

where the first inequality follows from the optional sampling theorem for supermartingales. Taking the
infimum over all supermartingales, πt, on the right hand side of (3) implies

V0 ≤ U0 := inf
π

EQ0

[
max
t∈T

(
ht

Bt
− πt

)]
+ π0. (4)

On the other hand, it is known (see e.g. Duffie 1996) that the process Vt/Bt is itself a supermartingale,
which implies

U0 ≤ EQ0

[
max
t∈T

(ht/Bt − Vt/Bt)
]

+ V0.

5See, for example, the iterative technique of Kolodko and Schoenmakers (2004) who construct upper as well as lower
bounds on the true option price using the dual formulations we describe in this section.

6As we saw in Section 2.1, a lower bound is easy to compute given an approximation to the value function.
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Since Vt ≥ ht for all t, we conclude that U0 ≤ V0. Therefore, V0 = U0, and equality is attained when
πt = Vt/Bt.

It is of interest to note that we could have restricted ourselves to the case where πt is a strict martingale,
as was the case with Rogers (2002). In that case, the Doob-Meyer decomposition theorem and the su-
permartingale property of Vt/Bt imply the existence of a martingale, Mt, and an increasing, predictable
process, At, satisfying A0 = 0 and

Vt

Bt
= Mt −At.

Taking πt = Mt in (4) we again obtain U0 ≤ V0 implying once again that V0 = U0. These results
demonstrate that an upper bound on the price of the American option can be constructed simply by
evaluating the right-hand-side of (3) for a given supermartingale, πt. In particular, if such a super-
martingale satisfies πt ≥ ht/Bt, the option price V0 is bounded above by π0.

When the supermartingale πt in (3) coincides with the discounted option value process, Vt/Bt, the
upper bound on the right-hand-side of (3) equals the true price of the American option. This suggests
that a tight upper bound can be obtained by using an accurate approximation, Ṽt, to define πt. One
possibility7 is to define πt as the following martingale8

π0 = Ṽ0 (5)

πt+1 = πt +
Ṽt+1

Bt+1
− Ṽt

Bt
− Et

[
Ṽt+1

Bt+1
− Ṽt

Bt

]
. (6)

Let V 0 denote the upper bound we obtain from (3) corresponding to our choice of supermartingale in
(5) and (6). Then it is easy to see that the upper bound is explicitly given by

V 0 = Ṽ0 + EQ0


max

t∈T


 ht

Bt
− Ṽt

Bt
+

t∑

j=1

EQj−1

[
Ṽj

Bj
− Ṽj−1

Bj−1

]



 . (7)

As may be seen from (7), obtaining an accurate estimate of V 0 can be computationally demanding.
First, a number of sample paths must be simulated to estimate the outermost expectation on the right-
hand-side of (7). While this number can be quite small in practice, we also need to accurately estimate
a conditional expectation at each time period along each simulated path. This requires some effort and
clearly variance reduction methods would be useful in this context. Alternatively, if the initial value
function approximation comes from ADP methods then, as suggested by Glasserman and Yu (2004), it
might be possible to choose the basis functions in such a way that the conditional expectations in (7)
can be computed analytically. In that case the need for conducting nested simulations would not arise.

2.3 Extensions

A number of variations and extensions of these algorithms have also been developed recently and are a
subject of ongoing research. Andersen and Broadie (2004), for example, construct upper bounds by using
an approximation to the optimal exercise frontier instead of an approximation to the Q-value function,

7See Haugh and Kogan (2004) and Andersen and Broadie (2004) for further comments relating to the superiority of
taking πt to be a strict martingale.

8Haugh and Kogan (2004) also propose an alternative where πt is constructed from eVt in a multiplicative manner.
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while Meinshausen and Hambly (2004) use similar ideas to price options that may be exercised on
multiple occasions. Jamshidan (2003) developed a multiplicative dual approach for constructing upper
bounds and Glasserman and Chen (2006) compare this multiplicative dual approach with the additive
approach of Haugh and Kogan (2004) and Rogers (2002). In this section we briefly describe these
extensions. All of them, with the exception of Meinshausen and Hambly (2004), deal with pricing
American options, or equivalently, optimal stopping problems. Brandt et al (2005) extended the ADP
ideas for optimal stopping to portfolio optimization problems. Haugh, Kogan and Wang (2003) showed
how a duality theory that had already existed for portfolio optimization problems could be used in
practice to create upper bounds on the solutions to these problems. These extensions to portfolio
optimization problems will be described in Section 3.

2.3.1 Upper Bounds from Stopping Rules

Approximations to the optimal exercise frontier can also be used to construct upper bounds. For ex-
ample, suppose τi for i = 1, . . . , T is a sequence of stopping times with the property τi ≥ i for all i. We
interpret τi as the time at which the American option should be exercised (under some policy) given
that it has not already been exercised before time i. These stopping times might, for example, be con-
structed from an approximation, Q̃t, to the Q-value function so that τi := min{t ∈ T , t ≥ i : Q̃t ≤ ht}.
Alternatively, τi may derive from a direct approximation to the exercise frontier. In this case,

τi := min{t ∈ T , t ≥ i : gt = 1} (8)

where gt = 1 if the policy says “exercise” and gt = 0 if the policy says “continue”. Note that it is not
necessary to have an approximation to the value function available when τi is defined in this manner.

Regardless of how τi is defined we can use it to construct martingales by setting M̃t :=
∑t

j ∆j where

∆j := EQj
[
hτj

] − EQj−1

[
hτj

]
(9)

= Vj −Qj−1.

We can then take πt := M̃t in (4) to construct upper bounds as before. It is necessary to simulate the
stopping time τi as defined by (8) to estimate the ∆j ’s. This additional or nested simulation is required
at each point along each simulated path when estimating the upper bound. This therefore suggests
that the computational effort required to compute V 0 when a stopping time is used is quadratic in the
number of time periods. In contrast, it appears that the computational effort is linear when Q̃t is used
to construct the upper bound of Section 2.2. However, an approximation to the optimal exercise frontier
is likely to be more ‘accurate’ than an approximation to the Q-value function and so a more thorough
analysis would be required before the superiority of one approach over the other could be established.

The stopping rule approach was proposed by Andersen and Broadie (2004) but see also Glasserman
(2004) for further details. It is also worth mentioning that it is straightforward to combine the two
approaches. In particular, an explicit approximation, Q̃t, could be used in some regions of the state
space to estimate M̃t while a nested simulation to estimate the ∆j ’s could be used in other regions.

2.3.2 The Multiplicative Dual Approach

An alternative dual formulation, the multiplicative dual, was recently formulated by Jamshidian (2003)
for pricing American options. Using the multiplicative Doob-Meyer decomposition for supermartingales,
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Jamshidan showed that the American option price, V0, could be represented as

V0 = inf
M∈M+

EM
0

[
max

0≤t≤T

ht

Mt

]
:= inf

M∈M+
EQ0

[
max

0≤t≤T

ht

Mt
MT

]
. (10)

where M+ is the set of all positive martingales, Mt, with M0 = 1. Equation (10) suggests that if we
choose a ‘good’ martingale, M̃t ∈M+ with M̃0 = 1, then

V 0 := EQ0

[
max

0≤t≤T

ht

M̃t

M̃T

]

should provide a good upper bound on V0. As was the case with the additive approaches of Section 2.2,
it is possible to to construct a candidate martingale, M̃t, using an approximation, Ṽt, to the true value
function, Vt. As usual, this upper bound can be estimated using Monte Carlo methods.

Chen and Glasserman (2005) compare this multiplicative dual formulation with the additive-dual formu-
lations of Rogers (2002) and Haugh and Kogan (2004). They show that neither formulation dominates
the other in the sense that any multiplicative dual can be improved by an additive dual and that any
additive dual can be improved by a multiplicative dual. They also compare the bias and variance of the
two formulations and show that either method may have a smaller bias. The multiplicative method,
however, typically has a variance that grows much faster than the additive method. While the multi-
plicative formulation is certainly of theoretical interest, in practice it is likely to be dominated by the
additive approach.

Bolia, Glasserman and Juneja (2004) show that the dual formulation of Jamshidian may be interpreted
using an importance sampling formulation of the problem. They then use importance sampling tech-
niques and non-negative least square methods for function approximation in order to estimate the upper
bound associated with a given approximation to the value function. Results are given for pricing an
American put option on a single stock that follows a geometric Brownian motion. While they report some
success, considerable work remains before these ideas can be applied successfully to high-dimensional
problems. In addition, since the multiplicative dual formulation tends to have a much higher variance
than the additive formulation, importance sampling methods might have more of an impact if they
could be successfully applied to additive formulations. More generally, importance sampling methods
should also be of interest when constructing value function approximations in the first place.

2.3.3 Multiple Exercise Opportunities

In an interesting extension, Meinshausen and Hambly (2004), extend the ADP-dual techniques to multi-
ple exercise options. If T = {0, 1, . . . , T} are the possible exercise dates, then a multiple exercise option
with n exercise opportunities may be exercised at any of n dates in T . Clearly n <= T + 1 and the
case where n = 1 corresponds to a standard American option. The standard examples of a multiple
exercise option is a swing option that is traded in the energy derivatives industry. A swing option gives
the holder a fixed number of exercise opportunities when electricity may be purchased at a given price.
Meinshausen and Hambly (2004) apply ADP methods to construct an approximation to (and lower
bound on) the price of swing options.9 They then use this approximation and a dual formulation to
construct an upper bound on the true price of the option. This is completely analogous to the methods
for pricing high-dimensional American options though the computational requirements appear to be
much greater.

9They also price chooser flexible caps, fixed income derivative securities that give the holder the right to exercise a given
number of caplets over a given horizon.
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2.4 Directions for Future Research

There are many possible directions for future research. First, it should be possible to employ ADP
and duality ideas to other classes of problems. There has of course already been some success in this
direction. As described in Section 2.3.2, Meinshausen and Hambly (2004) have extended these results
to option pricing problems where multiple exercises are permitted. Haugh, Kogan and Wang (2003)
also developed analogous results for dynamic portfolio optimization problems.10 It should therefore
be possible to extend and develop these techniques for solving other classes of control problems. Of
particular interest are real options problems, which typically embed American-style or multiple-exercise
features.

Because ADP-dual techniques require simulation methods and therefore often demand considerable
computational effort, it is clear that variance reduction techniques should be of value, particularly
as ever more complex problems are solved. We expect importance sampling to be especially useful
in this regard. First, it may be used for estimating the value associated with a given approximately
optimal policy.11 Second, and perhaps more interesting, it should prove especially valuable in actually
constructing the approximately optimal policy itself. This is because importance sampling ideas can
be used to focus the computational effort on the more ‘important’ regions of the state space when
approximating the value function. While these ideas are not new, they have certainly not been fully
explored within the ADP literature.

Estimating the so-called ‘greeks’ is also a particularly interesting problem. While ADP-dual ideas have
now been very successful for pricing high-dimensional American options, efficiently computing the greeks
for these problems remains a difficult12 task .

Another future research direction is to use the dual formulation, possibly in conjunction with the primal
formulation, to construct approximate value functions or exercise frontiers. The resulting ‘dual’ or
‘primal-dual’ algorithms would be of theoretical interest and we expect they would, in some instances,
be superior to ‘primal’ algorithms that have already been developed. While it is straightforward to
design admittedly simple primal-dual style algorithms,13 there appears to have been little work done
on this topic. This, presumably, is due to the great success that ADP-regression algorithms have had
in quickly generating good approximations to the true option price. It is possible, however, that this
will become a more active research area as more challenging classes of problems are tackled with ADP
techniques.

3 PORTFOLIO OPTIMIZATION

Motivated by the success of ADP methods for pricing American options, Brandt, Goyal, Santa-Clara,
and Stroud (2005) apply similar ideas to approximately solve a class of high-dimensional portfolio op-
timization problems. In particular, they simulate a large number of sample paths of the underlying
state variables and then working backwards in time, they use cross path regressions (as we described in

10See Section 3.
11See Bolia, Glasserman and Juneja (2004) and Section 2.3.2.
12See Kaniel, Zemlianov and Tompaidis (2006) for an application where dual methods are employed to estimate the

greeks of Bermudan-style options
13See, for example, Haugh and Kogan (2004).
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the approximate Q-value iteration algorithm) to efficiently compute an approximately optimal strategy.
Propagation of errors is largely avoided, and though the price for this is an algorithm that is quadratic
in the number of time periods, their methodology can comfortably handle problems with a large num-
ber of time periods. Their specific algorithm does not handle portfolio constraints and certain other
complicating features, but it should be possible to tackle these extensions using the ADP methods that
they and others have developed.

As was the case with ADP solutions to optimal stopping problems, a principal weakness of ADP
solutions to portfolio optimization problems is the difficulty in determining how far a given solution to
a given problem is from optimality. This issue has motivated in part the research of Haugh, Kogan and
Wang (2005) (hereafter HKW) who use portfolio duality theory to evaluate the quality of suboptimal
solutions to portfolio optimization problems by constructing lower and upper bounds on the optimal
value function. These bounds are evaluated by simulating the stochastic differential equations (see
Kloeden and Platen 1992) that describe the evolution of the state variables in the model in question.
In section 3.2 we describe the particular portfolio duality theory that was used in HKW and that was
developed by Xu (1990), Shreve and Xu (1992a, 1992b), Karatzas, Lehocky, Shreve and Xu (1991), and
Cvitanic and Karatzas (1992).

Before doing so, we remark that the duality theory of Section 3.2 applies mainly to problems in con-
tinuous time. ADP techniques, on the other hand, are generally more suited to a discrete time frame-
work. This inconsistency can be overcome by extrapolating discrete-time ADP solutions to construct
continuous-time solutions.

3.1 The Model

We now state a portfolio choice problem under incomplete markets and portfolio constraints. The
problem is formulated in continuous time and stock prices follow diffusion processes.

The Investment Opportunity Set: There are N stocks and an instantaneously riskfree bond. The
vector of stock prices is denoted by Pt = (P1t, . . . , PNt) and the instantaneously riskfree rate of return
on the bond is denoted by rt. Without loss of generality, stocks are assumed to pay no dividends. The
instantaneous moments of asset returns depend on the M -dimensional vector of state variables Xt:

rt = r(Xt), (11a)

dPt = Pt [µP (Xt) dt + ΣP (Xt) dBt] , (11b)

dXt = µX(Xt) dt + ΣX(Xt) dBt, (11c)

where P0 = 1, X0 = 0, Bt = (B1t, ..., BNt) is a vector of N independent Brownian motions, µP and µX

are N - and M -dimensional drift vectors, and ΣP and ΣX are diffusion matrices of dimension N by N

and M by N , respectively. The diffusion matrix of the stock return process ΣP is lower-triangular and
non-degenerate: x>ΣP ΣP

>x ≥ ε‖x‖2 for all x and some ε > 0. Then, one can define a process ηt, given
by

ηt = Σ−1
Pt (µPt − rt)

In a market without portfolio constraints, ηt corresponds to the vector of instantaneous market prices
of risk of the N stocks (see, e.g., Duffie 1996, Section 6.G). The process ηt is assumed to be square-
integrable so that

E0

[∫ T

0
‖ηt‖2 dt

]
< ∞.
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Portfolio Constraints: A portfolio consists of positions in the N stocks and the riskfree bond. The
proportional holdings of risky assets in the total portfolio value are denoted by θt = (θ1t, . . . , θNt). The
portfolio policy is assumed to satisfy a square integrability condition:

∫ T
0 ‖θt‖2 dt < ∞ almost surely.

The value of the portfolio changes according to

dWt = Wt

{[
rt + θ>t (µPt − rt)

]
dt + θ>t ΣP t dBt

}
. (12)

The portfolio weights are restricted to lie in a closed convex set, K, containing the zero vector:

θt ∈ K. (13)

For example, if short sales are not allowed, then the constraint set takes the form K = {θ : θ ≥ 0}. If
in addition to prohibiting short sales, borrowing is not allowed, then K = {θ : θ ≥ 0, 1>θ ≤ 1} where
1> = (1, . . . , 1). The set K can be constant, or it can depend on time and the values of the exogenous
state variables.

The Objective Function: For simplicity, the portfolio policy is chosen to maximize the expected
utility of wealth at the terminal date T , E0[U(WT )]. Preferences over intermediate consumption would
be easy to incorporate. The function U(W ) is assumed to be strictly monotone with positive slope,
concave, and smooth. Moreover, it is assumed to satisfy the Inada conditions at zero and infinity:
limW→0 U ′(W ) = ∞ and limW→∞ U ′(W ) = 0. For instance, a common choice is a constant relative risk
aversion (CRRA) utility function U (W ) = W 1−γ/(1− γ).

In summary, the portfolio choice problem is to solve for

V0 := sup
{θt}

E0 [U(WT )] , subject to (11), (12) and (13) (P)

where V0 denotes the value function at 0.

3.2 Review of the Duality Theory

In this section we review the duality theory for the constrained portfolio optimization problem. In
particular, the version of duality used in HKW is based on the work of Cvitanic and Karatzas (1992).

Starting with the portfolio choice problem (P), one can define a fictitious problem (P(ν)), based on a
different financial market and without the portfolio constraints. First, define the support function of
K, δ(·) : RN → R ∪∞, by

δ(ν) := sup
x∈K

(−ν>x). (14)

The effective domain of the support function is given by

K̃ := {ν : δ(ν) < ∞}. (15)

Because the constraint set K is convex and contains zero, the support function is continuous and
bounded from below on its effective domain K̃. Then, one can define the set D of Ft-adapted RN

valued processes to be

D :=
{

νt, 0 ≤ t ≤ T : νt ∈ K̃, E0

[∫ T

0
δ(νt) dt

]
+ E0

[∫ T

0
‖νt‖2 dt

]
< ∞

}
. (16)
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For each process, ν ∈ D, consider a fictitious market, M (ν), in which the N stocks and the riskfree bond
are traded. There are no constraints in the fictitious market. The diffusion matrix of stock returns in
M (ν) is the same as in the original market. However, the riskfree rate and the vector of expected stock
returns are different. In particular, the riskfree rate process and the market price of risk in the fictitious
market are defined respectively by

r
(ν)
t = rt + δ(νt) (17a)

η
(ν)
t = ηt + Σ−1

Pt νt (17b)

where δ(ν) is the support function defined in (14). Assume that η
(ν)
t is square-integrable.

Because the number of Brownian motions, N , is equal to the number of stocks in the financial market
described by (11) and the diffusion matrix is non-degenerate, it can be shown that the unconstrained
fictitious market is dynamically complete. Dynamic completeness would imply the existence of a unique
market-price-of-risk process, ηt and a unique state-price-density (SPD) process, πt. πt(ω) may be
interpreted as the price per-unit-probability of $1 at time t in the event ω occurs. (See Duffie 1996 for
further details.) It so happens that a portfolio optimization problem in complete markets is particularly
easy to solve using martingale methods. Following Cox and Huang (1989), the state-price density
process π

(ν)
t in the fictitious market is given by

π
(ν)
t = exp

(
−

∫ t

0
r(ν)
s ds− 1

2

∫ t

0
η(ν)

s

>
η(ν)

s ds−
∫ t

0
η(ν)

s

>
dBs

)
(18)

and the vector of expected returns is given by

µ
(ν)
Pt = r

(ν)
t + ΣPt η

(ν)
t .

The dynamic portfolio choice problem in the fictitious market without position constraints can be
equivalently formulated in a static form (e.g., Cox and Huang, 1989, Karatzas and Shreve, 1998, Section
3):

V (ν) := sup
{WT }

E0 [U(WT )] subject to E0

[
π

(ν)
T WT

]
≤ W0. (P(ν))

Once the optimal terminal wealth is computed, it can then be supported by a dynamic trading strategy.
Due to its static nature, the problem (P(ν)) is easy to solve. For example, when the utility function is
of the CRRA type with relative risk aversion γ so that U (W ) = W 1−γ/(1−γ), the corresponding value
function in the fictitious market is given explicitly by

V
(ν)
0 =

W 1−γ
0

1− γ
E0

[
π

(ν)
T

γ−1
γ

]γ

. (19)

It is easy to see that for any admissible choice of ν ∈ D, the value function in (19) gives an upper bound
for the optimal value function of the original problem. In the fictitious market, the wealth dynamics of
the portfolio are given by

dW
(ν)
t = W

(ν)
t

[(
r
(ν)
t + θ>t ΣP tη

(ν)
t

)
dt + θ>t ΣP t dBt

]
, (20)

so that
dW

(ν)
t

W
(ν)
t

− dWt

Wt
=

[(
r
(ν)
t − rt

)
+ θ>t ΣPt

(
η

(ν)
t − ηt

)]
dt =

[
δ(νt) + θ>t νt

]
dt.
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The last expression is non-negative according to (14) since θt ∈ K. Thus, W
(ν)
t ≥ Wt ∀ t ∈ [0, T ] and

V
(ν)
0 ≥ V0. (21)

Results in Cvitanic and Karatzas (1992) and Schroder and Skiadas (2003) imply that if the original
optimization problem has a solution, then the upper bound is “tight,” i.e., the value function of the
fictitious problem (P(ν)) coincides with the value function of the original problem (P) at an optimally
chosen ν∗:

V
(ν∗)
0 := inf

{ν}
V (ν) = V0. (22)

See Schroder and Skiadas, 2003, Proposition 3(b) and Theorems 7 and 9. The above equality holds
for all times, and not just at time 0, i.e., V

(ν∗)
t = Vt. Cvitanic and Karatzas (1992) have shown that

the solution to the original problem exists under additional restrictions on the utility function, most
importantly that the relative risk aversion does not exceed one. Cuoco (1997) proves a more general
existence result, imposing minimal restrictions on the utility function.

3.3 The Performance Bound

The theoretical duality results of Section 3.2 suggest that one can construct an upper bound on the value
function of the portfolio choice problem (P) by computing the value function of any fictitious problem
(P(ν)). The fictitious market is defined by the process νt as in (17). Of course, one can pick any fictitious
market from the admissible set D to compute an upper bound. Such a bound is uninformative if it
is too loose. Since the objective is to evaluate a particular candidate policy, one should construct a
process ν̂t based on such a policy to obtain tighter bounds. The solution to the portfolio choice problem
under the fictitious market defined by ν̂t then provides a performance bound on the candidate policy.

In order to construct the fictitious market as defined by ν̂t, HKW first use the solution to the dual
problem to establish the link between the optimal policy, θ∗, and value function, V0 = V

(ν∗)
0 , and the

corresponding fictitious asset price processes, as defined by ν∗. Not knowing the optimal portfolio policy
and value function, they instead use approximations to obtain the candidate process for ν∗, which is
denoted by ν̃. This candidate process in general does not belong to D and cannot be used to define
a fictitious problem. Instead, one must search for a qualified process ν̂ ∈ D, which is close to ν̃.
HKW then use ν̂ as an approximation to ν∗ to define the fictitious problem, (P(bν)). Since ν̂ ∈ D, the
solution to the corresponding unconstrained problem in M (bν) provides a valid performance bound for
the candidate policy.

The state-price density process is related via an envelope theorem to the value function by

d ln π
(ν∗)
t = d ln

∂Vt

∂Wt
. (23)

In particular, the stochastic part of d lnπ
(ν∗)
t is equal to the stochastic part of d ln ∂Vt/∂Wt. If Vt is

smooth, Ito’s lemma and equations (18) and (12) imply that

η∗t := η
(ν∗)
t = −Wt

(
∂2Vt/∂W 2

t

∂Vt/∂Wt

)
Σ>Ptθ

∗
t −

(
∂Vt

∂Wt

)−1

Σ>Xt

(
∂2Vt

∂Wt∂Xt

)
, (24)

where θ∗t denotes the optimal portfolio policy for the original problem. In the special but important
case of a CRRA utility function the expression for η

(ν∗)
t simplifies. In particular, the first term in (24)
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simplifies to γΣ>Ptθ
∗
t , where γ is the relative risk aversion coefficient of the utility function, and one

only needs to compute the first derivative of the value function with respect to the state variables Xt

to evaluate the second term in (24). This simplifies the numerical implementation, since it is generally
easier to estimate first-order than second-order partial derivatives of the value function.

Given an approximation to the optimal portfolio policy θ̃t, one can compute the corresponding approxi-
mation to the value function, Ṽt, defined as the conditional expectation of the utility of terminal wealth,
under the portfolio policy θ̃t. One can then construct a process ν̂ as an approximation to ν∗, using (24).
Approximations to the portfolio policy and value function can be obtained using a variety of methods,
e.g., the ADP method (see Brandt, Goyal, Santa-Clara, and Stroud 2005). HKW take θ̃t as given and
use it to construct an upper bound on the unknown true value function V0.

Assuming that the approximate value function Ṽ is sufficiently smooth, one can replace Vt and θ∗t in
(24) with Ṽt and θ̃t and obtain

η̃t := η
(eν)
t = −Wt

(
∂2Ṽt/∂W 2

t

∂Ṽt/∂Wt

)
Σ>Pt θ̃t −

(
∂Ṽt

∂Wt

)−1

Σ>Xt

(
∂2Ṽt

∂Wt∂Xt

)
. (25)

ν̃t is then defined as a solution to (17b).

Obviously, η̃t is a candidate for the market price of risk in the fictitious market. However, there is no
guarantee that η̃t and the corresponding process ν̃t belong to the feasible set D defined by (16). In fact,
for many important classes of problems the support function δ(νt) may be infinite for some values of
its argument. HKW look for a price-of-risk process η̂t ∈ D that is close to η̃t. They choose a Euclidian
norm as the measure of distance between the two processes to make the resulting optimization problem
tractable.

The requirement that η̂t ∈ D is not straightforward to implement computationally. Instead, HKW
impose a set of tighter uniform bounds,

‖η̂ − η‖ ≤ A1, (26a)

δ(ν̂) ≤ A2, (26b)

where A1 and A2 are positive constants that can be taken to be arbitrarily large. The condition
(26a) implies that the process ν̂t is square-integrable, since ηt is square integrable and ‖η̂ − η‖2 =
ν̂>

(
ΣP

−1
)>ΣP

−1ν̂ ≥ A‖ν̂‖2 for some A > 0. HKW provide a discussion on the choice of constants A1

and A2.

In summary, η̂t and ν̂t are defined as a solution of the following problem:

minbν, bη ‖η̂ − η̃‖2, (27)

subject to

η̂ = η + Σ−1
P ν̂, (28a)

δ(ν) < ∞, (28b)

‖η̂ − η‖ ≤ A1, (28c)

δ(ν̂) ≤ A2. (28d)

The value of η̂t and ν̂ can be computed quite easily for many important classes of portfolio choice
problems. The following two examples are taken from HKW.
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Incomplete Markets: Assume that only the first L stocks are traded so that the positions in the
remaining N −L stocks are restricted to the zero level. In this case the set of feasible portfolio policies
is given by

K = {θ | θi = 0 for L < i ≤ N} (29)

and hence the support function δ(ν) is equal to zero if νi = 0, 1 ≤ i ≤ L and is infinite otherwise. Thus,
as long as νi = 0, 1 ≤ i ≤ L, the constraint (26b) does not need to be imposed explicitly. To find η̂ and
ν̂, one must solve

minbη, bν ‖η̂ − η̃‖2, (30)

subject to

η̂ = η + ΣP
−1ν̂,

ν̂i = 0, 1 ≤ i ≤ L,

‖η̂ − η‖2 ≤ A2
1.

The diffusion matrix ΣP is lower triangular and so is its inverse. Using this, the solution can be expressed
explicitly as

η̂i = ηi, 1 ≤ i ≤ L,

η̂j = ηj + a(η̃j − ηj), L < j ≤ N,

ν̂ = ΣP (η̂ − η) ,

where

a = min


1,

(
A2

1 − ‖η̃ − η‖2
(L)

‖η̃ − η‖2 − ‖η̃ − η‖2
(L)

)1/2

 , ‖η̃‖2

(L) =
L∑

i=1

η̃2
i .

Incomplete Markets, No Short Sales, And No Borrowing: The market is the same as in the
previous case, but no short sales and borrowing are allowed. Then the set of admissible portfolios is
given by

K = {θ | θ ≥ 0, 1>θ ≤ 1, θi = 0 for L < i ≤ N}. (31)

The support function is given by δ(ν) = max(0,−ν1, . . . ,−νL), which is finite for any vector ν. Because
in this case δ(ν) ≤ ‖ν‖, the relation ‖ν‖ = ‖ΣP (η̂ − η)‖ ≤ ‖ΣP ‖A1 implies that as long as A2 is
sufficiently large compared to A1, one only needs to impose (26a) and (26b) is redundant. We therefore
need to solve the following problem:

minbη, bν ‖η̂ − η̃‖2, (32)

subject to

η̂ = η + ΣP
−1ν̂,

‖η̂ − η‖2 ≤ A2
1.

Then the fictitious market is described by

η̂ = η + min
(

1,
A1

‖η̃ − η‖
)

(η̃ − η),

ν̂ = ΣP (η̂ − η) .
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3.4 Summary of the Algorithm

Bounds on the optimal value function can be computed by simulation in several steps.

1. Start with an approximation to the optimal portfolio policy of the original problem and the corre-
sponding approximation to the value function. Both can be obtained using an ADP algoritm, as in
Brandt, Goyal, Santa-Clara, and Stroud (2005) or Haugh, Kogan, and Wu (2005). Alternatively,
one may start with an approximate portfolio policy and then estimate the corresponding value
function by simulation.

2. Use the approximate portfolio policy and partial derivatives of the approximate value function to
construct a process η̃t according to the explicit formula (25). The process η̃t is a candidate for the
market price of risk in the fictitious market.

3. Construct a process η̂t that is close to η̃t and satisfies the conditions for the market price risk of a
fictitious market in the dual problem. This involves solving the quadratic optimization problem
(27).

4. Compute the value function from the static problem (P(ν)) in the resulting fictitious market
defined by the market price of risk process η̂t. This can be accomplished efficiently using Monte
Carlo simulation. This results in an upper bound on the value function of the original problem.

The lower bound on the value function is obtained by simulating the terminal wealth distribution under
the approximate portfolio strategy.

Successful practical implementation of the above algorithm depends on efficient use of simulation meth-
ods. For instance, the expectation in (19) cannot be evaluated explicitly and so it has to be estimated
by simulating the underlying SDE’s. This is a computationally intensive task, particularly when ν̃t

cannot be guaranteed in advance to be well-behaved. In such circumstances it is necessary to solve a
quadratic optimization problem at each discretization point on each simulated path in order to convert
η

(eν)
t and ν̃t into well-behaved versions that can then be used to construct an upper bound on V0. (See

HKW for further details.)

Besides the actual ADP implementation that constructs the initial approximate solution, simulation is
also often necessary to approximate the value function and its partial derivatives in (25). This occurs
when we wish to evaluate a given portfolio policy, θ̃t, but do not know the corresponding value function,
Ṽt. In such circumstances, it seems that it is necessary to simulate the policy, θ̃t, in order to approximate
the required functions. Once again, this is computationally demanding and seeking efficient simulation
techniques for all of these tasks will be an important challenge as we seek to solve ever more complex
problems.

HKW present several numerical examples illustrating how approximate portfolio policies can be evalu-
ated using duality techniques. While relatively simple, these examples illustrate the potential usefulness
of the approach. Haugh, Kogan, and Wu (2005) apply the above algorithm to evaluate an ADP solution
of the portfolio choice problem in incomplete markets with no-borrowing constraints. Finally, Haugh
and Jain (2006) use these duality techniques to show that static strategies that employ derivative se-
curities can perform as well (in the sense of expected utility) as portfolio-constrained dynamic trading
strategies. They also identify other classes of portfolio strategies that can be evaluated using these
duality techniques.
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3.5 Directions for Further Research

There are several remaining problems related to the use of duality-based methods in portfolio choice. On
the theoretical side, there is room for developing new algorithms designed to tackle more complex and
realistic problems. For example, the results summarized above apply to portfolio choice with constraints
on proportions of risky assets. However, some important finance problems, such as asset allocation with
illiquid/non-tradable assets do not fit in this framework. Additional work is required to tackle such
problems.

Another important class of problems involve a different kind of market frictions: transaction costs
and taxes. Problems of this type are inherently difficult, since the nature of frictions often makes the
problem path-dependent and leads to a high-dimensional state space. Some duality results are known for
problems with transaction costs (see Rogers (2003) for a review), while problems with capital gains taxes
still pose a challenge. However, note that it is not sufficient to have a dual formulation in order to derive
a useful algorithm for computing solution bounds. It is necessary that a high-quality approximation to
the optimal dual solution can be recovered easily from an approximate value function. Not all existing
dual formulations have such a property and further theoretical developments are necessary to address
a broader class of problems.

On the computational side, there is a need for efficient simulation algorithms at various stages of practical
implementation of the duality-based algorithms. For instance, motivated by the promising application
of importance sampling methods to pricing American options, one could conceivably develop similar
techniques to improve performance of portfolio choice algorithms. In particular, in a problem with
dynamically complete financial markets and position constraints, approximation errors would tend to
accumulate when portfolio constraints are binding. By sampling more frequently from the “problematic”
areas in the state space, one could achieve superior approximation quality.

The above discussion has been centered around the problem of evaluating the quality of approximate
solutions. A major open problem both on the theoretical and computational fronts is how to use
dual formulations to direct the search for an approximate solution. While a few particularly tractable
problems have been tackled by duality methods, there are no efficient general algorithms that could
handle multi-dimensional problems with nontrivial dynamics and constraints or frictions. Progress
on this front may be challenging, but would significantly expand our ability to address outstanding
problems in financial engineering theory and practice.
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