
18

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

Abstract

Chapter 3 of Library Technology Reports (vol. 49, no.
8), “Streamlining Information Services Using Chatbots,”
describes elements in AIML. The basic structure of AIML
is simple; one can create a working chatbot using a small
number of AIML tags.

Categories, Patterns, and Templates

AIML is composed of three basic elements. The build-
ing block of AIML is the category. Each category rep-
resents a question/answer or input/response pair.
Categories are themselves composed of patterns and
templates. Patterns represent the input received by the
AIML interpreter. Templates represent the response
generated by the interpreter to a given input.

An example of a very simple AIML category is the
following:

<category>
<pattern> WHAT ARE YOUR HOURS

</pattern>
<template>We are open from nine to

five, Monday through Friday.
</template>

</category>

To construct a simple AIML category from scratch,
we first need to identify the code format, (in this case
XML with an XML version and encoding statement).
Follow this with an open AIML statement with its asso-
ciated version. End with a closed AIML statement as
below. Next, add the category example above to the
code, creating a meaningful question/answer pair.

<?xml version=”1.0”
encoding=”UTF-8”>

<aiml version=”1.0”>
<category>
<pattern> WHAT ARE YOUR HOURS</

pattern>
<template>We are open from nine to

five, Monday through Friday.</
template>

</category>
</aiml>

That’s it . . . you’ve created the first question to
which your robot can respond with correct information.

Preprocessing Steps

Before your AIML code is processed, two important
transmutations are performed by the AIML interpreter
program. These are deperiodization and normaliza-
tion. Deperiodization is the simple removal of periods
from the query string sent to the interpreter. Thus,
the statement “We want the library’s books.” is trans-
formed to “We want the library’s books.”

The second step, normalization, is more complex.
During normalization, any remaining punctuation is
removed first. Then all text is changed to uppercase,
and finally the string is run against a number of “reduc-
tion” files to identify and expand any contractions of
the short forms of questions. In our example above, the
string is now changed to “WE WANT THE LIBRARYS
BOOKS”. At this point, the transformed search string is
ready to be matched against the AIML files that com-
prise the chatbots “brain.” Table 3.1 provides addi-
tional examples of the results of preprocessing.

Basic Components of AIML

Chapter 3

19

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

From the table, you can see how some different
formulations of a basic query are simplified to a single
category using just the preprocessing steps. However,
there are still a number of different ways to ask the
question that are not resolved by preprocessing. To deal
with these, you need to create additional categories
that will address these different question formulations.

Efficiencies

Wildcards

In programming your chatbot, it is important to realize
the complexity of language that you will need to address
using your AIML code. This is achieved by composing
categories that will match each formulation of the ques-
tion you desire to answer. Using simple text matching,
this is indeed a daunting task. However, AIML provides
a number of approaches to streamline your coding task.

The first of these is the introduction of wildcard
characters to the category pattern. AIML uses two dif-
ferent wildcard characters, the asterisk * and the under-
score character _. Both of these characters can be used
to match either single words or multiple-word strings.
The difference between them is the priority or order in
which they are selected in a text-matching sequence.

An underscore is processed first, before any addi-
tional exact pattern match is sought. If no pattern with
a matching underscore sequence is identified among
the coded AIML categories, then an exactly matching
text string is sought. Finally, if no matching text string
is located, a pattern match using an asterisk is sought.

The following provides an example of how this could
work. Let’s say the customer asks the question, “Do
you have ebooks?” You want to respond with the tem-
plate message <template>We do not currently
offer ebooks.</template>. You can use a num-
ber of different pattern formulations in order to gener-
ate the desired template.

First and most simply, you could program the
pattern using two underscore characters around the
abbreviation “EBOOK.” This would cue a response
with the desired template, but would also respond
with this same template to all instances of comments
or questions about e-books, not just about their avail-
ability. An alternative would be to use the asterisk
in the same position. Changing the underscore to an
asterisk allows you to continue to catch the same

wildcard matches, but also allows you to program spe-
cific responses to different text matches should you
wish. Table 3.2 illustrates this.

Suffice it to say, in order to avoid many pattern
matching-problems, it’s safer to use the asterisk than
the underscore in most instances.

<star/>

The value provided for an asterisk wildcard charac-
ter in the question pattern can also be repeated in the
answer template using a <star/> tag. This is a single
tag that is used to repeat whatever text is matched
by the pattern asterisk in the template. This can be
extremely valuable in clarifying the intent of the cus-
tomer or providing options for further interaction.

In the following example, an asterisk is inserted to
allow the question to ask about any person. By repeat-
ing the name in the template response, the potential
search parameters are clarified.

<category>
<pattern>DO YOU KNOW WHO * IS

</pattern>
<template>Would you like me to

search for <star/>?</template>
</category>

In the above example, to the question “Do you
know who Melvil Dewey is?” the chatbot will respond,
“Would you like me to search for Melvil Dewey?”

It is also possible to implement pattern/template
pairs containing multiple wildcard strings. In such
cases, it is important to identify which asterisk string is
to be repeated in the template. This is done by assign-
ing each asterisk in the sequence an index value equal
to its ordinal position in the sequence. The first aster-
isk will match index 1, the second index 2, etc. Using
this scheme, it is possible to further simplify the above
code as follows:

<category>
<pattern>* WHO * IS</pattern>
<template>Would you like me to

search for <star index=”2”/>?
</template>

</category>

Original String Don’t you have a library café. Do you have a library café?

Deperiodization Don’t you have a library café. Do you have a library café?

Normalization Do YoU HAVe A LIBRARY CAFe Do YoU HAVe A LIBRARY CAFe

Table 3.1
examples of deperiodization and normalization.

20

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

Question Pattern Template Response

Do you have
ebooks at the
library?

<pattern>_ EBOOKS *
</pattern>

<template>We do not currently offer
ebooks.</template>

We do not currently
offer ebooks.

<pattern>* EBOOKS *
</pattern>

<template>We do not currently offer
ebooks.</template>

We do not currently
offer ebooks.

<pattern>* google
ebooks *</pattern>

<template>We do not currently offer
ebooks for loan; however, you
can use Google ebooks on library
computers.</template>

(no response—pattern
not matched)

<pattern>* kindle
ebooks *</pattern>

<template> We do not currently
offer ebooks for loan; however,
you can access your Amazon/Kindle
ebooks on library computers.
</template>

(no response—pattern
not matched)

Can I access my
google ebooks
at the library?

<pattern>_ EBOOKS *
</pattern>

<template>We do not currently offer
ebooks.</template>

We do not currently
offer ebooks.

<pattern>* EBOOKS *
</pattern>

<template>We do not currently offer
ebooks.</template>

We do not currently
offer ebooks.

<pattern>* google
ebooks *</pattern>

<template>We do not currently offer
ebooks for loan; however, you
can use Google ebooks on library
computers.</template>

We do not currently
offer ebooks for loan;
however, you can use
Google ebooks on li-
brary computers.

<pattern>* kindle
ebooks *</pattern>

<template> We do not currently
offer ebooks for loan; however,
you can access your Amazon/Kindle
ebooks on library computers.
</template>

(no response—pattern
not matched)

Can I access my
kindle ebooks
at the library?

<pattern>_ EBOOKS *
</pattern>

<template>We do not currently offer
ebooks.</template>

We do not currently
offer ebooks.

<pattern>* EBOOKS *
</pattern>

<template>We do not currently offer
ebooks.</template>

We do not currently
offer ebooks.

<pattern>* google
ebooks *</pattern>

<template>We do not currently offer
ebooks for loan; however, you
can use Google ebooks on library
computers.</template>

(no response—pattern
not matched)

<pattern>* kindle
ebooks *</pattern>

<template> We do not currently
offer ebooks for loan; however,
you can access your Amazon/Kindle
ebooks on library computers.
</template>

We do not currently
offer ebooks for loan;
however, you can ac-
cess your Amazon/Kin-
dle ebooks on library
computers.

What is the
average price
of ebooks on
websites?

<pattern>_ EBOOKS *
</pattern>

<template>We do not currently offer
ebooks.</template>

We do not currently
offer ebooks.

<pattern>* EBOOKS *
</pattern>

<template>We do not currently offer
ebooks.</template>

We do not currently
offer ebooks.

<pattern>* google
ebooks *</pattern>

<template>We do not currently offer
ebooks for loan; however, you
can use Google ebooks on library
computers.</template>

(no response—pattern
not matched)

<pattern>* kindle
ebooks *</pattern>

<template> We do not currently
offer ebooks for loan; however,
you can access your Amazon/Kindle
ebooks on library computers.
</template>

(no response—pattern
not matched)

Table 3.2
examples of pattern matching using wildcard characters.

21

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

<srai>

Another option for making coding more efficient is to
use <srai> tags. SRAI stands for “symbolic reduction
artificial intelligence.” This tag option allows you to
replicate a given template response to multiple pattern
inputs without writing each of these out in full. To
use SRAI, you must first create a unique pattern that
is unlikely to be matched by a simple text-matching
scheme. It is often best to use a sequence of letters
and numbers to name these patterns. Having chosen
a pattern sequence for your SRAI element, you then
compose the template for this sequence. Once this
base category is created, you can then refer to it in
the template of any other category you wish to make
respond the same way.

<category>
<pattern>LIB2FINES</pattern>
<template>Fines for overdue books

are ten cents per day
</template>

</category>
<category>
<pattern>What are library fines for

books?</pattern>
<template><srai> LIB2FINES

</srai></template>
</category>
<category>
<pattern>How much are library

fines?</pattern>
<template><srai> LIB2FINES

</srai></template>
</category>

<random>

The <srai> efficiency option focused on offering
the same response (or template) to multiple ques-
tions (or patterns). The <random> option provides a
way to offer multiple responses to a single question.
It is, in design, similar to HTML list formatting. For
a given pattern to which you wish to offer multiple
responses, simply insert into the template a <random>
tag followed by tags for each formulation of the
response you wish to offer. Be certain to close each
 tag with , and the <random> tag with
</random>.

<category>
<pattern>I like the library.

</pattern>
<template>
<random>
I’m glad you like our

services!
Thank you! We aim to please.

I’m happy to hear that!
</random>
<template>
</category>

