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4.1 Introduction

Very efficient programs for searching a text for a combination of words are avail-

able on many computers. The same methods can be used for searching for patterns

in biological sequences, but often they fail. This is because biological ‘spelling’

is much more sloppy than English spelling: proteins with the same function from

two different organisms are almost certainly spelled differently, that is, the two

amino acid sequences differ. It is not rare that two such homologous sequences

have less than 30% identical amino acids. Similarly in DNA many interesting sig-

nals vary greatly even within the same genome. Some well-known examples are

ribosome binding sites and splice sites, but the list is long. Fortunately there are

usually still some subtle similarities between two such sequences, and the ques-

tion is how to detect these similarities.

The variation in a family of sequences can be described statistically, and this

is the basis for most methods used in biological sequence analysis, see [1] for a

presentation of some of these statistical approaches. For pairwise alignments, for

instance, the probability that a certain residue mutates to another residue is used

in a substitution matrix, such as one of the PAM matrices. For finding patterns

in DNA, e.g. splice sites, some sort of weight matrix is very often used, which

is simply a position specific score calculated from the frequencies of the four

nucleotides at all the positions in some known examples. Similarly, methods for

finding genes use, almost without exception, the statistics of codons or dicodons

in some form or other.

A hidden Markov model (HMM) is a statistical model, which is very well

suited for many tasks in molecular biology, although they have been mostly de-

veloped for speech recognition since the early 1970s, see [2] for historical details.

The most popular use of the HMM in molecular biology is as a ‘probabilistic pro-

file’ of a protein family, which is called a profile HMM. From a family of proteins

(or DNA) a profile HMM can be made for searching a database for other mem-

bers of the family. These profile HMMs resemble the profile [3] and weight matrix

methods [4, 5], and probably the main contribution is that the profile HMM treats

gaps in a systematic way.

The HMM can be applied to other types of problems. It is particularly well

suited for problems with a simple ‘grammatical structure,’ such as gene finding.

In gene finding several signals must be recognized and combined into a prediction

of exons and introns, and the prediction must conform to various rules to make it

a reasonable gene prediction. An HMM can combine recognition of the signals,

and it can be made such that the predictions always follow the rules of a gene.

Since much of the literature on HMMs is a little hard to read for many biol-

ogists, I will attempt in this chapter to give a non-mathematical introduction to

HMMs. Whereas the little biological background needed is taken for granted, I
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have tried to explain HMMs at a level that almost anyone can follow. First HMMs

are introduced by an example and then profile HMMs are described. Then an

HMM for finding eukaryotic genes is sketched, and finally pointers to the litera-

ture are given.

4.2 From regular expressions to HMMs

Most readers have no doubt come across regular expressions at some point, and

many probably use them quite a lot. Regular expressions are used in many pro-

grams, in particular on Unix computers. In programs like awk, grep, sed, and perl,

regular expressions can be used for searching text files for a pattern. With grep for

instance, you can search a file for all lines containing ‘C. elegans’ or ‘Caenorhab-

ditis elegans’ with the regular expression ‘C[\.a-z]* elegans’. This will match

any line containing a C followed by any number of lower-case letters or ‘.’, then

a space and then elegans. Regular expressions can also be used to characterize

protein families, which is the basis for the PROSITE database [6].

Using regular expressions is a very elegant and efficient way to search for

some protein families, but difficult for other. As already mentioned in the in-

troduction, the difficulties arise because protein spelling is much more free than

English spelling. Therefore the regular expressions sometimes need to be very

broad and complex. Imagine a DNA motif like this:

A C A - - - A T G

T C A A C T A T C

A C A C - - A G C

A G A - - - A T C

A C C G - - A T C

(I use DNA only because of the smaller number of letters than for amino acids).

A regular expression for this is

[AT] [CG] [AC] [ACGT]* A [TG] [GC] ,

meaning that the first position is A or T, the second C or G, and so forth. The term

‘[ACGT]*’ means that any of the four letters can occur any number of times.

The problem with the above regular expression is that it does not in any way

distinguish between the highly implausible sequence

T G C T - - A G G

which has the exceptional character in each position, and the consensus sequence

A C A C - - A T C
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Figure 4.1: A hidden Markov model derived from the alignment discussed in the

text. The transitions are shown with arrows whose thickness indicate their proba-

bility. In each state the histogram shows the probabilities of the four nucleotides.

with the most plausible character in each position (the dashes are just for aligning

these sequences with the previous ones). What is meant by a ‘plausible’ sequence

can of course be debated, although most would probably agree that the first se-

quence is not likely to be the same motif as the 5 sequences above. It is possible

to make the regular expression more discriminative by splitting it into several dif-

ferent ones, but it easily becomes messy. The alternative is to score sequences by

how well they fit the alignment.

To score a sequence, we say that there is a probability of 4=5 = 0:8 for an A

in the first position and 1=5= 0:2 for a T, because we observe that out of 5 letters

4 are As and one is a T. Similarly in the second position the probability of C is

4=5 and of G 1=5, and so forth. After the third position in the alignment, 3 out

of 5 sequences have ‘insertions’ of varying lengths, so we say the probability of

making an insertion is 3=5 and thus 2=5 for not making one. To keep track of

these numbers a diagram can be drawn with probabilities as in Fig. 4.1.

This is a hidden Markov model. A box in the drawing is called a state, and

there is a state for each term in the regular expression. All the probabilities are

found simply by counting in the multiple alignment how many times each event

occur, just as described above. The only part that might seem tricky is the ‘in-

sertion,’ which is represented by the state above the other states. The probability

of each letter is found by counting all occurrences of the four nucleotides in this

region of the alignment. The total counts are one A, two Cs, one G, and one T,

yielding probabilities 1=5, 2=5, 1=5, and 1=5 respectively. After sequences 2, 3

and 5 have made one insertion each, there are two more insertions (from sequence

2) and the total number of transitions back to the main line of states is 3 (all three

sequences with insertions have to finish). Therefore there are 5 transitions in total

from the insert state, and the probability of making a transition to itself is 2=5 and

the probability of making one to the next state is 3=5.
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Sequence Probability�100 Log odds

Consensus A C A C - - A T C 4.7 6.7

Original A C A - - - A T G 3.3 4.9

sequences T C A A C T A T C 0.0075 3.0

A C A C - - A G C 1.2 5.3

A G A - - - A T C 3.3 4.9

A C C G - - A T C 0.59 4.6

Exceptional T G C T - - A G G 0.0023 -0.97

Table 4.1: Probabilities and log-odds scores for the 5 sequences in the alignment

and for the consensus sequence and the ‘exceptional’ sequence.

It is now easy to score the consensus sequence ACACATC. The probability of

the first A is 4=5. This is multiplied by the probability of the transition from the

first state to the second, which is 1. Continuing this, the total probability of the

consensus is

P(ACACATC) = 0:8�1�0:8�1�0:8�0:6�

0:4�0:6�1�1�0:8�1�0:8

' 4:7�10�2:

Making the same calculation for the exceptional sequence yields only 0:0023�

10�2, which is roughly 2000 times smaller than for the consensus. This way we

achieved the goal of getting a score for each sequence, a measure of how well a

sequence fits the motif.

The same probability can be calculated for the four original sequences in the

alignment in exactly the same way, and the result is shown in Table 4.1. The

probability depends very strongly on the length of the sequence. Therefore the

probability itself is not the most convenient number to use as a score, and the

log-odds score shown in the last column of the table is usually better. It is the

logarithm of the probability of the sequence divided by the probability according

to a null model. The null model is one that treats the sequences as random strings

of nucleotides, so the probability of a sequence of length L is 0:25L. Then the

log-odds score is

log-odds for sequence S = log
P(S)

0:25L
= logP(S)�L log0:25:

I have used the natural logarithm in Table 4.1. Logarithms are proportional, so it

does not really matter which one you use; it is quite common to use the logarithm

base 2. One can of course use other null models instead. Often one would use the

over-all nucleotide frequencies in the organism studied instead of just 0.25.
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Figure 4.2: The probabilities of the model in Fig. 4.1 have been turned into

log-odds by taking the logarithm of each nucleotide probability and subtracting

log(0:25). The transition probabilities have been converted to simple logs.

When a sequence fits the motif very well the log-odds is high. When it fits

the null model better, the log-odds score is negative. Although the raw probability

of the second sequence (the one with three inserts) is almost as low as that of

the exceptional sequence, notice that the log-odds score is much higher than for

the exceptional sequence, and the discrimination is very good. Unfortunately,

one cannot always assume that anything with a positive log-odds score is ‘a hit,’

because there are random hits if one is searching a large database. See Section 4.5

for references.

Instead of working with probabilities one might convert everything to log-

odds. If each nucleotide probability is divided by the probability according to

the null model (0.25 in this case) and the logarithm is applied, we would get

the numbers shown in Fig. 4.2. The transition probabilities are also turned into

logarithms. Now the log-odds score can be calculated directly by adding up these

numbers instead of multiplying the probabilities. For instance, the calculation of

the log-odds of the consensus sequence is

log-odds(ACACATC) = 1:16+0+1:16+0+1:16�0:51+

0:47�0:51+1:39+01:16+0+1:16

= 6:64:

(The finite precision causes the little difference between this number and the one

in Table 4.1.)

If the alignment had no gaps or insertions we would get rid of the insert state,

and then all the probabilities associated with the arrows (the transition probabili-

ties) would be 1 and might as well be ignored completely. Then the HMM works

exactly as a weight matrix of log-odds scores, which is commonly used.

7



Begin End

Figure 4.3: The structure of the profile HMM.

4.3 Profile HMMs

A profile HMM is a certain type of HMM with a structure that in a natural way

allows position dependent gap penalties. A profile HMM can be obtained from a

multiple alignment and can be used for searching a database for other members of

the family in the alignment very much like standard profiles [3]. The structure of

the model is shown in Fig. 4.3. The bottom line of states are called the main states,

because they model the columns of the alignment. In these states the probability

distribution is just the frequency of the amino acids or nucleotides as in the above

model of the DNA motif. The second row of diamond shaped states are called

insert states and are used to model highly variable regions in the alignment. They

function exactly like the top state in Fig. 4.1, although one might choose to use a

fixed distribution of residues, e.g. the overall distribution of amino acids, instead

of calculating the distribution as in the example above. The top line of circular

states are called delete states. These are a different type of state, called a silent

or null state. They do not match any residues, and they are there merely to make

it possible to jump over one or more columns in the alignment, i.e., to model the

situation when just a few of the sequences have a ‘–’ in the multiple alignment at

a position. Let us turn to an example.

Suppose you have a multiple alignment as the one shown in Fig. 4.4. A region

of this alignment has been chosen to be an ‘insertion,’ because an alignment of

this region is highly uncertain. The rest of the alignment (shaded in the figure)

are the columns that will correspond to main states in the model. For each non-

insert column we make a main state and set the probabilities equal to the amino

acid frequencies. To estimate the transition probabilities we count how many

sequences use the various transitions, just like the transition probabilities were

calculated in the first example. The model is shown in Fig. 4.5. There are two

transitions from a main state to a delete state shown with dashed lines in the figure,

that from begin to the first delete state and from main state 12 to delete state
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G G W W R G d y . g g k k q L W F P S N Y V
I G W L N G y n e t t g e r G D F P G T Y V
P N W W E G q l . . n n r r G I F P S N Y V
D E W W Q A r r . . d e q i G I V P S K - -
G E W W K A q s . . t g q e G F I P F N F V
G D W W L A r s . . s g q t G Y I P S N Y V
G D W W D A e l . . k g r r G K V P S N Y L
- D W W E A r s l s s g h r G Y V P S N Y V
G D W W Y A r s l i t n s e G Y I P S T Y V
G E W W K A r s l a t r k e G Y I P S N Y V
G D W W L A r s l v t g r e G Y V P S N F V
G E W W K A k s l s s k r e G F I P S N Y V
G E W C E A q t . k n g q . G W V P S N Y I
S D W W R V v n l t t r q e G L I P L N F V
L P W W R A r d . k n g q e G Y I P S N Y I
R D W W E F r s k t v y t p G Y Y E S G Y V
E H W W K V k d . a l g n v G Y I P S N Y V
I H W W R V q d . r n g h e G Y V P S S Y L
K D W W K V e v . . n d r q G F V P A A Y V
V G W M P G l n e r t r q r G D F P G T Y V
P D W W E G e l . . n g q r G V F P A S Y V
E N W W N G e i . . g n r k G I F P A T Y V
E E W L E G e c . . k g k v G I F P K V F V
G G W W K G d y . g t r i q Q Y F P S N Y V
D G W W R G s y . . n g q v G W F P S N Y V
Q G W W R G e i . . y g r v G W F P A N Y V
G R W W K A r r . a n g e t G I I P S N Y V
G G W T Q G e l . k s g q k G W A P T N Y L
G D W W E A r s n . t g e n G Y I P S N Y V
N D W W T G r t . . n g k e G I F P A N Y V

Figure 4.4: An alignment of 30 short amino acid sequences chopped out of a

alignment of the SH3 domain. The shaded areas are the most conserved and were

chosen to be represented by the main states in the HMM. The unshaded area with

lower-case letters was chosen to be represented by an insert state.
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Figure 4.5: A profile HMM made from the alignment shown in Fig. 4.4. Transi-

tion lines with no arrow head are transitions from left to right. Transitions with

probability zero are not shown, and those with very small probability are shown

as dashed lines. Transitions from an insert state to itself is not shown; instead the

probability times 100 is shown in the diamond. The numbers in the circular delete

states are just position numbers. (This figure and Fig. 4.6 were generated by a

program in the SAM package of programs.)
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Figure 4.6: Model obtained in the same way as Fig. 4.5, but using a pseudocount

of one.

13. Both of these correspond to dashes in the alignment. In both cases only one

sequence has gaps, so the probability of these delete transitions is 1/30. The fourth

sequence continues deletion to the end, so the probability of going from delete 13

to 14 is 1 and from delete 14 to the end is also 1.

4.3.1 Pseudocounts

It is dangerous to estimate a probability distribution from just a few observed

amino acids. If for instance you have just two sequences with leucine at a certain

position, the probability for leucine would be 1 and the probability would be zero

for all other amino acids at this position, although it is well known that one often

sees for example valine substituted for leucine. In such a case the probability of

a whole sequence may easily become zero if a single leucine is substituted by a

valine, or equivalently, the log-odds is minus infinity.

Therefore it is important to have some way of avoiding this sort of over-fitting,

where strong conclusions are drawn from very little evidence. The most com-

mon method is to use pseudocounts, which means that one pretends to have more

counts of amino acids than those from the data. The simplest is to add 1 to all the

counts. With the leucine example it would mean that the probability of leucine

would be estimated as 3=23 and for the 19 other amino acids it would become

1=23. In Fig. 4.6 a model is shown, which was obtained from the alignment in

Fig. 4.6 using a pseudocount of 1.

Adding one to all the counts can be interpreted as assuming a priori that all

the amino acids are equally likely. However, there are significant differences in

the occurrence of the 20 amino acids in known protein sequences. Therefore, the

next step is to use pseudocounts proportional to the observed frequencies of the

amino acids instead. This is the minimum level of pseudocounts to be used in any

real application of HMMs.

Because a column in the alignment may contain information about the pre-
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ferred type of amino acids, it is also possible to use more sophisticated pseudo-

count strategies. If a column consists predominantly of leucine (as above), one

would expect substitutions to other hydrophobic amino acids to be more probable

than substitutions to hydrophilic amino acids. One can e.g. derive pseudocounts

for a given column from substitution matrices. See Section 4.5 for references.

4.3.2 Searching a database

Above we saw how to calculate the probability of a sequence in the alignment

by multiplying all the probabilities (or adding the log-odds scores) in the model

along the path followed by that particular sequence. However, this path is usually

not known for other sequences which are not part of the original alignment, and

the next problem is how to score such a sequence. Obviously, if we can find a

path through the model where the new sequence fits well in some sense, then we

can score the sequence as before. We need to ‘align’ the sequence to the model.

It resembles very much the pairwise alignment problem, where two sequences

are aligned so that they are most similar, and indeed the same type of dynamic

programming algorithm can be used.

For a particular sequence, an alignment to the model (or a path) is an assign-

ment of states to each residue in the sequence. There are many such alignments

for a given sequence. For instance an alignment might be as follows. Let us label

the amino acids in a protein as A1, A2, A3, etc. Similarly we can label the HMM

states as M1, M2, M3, etc. for match states, I1, I2, I3 for insert states, and so on.

Then an alignment could have A1 match state M1, A2 and A3 match I1, A4 match

M2, A5 match M6 (after passing through three delete states), and so on. For each

such path we can calculate the probability of the sequence or the log-odds score,

and thus we can find the best alignment, i.e., the one with the largest probability.

Although there are an enormous number of possible alignments it can be done effi-

ciently by the above mentioned dynamic programming algorithm, which is called

the Viterbi algorithm. The algorithm also gives the probability of the sequence for

that alignment, and thus a score is obtained.

The log-odds score found in this manner can be used to search databases for

members of the same family. A typical distribution of scores from such a search

is shown in Fig. 4.7. As is also the case with other types of searches, there is no

clear-cut separation of true and false positives, and one needs to investigate some

of the sequences around a log-odds of zero, and possibly include some of them in

the alignment and try searching again.

An alternative way of scoring sequences is to sum the probabilities of all pos-

sible alignments of the sequence to the model. This probability can be found

by a similar algorithm called the forward algorithm. This type of scoring is not

very common in biological sequence comparison, but it is more natural from a

11
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Figure 4.7: The distribution of log-odds scores from a search of Swissprot with

a profile HMM of the SH3 domain. The dark area of the histogram represents

the sequences with an annotated SH3 domain, and the light those that are not

annotated as having one. This is for illustrative purposes only, and the sequences

with log-odds around zero were not investigated further.

probabilistic point of view. However, it usually gives very similar results.

4.3.3 Model estimation

As presented so far, one may view the profile HMMs as a generalization of weight

matrices to incorporate insertions and deletions in a natural way. There is how-

ever one interesting feature of HMMs, which has not been addressed yet. It is

possible to estimate the model, i.e. determine all the probability parameters of it,

from unaligned sequences. Furthermore, a multiple alignment of the sequences

is produced in the process. Like many other multiple alignment methods this is

done in an iterative manner. One starts out with a model with more or less random

probabilities, or if a reasonable alignment of some of the sequences are available,

a model is constructed from this alignment. Then, when all the sequences are

aligned to the model, we can use the alignment to improve the probabilities in the

model. These new probabilities may then lead to a slightly different alignment.

If they do, we then repeat the process and improve the probabilities again. The

process is repeated until the alignment does not change. The alignment of the

12



sequences to the final model yields a multiple alignment.1

Although this estimation process sounds easy, there are many problems to

consider to actually make it work well. One problem is choosing the appropri-

ate model length, which determines the number of inserts in the final alignment.

Another severe problem is that the iterative procedure can converge to suboptimal

solutions. It is not guaranteed that it finds the optimal multiple alignment, i.e. the

most probable one. Methods for dealing with these issues are described in the

literature pointed to in Section 4.5.

4.4 HMMs for gene finding

One ability of HMMs, which is not really utilized in profile HMMs, is the ability

to model grammar. Many problems in biological sequence analysis have a gram-

matical structure, and eukaryotic gene structure, which I will use as an example,

is one of them. If you consider exons and introns as the ‘words’ in a language, the

sentences are of the form exon-intron-exon-intron...intron-exon. The ‘sentences’

can never end with an intron, at least if the genes are complete, and an exon can

never follow an exon without an intron in between. Obviously this grammar is

greatly simplified, because there are several other constraints on gene structure,

such as the constraint that the exons have to fit together to give a valid coding

region after splicing. In Fig. 4.8 the structure of a gene is shown with some of the

known signals marked.

Formal language theory applied to biological problems is not a new invention.

In particular David Searls [7] has promoted this idea and used it for gene finding

[8], but many other gene finders use it implicitly. Formally the HMM can only

represent the simplest of grammars, which is called a regular grammar [7, 1], but

that turns out to be good enough for the gene finding problem, and many other

problems. One of the problems that has a more complicated grammar than the

HMM can handle is the RNA folding problem, which is one step up the ladder of

grammars, because base pairing introduces correlations between bases far from

each other in the RNA sequence.

I will here briefly outline my own approach to gene finding with the weight on

the principles rather than on the details.

1Another slightly different method for model estimation sums over all alignments instead of

using the most probable alignment of a sequence to the model. This method uses the forward

algorithm instead of Viterbi, and it is called the Baum–Welch algorithm or the forward–backward

algorithm.
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GGCAGAAACAATAAAACCAC

CCTCCCAGCCCTGCCCAG

AGCCCGCCATGCCCTTCTCCAACAGGTGAGTG

Start codon codons
Donor site

5' UTR

Acceptor site

3' UTR

Stop codon

GATCCCCATGCCTGAGGGCCCCTC

Poly-A site

Exon

Intron

Promoter

Transcription
start

Figure 4.8: The structure of a gene with some of the important signals shown.

4.4.1 Signal sensors

One may apply an HMM similar to the ones already described directly to many

of the signals in a gene structure. In Fig. 4.9 an alignment is shown of some

sequences around acceptor sites from human DNA. It has 19 columns and an

HMM with 19 states (no insert or delete states) can be made directly from it.

Since the alignment is gap-less, the HMM is equivalent to a weight matrix.

There is one problem: in DNA there are fairly strong dinuclotide preferences.

A model like the one described treats the nucleotides as independent, so dinu-

cleotide preferences can not be captured. This is easily fixed by having 16 prob-

ability parameters in each state instead of 4. In column two we first count all

occurrences of the four nucleotides given that there is an A in the first column

and normalize these four counts, so they become probabilities. This is the condi-

tional probability that a certain nucleotide appears in position two, given that the

previous one was A. The same is done for all the instances of C in column 1 and

similarly for G and T. This gives a total of 16 probabilities to be used in state two

of the HMM. Similarly for all the other states. To calculate the probability of a

sequence, say ACTGTC: : :, we just multiply the conditional probabilities

P(ACTGTC : : :)= p1(A)� p2(CjA)� p3(T jC)� p4(GjT )� p5(T jG)� p6(CjT )�: : :
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C T C C C T G T G T C C A C A G G C T

Figure 4.9: Examples of human acceptor sites (the splice site 5’ to the exon). Ex-

cept in rare cases, the intron ends with AG, which has been highlighted. Included

in these sequences are 16 bases upstream of the splice site and 3 bases downstream

into the exon.

Here p1 is the probability of the four nucleotides in state 1, p2(xjy) is the condi-

tional probability in state 2 of nucleotide x given that the previous nucleotide was

y, and so forth.

A state with conditional probabilities is called a first order state, because it

captures the first order correlations between neighboring nucleotides. It is easy to

expand to higher order. A second order state has probabilities conditioned on the

two previous nucleotides in the sequence, i.e., probabilities of the form p(xjy; z).
We will return to such higher order states below.

Small HMMs like this are constructed in exactly the same way for other sig-

nals: donor splice sites, the regions around the start codons, and the regions around

the stop codons.

4.4.2 Coding regions

The codon structure is the most important feature of coding regions. Bases in

triplets can be modeled with three states as shown in Fig. 4.10. The figure also

shows how this model of coding regions can be used in a simple model of an

unspliced gene that starts with a start codon (ATG), then consists of some number

of codons, and ends with a stop codon.

Since a codon is three bases long, the last state of the codon model must be at

least of order two to correctly capture the codon statistics. The 64 probabilities in

such a state are estimated by counting the number of each codon in a set of known

coding regions. These numbers are then normalized properly. For example the

probabilities derived from the counts of CAA, CAC, CAG, and CAT are

p(AjCA) = c(CAA)=[c(CAA)+ c(CAC)+ c(CAG)+ c(CAT)]
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A T G T A A
start codon Codon model stop codon

codon
base 1

codon
base 2

codon
base 3

Figure 4.10: Top: A model of coding regions, where state one, two and three

match the first, second and third codon positions respectively. A coding region of

any length can match this model, because of the transition from state three back to

state one. Bottom: a simple model for unspliced genes with the first three states

matching a start codon, the next three of the form shown to the left, and the last

three states matching a stop codon (only one of the three possible stop codons are

shown).

p(CjCA) = c(CAC)=[c(CAA)+ c(CAC)+ c(CAG)+ c(CAT)]

p(GjCA) = c(CAG)=[c(CAA)+ c(CAC)+ c(CAG)+ c(CAT)]

p(TjCA) = c(CAT)=[c(CAA)+ c(CAC)+ c(CAG)+ c(CAT)]

where c(xyz) is the count of codon xyz.

One of the characteristics of coding regions is the lack of stop codons. That

is automatically taken care of, because p(AjTA), p(GjTA) and p(AjTG), corre-

sponding to the three stop codons TAA, TAG and TGA, will automatically become

zero.

For modeling codon statistics it is natural to use an ordinary (zeroth order)

state as the first state of the codon model and a first order state for the second.

However, there are actually also dependencies between neighboring codons, and

therefore one may want even higher order states. In my own gene finder, I use

three fourth order states, which is inspired by GeneMark [9], in which such mod-

els were first introduced. Technically speaking, such a model is called an inho-

mogeneous Markov chain, which can be viewed as a sub-class of HMMs.

4.4.3 Combining the models

To be able to discover genes, we need to combine the models in a way that satis-

fies the grammar of genes. I restrict myself to coding regions, i.e. the 5’ and 3’

untranslated regions of the genes are not modeled and also promoters are disre-

garded.
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xxxxxxxx ATG cccx ccc ccc TAA xxxxxxxx

inter-
genic

region around
start codon

coding
region

region around
stop codon

Figure 4.11: A hidden Markov model for unspliced genes. In this drawing an ‘x’

means a state for non-coding DNA, and a ‘c’ a state for coding DNA. Only one

of the three possible stop codons are shown in the model of the region around the

stop codon.

Coding model

GT xxxxxx
Interior
intronccc cccxxxxxxxxxxxxxx AG

Donor model Acceptor model

GT xxxxxx
Interior
intronccc c cc cccxxxxxxxxxxxxxx AG

GT xxxxxx
Interior
intronccc cc c cccxxxxxxxxxxxxxx AG

Intron models

c
c
c

From start model
To stop model

Figure 4.12: To allow for splicing in three different frames three intron models

are needed. To get the frame correct ‘spacer states’ are added before and after the

intron models.
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First, let us see how to do it for unspliced genes. If we ignore genes that are

very closely spaced or overlaps, a model could look like Fig. 4.11. It consists of a

state for intergenic regions (of order at least 1), a model for the region around the

start codon, the model for the coding region, and a model for the region around

the stop codon. The model for the start codon region is made just like the acceptor

model described earlier. It models eight bases upstream of the start codon,2 the

ATG start codon itself, and the first codon after the start. Similarly for the stop

codon region. The whole model is one big HMM, although it was put together

from small independent HMMs.

Having such a model, how can we predict genes in a sequence of anonymous

DNA? That is quite simple: use the Viterbi algorithm to find the most probable

path through the model. When this path goes through the ATG states, a start codon

is predicted, when it goes through the codon states a codon is predicted, and so

on.

This model might not always predict correct genes, but at least it will only

predict sensible genes that obey the grammatical rules. A gene will always start

with a start codon and end with a stop codon, the length will always be divisible

by 3, and it will never contain stop codons in the reading frame, which are the

minimum requirements for unspliced gene candidates.

Making a model that conforms to the rules of splicing is a bit more difficult

than it might seem at first. That is because splicing can happen in three different

reading frames, and the reading frame in one exon has to fit the one in the next. It

turns out that by using three different models of introns, one for each frame, this

is possible. In Fig. 4.12 it is shown how these models are added to the model of

coding regions.

The top line in the model is for introns appearing between two codons. It has

three states (labeled ccc) before the intron starts to match the last codon of the

exon. The first two states of the intron model match GT, which is the consensus

sequence at donor sites (it is occasionally another sequence, but such cases are

ignored here). The next six states matches the six bases immediately after GT.

The states just described model the donor site, and the probabilities are found as

it was described earlier for acceptor sites. Then follows a single state to model the

interior of the intron. I actually use the same probability parameters in this state as

in the state modeling intergenic regions. Now follows the acceptor model, which

includes three states to match the first codon of the next exon.

The next line in the model is for introns appearing after the first base in a

codon. The difference from the first is that there is one more state for a coding

2A similar model could be used for prokaryotic genes. In that case, however, one should model

the Shine-Dalgarno sequence, which is often more than 8 bases upstream from the start. Also,

one would probably need to allow for other start codons than ATG that are used in the organism

studied (in some eukaryotes other start codons can also be used).
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base before the intron and two more states after the intron. This ensures that the

frames fit in two neighboring exons. Similarly in the third line from the top there

are two extra coding states before the intron and one after, so that it can match

introns appearing after the second base in a codon.

There are obviously many possible variations of the model. One can add more

states to the signal sensors, include models of promoter elements and untranslated

regions of the gene, and so forth.

4.5 Further reading

A general introduction can be found in [2], and one aimed more at biological

readers in [1]. The first applications for sequence analysis is probably for model-

ing compositional differences between various DNA types [10] and for studying

the compositional structure of genomes [11]. The initial work on using hidden

Markov models (HMMs) as ‘probabilistic profiles’ of protein families was pre-

sented at a conference in the spring of 1992 and in a technical report from the

same year, and it was published in [12, 13]. The idea was quickly taken up by

others [14, 15]. Independently, some very similar ideas were also developed in

[16, 17]. Also the generalized profiles [18] are very similar.

Estimation and multiple alignment is described in [13] in detail, and in [19]

some of the practical methods are further discussed. Alternative methods for

model estimation are presented in [14, 20]. Methods for scoring sequences against

a profile HMM were given in [13], but these issues have more recently been ad-

dressed in [21]. The basic pseudocount method is also explained in [13], and more

advanced methods are discussed in [22, 23, 24, 25, 26].

A review of profile HMMs can be found in [27], and in [1] profile HMMs are

discussed in great detail. Also [28] will undoubtedly contain good material on

profile HMMs.

Some of the recent applications of profile HMMs to proteins are: detection of

fibronectin type III domains in yeast [29], a database of protein domain families

[30], protein topology recognition from secondary structure [31], and modeling

of a protein splicing domain [32].

There are two program packages available free of charge to the academic com-

munity. One, developed by Sean Eddy, is called hmmer (pronounced ‘hammer’),

and can be obtained from his web-site (http://genome.wustl.edu/eddy/hmm.html).

The other one, called SAM (http://www.cse.ucsc.edu/research/compbio/sam.html),

was developed by myself and the group at UC Santa Cruz, and it is now being

maintained and further developed under the command of Richard Hughey.

The gene finder sketched above is called HMMgene. There are many details

omitted, such as special methods for estimation and prediction described in [33].
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It is still under development, and it is possible to follow the development and test

the current version at the web site http://www.cbs.dtu.dk/services/HMMgene/.

Methods for automated gene finding go back a long time, see [34] for a review.

The first HMM based gene finder is probably EcoParse developed for E. coli [35].

VEIL [36] is a recent HMM based gene finder for for human genes. The main

difference from HMMgene is that it does not use high order states (neither does

EcoParse), which makes good modeling of coding regions harder.

Two recent methods use so-called generalized HMMs. Genie [37, 38, 39]

combines neural networks into an HMM-like model, whereas GENSCAN [40] is

more similar to HMMgene, but uses a different model type for splice site. Also,

the generalized HMM can explicitly use exon length distributions, which is not

possible in a standard HMM. Web pointers to gene finding can be found at

http://www.cbs.dtu.dk/krogh/genefinding.html.

Other applications of HMMs related to gene finding are: detection of short

protein coding regions and analysis of translation initiation sites in Cyanobac-

terium [41, 42], characterization of prokaryotic and eukaryotic promoters [43],

and recognition of branch points [44].

Apart from the areas mentioned here, HMMs have been used for prediction of

protein secondary structure [45], modeling an oscillatory pattern in nucleosomes

[46], modeling site dependence of evolutionary rates [47], and for including evo-

lutionary information in protein secondary structure prediction [48].
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