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ASYMPTOTICS IN FINITE POPULATION SAMPLING
Pranab Kumar Sen

1. Introduction

The theory of (objective or probabilistic) sampling from a finite population

plays a fundamental role in statistical inference in sample surveys. Indeed,
in practice, mostly, one encounters a set or collection of a finite number
(say, N) of objects or units comprising a population, and, -on the basis of a
subset of these units, called a sample (drawn in an objective manner), the

task is to draw (valid) statistical conclusions on (various characteristics of)
the population. The population size, N, though finite, needs not be small, and
the sample size, say n, though presumably less than N, needs not be wvery samll

compared to N (i.e., the sampling fraction n/N needs not be very samll). 1In

survey sampling, the sampling frame defines the units and the size of the

population unambiguously. It also reconstructs a population having an un-
countable (or infinite) number of natural units interms of a finite population

by redefining suitable sampling units. Thus, given the sampling frame and units,

one may like to draw inference on the population through an objective sampling
scheme. In some other cases, though the units are clearly defined, the size of
the population may not be known in advance, and one may therefore like to
estimate the population size (along with its other characteristics), through
objective sampling schemes. In either case, usually sampling is made without
replacement (generally, leading to relatively samller margins of sampling

fluctations), though, for sampling with repalcement, the theory is of

relatively simpler in form. Again, in either with or without replacement
schemes, the different units in the population may all have the common probability

for inclusion in the sample (leading to equal probability or simple random

sampling), or, they may be stratified into some subsets, for each one of which

simple random sampling may be adopted. In the extreme case, the units in the



population, depending on their sizes or some other characteristics, may have

possibly different probabilities for inclusion in the sample (i.e., varying ‘

probability sampling). There may be other variations in a sampling scheme

(such as double sampling, interpenetrating sampling, successive sampling, etc.)

However, all of these cases are characterized by an objective sampling pro-
cedure defined by a probability law governing the sampling distribution of
suitable statistics based on the sample units.

When N is small, such a sampling distribution (of a statistic) may
be studied, mostly, by direct enumeration of all possible cases. However, as
N increases, this enumerational process, generally, becomes prohibitively
laborious. On the other hand, in survey sampling and in other practical
situations, usually, N is large and n/N may not be very small. In such a
case, there may be a profound need to examine the generally anticipated and

applicable large sample approximations for the sampling distributions (and

related probability inequalities) with a view to prescribing them in actual .
applications. Our main interest is centered in these asymptotics in finite
population sampling. Naturally, the asymptotic theory depends on the sampling
design, and, for diverse sampling schemes, diverse techniques have been
employed to achieve the general goals. It is intended to provide here a
general account of these technqiues along with the related asymptotic theory.
In line with the general objectives of the Handbook, mostly, the derivations
will be replaced by motivations, and emphasis will be laid on the applications
oriented theory only.

In Section 2, we start with the asymptotics in simple randog sampling
(with and without replacement) schemes. For general U-statistics, containing
the sample mean and variances as special cases, asymptotic normality and
related results are presented there. Some asymptotics on probability inequalities

in simple random sampling (SRS) are then considered in Section 3. Asymptotics

on jackknifing in finite population sampling (SRS) are presented in Section 4.



Capture-mark-recapture (CMR) techniques and asymptotic results on the estimation

of the size of a finite population are considered in Section 5. Asymptotic

results on sampling with varying probabilities (along with the allied coupon

collector problem) are presented in Section 6. In this context, some limit

theorems arising in the occupancy problem are also treated briefly. The con-

cluding section deals with successive sub-sampling with varying probabilities,

and the relevant asymptotic theory is discussed.there.
2. Asymptotics in SRS

Let the N units with values al,...,aN constitute the finite population.
In a sample of size n (<N), drawn without replacement, the observation vector
§n=(X1,...,Xn) is a (random) subset of éN=(al,...,aN), governed by the basic

probability law:

P{X;=a, ,...,X =a, } = ol (2.1)
i n i,

for every 1<i, #...#in <N, where I‘J-[n]=(1\1[n])_l and N[n]=N...(N—n+l), for

qﬁN(N[0]=1). Based on Xn’ we may be interested in the estimation of the

population mean

A - N 1N o (2.2)
i=1l1i

and the population variance

o? = (N—l)'1 g

b 2
N =113, 1% (2.3)

among other characteristics of the population. The optimal sample estimators

[viz., Nandi and Sen (1963)] are given by

T - LD 2 _ 1y~ _ 342
&—nkkﬁiam %fwnh%ﬁﬁ& %)

(2.4)
respectively. Both these estimators are special cases of U-statistics, which
may be introduced as follows.

For a symmetric kernel g(xl,...,Xm) of degree m(>l), we define a (population)

Earameter
6 = = "[1"\] ]
NT OB SN By ccqe 9@ reeerdy ) (2.5)



and the corresponding sample function, viz.,

_ ~[m]
Un =n 2l<i <eveu< 1 <n g(xi reeerXy ) (2.6)
-1 m — 1 m

termed a U-statistic, is an optimal unbiased estimator of @N. We may note that
2

= = =— =— = 1 - 2 = 2 2=
for m=1, g(x)=X, Un Xh, ] a_ s and, for m=2, g(x,y)=s(x-y)", Un s ON—On.

N
In fact, as g(*) is assumed to be symmetric in its m(>1l) arguments, in (2.5)
and (2.6), we may take iii,'--<im§N (and Lﬁi,°'-<im§n) and replace N-[m] (and

N,~-1

o) by (7 (and (D7H, where (M=pt/(ar@D Y-

Note tnat the Xi are not independent random variables (r.v.). Nevertheless,
they are symmetric dependent r.v.'s. For any given AN’ the (exact) sampling
distribution of Un may be obtained by direct enumeration of all possible (g)
samples of size n from éN' Tnis process, obviously, becomes prohibitively
laborious for large N (and n). As such, there is a genuine need to provide
suitable approximations to the large sample distribution, when N and n are
both large, though a=n/N (the sampling fraction) needs not be very small.

In this context, the permutational central limit theorems (PCLT) play a vital
role. For the particular case of ih’ Madow (1948) initiated the use of PCLT
in finite population sampling, and, since then, this has been an active area
of fruitful research. For general Un’ the asymptotic normality result in

SRS has been studied by Nandi and Sen (1963), with further generalizations due
to Sen (1972), Krewski (1978), Majumdar and Sen (1978), and others.

In an asymptoti& setup, we conceive of a sequence {éh} of populations and
a sequence {n} of sample sizes, such that as N increases,

:r;N=n/N+0L:0_<g<l (2.7)
Though, theoretically, the asymptotic theory is justified for N indefinitely
large, in practice, the asymptotic approximations workout quite well, for N
even moderately large.

For every N and h:0<h<m, let




(N) -{m-h]_*
g (a, ,...,a_ )=(N-h) z_gla, ,...,a, ) (2.8)
h iy ih Nh i, i
where the summation Zﬁh extends over all distinct ih+1""’ im over the set
{1,...,N}\{il,...,ih}. Note that géNLON and g;N%g. Let then
= = {h] (N) 2 2
= N I, . . { (@: yoeesa; )} -8
*n,N 1<i<ea<ip el Oh 0ty N’ (2.9)
for h= 0,1,...,m (where CO N=O). For the asymptotic theory, we assume that
lim inf < lim sup 3 (2.10)
we  Fin >0 @ et gy 57
Then, as in Nandi and Sen (1963), we have, for every n°>m,
2
= -8
Var (Un) E [Un N]
- N hT, 0((a t-n"hy?) (2.11)
Let us now assume that as N increases,
max —len 2 -
{ 1<i<N {gla;) - N 7T, 19(3;)} }/{Ncl,N} > 0 . (2.12)

Also, let [k] denote the largest integer <k, and let

_ v o lpwe) = - K
v () = v (TN = [NE] U - 8)/m@iEy 7Y, € e 10,10, (2.13)

where for t¢m/N, we let YN(t)=O. Then YN={YN(t), 0<t<l} is well defined for

every N (>m). Finally, let w={w’(v), 0<t<1} be a Brownian bridge, i.e.,

Wo(t) is Gaussian with Ewo(t)=0, ¥0<t<1 and Ewo(s)wo(t)=sAt-st, ¥ s,te{0,1],
where aab=min(a,b). Then, we have the following general result, discussed in

detail in Sen (1981, Section 3.5):

Under (2.10) and (2.12), as N increases, the stochastic process YV
L

converges in distribution to W°.

An immediate corollary to this basic result is the following:
Under (2.10 and (2.12), as n increases, satisfying (2.7),
} =i
n (Un—ON)/{m C],N} ~ N(0,1-0). (2.14)
It is also interesting to note that this weak convergence (of {YN} naw°)
provides a very simple proof for the asymptotic normality result, when n is
itself a positive integer-valued r.v. Suppose that {VN} is a sequence of non-

negative integer valued r.v.'s, such that as N increases,



N'lvN R g 0<B<1. (2.15)

Then, under (2.10) and (2.12),

Nl”i( U, -~ 8y )/{leliN } ~ N(o, B’l -1). (2.16)
N 14

This last result is useful in the case where the sample size n is determined

by some other considerations, so that it may be stochastic in nature.

- _ _l 2 -
Note that for m=1 and g(x)=x, Cl’N—(l-N )ON. In general, Cl,N is an ]

(estimable) parameter. Knowledge of T is useful in providing a confidence

1,N
interval for GN, based on (2.14) or (2.15). The following 'estimator, due to

Nandi and Sen (1963), is a variant form of the usual jackknifed estimator.

For each i(=l,...n), let Uiii be the U-statistic based on (Xl,...

X140
«..,X ), and let
n

U .enU ~(n-1)uP), im1, .o, (2.17)
n,1 n n-1
Let then
32 = (-1 (U -u)l. (2.18) ‘
n i=l1" n,1 n

. ~2_ 2 .
Note that for m=1 and g(x)=x,Un’i=xi,;:}Ep,so that s =S _» defined by (2.4),

while, in general, we have (cf. Nandi and Sen (1963)) under (2.10) and (2.12),

2 27
13°-n“C. _|®0, as n increases. (2.19)
n 1,N
The asymptotic results considered here extend easily to the case of more
than one U-statistic. Futher, we have studied, so far, the case of sampling
?

without replacement. . In the case of sampling with replacement, we have Xl,...

Xn independent and identically distributed (i.i.d.) r.v., where

P{x1=a.}= N'l, for i=1,..., N. (2.20)
1

As such, the classical central limit theorems and weak convergence results for
U-statistics [viz., Hoeffding (1948), Miller and Sen (1972)], remain applicable.
In particular, in such a case, for (2.14),1-a has to be replaced by 1, and, in

(2.16), B(1-B) has to be replaced by B alone; (2.19) follows from Sen (1960a), .



3. Same Probability and Mament Inequalities for SRS.

In SRS with replacement, the sample cbservations are independent and iden-
tically distributed randam variables, so that the usual probability and moment
inequalities holding for sampling fram an infinite population also remain valid
in this case. On the other hand, in SRS without replacement, the sample cdbser-
vations are no longer independent ( but, exchangeable ) randam variables. In
(2.11) and (2.14), we have abserved that the dependence in SRS without repla-
cement leads to a smaller variance for the sample mean oOr,in general, for
U~-statistics. This feature is generally shared by a general class of statistics

and the related inequality is termed the Hoeffding inequality.

let Xl”" ,xn be a sample in SRS without replacement fram a finite popu-
lation, and let Yl"" ’Yn be a sample in SRS with replacement fram the same
population. Then, for any convex and continuous finction ¢ (x) , we have

Ep (X te.o#X ) < EO(Y +o.4Y) o (3.1)
We may refer to Hoeffding (1963) for a simple proof of (3.1). Rosen (1967)
has extended the inequality in (3.1) for certain functions other than convex,

continuous $(.) and also for more general symmetric sampling plans which

include the SRS with replacement as a particular case. A more general result
in this direction is due to Karlin (1974). In his setup, ¢(.) needs not be a
function of the sum of the X (or Yi). Let dD(xl,...,xn) be a function, symmetric
in its n axgtmenté, such that
¢(a,a,x3,...,xn) + ¢(b,b,x3,...,xn) > 2 ¢(a,b,x3,...,xn) ’ 3.2)
for all a,b,x3,...,xn . For all such ¢(.) and any symmetric sampling plan §,
EO(Ky,eerX ) £ EO(Y 0ee,¥) (3.3)
where the Xi are in SRS without replacement and the Yi in the sampling plan g
There are more general inequalities of this nature in Karlin(1974), and they
should be of considerable theoretical interest. In passing, we may remark that

the conditian in (3.2) may not , in general, hold for functions of U-statistics.,



To illustrate this point, let us consider the special case of the sample variance .

when n = 2, Here, U, = (Xl-X2)2/2, so that EU2 = oﬁ . Then, for t1>(xl,x2 ) =

(5t x)? - of )2, we have 6 (a,a) = ¢(b,b) = o and d(a,b) =Cs(a-b)’~2)?.

Thus, whenever k(a-b)? > 20; » 2¢(a,b) > ¢(a,a) + ¢(b,b). Since E[l’(xl-x2)2]

= 1‘?‘1 , in general, ‘».:(Xl-xz)2 exceeds 201?1 with a positive probability, and hence,

]

(3.2) does not hold. The same picture holds for n > 2. Nevertheless, for convex
functions of U-statistics, we have same simple mament inequalities {[due to
Hoeffding (1963)]. Consider (as in Section 2) a kemel g(Xl,...,Xm) of degree
m( > 1) , and for every n > m, define kn = [n/m] and let

R

h =% Bim1 9%y Xin ) (3.4)

let 37;1 be the sigma~-field generated by the ordered collection of X]_,...,Xn R
*
so that we have Un = E| Un |&'n], and, as a result, by the Jensen inequality,

for any convex function ¢ (for which the expectation in (3.5) exists),

E[ M) ) < E[6wW) 1. (3.5)
On the other hand, for U, , the inequality in (3.1) is directly applicable,
so that we have for every continuwous and convex ¢ ,

E[$(U )] < E[6( Zzlg(Y(i-l)ml'---er’/kn 2 ,¥n2m, (3.6
where the Yi are defined as in (3.1). For the right hand side of (3.6), the
usual mament inequalities are applicable, and these are therefore adaptable
for Un in SRS without replacement too.

In SRS without' replacement , the reverse martingale property of U-statistics
(and hence, sample means) has been established by Sen(1970), and this enables
one to derive other probability inequalities, which will be briefly discussed
here. In passing we may also note that by virtue of this reverse martingale
property, for any convex ¢ ,{¢(Un) M < n <N} has the reverse sub-martingale
property, so that suitable mament inequalities may also be based an this fact.

*
We define Vn = Var(Un) as in (2.11) and let Vn = Vn - forn > m,

Vn+l ’



Also, let {ck;k > m} be a nondecreasing sequence of positive numbers. Then,
we have the following [ cf. Sen(1970)]:
Whenever for same r > 1, EIUn - 6N|r exists (for n > m), for every t > 0

andm<n<n' <N,

max -r, r r . r r
Pl cken' q v, - 8yl >t} < t T {clE[u -8 ] 03, (cf=cl_pElu-e 1T, 3.7)

so that,in particular, we have

max -2 n'-1 *
P{nf_kin' e lu-e >t <t {cnzvlrl + I cl%vi } 2 (3.8)
and
max -
P{n_f_k_<_N!Uk_ 6y | 2t} < tzvn,v‘n_>_m. (3.9)

For the particular case of sample means ( or sums) i.e., kernels of degree 1,
sare related inequalities have also been studied by Serfling (1974). In this
context, the following inequality [due to Sen(1979b)] is worth mentioning.
Let {dNi, 1<i<N;N>1} be a triangular array of real numbers
satisfying the normalizing constraints:
N, a, =0 ad I, d =1. (3.10)

Also, let g

{ qt):0 < t < 1} be a continuous, nonnegative, U-shaped and
square integrable function inside I = [0,1]. Finally, let Q = (Ql,..., N )
take on each permutation of (1,...,N) with the cammon probability (N!)-l.

Then

max

Py <k < w1

a5 a0 1> 1) < 13 wat. (3.11)
1

Clearly, in SRS without replacement, (3.11) may be used to provide a similta-
neous (in k:1<k<N) confidence band for BN by choosing g in an appropriate way.
For a related inequality ( exploiting the 4th mament but not the inherent
martingale structure ) we may refer to Ha’;ek and Siask (1967,p.185) :
Pl \een |):‘;=ldmjl_L >t} <o/ 12axiin &+ mMTanm T + g, 6.12)
where e~ 0Oas N+>>,
Generally, (3.7) with r = 4 (and n=l) provides a better bound than (3.12). Ve



may abtain even better bounds by exploiting the weak convergence results in '
Section 2 , for large values of N, As in Sen (1972), we consider the case of

general U-statistics [ with the same notations as in Section 2 ], so that the

case of sample means ( or sums ) can be cbtained as a particular one. Note that

by virtue of the weak convergence result, stated after (2.13), we have for

every t >0 and n:n/N< a(<acx<l),

. max _ > 172
Umeo Py ck <n kg -8y | 2N Ty 177 )
= P{Ois‘f< cllw"cu)l >t} , : (3.13)
where W = {i(t), 0<t<l} is a Brownian bridge . Noting that W’ (s/(s+1)) =

(s+l)_lw(s), s >0 , vhere W W) ,t > 0} is a standard Brownian motion

process on [0,®), we may rewrite the right hand side of (3.13) as

sup
0 < u <a/(1-a)

An upper bound for (3.14) is given by

p{ | | > e ). (3.14)

L2 ! @) | > e} =2 Z:___l(—l)k+le)cp(—2k2t2 ). (3.15)

For small values of a ( as is usually the case encountered in practice), we may -

get a better bound :

sup

Plo < u < a/(-a)

| e [> £} < B <oy W@ 2 €

<4P{Wo/(Q-0)) > t} = 4[1-00kQ/a-17)1, (3.16)
where ¢(.) is the standard normal d.f. In particular, for kermels of degree 1,
(3.16) may be compa'xred to (3.12), and , as 1 - 3(x) converges to 0 exponentially,
as x » , usually (3.16) performs much better than (3.12). The same conclusion
holds for the camparison between ((3.8) and (3.16) [ or (3.9) and (3.15). We
conclude this section with the remark that for moderate values of N, the
equality sign in (3.13) may , generally, be replaced by a less than or equality

sign, so that we may have a conservative property for small values of N.

4. Jackknifing in Finite Population Sampling. '

In SRS or other sampling plans, for ratio, regression or other estimators,



'Jackknifing' was mainly introduced to serve a dual purpose : To reduce the bias
of estimators ( which are typically of the non-linear form) and to provide an
efficient (and asymptotically nommally distributed) estimator of the sampling
variance of the (jackknifed ) estimator. In the same setup as in Section 2, for
a general estimator Tn = T(Xl,... ,Xn) ( containing U, asa special case), we may
(1)

define the pseudo values T . = nT_~- (n-1}T , i=1,...,n, as in (2,17). Then
n,x n n-1

the jackknifed estimator is defined by

x* _l .
Tn—n (Tn,l+ +'1'n,n ) (4.1)

and the ( Tukey form of the ) jackknifed variance estimator is given ( as in

(2.18)) by

2 _ -1 _o* 2
S R R (4.2)

To motivate the jackknifed estimator, we may start with a possibly biased estimator
Tn for which we may have
EI‘n = GN + n—lal(N) + rl-za2 N) + .... ’ (4.3)
where the aj (N) are real numbers depending possibly on the population size N
and the set A . Using n-1 for n in (4.3) for each 1) ana (4.1), we btain
that under (4.3),

DT = 8- a,(N/n(el) + ... = 8 + 00 ) . (4.4)

n N

Thus, the bias of T_ is reduced fram O(n 1) to that of o0 for T . In
addition to this important feature of 'bias reduction' , the variance estimator
Si also plays a very important role in drawing statistical conclusions on eN .
Since in this chapter, we are primarily concerned with the asymptotics in finite
population sampling, we shall mainly restrict ourselves to the discussion of the
large sanple properties of T; and Si ; hopefully, in same other chapter(s), there
will be camplementary discussions on other aspects of jackknifing .

Keeping in mind the ratio, regression and other estimators ( which are all
expressible as functions of same U-statistics), we conceive of a general esti-

mator Tn of the form Tn = h(Un) where h(,) is a smooth function and Un ia a vector



of U-statistics, defined as in Section 2. Also, we keep in mind the conditional

(permutational) distribution generated by the n! equally likely permutations of
X reee X among themselves, and define 3Tn as in after (3.4). Then, it follows

fram the basic results in Majumdar and Sen (1978) that

™ =T + @-DE[ (T-T ) [T, Yo >m, (4.5) .
s =n@-lvarl (¢ -1 ) [F, 1, \In >m. (4.6)

Thus, for both the jackknifed estimator T; and the variance estimator Sr21 , the
inherent permutational distributional structure provides the access for the
necessary modifications. This theoretical justification for jackknifing has
been elaborately studied in Sen (1977).

To fix the notations, we let My = Egn , and, in addition to (2.10) ( in
a matrix setup ), we assume that

s‘;pEll g(Xl,,..,Xm)H f e m=max(ml,...,mp) , (4.7)
where g(.) stands for the vector of kernmels of degrees M yees ,mp, respectively.

Further, we assume that h(u) has bounded second order (partial) derivatives
(with respect to u ) in saome neighibourhood of oy and h( EN) is finite. Finally,

let us define

2 * 2 . .
ONn =E[(Tn- GN )71, nino ’ whereno(f_ m) is finite, (4.8)

and assume that there exists a sequence {UI%I} of positive numbers, such that

n ol%ln - [(N=n)/(N-1}] GI%I + 0 as n increases, where lim cré >0 . (4.9)

Now, parallel to that in (2.13), we consider a stochastic process Y = {YN(t);

0 <t <1} by letting
*
[Nt]

where, for t < m/N, we camplete the definition of YN(t) , by letting YN(t)

(®) = v (N Id) = I (Th . - 8 )/o, , et <1, (4.10)
et N N /On '

0.
Further, as in after (2.13), we define a Brownian bridge W = {Wo(t); 0<tXs 1}.

Then, we have the following result [ viz., Majumdar and Sen (1978)]:

For the jackknifed estimator, under the assumed regularity conditions, .
Y, converges in distribution ( or law) to W , as N increases. (4.11)

i



Further, under the same regularity conditions, Si - GI%I strongly converges to

0 as n increases; this strong convergence is in the sense that for every € (>0)
and 6 ( > 0), there exists a positive integer n, = no(e,é), such that

| s2
n

max
n <n<1=UW 0°
o— w—

This strong convergence result enables us to replace in (4.10) oN by S[Nt] ’

P{ c§|>€}<6, N>n (4.12)
*
for every t > 0 . Thus, if we denote such a studentized process by YN(t) , £ >0,
then, we conclude that for every n >0 ,
*
{YN(t);t e [n,1]1} converges in law to (WP );t € [n,1]}, as N increases. (4.13)
In particular, it follows that for any (fixed) o : 0 < a <1, ifn/N-+a , as

N increases, then

n* (T, -8)/S  is asymtotically nomal (0, 1- a) . (4.14)
Further, if Yy be nonnegative integer valued random variable, such that
N_l\)N converges in probability to a ( 0 < a <1), then

NE ( T:N - 8) /S"N is asymptotically nomal (0, (1-0)/a ). (4.15)

The last two results are very useful in setting up a confidence interval for

the parameter eN or to test for a null hypothesis HO: GN = 60 (specified).

As a simple illustration, consider a typical ratio-estimator of the form:

T = ot ) i3 = 7l L 95) 4 L2, (4.16)
where the functions gl(.) and 9, (.) may be of quite general form. In fact, we
(1) (2)

may even consider same U-statistics for Un and Un

(of degrees > 1). In such
a setting, Tn is not generally an unbiased estimator of the population parameter

Oy = H&l)/uéz) » though the UrEJ) may unbiasedly estimate the pt\(]:’) , 3=1,2.

Typically, the bias of Tn is of the form in (4.3), and hence, jackknifing

=2

reduces the bias to the order n . Further, here h(a,b) = a/b , so that

(32/3a%)h(a,b) = 0 , (3%/3adb)h(a,b) = -b 2

Consequently, whenever ub(JZ) is strictly positive and finite , for finite eN ’

and (3%/5b%)h(a,b)=2b"h(a,b) .

the reqularity conditions are all satisfied, and hence, (4.11) through (4.15)

hold. For same specific cases, we may refer to Majumdar and Sen (1978). The



basic advantage of using (4.11), (4.12) and (4.13) , instead of (4.14) or (4.15),

is that these asymptotics are readily adoptable for sequential testing and
estimation procedures. Further, the asymptotic inequalities discussed in the
preceeding section also remain applicable for the jackknifed estimators. In
particular, (3.13) through (3.16) also hold when we replace the U-statistics '
and their variances by the T}: and the Tukey estimator of their variances.

Finally, the results are easily extendable to the case where the Tn are g-vectors,

for same @ > 1. In that case, instead of (4.11) or (4.13), we would have a

tied-down Brownian sheet approximation (in law), and instead of (4.12), we

would have the strong convergence of the matrix of jackknifed variance covariances.,
For (4.14) and (4.15), we would have an analogous result involving a multi-

variate nomal distribution.
5. Estimation of Population Size : Asymptotics

The estimation of the total size of a population ( of mobile individuals, ‘
such as the number of fish in a lake etc.) is of great importance in a variety )
of bioclogical, enviramental and ecological studies. Of the methods available

for obtaining information about the size of such populations, the ones based on

capture, marking, release and recapture ((MRR) of individuals, originated by

Petersen (1896), have been extensively studied and adapted in practice. The

Petersen method is a two-sample experiment and amounts to marking (or tagging)

a sample of a givén number of individuals fram a closed population of unknown

size (N) and then returning it into the population. The proportion of marked -
individuals appearing in the second sample estimates the proportion marked in

the population, providing in turn, the estimate of the population size N.

Schnabel (1938) caonsidered a multi-sample extension of the Petersen method ,

where each sample captured cammencing from the second is examined for marked

members and then every member of the sample is given another mark before being




returned to the populatiom. For this method, the camputations are simple,
successive estimates enable the field worker to see his method as the work
progresses,and the method can be adapted for a wide range of capture canditions.
For the statistical formulation of the QMRR procedure, we use the following
notations. Iet N = total population size ( finite and unknown), k = number of
samples ( k > 2), n, = size of the ith sample, i > 1, m, = number of marked
individuals in n, . i=1l,...,k, u, =n; -m o, i=1l,...,k, and Mi = number of
marked individuals in the populatian just before the ith sample is drawn (i.e.,

M, =1

N 5=1 uj ), i=1,...,k. Conventionally, we let Ml =y = 0 and Mk+l =

Mk n -m = Z}; l(n - mj ). Now, the conditional distribution of m, , given

Mi and n, is given by
M.,  N=M, N

(1) _ i i .
Ly | M) = (mi) %iﬂi)/( ni) , 122,000k, (5.1)
so that the (partial) likelihood function is
M. »I-M N
Lyayseeem) = T, LM = }1(—2{(m )G )/g1 ). (5.2)

liote that

= N 01 ek
g =N O, G Y o )/
N (k"l){rr]i‘=l (- n;) TN - M Jrl)'l

so that
k
nn (1—N n) . (5.3)
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liow, (5.3) provides the solution for the maximum likelihood estimator (MLE) of N.

vita

1 according as ( 1- N ) is

Allv

+1

For the Petersen schere (i.e., k = 2) , (5.3) reduces to

Lyly-1 38
so that [nlnz/mz] = ﬁz is the MLE of N. For k > 3, in general, (5.3) needs an

iterative solution for locating the MLE of N. Note that based on 11\(11)

Al

1 according as N is § nlnz/m2 ' (5.4)

ME of N is given by ﬁi = [nM,/m] , for i =2,...,k. It is of natural
interest to study the relationship between the MLE N ( fram (5.3)) and the I’\\Tj ’

j=2,...,k, when k > 3. Before doing so, we may note that by virtue of (5.1),



N—M N

P(m.=0|M.,ni) l/(n)>0,foreveryi=2,...,k so that the MLE

N do not have finite manents of any positive order. To eliminate this drawback,
we may proceed as in Chapman (1951) and consider the modified MLE
= (ni+1) (Mi+1)/(mi+l) -1, fori=2,...,k. (5.5)

Asymptotically (as N + «), both ﬁi and N, behave identically, and hence, this .
modification is well recammended. Using the normal approximation to the
hypergeametric distribution , one readily cbtains fram (5.5) that

N ﬁz - N ) is asymptotically nomal (0, Y’ (a,,0) ) , (5.6)
whenever for same 0 <0y, 0, <1, nl/‘N->0Llanan/N-*cL2 , as N == , where

v’ (a,b) = (1-a) 1-b)/ab > [(2-a-b)/(a*b)]1® , 0 <a,b< 1, 5.7)
and where the equality sign in (5.7) holds when a =b .

For the case of k > 3, a little more delicate treatment is needed for the
study of the asymptotic properties of the MLE's as well as their interrelations.

Using same martingale characterizations, such asymptotic studies hawve been made

by Sen and Sen (1981) and Sen(1982a,b). First, it follows fram Sen and Sen
(1981) that a very close approximation N* to the actual MLE I’\\I [ in (5.3)] is
given by the solution :

N* = [21;2 Nm /(N*—M )(N*-n )]/[Z m /(N*—M )(N*—n )] (5.8)
where the MLE N are defined as in after (5 4)., Two other approximations,

listed in Seber (1973), are given by

~ _ k ~ ~ _ k ~
N = [ I, N/ (N = M1/ I, m /(% M)] (5.9)
and g
- k .
N =[5, Nm 1/125 ,m 1. (5.10)

N works out well when the n,,2¢j¢k are all equal or N‘lnj are all small, while,

(5.10) is quite suitable, when in addition, theNlM =2,.0.,k are all small.

For both (5.8) and (5.9), an interative solution works out very well, and has

been discussed in Sen and Sen(l981). Schumacher and Eschmeyer (1943) considered .

another estimator (pertaining to the same scheme):




L] A k
N o= 0I5, N, mM 1/1 IS, m ], (5.11)
which is also an weighted average of the Petersen estimators. Sen and Sen (1981)

considered an altemative estimator

o= 125, oM/l 2, )] (5.12)
If we let
n =N ©<o; <1 and B =M (- o), =l k, (5.13)

then, fortheMIEﬁaswellastheappmximatebﬂEN* , we have [ viz., Sen and
Sen (1981)] :
N%( N* - N) asymptotically nomal (0, o*2 ) , (5.13)

*2 -1
o2 = (25,0 0-8_)/8 1. (5.14)

Parallel results for the other estimators are :

NN - N) asymptotically normal (0, 2,

(5.15)
~2 ok _ _ - -1,
o =1 Zs=2°‘s & 0Ls) s Bs-l)/ss-l 1 z:ks=2 %s s Bs--l)/es--l ] !
N.%( I.:l - N ) asymptotically nommal (O, 52 ),
~2 _ * _ k _ 2
o =1 2];=2 BsO‘s(l OLs) & Bs-l)Bs—l]/[ 2:s,=2 % & Bs-l)] ' (5.16)
k
B =1+ Ticeal Oy + S=2reeeskl By = 1;
N E(N - N) asymptotically normmal (0, % ) ,
‘2 _ ok 2 _ 13 2 .2
S R A A YN/ 0 vg 17 (5.17)
Yg = 1- Bs-l , for s = 2,...,k ;
N%(N -N) asymptotically nomal (0, 5° ),
2 _ oK -1,k -1 2. _
0" = (I, o) T 0T Ej>s aj/Yj) a (1-a )y (I-v,) 1. (5.18)

It follows fram Sen and Sen (198l1) that o ’ E, &, 8 are all greater than or
equal to o* , where o = g* iff the o (2<s<k) are all equal, while, in the
other three cases, an approximate equality sign holds when the ag are all small,

Numerical camparison of these asymptotic variances reweals that over the entire

damain of variation of the ag 4 none of the estimators ﬁ,ﬂl and N is uniformly



better than the others. In (5.1) and (5.2), we have considered the so called
sampling without replacement scheme, If we draw the 2nd,...,kth samples with
replacement, we need to replace the hypergeametric distributions in (5.1)-(5.2)
by the corresponding binamial distributions, and this will lead to some
simplifications in the formulae for the asymptotic variances.

In many situations when the‘nj are very small campared to N, the mj are
also very small ( may even be equal to 0 with a positive probability). This
may push up the variability of the estimators cansidered earlier. For this

reason, often, an inverse sampling scheme is recamended. In this setup, at

the sth stage , the sample units are drawn one by one , until a preassigned
numberxr m of the marked units appear, so that the sample size ng is a random
variable, while m is fixed in advance, for s = 2,...,k. For this inverse
sampling scheme, parallel to (5.1), we have

(i) Noo-1 M N
Ly g [ ipm) = G 3) G ) G g V{0 41/ (Nen g+ 1) )
1 1

i i

N-M;

{m, ( Miy i yh4n. ( Ny, i=2,... .k, (5.19)
m Ny 10y

(n -m
and (5.2) can be modified accordingly. Note that (5.3) and (5.4) are not

affected , so that the MLE remains the same. It follows from Bailey (1951)
that fq’i-- M+1)n /m - 1, i=2,...,k are wbiased estimators of N. Note that
the exact variance of N, is equal to (n;-m,+1) (1) (-n ) /m, (n;+2), o that
on letting m, = aInl = a;.alN , we have parallel to (5.6)-(5.7) that

N2 (N, -N) asymptotically nomal (0, (1-ay) (1-ei)/aj0) ). (5.20)
Note that in (5.20), o, plays the same role as a, in (5.6)-(5.7). With a
similar modification for the other m the results considered earlier for
the direct sampling scheme all go through for the inverse sampling scheme too
( when N is large); the main advantage of this inverse sampling scheme is that
the estimates have finite maments of positive orders, although, the amount of

sampling ( i.e, n2+...+nk) is not predetermined (but , is a randam variable).




Irverse sampling schemes are the precursors of sequential sampling tagging

consicered by Chapman (1952), Goodman (1953), Darrcch(1958) and othars., Darling
and Tobbins (1967) and Samuel (1968) have studied sane related prablems an

stopping times arising in sequential samoling tagging for the estimation of

the population size N , and the asymptotic theory plays a vital role in this
context. Lack of stochastic independence of the randam variables at successive
stages of drawing and nonstationarity of their marginal distributions call for
a nonstandarc approach for a rigorous study of the asymptotic properties of the
MZ of N in a rmlti-stage or sequential sanpling procedure. Using a suitable
rmartingale chiaracterization, this asymptotic theory has been developed in
Sen (1982a,b), and is presented below.

Incividuals are drawn randarly one by one, marked and released hefore the

next drawing is made. Let Mk be the number of marked individuals in the popu-

lation just before the ktn draval, for k> 1. Thus, nD = M'.L =0, Mz= 1, Mg 2

Mk , for every k > 1, and Mk+l=Mk+ 1 —xk , k>1, wicre , for every k(>1),
X, is equal to 1 or 0 according as the kth drawal yields a marked individual or
not., Now, the conditional probability function for “k , given Xl""'xk—l is

_ , -1 % . 1- 4
£ | X e X _g) = N 10N M) X, , k > 1, so that at the nth stage, the

(partial) likelihood function is given Ly

X 1
L) =T, £ 0 (X e X ) = y (-1 T[)Lz{l‘l:k(N - M) ), (s.20)
Note that '
(3/a1) log L ()= I, (1= X)/0M) - -1/ (5.22)

The summands in (5.22) are neither independent nor identically distrikbuted
ranCdom variables. ilevertheless, thery lead to a sinple martingale—difference
structure on which the asymptotic theory has been huilt in ., 'the MLE ﬁSn of

Il , based on ‘Ln(N), is a solution of (5.22) (equated to 0), and ane is interested
in the asvmptotic behaviour of the partial sequence { {\}Sn in< n*}, vhere n* is

large , and the sequence is suitably normalized. For this purpose, we cdefine



* - -
2, (N) = 5, (N-14,) L xle-1, n >2, Z;(N) = ZI(Nl =0, (5.23)

and, for every N,n, such that n = [Na],for same a >0, we define

* %*
n(t) =max{ k : 2 (N) <tZ (N) },0<t<1, (5.24)
Then, for each (N,n) and every ¢ :0 < € < 1, we may consider a stochastic
* *
process WN:; = {WNn(t)'E <t <1}, by letting -
* B P + ) ad Y
WNn(t) =N (Nsm(t) -N)(e" -a-1) €<t <1, (5.25)

Further, defining the standard Brownian motion process W = {W(t);t € [0,1]} as -
in before (3.14), we let W© = {W (t) = t W(t), € < t < 1} . Then, we have the
following : For every € : 0 < € <1, as N increases,

w;i converges in law to W*€ , whenever n = [Na] for sae ¢ > 0 , (5.26)

A direct consequence of (5.26) is that whenever n = [N«], for same a > 0,
1

-5 ~
N (NS’I

Further, if {vn} be any sequence of positive integer valued randam variables,

such that n—l\)n + 1, in probability, as n increases, then, we have

- N ) is asymptotically normal (0, ( e - a - 1)_1). (5.27)

N*(Rg, - N) asymptotically nomal (0, (* - a- 1)1 ). (5.28)
We are now mn a position to compare (5.6) and (5.27), where we put a = a1+ Oy .
By virtue of (5.7), the asymptotic variance in (5.6) is a minimm when Uy = 0.
Canparing this minimum value with (5.27), we conclude that the asymptotic
relative efficiency (A.R.E.) of the two-sample Petersen estimator (for a; = a2)
with respect to the sequential estimator is given by

E(®,S) = o?/{ 2-0)%(e* ~a-1) k. (5.29)
As a goes to 0, (5.29) converges to 1/2, so that for small values of a , the
Petersen estimator is about 50% efficient compared to ﬁSn
as a increases, E(P,S) also increases, and in fact, for a > .7657, (5.29)

. On the other hand,

exceeds 1 and it can be quite large when a is close to 2. Eowever, in all
practical situations, o is generally quite small, and hence, the sequential
estimator can be recamended with full confidence. Fram the operational point .

of view, often, sequential schemes are not very practical, and hence, the

Petersen estimator may be used .




In the context of sequential estimation of the total size of a finite popu-
lation, the following urn model arises typically. Suppose that an urn contains
an unknown number N of white balls and no others. We repeatedly draw a ball at
random, cbserve its colour and replace it by a black ball, so that before each
draw, there are W balls in the urn, I.etwnbethemmberofwhiteballsdaserved
in the first n drawals. Note that Wk is nondecreasing in k , wk < k, for every
k>1landW, =0, W, =1, For every c > 0, consider a stopping variable

0 1
t, =infl n:n2 (W }, . (5.30)

Note that tc can take on only the values [(ctl)k], for k =1,2,..., and Wt = m
whenever t, = [m(c+l)]. In this situation, one is not anly interested in ihe
study of the asymptotic properties of the MLE ﬁSt K but also of the standardized
form of the stopping variable tc . Samuel (1968) mide sare oconjectures , and
general results in this direction are due to Sen (1982b).
Wemaynotethatwn=wn_l+wn ,wherewnisequaltolorOaccordingas
the ball appearing at the nth draw is white or not, for n > 1; Wo=w0=0. For
every K (0 < K <) and N , we consider a stichastic process Z = {ZN(t), te
[0,K]} by letting
Zg(6) = N2 ( W - NOA-QAT Nelyy e 0,1, (5.31)
where [s] denotes the largest integer contained in s. Also, let 2 = {Z(t),
t € [0,K]} be a Gaussian process with 0 drift and covariance function
EZ(s)2(t) =e T{ 1- (+s)e ° } , for 0 < s < t <K, (5.32)
Then, as N increases, ZN converges in law to 2. Since (,l—an)n is close to e-n/N,
this suggests that a convenient estimator of N (based on n draws) is given by
the solution (N. ) of the equation : W_= N(1~e ™), and the asymptotic pro-
perties of this estimator can then be studied by incorporating the convergence
of ZN to Z (in law ). For the associated stopping time, we define now
I* = [a,b] where 0 <a<b<1l. (5.33)
Also, for every m € I* , we define t;'n as the solution of the equation
-t |

m=(l-e )/t , m eI* (5.34)



Note that mt;‘i 1 for every m € [0,1], ti =0 and tI; monotonically goes to «

as m moves from 1 to 0. For every N, we consider a stochastic process v, = ‘

{YN(m) , m€ I* } by letting
1, =inf{n(2D:m> W} and Y ) = N 3( 1y

Wote that W (= W ) depends on N as well and m plays the role of (1+c) 7! in

*
- N ), meI*  (5.35)

(5.30). Let then Y = {¥(m),m € I*} be a Gaussian process on I* with 0 drift and

covariance function .
* * * *

-t _, -t -t ,
EY(mY@m') =e T {1 —(1+t;,)e My ime MHm -e ™)}, m>m', (5.36)

Then, as N increases, Y, converges in law to Y. This convergence result, in tumn,
provides the asymptotic normality of YN(m) for every fixed m ( ¢ I*) as well as
for any sequence {mn} of positive randam variables for which m, > m (e I*), in
prooability, as n increases. For m very close to 1 (i.e., c in (5.39) very close
to 0), Poisson approximations for 7t,. , suggested by Samuel (1968) ,works out well.

Nm
In the two or multi-sample capture-recapture model, and, more critically,

in the sequential tagging scheme, there are certain basic assumptions which may
not always match the practical applocations. For example, effects of migration
need to be taken into account when sampling is conducted over a period of time
and new individuals may enter into the scheme as well as same existing ones may
exit. Also, the catchability of an individual in the tagging scheme may depend

on same other characteristics . Moreover, once caught, an individual may develop
same trap-shyness or trap-addictions, so that at the subsequent stage(s), the
capture—prtbabiliti'es are affected. Farm(1971) considered the asymptotic normality
in a capture-recapture problem when catchability is affected by the tagging .
procedure. Seber(1973) studied the robustness of (MRR procedures against possible
departures from these basic hamogeneity assumptions. For same CMRR models allowing

same relaxations of these basic assumptions, large sample theory has been neatly
developed in Rosen(1979). The basic problem with this development is that there

are so many unknown parameters involved in the final structure that fram the .

statistical inferential point of view, there is little encouragement in their
possible adoptions.



6. Sampling with Varying Probabilities : Asymptotics

Hansen and Hurwitz (1943) initiated the use of unequal selection probabilities
leading to more efficient estimators of the population total. If N and n stand
for the number of units in the population and sample, respectively, and if Yl"
..,YN and Yyreeor¥y denote the values of these units in the population and sample
respectively, then, one may consider the following sampling with replacement
scheme. Iet P = (Pl,...,PN) be positive numbers which are normalized in such a

way that P.+...+P

1 N
the ith wit in the population and set P, = si/(zilsi) , for i=1,...,N. Now,

= 1. Typically, ane may consider a measure Si of the size of

corresponding to the sanple entries Yyreeor¥po the associated P's are denoted by
PyrecesPy v respectively. Here, sampling is made with replacement and the jth
uwit in the population is drawn with the prabability Pj , for 3=1,...,4. Then,

the Ransen-Horwitz estimator of the population total Y = V. + ,,.+Y is

1l N
s _ -1
Yo =n yl/pl + eee + yn/pn ) . (6.1)

This estimator is unbiased and its sampling variance is given by

S _ .=l <N _

Var (%) =n I, Yo/p, - ¥}

_ (om-l _ 2
We may further note that
2 _1yv1-1l n . _ 3% 2

S = (-1 T Iy (v /Py = Vg )
_ o2y 1L _ 2
= [2n" (n-1)] Zl_f_i#jj_n {yi/pi yj/pj } | (6.3)

is an unbiased estimator of Var (§HH) . Since sampling is made with replacerent and
2

\ . . N
the yi/pi are independent with mean Y and variance Zi=l Yi/Pl - YZ (= S say),
standard large sample tneory is adoptable to verify that as n increases,
nsi}m/ofmi converges to one, in probability, (6.4)
1 ~ . .
n#( Yy - Y ) is asynptotically nommal (0, szum ), (6.5)

1. A
n'i(YHH = Y)/S ;. is asymptotically normal (0, 1) . (6.6)



The situation becomes quite different when sampling is made without replacement.

In cne hand, ane has generally more efficient estimators; on ‘the other hand, the
exact theory becames so camplicated that one is narurally inclined to rely mostly
on the asymptotics, To encampass diverse sampling plans (without replacements),
we identify the population with the set ¥ = {1,...,li} of natural integers and
denote the sample by s . A sampling design may then be defined by the probabilities
p(s), s € S , associated with all possible samples. In particular, we let

m, = P{i € s} -l,...',N. 6.7)

i =lalls containing i} p(s) , 1=
These are termed the first order inclusion probabilities, Similarly, the second

order inclusion probabilities are defined as

TTlJ = P{ lr] £ S} = Z{all s ccmta.lnmg (1’3)} p(s), i#j:]_,.."n . (6.8)

The classical Horvitz-Thampson (1952) estimator of the population total Y is

then expressible as

A

Yy = 1es( Y; / . (6.9)

Various properties of this estimator are discussed in same other chapters, and,
hence, we shall not repeat the discussion here. We shall mainly concentrate on
the asymptotic theozy. The sampling variance of this unbiased estimator of Y is

var( ¥,) = 1 L (nl 1)y2 -1)Y.v.

Ticiggen (Mi3/Mimy DY
When the number of units (n) in the sample s is fixed, an alternative expression

(6.10)

for the variance in (6.10), due to Sen(1953) and Yates and Grundy(1953), is

2
1<i<j<N (m. nJ nij ) ( Yi/TTi - Yj/'rrj ) I (6.11)

z
It is clear that if the Yi are all ( exactly or closely) proportional to the
corresponding LI then (6.11) is ( exactly or closely) equal to 0 ; this point
advocates the choice of the m, as proportional to the size of the units, and

on that count, 'probability proportional to size' (pps) sampling is quite a

reasonable option.
Now, in the context of sampling (without replacement) with varying prababilities, .

various sampling designs have been considered by various workers. Among these,

rejective sampling may be defined as in HAjek (1964) as sampling with replacement




with drawing probabilities Q) peeerOy at each draw, conditioned on the require-
ment that all drawn units are distinct. The a; are positive numbers adding upto
1. As soon as one cbtains a replication, one rejects the whole partially built up
sample and starts campletely new. In this scheme, the inclusion probabilities

T, can be computed 38 in Ha/jek (1964)J in terms of the a; . A related sampling

plan, known as the Samford-Durbin sampling, is defined in a similar manner,

where the first unit in the sample is drawn fram the population with the proba-

bilities oci(l) = n-lﬂi , i=1,...,N, and in the subsequent (n-1) draws, one
considers the drawing prababilities as a( ) - am, (l-TT.)—l, i=1,...,N where a is
so selected that Z ( ) - 1. Here also, a sample is accepted only if all

i=1 ¢
selected wnits are distinct. For both these schemes, a rejection of the

accumlating sample is made when at any intermediate stage, a repetition occurs.,

In a successive sampling plan cne draws units one by cne with drawing probabilities

Pl""’ PN , and, if a replication occurs at any draw, that particular one is
rejected, and the drawing is continued in this manner until one has the prefixed
number n of distinct units in the sample . Following Rosen(1972,1974), let Il e
..,Irl be the indices in the (randam) order in which they appear in the sample
of size n , and let

A(r,n) = Probability that item r is included in the sample of size
n drawn accprding to the successive sampling plan, (6.12)

for = 1,...,N., For this scheme, the Horvitz-Thompson estimator in (6.9) reduces

to the following:

Yoo = i) 1 /B(I;m) . (6.13)
In passing, we may remark that if P,=...=P = N1, the A(r,n) all reduces to

n/N, so that (6.13) is given by N( n zl 1Y I ) , and hence, relates to the usual
equal probablllty sampling scheme (without rnplaoememt) In the more general
casewherethePiarenotallequal, the A(r,n) can be obtained as in Rosen

(1972) in terms of a set of inclusion probabilities. However, these expressions



( as given below) are generally quite camplicated and call for asymptotic

cansiderations., For every n( 21) and 1‘1,...,rn : 1< r, #F oeee # r <N, let
k‘l ]"1}.

P(ryjeee,r ) = prl.{n‘;=2 Prk[l- ) Prj (6.14)
Then,
A(r,n) = z’j‘=l { Iy Plrpeenr 0l (6.15)

where the sumation Z(j ) extends over all permutations of (rl,...,rn) over
1,....,N} , subject to the canstraint that rj =r9% Jj=l,...,n, for r =1,...,N.
The varying probability structure and the camplicatians underlying the
A(r,n) in (6.14)-(6.15) introduce certain camplications in the study of the
asymptotic distribution theory of the Horvitz-Tharpson estimator ( or other
estimators available in the literature). Rosen (1970,1972) considered an

altemative approach (through the coupon collector's problem) and provided

sare deeper results in this context. To illustrate this approach, we first

consider a coupon collector problem. Let

Q= {(aNl'Pml) yeeo 4 (aNN’PI\IN)} y, N2>1, (6.16)

be a sequence of coupon collector's situations, where the aNj and PNj are real
‘o N _ .
wj are positive and Zj=l Py = 1, VN> 1, Consider also a

(double) sequence { I k2 1} of (row-wise) independent and identically

nuwers, tne P

distributed random variables, where, for each N( >1),k2>1,

P{ Ik = S } = P’ for s=1,...,N . (6.17)
Let then ) ¢ y
/AT, m) , if J Ty reenrdy
) NI, N Nk 1 Nk-1, (6.18)
N 0, otherwise ; k>1,
Vim = inf{ n : number of distinct Iqpreeerdy, =MW },m> 1. (6.19)

Note that for each N( > 1), the Vyn &re positive integer-valued random variables.
Then, Rosen(1970,1972) has shown that on identifying {Yl,...,YN; Pl,...,PN} with

QN in (6.16) ,
Y
n =7

k=1 ank NV » S3Yy

Y

HTf)Z

(6.20)




where % stands for tile equality in distributions. Now, for a coupan collector
situation Q in (6.16), By = ZLI ayy is termred the Bonus sum after n coupons,

for n > 1. Thus, corresponding to the situation QN in (6.16) , if we caonsider

*
another situation an = {(a\u/A a,n),P, 1) peees (aNN/A (t3,n),P ) }, and, as in
before, identify (aNj’PNj) with (Y.,P.), j=1,...,N, then, for a given n, va‘ln

in (6.20) is the bonus sum after \)Nn

Thus, the asymptotic normality of (randamly stopped) bonus sums ( for the reduced

coupons in the collector's situation an

coupon collector's situation) provides the same result for the Forvitz-Thampson
estimator. A similar treatment holds for many other related estimators in
successive sampling with varying probabilities (without replacement). Towards
this goal, we may note taat as in Rosen(1972), under sane reqgularity conditions
, as N increases,

Wi
A(s,n) =1 -exp{-P\]st n)} + o(N-15

on the ay; as well as the P
Ni
) s=1,...,N, (6.21)
where the function t(.) = {t(x), x > 0}, is defined implicitly by
N-x-= zk—-l exp{ —t (x)Py }o, x>0, (6.22)
( and therefore, depends on PI’l"“ PN ). Given this asymptotic relation, we
may write for every s(=1,...,N),
* - -1

a, = a/blsm) = (- exp{-Btm)}) Lo, + oY, (6.23)
It also follows fram Rosen(1970) that under the same regularity conditions ,

V. /t(n) converges in probability to one, (6.24)
whenever n/N is .mmded awvay fram 0 and 1. Consequently, if we define the bonus
sum for the reduoed coupon collector's situation by BNnk 1—1aNJ\,1 k>1,
then , we need to verify that (i) the normalized version of BIMt(n) is asymptoti-

ok * *
cally normal, and (ii) n  max{ 'Bunk - BNnt(n)I :| k/t(n) -1j < §} converges
in probability to 0 ( the later condition is known in the literature as the
Anscarbe (1952) 'uniform continuity in probability' condition). A stronger

result,whic:h ensures both (i) and (ii), relates to the weak convergence of the

*
partial sequence {(13Nnk - EBI:rﬂvc )/{Var(B;ht(n))}%; k <t(n) }, and , this has



been established by Sen (1979a) through a martingale approach. For simplicity of

presentation, we consider the case of the original coupon collector's situation

(and the same result continues to hold for the reduced situation too). Iet us

denote by
, - N _ -
S = Zeml aNs[ 1 - exp{ P N, n>09, (6.25)
2 _ . 2 o .
dy, = P e exp{-nPNs}[l exp{ P }] )
N 2
n( I, aI\]sPNsexp{-nPNs })y*, n>o. (6.26)
Then, under the usual (Rosen-) regularuty conditions, it follows that
dl%ln = Oe(n) whenever n/N is bounded away fram 0 and « . (6.27)

Further, under the same regularity conditions,
™
In fact, if we consider any finite number, say, gq,of the sample sizes, i.e.,

)/dNn is asymptotically nomal (0,1). (6.28)

nl,...,nq , where the nj all satisfy the condition that 0 < nj/‘N <~ , for

j=1,...,q9, then, (6.28) readily extends to the multinormal case. Further, if
we define W, = { Wt), t €T }, wvhere T = [0,K] for same finite K , and .

|
2

W (t) = 0<t<k, (6.29)

CBumeed ~ Gumwey )
then, it follows fram Sen (1979a) that W, converges in law to a Gaussian function
on T , and this ensures the tightness of WN as well ( so that the Anscambe
condition holds). In passing, we may remark that if the 8 are all nonnegative,
the bonus sum BNn is then nondecreasing in n, so that, we may define

U (t) = min{ k : By >t} , for every t > 0. “ (6.30)

Then, UN(t) is termed the waiting time to obtain the bonus sum t in the coupmn .

collector's situation QN . Note that, by definition,

P{ Uyt) > x } =p{ BN[x] <t}, forall x, t >0, (6.31)
Therefore, the asymptotic distribution of the nomalized version of the waiting
time can readily pe cbtained fram (6.28), and, moreover, the weak convergence
result on wN also yields a parallel result for a similar stochastic process .

constructed from the UN(t).



Note that by (6.7), (6.8), (6.14) and (6.15}, T = A(x,n) for every r =1,...
,N , while for every r # s (=1,...,N),

{z

™ P( rl,...,rn)}, (6.32)

rs = Pl<if<n b t()
where the summation %ij) extends over all permutations of (rl,... ,rn) over
(1,...,N) subject to the constraints that r,=r and rj = s, for i# 5=1,...,n.

Further, the expression for the variance in (6.10) can be rewritten as

N ZN

i=1 321 leY/( )—Y2 whereY-Z

1-1 i (6.33)
so that the expressions for the “ij and T, may be mcorpc?rated to evaluate
(6.33). This, however, is quite complicated ( in view of (6.14), (6.15) and
(6.32)), and therefore, we proceed to obtain simpler expressions., We may note
that for the reduced coupon collector's situation Q; and for n replaced by t(n),
we have pa.rallel to (6.26),

*2
Ayt (n) = s=l aNsexp{-t(n)P H1- exp{—t(n)P h

2
-tn)[ L s=1 aNsPNs exp{-t )Py H

= ZN Yzexp{-t(n)P }/[1— exp{-t(n)P 3

-tm)[ g exp{-t(n)P } /(l—exp{-t(n)" })]2, (6.34)

s=1 s N
where, we may note that the PNS are all specified numbers, so that by (6.22),
t(n) is a known quantity. As a result, we cbtain that as N increases and n/N

is bounded away fram 0 (and is finite too ),

(¥ - ¥ )/dl:t ;) 1S asymptotically nomal (0,1). (6.35)
Further, if we take the sample observations as yj (= YI\I' Y, 3=1,...,n and
Nj
denote by P = . 7 31,...,n, we may set
NLy W ’ ,

gl) =n lzn_l v em(-tmp  } /11 - emi-tiipy; }1° (6.36)

ul?) = gR (~t(n)py.) /11 - expl-tmp, .} 1° (6.37)

Up = N j=1 Y4Py &P NPy exp NPy ’ .

v e (2)

Nn Nn - t(n)l U ] (6.38)

“Then, it follows that as n :mcreases, \Y/ /d\lt( } converges , in probablllty to

1, so that in (6.35), dNt(n) may also be replaced by V':h .



Besides the sampling strategies considered so far, there are same others

considere¢ Ly other workars. Among tiese, mention mav he made of one approach .
proposed by Rao, Hartley and Cochran (1962). They suggested that the population

of N units be first divided randarly into n sub-populations of predetermined

sizes Nl""’Nn » respectively. Vithin each sub-population (or rather, group),

using a convenient varying probability selection, a Horvitz-Thompson estimator

is used to estimate the group total, and the sum of these estimates then taken -
as an estimator of the population total. then n, the nuer of groups , is large,

and the groupings are made randomly, the asymptotic theory remains applicable

under quite general conditions. hKowever, therzs is some arbitrariness in this

division of N units into supsets of Nl" .e ,Nn units which may make this procedure

rather unappealing to practicians. For same further work in this direction, we

may refer to Krewski (1978). Systemetic procedures ( random or orderec) for

sampling with varying probabilities were also considered by Madow (1949),

-

Hartley (1966) and Rao and Hartley (1562), among others, Some of these procedures
are discussed in detail in same other chapters of this volume, and hence, we

shall not elaborate on their related asymptotics. Besides the systematic procedures,
there are other procedures due to Narain (1951), Midzuno (1952) , Yates and

Grundy (1953), Sen (1353) , and others. llbst of these procedures work out well

for small values of n ( viz, n = 2, 3 or 4), and as n increases, the procedures
vecame prohibitively cumbrous. We may refer to Brewer and Hanif (1983) for same
detailed discussions of these procedures when n need not be large. However,

as regards tile asvmptotic theory is concemed, a lot of work remains to be

accanplished.
7. Successive Sub-sampling with Varying Probabilities : Asymptotics.

Sub-sampling or multi-stage sampling is often adopted in practice and has

a great variety of applications in survey sampling. These are elaborated in some .

other chapters of this volume. Typically, we mav consider a finite population of




N units with variate values Rqpreee 1@y v respectively. Consider a successive
sampling scheme where items are sampled cne after the other (without replacement)
in such a way that at each draw the probability of drawing item s is proportional

to a nmumber PNs if item s has not already appeared in the earlier drawals, for

s=1,...,N, where PN are a set of positive numbers, adding upto 1 . We

1’ LI ] 'PNb]
like to consider a multi-stage extension of this sampling scheme . Here, each of

the N items in the population ( called the primary units) is caomposed of a number

of smaller wnits (sub-units), and it may be more econamic to select first a sample
of n primary units, and then to use sub-samples of sub—units in each of these
selected primary units. Suppose that the sth primary unit has MS sub~units with

variate values bsj ’ j=l,...,Ms , so that s = bSl + ... 4-bSMS , for s =1,...,

N. For each s, we conceive of a set { P(s)j , l_<_j_<_Ms} of positive numbers (such
M
that Ej=i Pcs)j = 1) and consider a successive sampling sheme (without replacement),

where m_ (out of 'Ms) sub-units are chosen. Then, as in (6.13), an estimator of
a5 Can be framed, for each of the n selected primary units, Finally, these
estimates can be combided as in (6.13) to yield the estimator of the total AN =
aNl+ +aNN' The procedure can be extended to the multi-stage case in a

similar way. This scheme may be termed the successive sub-sapling with varying

probabilities (without replacement) or SSSVPWR. To study the asymptotic theory,

first, we may ﬁote that an Horvitz-Thampson estimator of s is
~ s
- * * (<
ag Zj=1 “g5 bsj/ AS(J m) o, (7.1)

where the bsj are defined as before, w;j is equal to 1 or 0 according as the
jth sub-unit in the sth primary unit belongs to the sub~sample of size m_ or
not, j=l,...,Ms and A;(j ,ms) is the probability that the jth sub-unit belongs to
the sub-sample of m_ sub-units from the sth primary mit, l1<jc< Ms r S1,.04,N.
Combining (6.13) and (7.1), we may cansider the natural estimator

~ _ IJ ~
AN(HT) = Ig) Uns a'Ns/A (s,n)

- N oS * b_./[8(s,n)A, (5,m)] 7.2
= Ig Ljm) Uns sy Dey/1A(SmMIASGm], (7.2)



whereustisequaltolorOaccordingasthes_t_llprimarymitisinthesanpleof

n primary units fram the population, s=1,...,N, and the inclusion probabilities .
A(s,n) are degined as in (6.12). liote that for each (selected) primary unit s,
for the estimator gNs in (7.1), one may use the theory discussed in Section 6.
This, however, leads to a multitude of stopping numbers and thereby introduces
camplications in a direct extension of the Rosen approach to SSVPWR. A more
simple approach (based an same martingale constructions) has been worked out in
Sen(1980) , and we may present the basic asymptotic theory .as follows.

Our primary interest is to present the asymptotic theory of the estimator
ﬁt-l (HT) in (7.2). In this context, as in earlier sections, we allow M to increase.
As N ~ », we assume that n, the primary sample size, also increases, in such a
way that n/ll is bounded away fram 0 and « , while the m ( i.e., the sub-sample
sizes) for the selected primary units may or may not be large. For this situation,
the asymptotic theory rests heavily on the structure of the primary unit sampling, N
and , we may also allow the sampling scheme for the sub-units to be rather arbitrary .
(not necessarily a SSVPWR), while we assume that the primary units are sampled in
accordance witn a SSVPWR scheme. A second situation mav arise where the number of
primary units (i.e., N ) is fixed or divided in to a fixed number of strata, and
within each strata a sample of secondary units is drawn according to a SSVPWE scheme,
This situation, however, is congruent to the stratified sampling scheme under
SSVPMR , for which the theory in Section 6 extends readily. Hence, we shall not
enter into the detailed discussions on this second scheme.

With the notations introduced before, we set now

aﬁs = E(gNs) and cﬁs = Var( gNs) , for s=1,...,10 ; (7.3) .
o _ N o _ A
N < zls=1 s - Bl %yem ) - (7.4)

In order that P{; = AN , it is therefore preferred to have unbiased estimators at
the sub-unit stage, so that aLon = aug for every s. Otherwise, the bias may not .

be negligible, Also, for every N, we consider a nondecreasing function ty = {tN (2) ¢

0 < x <N by Jetting




N
N-x = Zs=1 exp{-PNstN(x)} , Xx € (0, N) . (7.5)

Let then
2 N o ,2 -1
S = Lemy [nyg) @@l Pyg ty M} 1 - expl Pty ()}
N 2 -1
* Iy Oy [1 - el ~Ry t )]

t 2§=1 al?IsPNsexP{-PNs £}/ 1 - expl —Py tu(n)}) . e

Finally, we assume that the sub-unit estimators 5\15 satisfy a Linceberg-type

condition, namely, that for every n > 0,

max
1<s<N

A _ 0,2 ~ _ 0 o i R . -
E [(ay = ayg) I laNs s | > v* )] 0,asHu~ . (7.7)
The other regularity conditions are,of course,the campatibility of the probabilities
PI'Jl""'PNN and the sizes a1’ A ( in the sense that for each sequence the
ratio of the maximum to the minimum entry is asymptotically finite). Then, we
have the following:

- o . ,
( AN(H‘I‘) Ay )/6Nn is asymptotically normal (0, 1 ). (7.8)

Actually, parallel to (6.29), we may consider a stochastic process EN = {EN(t);

=% ,2() _,0
N (AN(H'Z‘) AN ) , where

is the estimator in (7.2) based on the sample size n = [Nt] ( for the

c<t <1} ( where ¢ > 0), by letting F,N(t) =

2(t)
V(ET)

primary sample), t € [c,1]. Then, the process EN converges in law to a Gaussian
function on [c,1] . The proofs of these results are based on same asyrptotic

theory for an extended coupon collector's problem, where in (6.16) through (6.19),

the real (non-stocha'stic ) elements ays are replaced by suitable random variables
st , s=1,...,li. For details of these developments, we may refer to Sen (1980).

Note that in the above development, apart from the uniform integrability
conditiaon in (7.7), we have not imposed any restriction on the estimates ;Ns
Thus, we are allowed to make the sub-sample sizes m arbitrary, subject to the
condition that (7.7) holds. In this context, we may note that if these m, are
also chosen to be large, then theo2_ , defined by (7.3), will be small, so that
in (7.6), the second sum on the right hand side will be of smaller order of

magnitude (campared to the first sum), and hence, in (7.8), GNn may be replaced



*
by d , defined by (6.34),whemmeysaxetoberep1aoedbymea§s . In this

limiting case, we cbserve therefore that suo-sanpling does not lead to any sig-
nificant increase of the variance ( campared to SSVPWR for the primary units);
although in many practical problems, sub-sampling is more suitable, because it
does not presuppose the knowledge of the values of the primary units {aNS} and -
a camlete census for these may be much more expensive than the estimates {gNs }
based on a handful of sub-units.

So far, we have considered sampling without replacement. In SSVP sampling
with replacement, the theory of successive VP sampling with replacement, discussed
in the beginning of Section 6, readily extends. In (6.1), instead of the primary
units yj , we need to use their estimates §j , derived fram the respective sub-
samples, As in (7.6), this will result in an increaded variability due to the
individual variances of the second-stage estimators. However, with replacement
strategy yields simplifications in the treatment of the relevant asymptotic theory , . .
and (6.5) and (5.6) both extend to this sub-sampling scheme without any difficulty.

In canclusion, we may remark tiat in finite population sampling, the usual «
treatment for the asymptotic theory ( valid for independent randam variables) may
not be directly applicable. But, in most of these situations, by appeal to either
some appropriate perrutation structures( for equal probability sampling) or to
same martingale theory (for VP sampling as well ), the asymptotic theory has been
established under quite general regularity conditions. These provide theoretical
justifications of the asymptotic nomality of different estimators (under diverse
sampling schemes) when the sample size(s) may or may not be non-stochastic. In
particular, for optimal allocation based on pilot data, often, we end up with sample .
sizes being randam (positive integer valued) variables. In such a case, the
asymptotic results on the stochastics processes referred to earlier are useful.
These results are also useful for quasi-sequential or repeated significance testing .

problems in finite population sampling .
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