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Chapter 5: Network Biology Approach to Complex Diseases
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Abstract: Complex diseases are
caused by a combination of genetic
and environmental factors. Uncov-
ering the molecular pathways
through which genetic factors affect
a phenotype is always difficult, but
in the case of complex diseases this
is further complicated since genetic
factors in affected individuals might
be different. In recent years, systems
biology approaches and, more spe-
cifically, network based approaches
emerged as powerful tools for
studying complex diseases. These
approaches are often built on the
knowledge of physical or functional
interactions between molecules
which are usually represented as
an interaction network. An interac-
tion network not only reports the
binary relationships between indi-
vidual nodes but also encodes
hidden higher level organization of
cellular communication. Computa-
tional biologists were challenged
with the task of uncovering this
organization and utilizing it for the
understanding of disease complex-
ity, which prompted rich and di-
verse algorithmic approaches to be
proposed. We start this chapter with
a description of the general charac-
teristics of complex diseases fol-
lowed by a brief introduction to
physical and functional networks.
Next we will show how these
networks are used to leverage
genotype, gene expression, and
other types of data to identify
dysregulated pathways, infer the
relationships between genotype
and phenotype, and explain disease
heterogeneity. We group the meth-
ods by common underlying princi-
ples and first provide a high level
description of the principles fol-
lowed by more specific examples.
We hope that this chapter will give
readers an appreciation for the
wealth of algorithmic techniques
that have been developed for the
purpose of studying complex dis-
eases as well as insight into their
strengths and limitations.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Complex diseases are caused, among other

factors, by a combination of genetic

perturbations. Thus in the case of a

complex disease we do not assume that a

single genetic mutation can be pinned

down as a cause. Many diseases fall in this

category including cancer, autism, diabe-

tes, obesity, and coronary artery disease.

Even though there are other factors

involved in such diseases, this review will

focus on genetic causes.

One of the fundamental difficulties in

studying genetic causes of complex diseas-

es is that different disease cases might be

caused by different genetic perturbations.

In addition, if a disease is caused by a

combinatorial effect of many mutations,

the individual effects of each mutation

might be small and thus hard to discover.

For example, autism is considered to be

one of the most heritable complex disor-

ders, but its underlying genetic causes are

still largely unknown [1]. One of the

proposed factors that contribute to this

difficulty is the role of rare genetic

variations in the emergence of the disease

[2].

An additional difficulty in studying

complex diseases relates to disease hetero-

geneity. Specifically, in a complex disease,

disease phenotypes might vary significant-

ly among patients. The recognition of this

fact has lead, for example, to renaming

‘‘autism’’ to ‘‘autism spectrum disorders’’

(ASDs) referring in this way to a group of

conditions characterized by impairments

in reciprocal social interaction and com-

munication, and the presence of restricted

and repetitive behaviors [1]. Similar

heterogeneity is present in other complex

diseases including cancer.

Given the above challenges, how can we

approach the study of complex diseases? A

useful clue is provided by the fact that

genes, gene products, and small molecules

interact with each other to form a complex

interaction network. Thus a perturbation

in one gene can be propagated through

the interactions, and affect other genes in

the network. However, the fact that we

observe similar disease phenotypes despite

different genetic causes suggests that these

different causes are not unrelated but

rather dys-regulate the same component

of the cellular system [3]. Therefore in

studies of complex diseases researchers

increasingly focus on groups of related/

interconnected genes, referred to as mod-

ules or subnetworks.

2. Interactome

Biomoecules in a living organisim rarely

act individually. Instead, they work to-

gether in a cooperative way to provide

specific functions. A variety of intermolec-

ular interactions including protein-protein

interactions, protein-DNA interactions,

and RNA interactions are essential to

these cooperative activities. These interac-

tions can be conveniently represented as

networks (graphs) with nodes (vertices)

which denote molecules, and links (edges)

which denote interactions between them.

Depending on the type of interaction, the

corresponding edge might be directed or
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undirected. For example, a binding be-

tween two proteins is usually represented

as an undirected edge while an interaction

between a transcription factor and a gene

whose expression is regulated by the given

transcription factor is usually represented

as a directed edge where the direction goes

from the transcription factor to the gene.

Biological interaction networks have

characteristic topological properties [4].

One of the basic properties observed in

many biological networks is the scale-free

property [5]. A scale free network is

defined as a network whose node degree

distribution follows a power law. Formally,

the function P(k) indicating the fraction of

nodes interacting with k other nodes in the

network follows P(k),ak2c, where a is a

normalization constant and the degree

exponent c is usually in the range of

2,c,3. Obviously, in biological networks

the scale free property holds only approx-

imately and practically the most important

implication of this observation is the fact

that these networks are characterized by a

small number of highly connected nodes

while most nodes interact with only a few

neighbors. These highly connected nodes,

called hubs have been proposed to play

important roles in biological processes [6]

and shown to be related to the modular

structure of the physical and functional

interaction networks [7]. Therefore it

might be interesting to consider disease

related genes in the context of the

topological properties of interaction net-

works such as connectivity or modularity

[8,9]. With respect to connectivity, one

should note that known disease genes tend

to be more studied which might introduce

a bias towards higher connectivity. Impor-

tantly, independently of the source of the

non-uniformity of node degree distribu-

tion, this characteristic property of inter-

action networks needs to be kept in mind

while designing proper null models for

conclusions derived using these networks.

In the following subsections, we briefly

describe how physical and functional

interactions networks are constructed and

how they are applied to analyze complex

diseases. We then explore the modularity

of networks – a widely accepted phenom-

enon in biological networks that has

proven to be helpful in disease studies.

2.1 Physical Interaction Networks
Physical contacts between proteins are

critical in many biological functions. In fact

much of the molecular machinery respon-

sible for transcription, translation, and

degradation is made of stable protein

complexes. There are two main approaches

for detecting physical protein interactions

[10]. The first approach is to detect

physical interactions between protein pairs.

The most widely used high-throughput

technology for detecting pairwise interac-

tion is yeast two-hybrid (Y2H) method.

Alternatively, physical interactions among

groups of proteins can be detected without

explicit consideration of interacting part-

ners. For this type of approach, interaction

data is typically obtained by tandem affinity

purification coupled to mass spectrometry

(TAP-MS). A more detailed review on

experimental methods for the detection

and analysis of protein-protein interactions

can be found in [11]. It is worth noting that

networks obtained with various technolo-

gies often have different topological prop-

erties [7]. For example, in the case of the

yeast TAP-MS network, hub nodes are

enriched with essential genes (the genes

without which yeast cannot survive in

standard growth medium). In contrast,

hubs in yeast Y2H networks are enriched

with genes that are pleiotropic [12]. Finally,

experimental procedures detecting protein-

protein interactions have also been com-

plemented by various computational meth-

ods using evolutionary-based approaches,

statistical analysis, and/or machine learn-

ing techniques (for a review, see [13]).

While these physical interaction net-

works have significantly advanced our

understanding of the relationships be-

tween molecules, a concern is their level

of noise and incompleteness. Indeed,

physical interaction networks obtained by

high-throughput techniques are found to

include numerous non-functional protein-

protein interactions [14] and at the same

time many missing true interactions.

Therefore physical interactions are often

complemented with functional interac-

tions.

2.2 Functional Interaction Networks
While physical interaction networks

provide information on how proteins

interact with each other, sometimes we

may be more interested in how proteins

work together to perform a certain func-

tion. Functional networks aim to connect

genes with similar or related functions

even if they do not necessarily physically

interact. Similarly functional regulatory

networks are constructed so that the

interactions depict direct or indirect regu-

latory relationships. Consequently, several

computational methods have been pro-

posed to derive functional interaction

networks.

Since functionally related genes are

likely to show mutual dependence in their

expression patterns [15], gene expression

data has been often used to detect

functional relationships. Co-expression

networks can be constructed by computing

correlation coefficients or mutual informa-

tion between gene expression profiles of

every pair of genes in different experimen-

tal settings. To build more comprehensive

functional networks, co-expression data is

frequently combined with other types of

data such as Gene Ontology [16,17],

outcome of genetic interaction experi-

ments, and physical interactions. Such

integrated networks have been constructed

for a variety of organisms including yeast

[18], fly [19], mouse [20], and human [21].

Gene regulatory network reconstruction

algorithms such as ARACNE [22] and

SPACE [23] identify regulatory relation-

ships building on the assumption that

changes in the expression level of a

transcription factor should be mirrored in

the expression changes of the genes regu-

lated by the transcription factor (TF).

Causal relations among genes can also be

naturally modeled using Bayesian networks

which can represent conditional dependen-

cies between expression levels (for a primer

on Bayesian network analysis utilizing

expression data (see [24]); for a recent

review see [25]). Considering the temporal

aspects of gene expression profiles, dynamic
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Bayesian networks have been used to model

feedback loops as well as gene regulation

patterns [26,27]. While expression profiles

serve as primary data sources for construct-

ing functional regulatory networks, this

data is often complemented with additional

information such as experimentally derived

transcription factor binding data from

ChiP-seq experiments or computationally

identified binding motifs.

2.3 Modules and Pathways
It is widely accepted that the cellular

system is modular. Hartwell et al. defined a

functional module as an entity, composed

of many types of interacting molecules,

whose function is separable from those of

other modules [28]. While the precise

meaning of separation is left undefined,

this general description provides a good

intuition behind the concept of a module.

Traditionally, molecular pathways have

been delineated by focused studies of

particular functions such as cell growth.

Typically, these pathways contain not only

topological connectivity information but

also the roles of molecules such as whether

a given molecule is an activator or

inhibitor of the activity of another mole-

cule. However, these hand-curated path-

ways are often incomplete. In addition,

while some functions, such as cell growth

or differentaition, have been relatively well

studied, studies of other pathways are less

extensive. Therefore, given the availability

of large scale interaction networks, it is

natural to attempt to extract meaningful

functional modules from such networks.

While there is no unique way to mathe-

matically define functional modules, the

most common approach is to search for

densely connected subgraphs or clusters

[29–46]. Additionally, gene expression

information can be used alone or in

concert with protein interaction data to

obtain gene modules by grouping co-

expressed genes into one module [47–49].

It is important to keep in mind that

modules identified by analysis of high-

throughput data are noisy, containing

both false negative and false positive edges.

In addition they do not usually provide

information about the nature of an

interaction. Therefore, unlike hand curat-

ed pathways, computationally identified

network modules typically lack a mecha-

nistic explanation of pathway activities but

rather serve as groups of genes that work

together to achieve a particular function.

An important advantage of working

with modules rather than individual genes

relates to the fact that it is often easier to

predict the function of a module than the

function of a gene. In particular, while the

functions of many genes are still unknown,

the prediction of the functional role of a

module may be possible if the module

contains a sufficient number of genes of

known functions. Such enrichment analy-

sis builds on the assumption that a fraction

of genes can be assigned a functional

category such as Gene Otology (GO) term

[17]. The question of whether the number

of genes with a functional annotation in a

given gene module is higher than expected

by chance can be determined by statistical

tests such as x2 or Fisher exact test. A

variety of software tools have been devel-

oped to perform such an analysis [50].

3. Identifying Modules and
Pathways Dys-regulated in
Diseases

Since complex diseases are believed to

be caused by combinations of genetic

alterations affecting a common component

of the cellular system, module-centirc

approaches are particulalry pormissing in

thier study. How can disease associated

modules/subnetworks be identified? Com-

plementing interaction data with addition-

al data related to disease states helps in

separating subnetworks perturbed in a

disease of interest from the remainder of

the network. Both genotypic data (e.g.,

SNP, copy number alteration) and molec-

ular phenotypic data such as gene expres-

sion profiles in disease samples have been

used to aid the identification of perturbed

network modules and explain the connec-

tion between genotypic and phenotypic

data (reviewed in [51]). Basing on the

assumption that complex diseases are

caused by a set of mutations which,

although strongly vary among patients,

are likely to dys-regulate common path-

ways, such dys-regulated pathways might

be uncovered by mapping genes altered in

the diseases onto a PPI (protein-protein

interaction) network and then searching

for network modules enriched with the

altered genes. On the other hand, organ-

ismal level phenotypes such as diseases are

directly related to molecular level changes

such as gene expression. Thus an alterna-

tive group of approaches considers mod-

ules enriched with abnormally expressed

genes. Finally, molecular pathways can

also be considered as means of informa-

tion flow. For example, the activation of

the EGFR signaling pathway starts with

the activation of the EGFR receptor,

which in turn activates a number of

signaling proteins downstream which ini-

tiate several signal transduction cascades,

such the MAPK, Akt and JNK pathways

and culminate in cell proliferation. Thus

the third type of approaches focuses on

predicting molecules and modules that

mediate such information propagation.

What are the benefits of analyzing

phenotypic and genotypic differences in

diseases in the context of their molecular

interactions? First, the integrative network

based approaches can identify subnet-

works that include genes that do not

necessarily show a significantly different

state in disease versus control but still play

an important role within a module by

mediating a connection between other

disease associated genes. For example, in

their pioneering approach, Ideker et al.

[52] integrated yeast protein–protein and

protein-DNA interactions with gene ex-

pression changes in response to perturba-

tions of the yeast galactose utilization

pathway and identified Active Subnetworks

(sets of connected genes with significantly

differential expression) which included

common transcription factors showing

moderate changes in their gene expression

level but connecting other dys-regulated

genes. Second, a module based approach

increases statistical power, allowing the

identification of a perturbed module even

in the case when the perturbation of each

individual gene in the module might not

be statistically significant. For example,

many cases of genetic diseases such as

autism and schizophrenia are affected by

rare germline variations which are difficult

to distinguish from noise due to their

rarity. However, recent studies showed

that a significant portion of the altered

genes belong to a highly interconnected

protein network [53], suggesting the

network approach can better detect the

causal genes. Third, identified network

modules can provide better understanding

of the biological underpinning of the

diseases and therefore more reliable mark-

ers in disease diagnosis and treatments (see

Section 4 for more discussion).

3.1 Network Modules Enriched with
Genetic Alterations

One way in which differing genetic

variations might dys-regulate a common

pathway is when the genes containing

these alterations belong to the pathway.

This potential explanation has led to the

idea that the dys-regulated pathways

might be uncovered by mapping the genes

altered in the diseases to an interaction

network and searching for the modules

enriched with the altered genes (See

Figure 1).

Following this principle, the first step to

identify such modules is to select candidate

genes whose alterations may have caused a

disease of interest. Genes or whole geno-
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mic regions that are altered in the disease

are first identified, and the genes residing

in the altered regions are mapped to an

interaction network. Both physical and

functional interaction networks can be

used, and edges might be weighted based,

for example, on the likelihood of having

the same phenotypes or influences be-

tween genes [54–56]. Next, modules are

typically defined as subsets of genetically

altered genes that are highly interconnect-

ed or within close proximity to each other

in the interaction network together with

non-altered genes necessary to mediate

these connections. Edge weights, if given,

can be used to prioritize the modules. In

many cases, finding the best subnetwork is

computationally expensive and search

algorithms such as greedy growth heuris-

tics or more sophisticated approximation

algorithms have been proposed. Finally,

rigorous statistical tests have been applied

to evaluate the significance of selected

modules.

Examples. The idea of finding genetically

altered network modules has been utilized in

various disease studies. Analyzing ovarian

cancer TCGA data (The Cancer Genome

Atlas), HOTNET identified subnetworks in

a protein interaction network in which genes

are mutated in a significant number of

patients [54]. The identified networks in-

cludes the NOTCH signaling pathway

which is indeed known to be significantly

mutated in cancer samples [57]. The

method is based on the set cover approach

(see Set cover based approach section

below), which is found to be effective in

capturing different genetic variations across

patients. In the NETBAG (NETwork-Based

Analysis of Genetic associations) method,

developed by Gilman et al. and applied to

identify a biological subnetwork affected by

rare de novo copy number variations

(CNVs) in autism [58,59], the authors first

constructed a gene network where edges

were assigned the likelihood odd ratio for

contributing to the same genetic phenotype.

Subsequently a greedy growth algorithm

was used to find clusters in this network. In

another approach, Rossin et al. [60] consid-

ered the genomic regions found to be

associated with Rheumatoid Arthritis (RA)

and Crohn’s disease (CD) in previous

GWAS studies, and connected the genes

residing in these regions based on

interaction data to obtain network mod-

ules. It was also verified that those

identified modules exhibited significant

differences in expression level in the

disease samples.

3.2 Differentially Expressed Network
Modules

Another popular and successful ap-

proach to find disease associated modules

is to search for subnetworks that are

significantly enriched with genes whose

expression levels are changed in disease

samples. Building on the observation that

a molecular perturbation typically affects

the expression levels of genes in a whole

module rather than individual genes, these

approaches identify the modules which

exhibit different expression patterns in

disease states relative to a control. Gene

expression data has been widely utilized

for identifying dys-regulated modules and

drug targets, inferring interactions be-

tween genes, and classifying diseases.

While these approaches are based on the

common idea of finding gene modules

enriched with genes that have abnormal

expression, several different computational

techniques have been used to achieve

these tasks, which we discuss shortly

below. The methods are also illustrated

in Figure 2.

3.2.1 Scoring based

methods. Suppose that there is a

subset of genes which are differentially

expressed in disease samples and they are

closely connected to each other in an

interaction network. A subnetwork

including such genes might be a good

candidate for a disease associated network

module (Figure 2A). Implementing this

idea requires a way to score candidate

modules. Various methods have been

suggested for measuring the significance

of the differential expression of genes in a

module and their connectivity (the

distances between the genes). In addition,

different methods adopt different search

algorithms to find high scoring candidate

modules. Finally, some approaches

additionally require that all genes are

either up-regulated or down-regulated in

the same direction.

Examples. Chuang et al. defined the

activity score for a subnetwork by com-

paring gene expression profiles from two

different types of samples (metastatic or

non-metastatic in their study) [61]. More

specifically, they first computed how well

the expression of a gene discriminates

between the two patient groups and then

scored candidate subnetworks based on

aggregate discriminative power over all

genes in the subnetwork. Then they

searched for the most discriminative

networks in a greedy manner. While the

method was used for disease classification

Figure 1. Identification of network modules enriched with genetic alterations. (A) Genomic regions with alterations. (B) Genes in the
altered regions are mapped to the interaction network and modules enriched with such genes are identified.
doi:10.1371/journal.pcbi.1002820.g001
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(see Section 4), it can readily be applied to

leverage the difference between disease

and non-disease cohorts.

3.2.2 Correlation based

methods. Comparing expression

patterns between genes is a basis for

constructing a co-expression network,

extracting modules exhibiting similar

expression patterns, and further

understanding molecular changes in

diseases. Considering expression correlation

of disease cases in the context of interactions

can provide additional power in the

identification of a disease associated module

(Figure 2B). If the expression changes of two

neighboring nodes are correlated with each

other, this may suggest that the two

interacting genes have related functional

roles. With this in mind, some approaches

look at connected components which show

highly correlated and anti-correlated

expression patterns. Other approaches

search for loss and gain of correlation in

disease states to identify dys-regulated edges.

Examples. Aiming to identify regulatory

networks defining phenotypic classes of

human cell lines, Müller et al. searched for

Jointly Active Connected Subnetworks

(connected subnetworks with high average

internal expression similarity) in a human

interaction network [62] and demonstrat-

ed the power of combining network and

expression data.

IDEA (Interactome Dysregulation En-

richment Analysis) method [63] focused

on the identification of perturbed network

edges in a combined interaction network

(PPI, transitional, signaling, posttransla-

tional modifications predicted by MINDy

[64]), and searched for the edges connect-

ing genes which in a disease state show loss

or gain of expression correlation. The

utility of the method was demonstrated in

the analysis of FL lymphoma and other

cancer types. In particular, they identified

BCL2 as the gene adjacent to the largest

number of dys-regulated edges in FL

lymphoma. This analysis also identified

the SMAD1 gene, which could not be

detected by differential expression analysis

only.

To understand the mechanism of aging,

Xue et al. applied a network module

approach [65,66]. They utilized a PPI

network and overlaid expression data

obtained from various stages of aging.

Two types of edges – correlated and anti-

correlated – were selected. The subnet-

work that includes only those edges was

called the NP (negative and positive)

network, is proposed to be related to the

aging mechanism. Further modularizing

the network with hierarchical clustering of

expression patterns, they obtained a few

age related modules and found some genes

connecting different modules through PPIs

are more likely to affect aging/longevity,

which was also experimentally validated.

3.2.3. Set cover based methods. A

group of methods employ a combinatorial

approach named set cover. In a set cover,

a gene is considered to cover a disease

Figure 2. Finding differentially expressed modules. (A) Score based method selects the module with significant expression changes. (B)
Correlation based method selects edges with correlation changes. The red and blue edges are correlated and anti-correlated edges, respectively. (C)
Set cover based method selects a set of genes covering all samples. In this example, each sample has at least 2 differentially expressed genes and the
genes are connected in the network.
doi:10.1371/journal.pcbi.1002820.g002
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sample if it is dys-regulated in the sample.

For example, it can be decided if a gene is

covering a sample or not based on the fold

change of gene expression level in the

sample or using a statistical test such as z-

test. The main principle of the set cover

approach is that each disease case has

some dys-regulated (thus covering) genes

but in heterogeneous diseases, different

cases will typically have different covering

genes. Set cover approaches provide a

strategy to select a representative set of

such covering genes (Figure 2C). This is

usually done by defining some

optimization criterion and attempting to

select a set of genes which is optimal with

respect to this criterion. For example,

given a set of genes and disease samples

along with covering relationships, a subset

of genes is selected so that each sample is

covered by some minimal number of genes

while the total number of selected genes is

minimized.

Many observed organism-level pheno-

types arise in a heterogeneous way.

Diseases such as cancer are now seen as

a spectrum of related disorders that

manifest themselves in a similar fashion.

Since different samples may be covered by

different genes and those genes may be

connected in an interaction network, set

cover approaches can be useful to identify

gene modules explaining a heterogeneous

set of samples [67–69].

Examples. Aiming to detect dys-regulated

pathways in complex diseases, Ulitksy et al.

extended the set cover technique by

integrating expression data and interaction

networks [67]. Their method, named

DEGAS (de novo discovery of dys-regu-

lated pathways) searches for a smallest set

of genes forming a connected subnetwork

so that each disease sample is covered by a

certain minimal number of genes. They

applied this approach to a Parkinson’s

disease dataset. Chowdhury et al. [68],

developed an alternative network cover

based algorithm and used the identified

modules for disease classification in a

human colorectal cancer dataset.

Set Cover approaches have also been

applied to data types other than gene

expression. For example, Kim et al.

proposed a module cover approach to

identify gene modules which collectively

cover disease samples [70]. At the same

time they required that each module is

coherent, containing genes with similar

genotype-phenotype mappings (see Sec-

tion 4 for more discussion). The HotNet

Algorithm discussed in Section 3.1 also

utilized a variant of a set cover approach

to find genetically altered modules. In

their case, a gene is defined to cover a

sample if the gene is mutated in the

sample, and they looked for a fixed size

connected set of genes covering as many

samples as possible. The Dendrix (De

novo Driver Exclusivity) algorithm was

also developed to discover mutated gene

modules in cancer and, though it does not

utilize interaction data, it aims to find sets

of genes, domains, or nucleotides whose

mutations exhibit both high coverage and

high exclusivity in the disease samples

[71].

3.3 Uncovering Information
Propagation Modules

The approaches discussed thus far have

dealt with modules of genes associated

with either phenotypic or genotypic infor-

mation. While both approaches are help-

ful for predicting dys-regulated modules, a

more effective way to understand disease

mechanisms might be to combine both

genotypic (the putative causes of diseases)

and phenotypic data (their effects). Ex-

pression Quantitative trait loci (eQTL)

analysis is a useful method to find the

relationship between genotype and phe-

notype [72,73]. eQTL treats the level of

gene expression as a quantitative pheno-

type, which is assumed to be controlled by

genotypic information. Loci that putative-

ly control the expression of a given gene

are identified by determining the associa-

tions between genotype and gene expres-

sion. Given an association between a

genotypic variation in a locus and expres-

sion level of a gene, the next challenge is to

uncover the pathway(s) through which the

genetic variation leads to the expression

change. Recently, several groundbreaking

pathway elucidation methods have

emerged, as illustrated in Figure 3 and

described below.

3.3.1 Distance based methods. A

simple approach to identify a possible

pathway from a genetically altered gene

(putative cause) to the gene with correlated

expression change (target gene) is to test if

there is a path in an interaction network

connecting the putative causal gene to its

target gene. The shortest path connecting

a causal gene and its target is often used to

explain their causal relationship

(Figure 3A). The intermediate nodes on

such a shortest path are likely members of

an affected pathway/module. Several

variations of the shortest path approach

have been used in extracting disease

associated network modules [74–76]. For

example, Carter et al. searched for the

shortest directionally consistent paths in

molecular interaction networks connecting

Figure 3. Finding information propagation modules. (A) Shortest path approach to uncover information propagation. The shortest paths from
a target gene (with hexagon shape) to each of three candidate genes are shown. The closest gene is identified as the most probable disease causing
gene. (B) Flow based approach. The gene receiving the most significant amount of flow is identified as the disease gene. The information flow
methods often follow Kirchhoff’s current law (the amount of incoming information equals the amount of outgoing information).
doi:10.1371/journal.pcbi.1002820.g003
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seed genes to their targets. The targets

were inferred by linear decomposition of

gene expression data [76].

When multiple target genes exist, the

well-known graph-theoretical concept of a

Steiner tree is often used in place of a set of

shortest paths. Given a set of nodes to be

connected, a Steiner tree is an acyclic

subgraph (a tree) connecting all these

nodes while using the minimum number

of edges. In a Steiner tree, the individual

path from the putative causal gene (the

root of the tree) to each of the target genes

does not need to be the shortest, but the

size (i.e., the number of edges) of the whole

tree is minimized. The Steiner tree

approach has been used to find new

functional associations for proteins [77].

Tuncbag et al. extended the approach to

the Steiner forest problem (allowing mul-

tiple trees), applying it to proteomic data

from glioblastoma multiforme (GBM). In

their study, each tree was rooted in a

different cell surface receptor and repre-

sented independent signaling pathways

originated from this receptor [78].

Distance based methods, such as the

shortest path approach or the Steiner tree

method, have several shortcomings. In

particular, they ignore the fact that a pair

of genes may have multiple paths con-

necting them in a network. In addition

they use network topology without consid-

ering additional data (e.g. gene expression)

and assume that the shortest pathways are

the most informative or most likely used

paths, which may not always be the case.

3.3.2 Flow-based methods. In the

information flow approach, genotypic

variations are considered the source of

perturbation, while genes with phenotypic

changes are considered the targets of a

perturbation pathway. Instead of finding

single paths connecting source and targets,

flow-based methods compute the fraction

of flow going through each intermediate

node/edge. Fraction of flow indicates the

probability of using the given path in

information propagation (Figure 3B). In

the case of current flow approach, the

network is modeled to mimic the behavior

of current in an electronic circuit, where

each edge has an associated resistance.

The current flow network provides an

efficient framework equivalent to a

random walk, which is also often used

for modeling information flow in

biological networks (see discussion below).

An important advantage of network flow

approaches their ability to incorporate

additional data (such as gene expression,

confidence level of interactions, and

functional associations of genes) to the

probabilistic network models. By

incorporating such additional data,

network flow approaches can more

confidently suggest information

propagation pathways.

The information flow of biological

networks has been used to predict protein

functions, to prioritize candidate disease

genes, and to find network centralities

[7,79–88]. The flow-based approach is

particularly useful for augmenting network

information for eQTL analysis. Specifical-

ly, it can be used to pinpoint likely causal

genes in genomic eQTL regions and to

uncover genes involved in the propagation

of information signals from such causal

genes to their target genes.

There are several mathematical formu-

lations that can be used to capture

information propagation. In addition to

the aforementioned current flow, other

approaches include random walk and

network flow. While mathematically dif-

ferent, many information propagation

methods share a number of similar

assumptions such as flow conservation

(Kirchhoff’s law). In the random walk

method, a number of random walkers

repeatedly start from a node. The likeli-

hood of associating a gene in the network

to a disease is estimated by the number of

random walkers arriving at the gene. Gene

expression correlation provides one way to

compute the weight of a gene in the

network which, in turn, provides the

transition probability of the random walk-

er. The network flow methods are closely

related to the current flow approach.

Unlike current flow, however, the network

flow model resembles water-finding paths

through pipes. Capacities are associated

with pipes (edges) providing constraints on

how much flow can go through each pipe.

Examples. Tu et al. [79] used the random

walk approach to infer causal genes and

underlying causal paths over a molecular

interaction network for yeast knock-out

experimental data. Current flow is an

equivalent form of random walk that can

be used in a more computationally

efficient way [89]. Using this knowledge,

Suthram et al. [80] developed the eQED

method, which integrates eQTL analysis

with molecular interaction information

modeled as a current flow network.

Kim et al. further extended the eQED

idea to identify causal genes and dys-

regulated pathways and applied it to

Glioma sample analysis [69,90].One of

the challenges of eQTL analysis is a

massive multiple testing problem, for

which various multiple testing correction

methods have been proposed. Without

such corrections, eQTL analysis typically

finds multiple associated regions for each

target gene, many of which are simply by

chance. However, simply applying a more

stringent p-value cutoff for multiple testing

corrections often eliminates many true

causal regions. Moreover, each region

may contain dozens of candidate causal

genes. Current flow analysis can be

applied to complement eQTL analysis

and help to identify the genes whose

alterations are most likely to cause abnor-

mal expression for the target gene. Using

copy number variations and gene expres-

sion profiles of the same set of cancer

patients, Kim et al. first identified chromo-

somal regions where copy number varia-

tions correlated with gene expression

changes. Subsequently, they used the

current flow algorithm to identify potential

causal genes in the associated regions. By

selecting genes receiving significant

amounts of current in the network, Kim

et al. identified putative causal genes in

Glioblastoma and uncovered commonly

dys-regulated pathways, including insulin

receptor signaling pathways and RAS

signaling. The identified pathways fea-

tured several hub nodes, such as EGFR,

that were known to be important players

in Glioma or more generally in cancer.

Compared to simple genome-wide associ-

ation studies, which only identify putative

associations between causal loci and target

genes, the current flow based method

provides increased power to predict causal

disease genes and to uncover dys-regulated

pathways.

A variant of the network flow approach,

the minimum cost network flow, was used

to model the response to increased expres-

sion of alpha-synucleain, a protein impli-

cated in several neurodegenerative disor-

ders, including Parkinson’s disease [81]. In

addition to the edge capacities, the min

cost network flow approach associates

weights with edges representing the cost

of sending flow through an edge. These

weights were computed based on the

probability of the two genes interacting

in a response pathway, while capacities

were calculated using the transcript levels

of target genes.

4. Applications of Network
Modules – Disease Diagnosis
and Treatment

Can network modules help facilitate a

more personalized approach for disease

diagnosis and treatment? Traditional ap-

proaches of clinical disease classification

have been based on pathological analysis

of patients and existing knowledge of

diseases. However, traditional diagnostic

approaches are prone to errors. Alterna-
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tively, knowledge about dys-regulated

pathways can be used to subtype diseases

and to develop relevant treatments for

individual disease subgroups. For example,

network modules have been used to

predict patient survival, metastasis, drug

responses for various types of cancer

[61,68,91–94].

4.1 Disease Classification
A supervised approach to disease

classification starts with a set of samples

with a known partition into disease

subtypes (e.g., metastatic or not) and

attempts to identify a classifying principle

using specific molecular features. The

general strategy for supervised disease

classification is to search for subnetworks,

also called subnetwork markers, whose

activities best discriminate the two disease

subtypes. As in the case of single-gene

disease markers, a network marker will

distinguish some but not all disease cases

and multiple subnetworks might be nec-

essary. Among selected candidate network

markers, the best markers are selected

based on a set of training samples. Some

methods take an unsupervised approach,

where subclasses and their features are

discovered without using a known train-

ing set.

Examples. Chuang et al. showed how dys-

regulated network modules (described in

Section 3.2) provide more robust and

accurate predictions than those by single

gene based classifications when applied to

breast cancer metastasis analysis [61].

Chuang et al.’s work provided the proof

of principle for using network modules in

disease classification. A number of subse-

quent extensions and improvements to

Chuang et al.’s work were suggested. For

example, Lee et al. incorporated curated

pathways, and searched for a subset of

genes with discriminative features for the

disease phenotype [94]. More recently,

Dao et al. developed alternative network

based approaches for classification of

cancer subtypes by identifying densely

connected subnetwork and randomized

algorithms [92,93]. Other techniques for

best marker identification, such as set

cover and bottom-up enumeration tech-

niques, were also proposed [68,91].

Kim et al. identified gene modules using

a module cover approach to capture

disease heterogeneity in brain cancer

samples from Rembrandt and Ovarian

Cancer samples from TCGA [70]. Next,

Kim et al. superimposed the selected

modules onto the results from an inde-

pendently proposed classification scheme

[57]. As a result, Kim et al. uncovered

which disease classes are characterized by

which combinations of modules.

4.2 Disease Similarity
Network modules can also be used to

explain disease similarity. Overlaps of

dys-regulated network modules explain

why some complex diseases share sim-

ilar phenotypic traits. Suthram et al.

used a variant of PathBlast [95] to

identify dense subnetworks. Analysis of

disease similarity was achieved by com-

paring expression patterns of various

diseases in the modules [96]. Several

dys-regulated modules were found to be

common to many diseases, which ex-

plains why some drugs can treat many

different diseases.

4.3 Response to Treatment
Modules may help determine whether

a given patient will respond to a partic-

ular drug, which is valuable for treatment

design. In addition, understanding molec-

ular differences between responders and

non-responders is likely to help develop-

ment of alternative treatments. For ex-

ample, Chu and Chen used a network

approach to discover apoptosis drug

targets [97]. Chu and Chen constructed

a PPI network for apoptosis in normal

cells and applied a nonlinear stochastic

model to remove false positive interac-

tions using microarray data. Comparing

the resulting subnetworks helped to shed

some light on the mechanisms leading to

apoptosis and to identify potential drug

targets.

5. Summary

Network biology provides powerful

tools for the study of complex diseases.

Network-based approaches leverage the

idea that complex diseases can be better

understood from the perspective of dys-

regulated modules than at the individual

gene level. Modularity is a widely

accepted concept in molecular networks

and module-based approaches provide a

number of advantages including robust-

ness in the identification of dys-regulated

pathways and improved disease classifi-

cation.

In addition, network based formulations

allow using a wealth of methods already

developed in graph theory, such as

shortest paths, network flow, and Steiner

trees. Network-based methods have sever-

al limitations including the lack of mech-

anistic explanations. Despite the limita-

tions, network analysis has been applied

successfully in many disease studies, sug-

gesting testable hypotheses.

6. Exercises

1. Construct coexpression networks fol-

lowing the steps below [98].

a. Download the three expression data-

sets from the following page: http://

www.geneticsofgeneexpression.org/

network/download

b. Compute 3 population-specific corre-

lations for each pair of 4238 genes

with the expression data. (Hint: There

are 8,978,203 pairs of genes.)

c. For gene pairs which have similar

correlations in the 3 datasets, calculate

the weighted average correlation,

weighted by the number of individuals

in each population. Hint: In the

Supplemental Table 1 published with

[98] (http://genome.cshlp.org/content/

suppl/2009/10/02/gr.097600.109.

DC1/nayak_supplemental_material.

pdf), you can find the list of gene

pairs whose correlations differ signif-

icantly among the 3 datasets.

d. Construct the correlation network by

connecting gene pairs whose weighted

average correlations are greater than

a pre-defined threshold (e.g., 0.5).

e. Compute specific parameters describ-

ing the network topology. (Hint: You

can use the NetworkAnalyzer Cytos-

cape plugin http://med.bioinf.mpi-

inf.mpg.de/netanalyzer/)

f. For different correlation thresholds,

compare the networks in terms of

topological properties.

2. Suppose that in a co-expression net-

work two genes are identified to have

correlated expression patterns. Provide

at least two possible biological expla-

nations of this correlation.

3. Some variants of information flow

approaches that identify pathways of

information flow from a mutated gene

to a target gene with correlated ex-

pression require that the last but one

node gene on such a pathway (the node

preceding the target gene) to be a

transcription factor. What is a justifi-

cation for such requirement? What can

be advantages and disadvantages of

such a design?

4. Consider a set cover approach to find a

representative set of genes dys-regulat-

ed in a given set of cancer patients. The

algorithm finds the smallest number of

genes so that each disease case is

covered at least k times. How does

the number of selected genes depend

on k? If you suspect that data for 5%
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patients might be incorrect, how would

you modify the optimization problem?

5. A Steiner tree connecting a set of nodes

does not need to be unique. In the

graph shown in Figure 4, find two

different Steiner trees connecting genes

C, T1, T2, T3, and T4.

6. In the graph shown in Figure 4, find

the shortest paths connecting C with

each of T1, T2, T3, and T4. Do the

edges used by these paths correspond

to a Steiner tree? Explain why or why

not.

Answers to the exercises are provided in

Text S1.

Supporting Information

Text S1 Answers to Exercises.

(PDF)
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