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1 Introduction

Over the past years so-called set oriented numerical methods have been de-

veloped for the study of complicated temporal behavior of dynamical sys-

tems. These numerical tools can be used to approximate different types of

invariant sets or invariant manifolds but they also allow to extract statisti-

cal information on the dynamical behavior via the computation of natural

invariant measures or almost invariant sets. In contrast to other numerical

techniques these methods do not rely on the computation of single long term

trajectories but rather use the information obtained from several short term

trajectories.

All the methods which are described in this chapter are based on mul-

tilevel subdivision procedures for the computation of certain invariant sets.

This multilevel approach allows to cover the object of interest – e.g. an in-

variant manifold or the support of an invariant measure – by several small

subsets of state space. Since outer approximations are produced and long

term simulations are avoided these methods are typically quite robust. Re-

cently also adaptive subdivision strategies have been developed and moreover

concrete realizations have been proposed which allow to make the computa-

tions rigorous.

The numerical methods presented here are similar in spirit to the so-

called cell mapping approach, see e.g. Kreuzer (1987); Hsu (1992). However,

a significant difference lies in the fact that in the cell mapping case the

numerical effort depends crucially on the dimension of state space whereas

for the multilevel subdivision procedures the efficiency essentially depends

on the complexity of the underlying dynamics.

We would also like to mention that by now there exist several relevant

extensions and adaptations of the set oriented approach as described here.

For instance, in Schütte (1999); Deuflhard et al. (2000) the authors develop

and analyze set oriented algorithms which can be used for the identification

of so-called conformations for molecules. Roughly speaking, these are almost

invariant sets for a specific type of Hamiltonian systems. Another direction

has been considered in Keller and Ochs (1999). There the set oriented ap-

proach has been succesfully adapted to the context of random dynamical

systems.

In this chapter we give an overview about the developments in the area

of set oriented methods for general deterministic dynamical systems. We
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report on both theoretical properties of the numerical methods and details

concerning the implementation.

2 The Computation of Invariant Sets

In this section we present set oriented multilevel algorithms for the approx-

imation of two different types of invariant sets, namely attracting sets and

chain recurrent sets. We demonstrate the usefulness of this multilevel ap-

proach by several numerical examples.

2.1 Brief Review on Invariant Sets

We consider discrete dynamical systems

xj+1 = f(xj), j = 0, 1, 2, . . . , (2.1)

where f : Rn → Rn is a diffeomorphism and begin by recalling some types

of invariant sets of such dynamical systems.

Attracting Sets

A subset A ⊂ Rn is called invariant if

f(A) = A.

Moreover, an invariant set A is an attracting set with fundamental neighbor-

hood U if for every open set V ⊃ A there is an N ∈ N such that f j(U) ⊂ V

for all j ≥ N . Observe that if A is invariant then the closure of A is invariant

as well. Hence we restrict our attention to closed invariant sets A, and in

this case we obtain

A =
⋂

j∈N

f j(U).

By definition all the points in the fundamental neighborhood U are attracted

by A. For this reason the open set ∪j∈Nf
−j(U) is called the basin of attraction

of A. If the basin of attraction of A is the entire Rn then A is called the

global attractor.

Remarks 2.1 (a) Although the global attractor may not be compact, it

typically happens in applications that all the orbits of the underlying
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dynamical system eventually lie inside a bounded domain, and in that

case the compactness of A immediately follows.

(b) The global attractor contains all the invariant sets of the dynamical

system. This can easily be verified using the definitions.

Chain Recurrent Sets

Sometimes it is of interest to analyze the fine-structure of the dynamics on the

global attractor. This is e.g. accomplished by extracting recurrent subsets.

A notion of recurrence which proved to be particularly useful is that of chain

recurrence (see Conley (1978)):

Definition 2.2 A point x ∈ U ⊂ R
n belongs to the chain recurrent set of

f in U if for every ǫ > 0 there is an ǫ-pseudoperiodic orbit in U containing

x, that is, there exists {x = x0, x1, . . . , xℓ−1} ⊂ U such that

‖f(xi) − xi+1 mod ℓ‖ ≤ ǫ for i = 0, . . . , ℓ− 1.

It is easy to see that the chain recurrent set is closed and invariant.

2.2 The Computation of Relative Global Attractors

We now present an algorithm for the computation of parts of the global

attractor of a dynamical system.

Relative Global Attractors

Definition 2.3 Let Q ⊂ Rn be a compact set. We define the global attrac-

tor relative to Q by

AQ =
⋂

j≥0

f j(Q). (2.2)

In the following remark we summarize some basic properties of AQ.

Remarks 2.4 (a) The definition of AQ in (2.2) implies that AQ ⊂ Q and

that f−1(AQ) ⊂ AQ, but not necessarily that f(AQ) ⊂ AQ.

(b) AQ is compact since Q is compact.

(c) AQ is a subset of the global attractor A. In fact,

AQ = {x ∈ A : f−j(x) ∈ Q for all j ≥ 0}.
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(d) Denote by A the global attractor of f . Then in general

AQ 6= A ∩Q.

Subdivision Algorithm

The following algorithm provides a method for the approximation of relative

global attractors. It generates a sequence B0,B1, . . . of finite collections of

compact subsets of R
n such that the diameter

diam(Bk) = max
B∈Bk

diam(B)

converges to zero for k → ∞. Given an initial collection B0, we inductively

obtain Bk from Bk−1 for k = 1, 2, . . . in two steps:

(i) Subdivision: Construct a new collection B̂k such that

⋃

B∈B̂k

B =
⋃

B∈Bk−1

B (2.3)

and

diam(B̂k) ≤ θk diam(Bk−1), (2.4)

where 0 < θmin ≤ θk ≤ θmax < 1.

(ii) Selection: Define the new collection Bk by

Bk =
{
B ∈ B̂k : ∃B̂ ∈ B̂k such that f−1(B) ∩ B̂ 6= ∅

}
. (2.5)

By construction

diam(Bk) ≤ θk
max diam(B0) → 0 for k → ∞.

Example 2.5 We consider f : R → R,

f(x) = αx,

where α ∈ (0, 1
2
) is a constant. Then the global attractor A = {0} of f is a

stable fixed point. We begin the subdivision procedure with B0 = {[−1, 1]}

and construct B̂k by bisection. In the first subdivision step we obtain

B1 = B̂1 = {[−1, 0], [0, 1]} .
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No interval is removed in the selection step, since each of them is mapped

into itself. Now subdivision leads to

B̂2 =

{
[−1,−

1

2
], [−

1

2
, 0], [0,

1

2
], [

1

2
, 1]

}
.

Applying the selection rule (2.5), the two boundary intervals are removed,

i.e.

B2 =

{
[−

1

2
, 0], [0,

1

2
]

}
.

Proceeding this way, we obtain after k subdivision steps

Bk =

{
[−

1

2k−1
, 0], [0,

1

2k−1
]

}
.

We see that the union
⋃

B∈Bk
B is indeed approaching the global attractor

A = {0} for k → ∞. The speed of convergence obviously depends on the

contraction rate of the global attractor. We will come back to this observation

in Subsection 2.3.

Convergence Result

The abstract subdivision algorithm does converge to the relative global at-

tractor AQ. In fact for the nested sequence of sets

Qk =
⋃

B∈Bk

B, k = 0, 1, 2, . . . , (2.6)

one can show the following result (see Dellnitz and Hohmann (1997)).

Proposition 2.6 Let AQ be a global attractor relative to the compact set

Q, and let B0 be a finite collection of closed subsets with Q0 =
⋃

B∈B0
B = Q.

Then

lim
k→∞

h (AQ, Qk) = 0,

where h(B,C) denotes the usual Hausdorff distance between two compact

subsets B,C ⊂ Rn.

2.3 Convergence Behavior and Error Estimate

We begin by recalling the definition of a hyperbolic set (see e.g. Shub (1987)).
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Definition 2.7 Let Λ be an invariant set for the diffeomorphism f . We

say that Λ is a hyperbolic set for f if there is a continuous invariant splitting

TΛR
n = Es

Λ ⊕ Eu
Λ,

Df(Es
x) = Es

f(x) and Df(Eu
x) = Eu

f(x),

for which there are constants c > 0 and λ ∈ (0, 1), such that

a) if v ∈ Es
x, then ‖Df j(x)v‖ ≤ cλj‖v‖ for all j ∈ N;

b) if v ∈ Eu
x , then ‖Df−j(x)v‖ ≤ cλj‖v‖ for all j ∈ N.

Since the estimates in Definition 2.7 are formulated in terms of the Ja-

cobians, they are just valid infinitesimally for f . A consideration of the

asymptotic behavior with respect to the diffeomorphism f itself leads to the

definition of stable and unstable manifolds.

Definition 2.8 For x ∈ Rn and ǫ > 0 we define the local stable (unstable)

manifold by

W s
ǫ (x) = {y ∈ Rn : d(f j(x), f j(y)) → 0 for j → ∞

and d(f j(x), f j(y)) ≤ ǫ for all j ≥ 0} ,

W u
ǫ (x) = {y ∈ Rn : d(f j(x), f j(y)) → 0 for j → −∞

and d(f j(x), f j(y)) ≤ ǫ for all j ≤ 0} .

We now state part of the results which are known as the Stable Manifold

Theorem for hyperbolic sets. A proof can be found in e.g. Shub (1987).

Theorem 2.9 Let Λ be a closed hyperbolic set for f . Then there is a positive

ǫ such that for every point x ∈ Λ, W s
ǫ (x) and W u

ǫ (x) are embedded disks of

dimension equal to those of Es
x and Eu

x respectively. The tangent space of

W s
ǫ (x) (W u

ǫ (x)) at x is Es
x (Eu

x).

Moreover, W s
ǫ (x) and W u

ǫ (x) satisfy the following properties:

(i) There is a constant C > 0 such that

d(f j(x), f j(y)) ≤ Cλjd(x, y) for all y ∈W s
ǫ (x) and j ≥ 0,

d(f−j(x), f−j(y)) ≤ Cλjd(x, y) for all y ∈W u
ǫ (x) and j ≥ 0,

where λ is chosen according to Definition 2.7.
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(ii) The local stable and unstable manifolds are given by

W s
ǫ (x) = {y ∈ Rn : d(f j(x), f j(y)) ≤ ǫ for all j ≥ 0} ,

W u
ǫ (x) = {y ∈ Rn : d(f j(x), f j(y)) ≤ ǫ for all j ≤ 0} .

We may use Theorem 2.9 to obtain a result on the convergence behavior

of the subdivision algorithm in the case where the relative global attractor

is part of an attracting compact hyperbolic set A. Define for σ > 0

Uσ(A) = {y ∈ Rn : if y ∈W s(x), x ∈ A, then d(x, y) < σ}.

Obviously, A is a subset of Uσ(A). In the following result we assume for

simplicity that B0 = {Q}. A proof can be found in Dellnitz and Hohmann

(1997).

Proposition 2.10 Let AQ be a global attractor of the diffeomorphism f q

relative to the closed set Q, and suppose that AQ is an attracting compact

hyperbolic set of f . Let ρ ≥ 1 be a constant such that for each compact

neighborhood Q̃ of AQ we have

h(AQ, Q̃) ≤ δ =⇒ Q̃ ⊂ Uρδ(AQ). (2.7)

Then the coverings Qk obtained by the subdivision algorithm for f q satisfy

h(AQ, Qk) ≤ diam(Bk)(1 + α + α2 + · · · + αk), (2.8)

where α = Cρλq/θmin and C, λ are the characteristic constants of the under-

lying hyperbolic set (see Theorem 2.9).

Remarks 2.11 (a) Geometrically it is evident that close to AQ both con-

stants C and ρ are of order one.

(b) Recently the estimate on h(AQ, Qk) in Proposition 2.10 has been used

to develop an efficient global zero finding procedure (see Dellnitz et al.

(2000c)). There the underlying idea is to view iteration schemes such

as Newton’s method as specific dynamical systems.

Corollary 2.12 If the power q is chosen such that

α =
Cρλq

θmin

< 1,

then we have for all k

h(AQ, Qk) ≤
1

1 − α
diam(Bk).
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2.4 Numerical Examples

Example 2.13 We begin by considering a two dimensional dynamical sys-

tem, the (scaled) Hénon map

f(x) =

(
1 − ax2

1 + x2/5

5bx1

)
. (2.9)

The computations are performed with b = 0.2 and a = 1.2. Starting with

the square [−2, 2]2, we display in Figure 1 the coverings obtained by the

algorithm after k = 6, 8, 10, 12 subdivision steps. For details concerning the

implementation of the algorithm see Section 8. In Figure 2(a) we show the

rectangles covering the relative global attractor after 18 subdivision steps.

After this number of steps the diameter of the boxes is already 0.011.

We remark that a direct simulation would not yield the same result. In

Figure 2(b) we illustrate this fact by showing the attractor that appears if

the transient behavior has been neglected. The reason for the difference lies

in the fact that the subdivision algorithm covers all invariant sets in [−2, 2]2

– together with their unstable manifolds. In particular, the one-dimensional

unstable manifolds of the two fixed points (marked with circles in Figure 2(b))

are approximated – but those cannot be computed by direct simulation.

Example 2.14 In this example we consider the following system of first

order ordinary differential equations known as Chua’s circuit,

ẋ = α(y −m0x−
1

3
m1x

3)

ẏ = x− y + z

ż = −βy.

In the computations we have chosen α = 18, β = 33, m0 = −0.2 and m1 =

0.01. We consider the diffeomorphism f given by the corresponding time-one-

map, and approximate the relative global attractor inside Q = [−12, 12] ×

[−2.5, 2.5] × [−20, 20]. The results of the subdivision algorithm for k =

8, 11, 20 steps are displayed in Figure 3. In this figure we also show an

approximation of the attractor obtained by direct simulation. With each

of the set oriented computations we have covered the union of the global

unstable manifolds of the three steady state solutions contained in Q. Again

we refer to Section 8 for the details concerning the implementation of the

subdivision algorithm.
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(a) k = 6
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(c) k = 10
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(d) k = 12

Figure 1: Successively finer coverings of the global Hénon attractor.

2.5 The Computation of Chain Recurrent Sets

The subdivision algorithm can easily be modified in such a way that one can

approximate the chain recurrent set within a given compact set Q ⊂ Rn.

Again we construct a sequence B0,B1, . . . of finite collections of compact

subsets of Q creating successively tighter coverings of the desired object.

Set B0 = {Q}. For k = 1, 2, . . . the collection Bk is obtained from Bk−1

in two steps:

(i) Subdivision: Subdivide each set in the current collection Bk−1 into sets

of smaller diameter;
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(a) Subdivision
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(b) Simulation

Figure 2: (a) Approximation of the relative global attractor for the Hénon
mapping after 18 subdivision steps; (b) attractor of the Hénon mapping
computed by direct simulation. The two fixed points are marked with ◦.

(ii) Selection: Construct a directed graph whose vertices are the sets in the

refined collection and by defining an edge from vertex B to vertex B′,

if

f(B) ∩B′ 6= ∅. (2.10)

Compute the strongly connected components of this graph and discard

all sets of the refined collection which are not contained in one of these

components.

Remark 2.15 Recall that a subset W of the nodes of a directed graph is

called a strongly connected component of the graph, if for all w, w̃ ∈W there

is a path from w to w̃. The set of all strongly connected components of a

given directed graph can be computed in linear time (Mehlhorn (1984)).

Intuitively it is plausible that the sequence of box coverings Bk converges

to the chain recurrent set of f . Indeed, under mild assumptions on the

box coverings one can prove convergence, see Eidenschink (1995); Osipenko

(1999).
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(d) Simulation

Figure 3: (a)-(c) Successively finer coverings of a relative global attractor for
Chua’s circuit; (d) approximation obtained by direct simulation.

2.6 Numerical Example

We consider the following scenario and conclusion – the latter one is an

application of the Wazewski Theorem – which goes back to Conley (1978):

Let ϕt denote a flow of an ordinary differential equation on R3

with the following properties: there is a cylinder of finite length

such that outside the cylinder trajectories run vertically down-

ward with respect to the cylinder. Assume further that there is

some solution running through the cylinder which makes a knot

as it goes from top to bottom. Then there must be a nontrivial

invariant set inside the cylinder.
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Using the subdivision algorithm described above one can compute a cov-

ering of the chain recurrent set in the cylinder – see Dellnitz et al. (2000b)

for details on how to explicitly construct the vector field with the desired

properties.

Figure 4, which has been produced together with Martin Rumpf and

Robert Strzodka (both University of Bonn), shows the knotted trajectory

and a covering of the chain recurrent set in blue after 30 subdivision steps.

Figure 4: Invariant set in a knotted flow. The covering of the chain recurrent
set is shown in blue. The knotted trajectory that defines the flow is colored
red.

3 The Computation of Invariant Manifolds

We now present a set oriented method for the computation of invariant ma-

nifolds. Although the method can in principle be applied to manifolds of

arbitrary hyperbolic invariant sets we will restrict, for simplicity, to the case

where the underlying invariant set of (2.1) is a hyperbolic fixed point.

12



3.1 Description of the Method

The continuation starts at a hyperbolic fixed point p with the unstable mani-

fold W u(p). We fix once and for all a (large) compact set Q ⊂ Rn containing

p, in which we want to approximate part of W u(p). To combine the subdivi-

sion process with a continuation method, we realize the subdivision using a

family of partitions of Q. A partition P of Q consists of finitely many subsets

of Q such that

⋃

B∈P

B = Q and B ∩B′ = ∅ for all B,B′ ∈ P with B 6= B′.

Let Pℓ, ℓ ∈ N, be a nested sequence of successively finer partitions of Q,

requiring that for all B ∈ Pℓ there exist B1, . . . , Bm ∈ Pℓ+1 such that B =⋃
iBi and diam(Bi) ≤ θ diam(B) for some 0 < θ < 1. A set B ∈ Pℓ is said

to be of level ℓ.

Let C ∈ Pℓ be a neighborhood of the hyperbolic fixed point p such that

the global attractor relative to C satisfies

AC = W u
loc(p) ∩ C.

Applying the subdivision algorithm with k subdivision steps to B0 = {C},

we obtain a covering Bk ⊂ Pℓ+k of the local unstable manifold W u
loc(p) ∩ C,

that is,

AC = W u
loc(p) ∩ C ⊂

⋃

B∈Bk

B. (3.1)

By Proposition 2.6, this covering converges to W u
loc(p) ∩ C for k → ∞.

Continuation Method

We are now in the position to describe a continuation algorithm for the

approximation of unstable manifolds. For a fixed k we define a sequence

C(k)
0 , C(k)

1 , . . . of subsets C(k)
j ⊂ Pℓ+k by

(i) Initialization:

C
(k)
0 = Bk.

(ii) Continuation: For j = 0, 1, 2, . . . define

C
(k)
j+1 =

{
B ∈ Pℓ+k : B ∩ f(B′) 6= ∅ for some B′ ∈ C

(k)
j

}
.
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Observe that the sets

C
(k)
j =

⋃

B∈C
(k)
j

B

form nested sequences in k, i.e.,

C
(0)
j ⊃ C

(1)
j ⊃ . . . for j = 0, 1, 2, . . ..

3.2 Convergence Behavior and Error Estimate

Convergence Result

Set W0 = W u
loc(p) ∩ C and define inductively for j = 0, 1, 2, . . .

Wj+1 = f(Wj) ∩Q.

Then it is not too difficult to prove the following convergence result (see

Dellnitz and Hohmann (1996)).

Proposition 3.1 The sets C
(k)
j are coverings of Wj for all j, k = 0, 1, . . ..

Moreover, for fixed j, C
(k)
j converges to Wj in Hausdorff distance if the num-

ber k of subdivision steps in the initialization goes to infinity.

It can in general not be guaranteed that the continuation method leads

to an approximation of the entire set W u(p) ∩ Q. The reason is that the

unstable manifold of the hyperbolic fixed point p may “leave” Q but may as

well “wind back” into it. If this is the case then it can indeed happen that

the continuation method, as described above, will not cover all of W u(p)∩Q.

Error Estimate

Observe that the convergence result in Proposition 3.1 does not require the

existence of a hyperbolic structure along the unstable manifold. However,

if we additionally assume its existence then we can establish results on the

convergence behavior of the continuation method in a completely analogous

way as in Dellnitz and Hohmann (1997).

To this end assume that p is an element of an attractive hyperbolic set

A. Then the unstable manifold of p is contained in A. Choose

Q =
⋃

x∈A

W s
η (x)
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for some sufficiently small η > 0. Note that A = AQ. As in (2.7) let ρ ≥ 1 be

a constant such that for every compact neighborhood Q̃ ⊂ Q of AQ we have

h(AQ, Q̃) ≤ δ ⇒ Q̃ ⊂ Uρδ(AQ). (3.2)

A proof of the following result can be found in Junge (1999).

Proposition 3.2 Assume that in the initialization step of the continuation

method we have

h(W0, C
(k)
0 ) ≤ ζ diam C

(k)
0

for some constant ζ > 0. If C
(k)
j ⊂W s

η (Wj) for j = 0, 1, 2, . . . , J , then

h(Wj , C
(k)
j ) ≤ diam C

(k)
j max

(
ζ, 1 + β + β2 + · · · + βjζ

)
(3.3)

for j = 1, 2, . . . , J . Here β = Cλρ and C and λ are the characteristic

constants of the hyperbolic set A (see Theorem 2.9).

The estimate (3.3) points up the fact that for a given initial level k and

λ near 1 – corresponding to a weak contraction transversal to the unsta-

ble manifold – the approximation error may increase dramatically with an

increasing number of continuations steps (increasing j).

3.3 Numerical Examples

Example 3.3 As the first example we compute an approximation of a two-

dimensional stable manifold of the origin in the Lorenz system

ẋ = σ(y − x)

ẏ = ρx− y − xz

ż = −βz + xy.

In this computation we have chosen the “standard” set of parameter val-

ues, that is σ = 10, ρ = 28 and β = 8/3. With this choice a direct numerical

simulation would lead to an approximation of the celebrated Lorenz attrac-

tor. (For illustrations as well as a discussion of topological properties of the

Lorenz attractor the reader is referred to Guckenheimer and Holmes (1983).)

Since we want to compute the two-dimensional stable manifold of the

origin, we proceed backwards in time and apply the continuation method

to the diffeomorphism given by the time-(−T )-map. Starting in a neighbor-

hood of (0, 0, 0) we approximate the stable manifold inside Q = [−25, 25]3.
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To demonstrate the continuation process, we begin with a rough approxima-

tion using the initial level ℓ = 9 and k = 3 subdivision steps. In Figure 5 we

display the coverings obtained by the algorithm after j = 0, 1, 3 and 5 con-

tinuation steps. We remark that in this case the stable eigenvalues are both
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Figure 5: Continuation steps for the stable manifold of the origin in the
Lorenz system for j = 0, 1, 3, 5.

real but the ratio of strong and weak contraction is relatively large. This is

also reflected by the way the covering is growing (see Figure 5). A finer res-

olution (ℓ = 21, k = 0, 10 steps, Q = [−120, 120]× [−120, 120]× [−160, 160])

is shown in Figure 6.

Example 3.4 As the second example let us consider a Hamiltonian system,

the Circular Restricted Three Body Problem. Its equations of motion in a

rotating frame are given by

ẋ = u, u̇ = 2v + x+ c1(x+ µ− 1) + c2(x+ µ),

ẏ = v, v̇ = −2u+ y + (c1 + c2)y, (3.4)

ż = w, ẇ = (c1 + c2)z,
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Figure 6: Covering of the two-dimensional stable manifold of the origin in
the Lorenz system.

where

c1 = −
µ

((x+ µ− 1)2 + y2 + z2)
3
2

, c2 = −
1 − µ

((x+ µ)2 + y2 + z2)
3
2

and µ = m1/(m1 +m2) is the normalized mass of one of the primary bodies.

We use the value µ = 3.040423398444176 · 10−6 for the sun/earth system

here.

We aim for the computation of the unstable manifold of a certain unstable

periodic orbit. As it was pointed out in the error estimates in Section 3.2 a

naive application of the continuation method would – due to the Hamiltonian

nature of the system – not lead to satisfactory results in this case. We

therefore apply a modified version of this method, see Junge (1999). Roughly

speaking the idea is not to continue the current covering by considering one

application of the map at each continuation step, but instead to perform only

one continuation step while computing several iterates of the map.

More formally, we replace the second step in the continuation method by:

17



(ii) Continuation: For some J > 0 define

C
(k)
J =

{
B ∈ Pℓ+k : ∃ 0 ≤ j ≤ J : B ∩ f j(B′) 6= ∅ for some B′ ∈ C

(k)
0

}
.

The convergence statement in Proposition 3.1 is adapted to this method

in a straightforward manner. One can also show that – as intended – the

Hausdorff-distance between compact parts of the unstable manifold and the

computed covering is of the order of the diameter of the partition, see Junge

(1999) for details. However, and this is the price one has to pay, one no longer

considers short term trajectories here and therefore accumulates methodolog-

ical and round-off errors when computing the iterates f j.

A second advantage of the modified continuation method is that whenever

the given dynamical system stems from a flow φt one can get rid of the

necessity to consider a time-T -map and instead replace the continuation step

by

(ii) Continuation: For some T > 0 define

C
(k)
T =

{
B ∈ Pℓ+k : ∃ 0 ≤ t ≤ T : B ∩ φt(B′) 6= ∅ for some B′ ∈ C

(k)
0

}
.

This facilitates the usage of integrators with adaptive step-size control and

finally made the computations for the Restricted Three Body Problem fea-

sible. Figure 7 shows the result of the computation, where we set T = 7

and used an embedded Runge-Kutta scheme of order 8(7) (see Dormand and

Prince (1981)) with error tolerances set to 10−9. See again Junge (1999) for

more details on this computation.

4 The Computation of SRB-Measures

An important statistical characterization of the behavior of a dynamical sys-

tem is given by so-called SRB (Sinai-Ruelle-Bowen) measures. The impor-

tant property of these invariant measures is, roughly speaking, that they lend

weight to a region in phase space according to the probability by which “typ-

ical” trajectories visit this region. In this section we present a set oriented

numerical method for the approximation of SRB-measures.

The main idea of the approach is to define an operator (the Perron-

Frobenius operator) on the space of probability measures whose fixed points
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Figure 7: Covering of part of the global unstable manifold of an unstable
periodic orbit in the Circular Restricted Three Body Problem. The blue
body depicts the earth, the black trajectory is a sample orbit which leaves
the periodic orbit in the direction of the earth.

are invariant measures, then to discretize this operator via a Galerkin method

and finally to compute fixed points of the resulting matrix as an approxima-

tion to an invariant measure. Using spaces of piecewise constant functions on

a partition of the underlying phase space this approach is commonly known

as “Ulam’s method”, see Ulam (1960). There exist various statements about

the convergence properties of Ulam’s method, see e.g. Li (1976); G. Keller

(1982); Ding et al. (1993); Ding and Zhou (1996); Froyland (1996). In the

following sections we are going to establish a convergence result for uniformly

hyperbolic systems by combining a theorem of Kifer (1986) on the stochas-

tic stability of SRB-measures with results on the spectral approximation of

compact operators.
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4.1 Brief Review on SRB-Measures and Small Ran-

dom Perturbations

Our aim is to obtain information about the statistical behavior of (determin-

istic) discrete dynamical systems of the form (2.1) where f : X → X is a

diffeomorphism on a compact subset X ⊂ Rn.

SRB-Measures

We denote by B the Borel σ–Algebra on X and by m the Lebesgue measure

on B. Moreover, let M be the space of probability measures on B. Recall

that a measure µ ∈ M is invariant if

µ(B) = µ(f−1(B)) for all B ∈ B.

An invariant measure µ is ergodic if

µ(C) ∈ {0, 1} for all invariant sets C ∈ B.

Now we recall the notion of an SRB-measure. There exist several equiv-

alent definitions in the situation where the underlying dynamical behavior is

Axiom A, and we state one of them.

Definition 4.1 An ergodic measure µ is an SRB-measure if there exists a

subset U ⊂ X with m(U) > 0 and such that for each continuous function ψ

lim
N→∞

1

N

N−1∑

j=0

ψ(f j(x)) =

∫
ψ dµ (4.1)

for all x ∈ U .

Remarks 4.2 (a) Recall that (4.1) always holds for µ-a.e. x ∈ X by the

Birkhoff Ergodic Theorem. The crucial difference for an SRB-measure

is that the temporal average equals the spatial average for a set of initial

points x ∈ X which has positive Lebesgue-measure. This is the reason

why this measure is also referred to as the natural or the physically

relevant invariant measure.

(b) The concept of SRB-measures in the context of Anosov systems has

been introduced by Y.G. Sinai in the 1960’s (e.g. Sinai (1972)). Later
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the existence of SRB-measures has been shown for Axiom A systems by

R. Bowen and D. Ruelle (see Ruelle (1976); Bowen and Ruelle (1975)).

It should be mentioned as well that also Lasota and Yorke have proved

the existence of these measures for a particular class of interval maps

already in 1973, Lasota and Yorke (1973). M. Benedicks and L.-S.

Young have shown that the Hénon map has an SRB-measure for a

“large” set of parameter values, Benedicks and Young (1993). More

recently, Tucker proved the existence of an SRB-measure for the Lorenz

system, Tucker (1999).

Stochastic Transition Functions

Although our aim is to consider deterministic systems it turns out to be more

convenient to consider the stochastic context first.

Definition 4.3 A function p : X × B → [0, 1] is a stochastic transition

function, if

(i) p(x, ·) is a probability measure for every x ∈ X,

(ii) p(·, A) is Lebesgue-measurable for every A ∈ B.

Let δy denote the Dirac measure supported on the point y ∈ X. Then

p(x,A) = δh(x)(A) is a stochastic transition function for every m-measurable

function h. We will see below that the specific choice h = f represents the

deterministic situation in this more general set-up.

We now define the notion of an invariant measure in the stochastic setting.

Definition 4.4 Let p be a stochastic transition function. If µ ∈ M satisfies

µ(A) =

∫
p(x,A) dµ(x)

for all A ∈ B, then µ is an invariant measure of p.

The following example illustrates the previous remark that we recover the

deterministic situation in the case where p(x, ·) = δf(x).

Example 4.5 Suppose that p(x, ·) = δf(x) and let µ be an invariant measure

of p. Then we compute for A ∈ B

µ(A) =

∫
p(x,A) dµ(x) =

∫
δf(x)(A) dµ(x) =

∫
χA(f(x)) dµ(x) = µ(f−1(A)),
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where we denote by χA the characteristic function of A. Thus, µ is an

invariant measure for the diffeomorphism f .

Small Random Perturbations

Now we assume that for every x ∈ X the probability measure p(x, ·) is

absolutely continuous with respect to the Lebesgue measure m. Hence we

may write p(x, ·) as

p(x,A) =

∫

A

k(x, y) dm(y) for all A ∈ B,

with an appropriate transition density function k : X ×X → R. Obviously,

k(x, ·) ∈ L1(X,m) and k(x, y) ≥ 0.

In this case we also call the stochastic transition function p absolutely con-

tinuous. Note that
∫
k(x, y) dm(y) = p(x,X) = 1 for all x ∈ X.

We now specify concretely the stochastic transition function p which is the

theoretical tool for the derivation of a convergence result to SRB-measures.

Recall that the purpose is to approximate the SRB-measure of a deterministic

dynamical system represented by a diffeomorphism f . Hence the stochastic

system that we consider should be a small perturbation of this original de-

terministic system.

For ε > 0 we set

kε(x, y) =
1

εnm(B)
χB

(
1

ε

(
y − x

))
, x, y ∈ X. (4.2)

Here B = B0(1) denotes the open ball in R
n of radius one and χB is the

characteristic function of B. Obviously kε(f(x), y) is a transition density

function and we may define a stochastic transition function pε by

pε(x,A) =

∫

A

kε(f(x), y) dm(y). (4.3)

Remark 4.6 Note that pε(x, ·) → δf(x) for ε → 0 uniformly in x in a weak*–

sense. Hence the Markov process defined by any initial probability measure

µ and the transition function pε is a small random perturbation of the deter-

ministic system f in the sense of Kifer (1986).

22



4.2 Spectral Approximation for the Perron-Frobenius

Operator

The main purpose of this section is to describe an appropriate Galerkin

method for the approximation of a specific type of transfer operator, namely

the Perron-Frobenius operator. This operator is used for translating the

problem of finding an invariant measure into a fixed point problem.

The Perron-Frobenius Operator

Definition 4.7 Let p be a stochastic transition function. Then the Perron-

Frobenius operator P : MC → MC is defined by

Pµ(A) =

∫
p(x,A) dµ(x),

where MC is the space of bounded complex valued measures on B. If p is

absolutely continuous with density function k then we may define the Perron-

Frobenius operator P on L1 by

Pg(y) =

∫
k(x, y)g(x) dm(x) for all g ∈ L1.

Remarks 4.8 (a) By definition a measure µ ∈ M is invariant if and only

if it is a fixed point of P . In other words, invariant measures correspond

to eigenmeasures of P for the eigenvalue one.

Moreover, let λ ∈ C be an eigenvalue of P with corresponding eigen-

measure ν, that is, Pν = λν. Then in particular

λν(X) = Pν(X) =

∫
p(x,X) dν(x) = ν(X)

since p(x,X) = 1 for all x ∈ X. It follows that ν(X) = 0 if λ 6= 1.

(b) Observe that in the deterministic situation where p(x, ·) = δf(x) we

obtain

Pµ(A) =

∫
p(x,A) dµ(x) = µ(f−1(A))

(cf. Example 4.5). This is indeed the standard definition of the Perron-

Frobenius operator in the deterministic setting (see e.g. Lasota and

Mackey (1994)).
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Spectral information for the Perron-Frobenius operator cannot just be

used for the approximation of SRB-measures but also for the identification

of cyclic dynamical behavior, that is, there exist finitely many different com-

pact subsets in state space which are cyclically permuted by the underlying

dynamical system. In the stochastic setting this corresponds to the situation

where there are disjoint compact subsets Xj ⊂ X, j = 0, . . . , r−1, such that

X =

r−1⋃

j=0

Xj ,

and for which the stochastic transition function p satisfies

p(x,Xj+1mod r) =

{
1 if x ∈ Xj

0 otherwise.
(4.4)

We now relate the cyclic dynamical behavior described by (4.4) to spectral

properties of the corresponding Perron-Frobenius operator P .

Proposition 4.9 If the stochastic transition function p satisfies (4.4) then

the following statements hold:

(a) The r-th power P r of the Perron-Frobenius operator P has an eigen-

value one of multiplicity at least r. Moreover, there are r corresponding

invariant measures µk ∈ M, k = 0, 1, . . . , r − 1, with support on Xk,

that is, supp(µk) ⊂ Xk. These measures can be chosen to satisfy

µk = P kµ0, k = 0, 1, . . . , r − 1.

(b) The r-th roots of unity ωk
r , k = 0, 1, . . . , r − 1, where ωr = e2πi/r, are

eigenvalues of P .

A proof of this result can be found in Dellnitz and Junge (1999).

The Galerkin Method

We begin with the following observation which immediately follows from

standard results on integral operators (see e.g. Yosida (1980), p. 277).

Lemma 4.10 Suppose that the transition density function k satisfies
∫∫

|k(x, y)|2 dm(x)dm(y) <∞. (4.5)

Then the Perron-Frobenius operator P : L2 → L2 is compact.
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From now on we consider the case where P is given by a dynamical process

with a transition density function k satisfying the condition (4.5). The aim is

to use a Galerkin method for the approximation of such a Perron-Frobenius

operator together with its spectrum. More precisely, let Vd, d ≥ 1, be a

sequence of d–dimensional subspaces of L2 and let Qd : L2 → Vd be a pro-

jection such that Qd converges point wise to the identity on L2. If we define

the approximating operators by Pd = QdP then we have

‖Pd − P‖2 → 0 as d→ ∞.

Since P is compact one can use standard results from operator theory in

order to approximate the eigenvalues of P which are lying on the unit circle

by a Galerkin method. For this we construct a Galerkin projection which

preserves cyclic behavior in the approximation. Suppose that (4.4) holds

and let {ϕj
i}, j = 0, 1, . . . , r − 1, i = 1, 2, . . . , dj, be a basis of Vd with the

following properties:

(i) supp(ϕj
i ) ⊂ Xj (j = 0, 1, . . . , r − 1, i = 1, 2, . . . , dj),

(ii)
dj∑

i=1

ϕj
i (x) = 1 for all x ∈ Xj, j = 0, 1, . . . , r − 1.

(4.6)

Remark 4.11 In Section 8 we will show how to generate a basis satisfying

(4.6) in practice. In that case, Vd will consist of functions which are locally

constant.

The Galerkin projection Qdg of g ∈ L2 is defined by

(Qdg, ϕ
j
i ) = (g, ϕj

i) for all i, j,

where (·, ·) is the usual inner product in L2. The following result is a gener-

alization of Lemma 8 in Ding et al. (1993), where just the fixed point of P is

considered. Its proof can be found in Dellnitz and Junge (1999). Recall that

ωr = e2πi/r.

Proposition 4.12 Suppose that the Galerkin projection satisfies (4.6). Then

the approximating operators Pd = QdP also possess the eigenvalues ωk
r ,

k = 0, 1, . . . , r − 1.

A combination of standard results on the approximation of spectra of

compact operators (see e.g. Osborn (1975)) with Proposition 4.12 yields a

convergence result for eigenvectors corresponding to eigenvalues of P of mod-

ulus one.
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Corollary 4.13 Suppose that P and its approximation Pd satisfy the hy-

potheses stated above. Then each simple eigenvalue e2πik/r of P on the unit

circle is an eigenvalue of Pd and there are corresponding eigenvectors gd of

Pd converging to an eigenfunction h of P . More precisely, there is a constant

C > 0 such that for all d ≥ 1

‖h− gd‖2 ≤ C‖Pd − P‖2.

4.3 Convergence Result for SRB-Measures

Suppose that the diffeomorphism f possesses a hyperbolic attractor Λ with

an SRB-measure µSRB, and let pε be a small random perturbation of f .

Then, under certain hypotheses on pε, it is shown in Kifer (1986) that the

invariant measures of pε converge in a weak*–sense to µSRB as ε → 0. On

the other hand one can approximate the relevant eigenmeasures of Pε by

Corollary 4.13 and this leads to the desired result.

Theorem 4.14 Suppose that the diffeomorphism f has a hyperbolic attrac-

tor Λ, and that there exists an open set UΛ ⊃ Λ such that

kε(x, y) = 0 if x ∈ f(UΛ) and y 6∈ UΛ.

Then the transition function pε in (4.3) has a unique invariant measure πε

with support on Λ and the approximating measures

µε
d(A) =

∫

A

gε
d dm

converge in a weak*–sense to the SRB–measure µSRB of f as ε → 0 and

d→ ∞,

lim
ε→0

lim
d→∞

µε
d = µSRB. (4.7)

4.4 Numerical Examples

We present two examples for the set oriented numerical computation of in-

variant measures. Although the convergence result Theorem 4.14 is stated in

the randomly perturbed context these numerical computations are performed

using the unperturbed dynamical systems.
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Example 4.15 Let us begin with a one-dimensional example, the Logistic

Map f : [0, 1] → [0, 1],

f(x) = λx(1 − x)

for λ = 4. The unique absolutely continuous invariant measure µ of f has

the density

h(x) =
1

π
√
x(1 − x)

(see e.g. Lasota and Mackey (1994)). Discretizing the Perron-Frobenius op-

erator on the space of simple functions on a uniform partition of [0, 1] we

obtain an approximation of h in terms of a piecewise constant function. Fig-

ure 8 shows approximations to h using two different partitions with intervals

of size 2−4 and 2−8 respectively.
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(a) partition with 16 sets
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(b) partition with 256 sets

Figure 8: Approximations of the absolutely continuous invariant density of
the Logistic Map (black) using piecewise constant functions (gray).

Example 4.16 As a more challenging task we consider the approximation

of an invariant measure in the Lorenz system (see Section 3.3). We will tackle

this by first computing a covering of the underlying invariant set. More con-

cretely the continuation method is used to compute a tight covering of the

unstable manifolds of the two nontrivial steady state solutions. Using the

space of simple functions on the resulting collection of sets we then com-

pute the stationary vector of the discretized Perron-Frobenius operator as an

approximation to an invariant measure.
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In Figure 9 we show the result of this computation for the time-0.2-map

on subdivision level 30 (β = 1.2, Q = [−30, 30] × [−30, 30] × [−13, 67]). A

color coding has been used to indicate the values of the invariant density on

the covering.

Figure 9: Approximation of an invariant measure in the Lorenz system. The
color depicts the density of the (discrete) invariant measure and ranges from
blue (lowest density) over pink, green and red to yellow (highest density).

5 The Identification of Cyclic Behavior

Suppose that the stochastic transition function of the randomly perturbed

dynamical system satisfies the cycle condition (4.4). Then the purpose is to

identify the components Xj .

5.1 Extraction of Cyclic Behavior

By Proposition 4.12 we know that the approximating operator P ε
d has the

eigenvalues ωk
r , k = 0, 1, . . . , r − 1. The cyclic components can be approxi-

mated by certain linear combinations of the corresponding eigenvectors.
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Two Cyclic Components

In the simplest case, r = 2, there are two components X0 and X1 which are

cyclically permuted by the underlying stochastic process. The idea is to find

approximations of eigenmeasures µ0 and µ1 = Pεµ0 of P 2
ε with support on

X0 and X1 respectively, see Proposition 4.9. By the same proposition we

know that ω0 = 1 and ω1 = −1 are eigenvalues of Pε. Let ν0 and ν1 be

corresponding (real) eigenmeasures. Then there are α0, α1 ∈ R such that

ν0 = α0(µ0 + Pεµ0) and ν1 = α1(µ0 − Pεµ0).

Rescaling ν0 and ν1 so that ν0(X0) = ν1(X0) = 1 we can compute µ0 and µ1

by

µ0 =
1

2
(ν0 + ν1) and µ1 =

1

2
(ν0 − ν1) .

The same procedure can be applied in order to find appropriate approxima-

tions of the probability measures µ0 and µ1 for the Galerkin approximation.

General Case

For ℓ = 0, 1, . . . , r − 1 we denote by µℓ = P ℓ
εµ0 the invariant measure of P r

ε

with support on Xℓ (see Proposition 4.9).

Lemma 5.1 For s ∈ {0, 1, . . . , r − 1} let

νs
k =

r−1∑

j=0

ω−kj
r P j

εµs (5.1)

be a specific choice for the eigenmeasures of Pε corresponding to the eigen-

values ωk
r , k = 0, 1, . . . , r − 1. Then

1

r

r−1∑

k=0

ωℓk
r ν

s
k = µ

ℓ+s mod r
.

By this lemma we have to find eigenvectors vs
0, . . . , v

s
r−1 of the discretized

Perron-Frobenius operator which are approximations of the eigenmeasures

νs
k in (5.1) for an s ∈ {0, 1, . . . , r − 1}. Then we can compute

u
ℓ+s mod r

=
1

r

r−1∑

k=0

ωℓk
r v

s
k
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for ℓ = 0, 1, . . . , r− 1, and the positive components of uj provide the desired

information about the support of µj on Xj (j = 0, 1, . . . , r − 1).

In the case where the eigenvalues ωk
r are simple the eigenvectors vs

0, . . . , v
s
r−1

are found as follows. Suppose that we have a set of eigenmeasures ρk corre-

sponding to the eigenvalues ωk
r , k = 0, 1, . . . , r− 1. Since the eigenvalues are

simple we know that for each s ∈ {0, 1, . . . , r− 1} there is a constant αs
k ∈ C

such that ρk can be written as

ρk = αs
kν

s
k.

Hence the task is to rescale ρk so that αs
k = 1 for all k and this is done by

rescaling the ρk’s by (complex) factors so that for a particular s

ρk(Xs) = 1 for all k = 0, 1, . . . , r − 1.

With this choice it follows that ρk = νs
k.

5.2 Numerical Examples

Example 5.2 We reconsider Example 2.13 and set b = 0.2 and a = 1.2.

Then the Hénon map possesses a 2-cycle, and we can use the approximation

procedure described above to identify the two components X0 and X1. In

Figure 10 we show the approximations v0 and v1 of the two eigenmeasures of

the Perron-Frobenius operator corresponding to the eigenvalues λ0 = 1 and

λ1 = −1.

By Lemma 5.1

u0 =
1

2
(v0 + v1) and u1 =

1

2
(v0 − v1)

are approximations of probability measures µ0 and µ1 which have support

on X0 and X1 respectively. These are shown in Figure 11.

In the computation the box-covering was obtained by the continuation

algorithm described in Section 3. The boxes were of size 1/210 in each co-

ordinate direction and the continuation was restricted to the square Q =

[−2, 2]2 ⊂ R2. This way we have produced a covering of the closure of the

one-dimensional unstable manifold of the hyperbolic fixed point in the first

quadrant by 2525 boxes.
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Figure 10: Eigenvectors of the approximation of the Perron-Frobenius oper-
ator for the Hénon map (a = 1.2, b = 0.2).
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Figure 11: Approximations of probability measures with support on the two
components of the 2-cycle (a = 1.2, b = 0.2).

Example 5.3 As the second example we slightly modify a mapping taken

from Chossat and Golubitsky (1988) and consider the dynamical system f :

C → C,

f(z) = e−
2πi
3

(
(|z|2 + α)z +

1

2
z̄2

)
,

for the parameter value α = −1.7. For the computation of the box-covering
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we have used the subdivision algorithm as described in Section 2. Starting

with the square Q = [−1.5, 1.5]2 we have subdivided Q seven times by bisec-

tion in each coordinate direction which leads to a box-covering by 3606 boxes.

In Figure 12 we show the approximation of the invariant measure, that is,

the eigenvector v0 corresponding to the eigenvalue λ0 = 1 of the discretized

Perron-Frobenius operator. In this case this operator additionally has the

eigenvalues ωk
6 , k = 1, . . . , 5, and hence we may use Lemma 5.1 to compute

approximations v0, . . . , v5 of the probability measures with support on the

cyclic components X0, . . . , X5 of a six cycle. These supports are shown in

Figure 13.
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Figure 12: Approximation of the invariant measure for α = −1.7.

6 The Computation of Almost Invariant Sets

In the previous sections we have seen that we can approximate the physi-

cally relevant invariant measure or even cyclic behavior numerically by an

appropriate Galerkin approximation. In practice – in particular in the area

of molecular dynamics, Deuflhard et al. (1998); Schütte (1999) – also the

approximation of so-called almost invariant sets is of relevance. Roughly

speaking, these are sets in state space in which typical trajectories stay on
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Figure 13: Approximation of the cyclic components X0, . . . , X5 for α = −1.7.

average for quite a long time before leaving again. The concept of almost

invariant sets can naturally be extended to the notion of almost cyclic behav-

ior. For simplicity we will restrict to almost invariance but we will illustrate

the existence of almost cyclic behavior by a numerical example.

6.1 Almost Invariant Sets

The scenario we have in mind is the following: suppose that a dynamical

system possesses two different invariant sets. Correspondingly the Perron-

Frobenius operator has a double eigenvalue 1. Then these invariant sets

merge while a system parameter is varied. Simultaneously one of the eigen-

values in one moves away from one. The aim is to relate the value of this

eigenvalue to the magnitude of almost invariance which is still present in the
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dynamical system.

Example 6.1 (Dellnitz et al. (2000a)) Consider the following param-

eter dependent family of FourLegs maps Ts : [0, 1] → [0, 1]:

Tsx =






2x, 0 ≤ x < 1/4
s(x− 1/4), 1/4 ≤ x < 1/2
s(x− 3/4) + 1, 1/2 ≤ x < 3/4
2(x− 1) + 1, 3/4 ≤ x ≤ 1

The graph of a typical T is shown in Figure 14. Obviously, for s = 2 the

1/21/4 3/4 10

1/4

1/2

3/4

1

Figure 14: Graph of Ts for s = 4 − 1/8.

Perron-Frobenius operator for this map has a double eigenvalue one since

both the intervals [0, 0.5] and [0.5, 1] are invariant sets. One can show that

the Perron-Frobenius operator has isolated eigenvalues λs 6= 1 for values of s

which are arbitrarily close to 2. Moreover these eigenvalues approach 1 while

s tends to 2; see Dellnitz et al. (2000a).

As in the case of SRB-measures we work in the following in the context

of small random perturbations (see Section 4.1).

Definition 6.2 A subset A ⊂ X is δ-almost invariant with respect to ρ ∈

M if ρ(A) 6= 0 and ∫

A

pε(x,A) dρ(x) = δρ(A).
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Remark 6.3 (a) Using the definition of the stochastic transition function

pε we compute for a subset A ⊂ X

pε(x,A) =
m(A ∩ Bf(x)(ε))

m(B0(ε))
.

Hence

δ =
1

ρ(A)

∫

A

m(A ∩ Bf(x)(ε))

m(B0(ε))
dρ(x).

(b) Recall that pε(x, ·) → δf(x) for ε → 0. Thus, we obtain in the deter-

ministic limit∫

A

p0(x,A) dρ(x) =

∫

A

δf(x)(A) dρ(x) = ρ(f−1(A) ∩A).

Therefore in this case δ is the relative ρ-measure of the subset of points

in A which are mapped into A.

From now on we assume that λ 6= 1 is an eigenvalue of Pε with corre-

sponding real valued eigenmeasure ν ∈ MC, that is,

Pεν = λν.

In this case ν(X) = 0 (see Remark 4.8 (a)). In the following result, see

Dellnitz and Junge (1999), the value of the eigenvalue λ is related to the

number δ in Definition 6.2.

Proposition 6.4 Suppose that ν is scaled so that |ν| ∈ M, and let A ⊂ X

be a set with ν(A) = 1
2
. Then

δ + σ = λ + 1, (6.1)

if A is δ-almost invariant and X – A is σ-almost invariant with respect to

|ν|.

Remarks 6.5 (a) Observe that in the case where λ is close to one we

may assume that the probability measure |ν| is close to the invariant

measure µ of the system.

(b) In the numerical computations we work with the unperturbed equations

rather than introducing noise artificially. Thus, it would be important

to know whether the eigenvalues of P0 and Pε are close to each other

for small ε. First results concerning the stochastic stability of the

spectrum of the Perron-Frobenius operator are obtained in Blank and

Keller (1998).
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6.2 Numerical Examples

We illustrate the results by two numerical examples: first we identify numer-

ically two almost invariant sets for Chua’s circuit and then we present an

almost invariant two cycle for the Hénon map.

Example 6.6 Considering the time-0.1-map of Example 2.14 we cover –

using the continuation method described in Section 3 – the unstable manifold

of the origin by 10372 boxes. In addition to the eigenvalue one the discretized

Perron-Frobenius operator does also possess the eigenvalue λ1 = 0.9272. We

may conclude from this observation that there are two almost invariant sets.

Indeed, a coarse numerical approximation of the corresponding regions in

phase space leads to the result shown in Figure 15. The result of a more

accurate computation is shown in Figure 16. A detailed numerical study of

this particular example can be found in Dellnitz and Junge (1997).
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Figure 15: Illustration of the existence of two almost invariant sets in the
Chua circuit. (a) Boxes corresponding to components of the approximating
densities with value bigger than 10−4; (b) boxes corresponding to components
of the approximating densities with value less than −10−4; (c) superposition
of the two almost invariant sets.

Example 6.7 We reconsider the Hénon map in Example 5.2 and set a =

1.272. For this parameter value the two cycle has disappeared, but in sim-

ulations the cycling behavior can still be observed for most iterates. Corre-

spondingly we find that λ1 = −0.9944 is an eigenvalue of the approximation

of the Perron-Frobenius operator. Using the same notation as in Section 5

we show in Figure 17 the approximations of the eigenmeasures. In this case

the box-covering consists of 3101 elements.
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Figure 16: Two almost invariant sets for Chua’s circuit.

7 Adaptive Subdivision Strategies

The standard subdivision algorithm may approximate a part of the global

attractor which is dynamically irrelevant in the sense that no invariant mea-

sure has support on this subset. The reason is that each box is subdivided

in a step of the subdivision algorithm regardless of any information on the

dynamical behavior. In particular, also those subsets of the relative global

attractor corresponding to unstable or transient dynamical behavior are ap-

proximated by the standard procedure.

On the other hand, if one is mainly interested in the approximation of

the support of the (natural) invariant measure rather than in the precise

geometric structure of the global attractor then this strategy may lead to

unnecessary high storage and computation requirements. In the following

we present a modified subdivision strategy (see Dellnitz and Junge (1998))

which avoids this drawback: roughly speaking,

– in the subdivision step we use the information on the actual approxi-

mation of the invariant measure to decide whether or not a box should

be subdivided;

– in the selection step we keep only those boxes which have a nonempty

intersection with the support of the invariant measure.
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Figure 17: Eigenvectors v0, v1 of the approximation of the Perron-Frobenius
operator and approximations u0, u1 of probability measures which correspond
to the two components of the almost 2-cycle for the Hénon map (a = 1.272,
b = 0.2).

7.1 Adaptive Subdivision Algorithm

Let (δk) be a sequence of positive real numbers such that δk → 0 for k → ∞.

The algorithm generates a sequence of pairs

(B0, u0), (B1, u1), (B2, u2), . . .

where the Bk’s are finite collections of compact subsets of R
n and the discrete

measures uk : Bk → [0, 1] can be interpreted as approximations to an SRB-

measure µSRB:

uk(B) ≈ µSRB(B) for all B ∈ Bk.
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Given an initial pair (B0, u0), one inductively obtains (Bk, uk) from (Bk−1, uk−1)

for k = 1, 2, . . . in three steps:

(i) Subdivision: Define

B+
k−1 = {B ∈ Bk−1 : uk−1(B) ≥ δk−1}.

Construct a new (sub-)collection B̂+
k such that

⋃

B∈B̂
+
k

B =
⋃

B∈B
+
k−1

B and diam(B̂+
k ) ≤ θ diam(B+

k−1)

for some 0 < θ < 1.

(ii) Selection: Set B̂k =
(
Bk−1\B

+
k−1

)
∪B̂+

k . Using the space of simple func-

tions on the collection B̂k compute a fixed point ûk of the discretized

Perron-Frobenius operator. Set

Bk = {B ∈ B̂k : ûk(B) > 0} and uk = ûk|Bk
.

A result on the convergence of this method has been proven in the context

of sufficiently regular stochastic transition functions, see Junge (2000) for

details.

Remarks 7.1 (a) In principle there is some freedom in choosing the se-

quence (δk) of positive numbers used in the subdivision step. Note that

this sequence determines the number of boxes which will be subdivided

and hence it has a significant influence on the storage requirement. In

the computations we used

δk =
1

Nk

∑

B∈Bk

uk(B) =
1

Nk
,

where Nk is the number of boxes in Bk.

(b) One can think of more sophisticated ways of choosing the subcollection

which is going to be refined in the subdivision step. In fact, one can

show that one should aim for an estimate of the local error (between

the true and the approximate invariant density) and subdivide only

those boxes for which this estimate exceeds its average. See Guder

and Kreuzer (1999) and Junge (1999) for details on these alternative

approaches.
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7.2 Numerical Examples

In this section we illustrate the adaptive scheme by two numerical examples.

First we consider the Logistic Map again. We will see that, as expected,

the adaptive technique is particularly useful if the underlying invariant den-

sity has singularities. Additionally we consider the Hénon map as a two-

dimensional example and show the box refinement produced by the adaptive

subdivision algorithm at a certain step. Again, we refer to Section 8 for

details on the numerical realization.

Example 7.2 We have approximated the density h of the unique absolutely

continuous invariant measure of the Logistic Map using

(a) piecewise constant functions on a uniform partition and

(b) the adaptive subdivision algorithm.

Figure 18 shows the L1-error between h and the approximate densities versus

the cardinality of the partitions.
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Figure 18: L1-error between h and the approximate invariant densities versus
the cardinality of the underlying partitions
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A more detailed analysis of this example using the adaptive algorithm

can be found in Murray (1998).

Example 7.3 We apply the adaptive subdivision algorithm to the Hénon

map, see Example 2.13. In the computations we have chosen the parameters

a = 1.2, b = 0.2, and considered the outer box B0 = {[−2, 2]2}.

In Figure 19 we present a tiling of the square [−2, 2]2 obtained by the

adaptive subdivision algorithm after several subdivision steps. The resulting

box-collection B consists of the grey boxes shown in part (a) of this figure.

We expect that due to the numerical approximation some boxes have posi-

tive discrete measure although they do not intersect the support of the real

natural invariant measure. Having this in mind we neglect those boxes with

very small discrete measure and show in Figure 19(b) a subcollection B̃ ⊂ B

with the property that ∑

B∈B̃

u(B) ≈ 0.99 (7.1)

(see also Remark 7.1(b)). An approximation of a (natural) invariant measure

obtained by the adaptive subdivision algorithm is shown in Figure 20.

Remark 7.4 For the choice of the parameter values we cannot explicitly

write down a natural invariant measure. Hence it is impossible to compare

the numerical results using analytical ones. Moreover, it is not even known for

an arbitrary choice of parameter values whether or not the Hénon map pos-

sesses an SRB-measure. However, as already mentioned before, M. Benedicks

and L.-S. Young proved that the Hénon map indeed has an SRB-measure for

a “large” set of parameter values, see Benedicks and Young (1993).

8 Implementational Details

In this Section we are describing the details of the implementation of the

set oriented algorithms. All of the algorithms described in this chapter have

been implemented in the software package GAIO which can be obtained from

the authors.

41



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(a)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

(b)

Figure 19: (a) A tiling of the square [−2, 2]2 obtained by the adaptive subdi-
vision algorithm; and (b) the subcollection B̃ of boxes with discrete density
bigger than 0.35 (see also (7.1)).
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Figure 20: Illustration of a (natural) invariant measure for the Hénon map.
The picture shows the density of the discrete measure on B̃, see (7.1).

8.1 Realization of the Collections and the Subdivision

Step

We realize the closed subsets constituting the collections using generalized

rectangles (“boxes”) of the form

B(c, r) = {y ∈ R
n : |yi − ci| ≤ ri for i = 1, . . . , n} ,
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where c, r ∈ Rn, ri > 0 for i = 1, . . . , n, are the center and the radius

respectively. In the k-th subdivision step we subdivide each rectangle B(c, r)

of the current collection by bisection with respect to the j-th coordinate,

where j is varied cyclically, that is, j = ((k − 1) mod n) + 1. This division

leads to two rectangles B−(c−, r̂) and B+(c+, r̂), where

r̂i =

{
ri for i 6= j
ri/2 for i = j

, c±i =

{
ci for i 6= j

ci ± ri/2 for i = j
.

Starting with a single initial rectangle we perform the subdivision until a

prescribed size σ of the diameter relative to the initial rectangle is reached.

The collections constructed in this way can easily be stored in a binary

tree. In Figure 21 we show the representation of three subdivision steps

in three dimensions (n = 3) together with the corresponding sets Qk, k =

0, 1, 2, 3, see (2.6). Note that each collection and the corresponding covering

Qk are completely determined by the tree structure and the initial rectangle

B(c, r).

Root

0 1

00 01

000 001 010

10

100 101

Figure 21: Storage scheme for the collections and the corresponding coverings
Qk, k = 0, 1, 2, 3.

8.2 Realization of the Intersection Test

In the subdivision algorithms as well as in the continuation method we have

to decide whether for a given collection Bk the image of a set B ∈ Bk has a

nonzero intersection with another set B′ ∈ Bk, i.e. whether

f(B) ∩B′ = ∅. (8.1)

In simple model problems such as our trivial Example 2.5 this decision can

be made analytically. For more complex problems we have to use some kind
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of discretization. Motivated by similar approaches in the context of cell-

mapping techniques (see Hsu (1992)), we choose a finite set of test points in

each set B ∈ Bk and replace the condition (8.1) by

f(x) 6∈ B′ for all test points x ∈ B . (8.2)

Obviously, it may still occur that f(B) ∩ B′ is nonempty although (8.2) is

valid.

Distribution of Test Points

It remains to discuss how the test points are distributed inside each rectan-

gle. To define the test points, observe that R(c, r) is the affine image of the

standard cube [−1, 1]n scaled by r and translated by c. Using this transfor-

mation it is sufficient to define the test points for the standard cube. Simple

geometric considerations make it clear that one should obtain the best results

for the test in (8.2) if most of the test points are lying on the boundary of the

rectangle. An efficient choice for problems of dimension up to three turned

out to be N test points on each edge distributed according to

t(ℓ) =
2ℓ− 1

N
− 1 for ℓ = 1, ..., N (8.3)

on [−1, 1]. As an additional test point we choose the center c = 0. Since an

n-dimensional rectangle has n2n−1 edges, we end up with p = Nn2n−1 + 1

test points per box.

Rigorous Choice of Test Points

The numerical realization of the intersection test can be made rigorous in

the sense that no boxes are lost due to the discretization. Indeed, to accom-

plish this it is sufficient to have estimates for the Lipschitz constants of the

dynamical system f on Q.

To be more precise let B be a collection of boxes B = B(c, r) = {x :

|x− c| ≤ r} (where we write |x| = (|x1|, . . . , |xn|) and x ≤ y for x, y ∈ R
n, if

xi ≤ yi for i = 1, . . . , n). We need to compute the set-wise image

F(B) = {B′ ∈ B | f(B) ∩ B′ 6= ∅},

for every B ∈ B. Our goal here is to construct a set F̂(B) of boxes for which

F(B) ⊂ F̂(B),
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so that we get a rigorous covering of f(B). To this end we will need to know

local Lipschitz constants for f , that is, we require that for every box B in

the current collection there is a nonnegative matrix L = L(B) ∈ R
n×n such

that

|f(y) − f(x)| ≤ L|y − x| (8.4)

for x, y ∈ B. If f is continuously differentiable then Lij = maxξ∈B |∂jfi(ξ)|.

Now let h = h(B) ∈ Rn be a positive vector such that

Lh ≤ 2r.

Using the mesh widths h we now define a mesh

T̂ = T̂ (B) = {x : (xi − ci) ∈ hiZ, i = 1, . . . , n}.

It is easy to see that for every y ∈ B there is a meshpoint x ∈ T̂ (B), such

that |y − x| ≤ h/2. On the other hand we are interested in a finite set of

test points and indeed the only points x ∈ T̂ (B) we really need are those for

which there is actually a y ∈ B with |y − x| ≤ h/2. So let

T (B) = T̂ (B) ∩ {x | B ∩ int B(x, h/2) 6= ∅}

be the set of test points. Note that an additional constraint on h will be

necessary in order to ensure that the test points are contained in B, which is

necessary, since the local Lipschitz-estimate (8.4) on f is only valid for points

in B. Finally we construct the collection F̂(B) by setting

F̂(B) = {B̂ ∈ B | B̂ ∩ B(f(x), r) 6= ∅ for some x ∈ T (B)}. (8.5)

x

B

f(x)

B(f(x),r)

f(B)

Figure 22: On the construction of F̂(B).

The idea of this construction is to look at the boxes B(f(x), r) 6∈ B

corresponding to the images of the test points x and to collect in F̂(B) all
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boxes which have nonempty intersection with those boxes, see Figure 22. It

is important to note that the construction of F̂(B) is a finite task: since the

boxes B(f(x), r), x ∈ T , have the same radius as the boxes in the collections

B, it suffices to consider the vertices of B(f(x), r).

Adaptive Choice of Test Points

In order to reduce the numerical effort of the set oriented algorithms one has

to reduce the number of test points per box as far as possible. We now show

how to do that by considering local expansion rates of the map f . To this

end we consider the singular value decomposition

Df(x) = U(x)S(x)V T(x)

of Df(x), where U(x) = [u1(x), . . . , un(x)] and V (x) = [v1(x), . . . , vn(x)] are

real orthogonal (n×n)-matrices and S(x) ∈ Rn×n is a diagonal matrix having

the singular values σ1(x) ≥ · · · ≥ σn(x) of Df(x) on the diagonal.

The idea for an improved choice of the test points is to construct a mesh

with respect to the basis of right singular vectors v1(c), . . . , vn(c) of Df(c) =

U(c)S(c)V T(c) (where c denotes the center of the box under consideration)

and to choose the mesh width hi, i = 1, . . . , n in relation to the singular value

σi(c). Let us suppose for the moment that for a box B the derivative Df(x) =

Df(c) = Df = USV T is constant on a sufficiently large neighborhood ∆(B)

of B. Then

f(x) − f(y) = Df · (x− y) = USV T(x− y),

so that

|f(x) − f(y)| ≤ |U |S|V T (x− y)|

where |U | = (|uij|). We choose mesh widths h ∈ Rn, h > 0, such that

|U |Sh ≤ 2r (8.6)

and define the mesh

T̂ = T̂ (B) = {x : (V T (x− c))i ∈ hiZ, i = 1, . . . , n}. (8.7)

Again it is easy to see that for every y ∈ B there is a mesh point x ∈ T̂ (B),

such that |V T (y − x)| ≤ h/2. We have to restrict ourselves to a finite set of

test points again which can be written down as

T = T (B) = T̂ (B) ∩ {x : B ∩ int (V B(0, h/2) + x) 6= ∅} . (8.8)
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We construct F̂(B) as in (8.5) and get that F(B) ⊂ F̂(B). Finally let us

consider the general case where Df(x) is not constant on a box. Let

M(x) = (mij(x))i,j=1,...,n = Df(x)V (c)

and set

M = (mij)i,j=1,...,n , mij = max
x∈∆(B)

|mij(x)|,

where ∆(B) is a sufficiently large neighborhood of B which we suppose to

be convex in this case. We choose mesh widths h > 0 such that

Mh ≤ 2r, (8.9)

and use the mesh as defined by (8.7) as well as the construction (8.5) for

F̂(B).

It can easily be shown that the union of boxes in F̂(B) covers f(B), i.e.

F(B) ⊂ F̂(B),

see Junge (1999) for details.

8.3 Implementation of the Measure Computation

The feasibility of the computation of invariant measures even for higher di-

mensional systems relies on the fact that we first compute an outer covering

B of the underlying invariant set by one of the set oriented methods presented

in this chapter.

As the ansatz spaces Vd for the discretization of the Perron-Frobenius

operator we use the spaces of simple functions on the given collection B. It

is easy to see that the discretized Perron-Frobenius operator is then given by

a stochastic matrix P = (pij) with entries

pij =
m(f−1(Bi) ∩Bj)

m(Bj)
, Bi, Bj ∈ B.

For the computation of the pij’s we either use a Monte-Carlo approach (see

Hunt (1994)) or an exhaustion technique as described in Guder et al. (1997).

The latter method is particularly useful when local Lipschitz constants are

available for the underlying dynamical system.

For the computation of certain eigenvectors of the resulting (sparse) ma-

trix P an Arnoldi method is used (see Lehoucq et al. (1998)).
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