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Abstract

Inverse problems can be described as functional equations where the value of the
function is known or easily estimable but the argument is unknown. Many problems
in econometrics can be stated in the form of inverse problems where the argument
itself is a function. For example, consider a nonlinear regression where the functional
form is the object of interest. One can readily estimate the conditional expectation
of the dependent variable given a vector of instruments. From this estimate, one
would like to recover the unknown functional form.
This chapter provides an introduction to the estimation of the solution to in-

verse problems. It focuses mainly on integral equations of the �rst kind. Solving
these equations is particularly challenging as the solution does not necessarily exist,
may not be unique, and is not continuous. As a result, a regularized (or smoothed)
solution needs to be implemented. We review di¤erent regularization methods and
study the properties of the estimator. Integral equations of the �rst kind appear,
for example, in the generalized method of moments when the number of moment
conditions is in�nite, and in the nonparametric estimation of instrumental variable
regressions. In the last section of this chapter, we investigate integral equations
of the second kind, whose solutions may not be unique but are continuous. Such
equations arise when additive models and measurement error models are estimated
nonparametrically.

Keywords: Additive models, Generalized Method of Moments, Instrumental
variables, Integral equation, Many regressors, Nonparametric estimation, Tikhonov
and Landweber-Fridman regularizations.

JEL: C13, C14, C20.
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1. Introduction

1.1. Structural models and functional estimation

The objective of this chapter is to analyze functional estimation in structural econometric
models. Di¤erent approaches exist to structural inference in econometrics and our pre-
sentation may be viewed as a nonparametric extension of the basic example of structural
models, namely the static linear simultaneous equations model (SEM). Let us consider Y
a vector of random endogenous variables and Z a vector of exogenous random variables.
A SEM is characterized by a system

B�Y + C�Z = U (1.1)

where B� and C� are matrices that are functions of an unknown �structural�parameter
� and E [U jZ] = 0. The reduced form is a multivariate regression model

Y = �Z + V (1.2)

where � is the matrix of ordinary regression coe¢ cients. The relation between reduced
and structural form is, in the absence of higher moments restrictions, characterized by:

B��+ C� = 0: (1.3)

The two essential issues of structural modeling, the identi�cation and the overidenti-
�cation problems, follow from the consideration of Equation (1.3). The uniqueness of the
solution in � for given � de�nes the identi�cation problem. The existence of a solution (or
restrictions imposed on � to guarantee the existence) de�nes the overidenti�cation ques-
tion. The reduced form parameter � can be estimated by OLS and if a unique solution in
� exists for any �, it provides the Indirect Least Square estimate of �. If the solution does
not exist for any �, � can be estimated by a suitable minimization of B��̂ +C� where �̂
is an estimator of �.
In this chapter, we address the issue of functional extension of this construction. The

data generating process (DGP) is described by a stationary ergodic stochastic process
which generates a sequence of observed realizations of a random vector X.
The structural econometric models considered in this chapter are about the station-

ary distribution of X. This distribution is characterized by its cumulative distribution
function (c.d.f.) F; while the functional parameter of interest is an element ' of some in-
�nite dimensional Hilbert space. Following the notation of Florens (2003), the structural
econometric model de�nes the connection between ' and F under the form of a functional
equation:

A('; F ) = 0: (1.4)

This equation extends Equation (1.3) and the de�nitions of identi�cation (uniqueness of
this solution) and of overidenti�cation (constraints on F such that a solution exists) are
analogous to the SEM case. The estimation is also performed along the same line: F
can be estimated by the empirical distribution of the sample or by a more sophisticated
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estimator (like kernel smoothing) belonging to the domain of A. ' is estimated by solving
(1.4) or, in the presence of overidenti�cation, by a minimization of a suitable norm of
A('; F ) after plugging in the estimator of F .
This framework may be clari�ed by some remarks.

1. All the variables are treated as random in our model and this construction seems to
di¤er from the basic econometric models which are based on a distinction between
exogenous or conditioning variables and endogenous variables. Actually this dis-
tinction may be used in our framework. Let X be decomposed into Y and Z and F
into FY (:jZ = z) the conditional c.d.f. of Y given Z = z; and FZ the marginal c.d.f.
of Z. Then, the exogeneity of Z is tantamount to the conjunction of two conditions.

Firstly, the solution ' of (1.4) only depends on FY (:jZ = z) and ' is identi�ed by
the conditional model only. Secondly if FY (:jZ = z) and FZ are �variations free�in
a given statistical model de�ned by a family of sampling distributions (intuitively
no restrictions link FY (:jZ = z) and FZ), no information on FY (:jZ = z) (and then
on ') is lost by neglecting the estimation of FZ . This de�nition fully encompasses
the usual de�nition of exogeneity in terms of cuts (see Engle, Hendry and Richard
(1983), Florens and Mouchart (1985)). Extension of that approach to sequential
models and then to sequential or weak exogeneity is straightforward.

2. Our construction does not explicitly involve residuals or other unobservable vari-
ables. As will be illustrated in the examples below, most of the structural econo-
metric models are formalized by a relationship between observable and unobservable
random elements. A �rst step in the analysis of these models is to express the re-
lationship between the functional parameters of interest and the DGP, or, in our
terminology, to specify the relation A('; F ) = 0. We start our presentation at the
second step of this approach and our analysis is devoted to the study of this equation
and to its use for estimation.

3. The overidenti�cation is handled by extending the de�nition of the parameter in
order to estimate overidenti�ed models. Even if A('; F ) = 0 does not have a so-
lution for a given F , the parameter ' is still de�ned as the minimum of a norm of
A('; F ). Then ' can be estimated from an estimation of F; which does not satisfy
the overidenti�cation constraints. This approach extends the original Generalized
Method of Moments (GMM) treatment of overidenti�cation. Another way to take
into account overidenti�cation constraints consists in estimating F under these con-
straints (the estimator of F is the nearest distribution to the empirical distribution
for which there exists a solution, ', of A('; F ) = 0). This method extends the new
approach to GMM called the empirical likelihood analysis (see Owen (2001) and
references therein). In this chapter, we remain true to the �rst approach: if the
equation A('; F ) = 0 has no solution it will be replaced by the �rst order condition
of the minimization of a norm of A('; F ). In that case, this �rst order condition
de�nes a functional equation usually still denoted A('; F ) = 0.
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1.2. Notation

In this chapter, X is a random element of a �nite or in�nite dimensional space X . In most
of the examples, X is a �nite dimensional euclidean space (X � Rm) and the distribution
on X; denoted F is assumed to belong to a set F : If F is absolutely continuous, its density
is denoted by f . Usually, X is decomposed into several components, X = (Y; Z;W ) 2
Rp�Rq�Rr(p+q+r = m) and the marginal c.d.f. or probability density function (p.d.f.)
are denoted by FY ; FZ ; FW and fY ; fX ; fW respectively. Conditional c.d.f. are denoted by
FY (:jZ = z) or FY (:jz) and conditional density by fY (:jZ = z) or fY (:jz) : The sample
may be an i.i.d. sample of X (denoted in that case (xi)i=1;:::;n) or weakly dependent time
series sample denoted (xt)t=1;:::;T in the dynamic case.
The paper focuses on the estimation of an in�nite dimensional parameter denoted by

', which is an element of a Hilbert spaceH (mathematical concepts are recalled in Section
2). In some particular cases, �nite dimensional parameters are considered and this feature
is underlined by the notation � 2 � � Rd.
The structural model is expressed by an operator A from H�F into an Hilbert space

E and de�nes the equation A('; F ) = 0. The (possibly local) solution of this equation is
denoted by:

' = 	(F ): (1.5)

For statistical discussions, a speci�c notation for the true value is helpful and F0 will
denote the true c.d.f. (associated with the density f0 and with the true parameter '0 (or
�0)). The estimators of the c.d.f. will be denoted by Fn in an i.i.d. setting or FT in a
dynamic environment.
The operator A may take various forms. Particular cases are linear operators with

respect to F or to '. The �rst case will be illustrated in the GMM example but most
of the paper will be devoted to the study of linear operator relatively to '. In that case,
equation A('; F ) = 0 can be rewritten :

A('; F ) = K'� r = 0 (1.6)

where K is a linear operator from H to E depending on F and r is an element of E and
is also a function of F . The properties of K are essential and we will present di¤erent
examples of integral or di¤erential operators. More generally, A may be nonlinear either
with respect to F or to '; but as usual in functional analysis, most of the analysis of
nonlinear operators may be done locally (around the true value typically) and reduces to
the linear case. Game theoretic models or surplus estimation give examples of nonlinear
models.
The problem of solving Equation (1.4) enters in the class of inverse problems. An in-

verse problem consists of the resolution of an equation where the elements of the equations
are imperfectly known. In the linear case, the equation is K' = r and F is not exactly
known but only estimated. Thus, r is also imperfectly known. The econometric situation
is more complex than most of the inverse problems studied in the statistical literature
because K is also only imperfectly known. According to the classi�cation proposed by
Vapnik (1998), the stochastic inverse problems of interest in this chapter are more often
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than not characterized by equations where both the operator and the right-hand side
term need to be estimated. Inverse problems are said to be well-posed if a unique solution
exists and depends continuously on the imperfectly known elements of the equation. In
our notation, this means that 	 in (1.5) exists as a function of F and is continuous. Then
if F is replaced by Fn; the solution 'n of A('n; Fn) = 0 exists and the convergence of Fn
to F0 implies the convergence of 'n to '0 by continuity. Unfortunately a large class of
inverse problems relevant to econometric applications are not well-posed (they are then
said to be ill-posed in the Hadamard sense, see e.g. Kress (1999), Vapnik (1998)). In
this case, a regularization method needs to be implemented to stabilize the solution. Our
treatment of ill-posed problems is closed to that of Van Rooij and Ryumgaart (1999).

1.3. Examples

This section presents various examples of inverse problems motivated by structural econo-
metric models. We will start with the GMM example, which is the most familiar to
econometricians. Subsequently, we present several examples of linear (w.r.t. ') inverse
problems. The last three examples are devoted to nonlinear inverse problems.

1.3.1. Generalized Method of Moments (GMM)

Let us assume that X is m dimensional and the parameter of interest � is also �nite
dimensional (� 2 � � Rd). We consider a function

h : Rm ��! E (1.7)

and the equation connecting � and F is de�ned by:

A(�; F ) = EF (h(X; �)) = 0 (1.8)

A particular case is given by h(X; �) = �(X) � � where � is exactly the expectation
of a transformation � of the data. More generally, � may be replaced by an in�nite
dimensional parameter ' but we do not consider this extension here.
The GMM method was introduced by Hansen (1982) and has received numerous ex-

tensions (see Ai and Chen (2003) for the case of an in�nite dimensional parameter). GMM
consists in estimating � by solving an inverse problem linear in F but nonlinear in �. It
is usually assumed that � is identi�ed i.e. that � is uniquely characterized by Equation
(1.8). Econometric speci�cations are generally overidenti�ed and a solution to (1.8) only
exists for some particular F , including the true DGP F0; under the hypothesis of correct
speci�cation of the model. The c.d.f F is estimated by the empirical distribution and the
equation (1.8) becomes:

1

n

nX
i=1

h(xi; �) = 0; (1.9)

which has no solution in general. Overidenti�cation is treated by an extension of the
de�nition of � as follows:

� = argmin
�
kBEF (h)k2 (1.10)
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where B is a linear operator in E and kk denotes the norm in E . This de�nition coincides
with (1.8) if F satis�es the overidenti�cation constraints. Following Equation (1.10), the
estimator is:

�̂n = argmin
�

Bn

 
1

n

nX
i=1

h(xi; �)

!
2

(1.11)

where Bn is a sequence of operators converging to B. If the number of moment conditions
is �nite, Bn and B are square matrices.
As � is �nite dimensional, the inverse problem generated by the �rst order conditions

of (1.10) or (1.11) is well-posed and consistency of the estimators follows from standard
regularity conditions. As it will be illustrated in Section 6, an ill-posed inverse problem
arises if the number of moment conditions is in�nite and if optimal GMM is used. In �nite
dimensions, optimal GMM is obtained using a speci�c weighting matrix, B = ��

1
2 ; where

� is the asymptotic variance of
p
n
�
1
n

Pn
i=1 h(xi; �)

�
(� = V ar(h) in i.i.d. sampling). In

the general case, optimal GMM requires the minimization of kgk2 where

�
1
2 g = EF (h) (1.12)

The function g is then the solution of a linear inverse problem. If the dimension of h is not
�nite, Equation (1.12) de�nes an ill-posed inverse problem, which requires a regularization
scheme (see Section 3).

1.3.2. Instrumental variables

Instrumental regression is a possible strategy to perform nonparametric estimation when
explanatory variables are endogenous. Let us decompose X into (Y; Z;W ) where Y 2
R, Z 2 Rq, W 2 Rr. The subvectors Z and W may have common elements. The
econometrician starts with a relation

Y = '(Z) + U (1.13)

where U is a random term which does not satisfy E(U jZ) = 0. This assumption is
replaced by the more general hypothesis

E(U jW ) = 0 (1.14)

and W is called the set of instrumental variables. Condition (1.14) de�nes ' as the
solution of an integral equation. In terms of density, (1.14) means that

A('; F ) =

Z
'(z)fZ(zjW = w)dz �

Z
yfY (yjW = w)dy = 0 (1.15)

Using previous notation, the �rst part of (1.15) is denoted K' and the second part is
equal to r.
This expression is linear in ' and can be made linear in F by eliminating the denom-

inator through a multiplication by fW (w). However, as will be seen later, this problem is
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essentially nonlinear in F because the treatment of overidenti�cation and of regularization
will necessarily reintroduce the denominator in (1.15).
Instrumental regression introduced in (1.15) can be generalized to local instrumental

regression and to generalized local instrumental regression. These extensions are relevant
in more complex models than (1.13), where in particular the error term may enter the
equation in non additive ways (see for such a treatment, Florens, Heckman, Meghir, and
Vytlacil (2003)). For example, consider the equation

Y = '(Z) + Z"+ U (1.16)

where Z is scalar and " is a random unobservable heterogeneity component. It can be
proved that, under a set of identi�cation assumptions, ' satis�es the equations :

Aj('; F ) = EF

�
@'(Z)

@Z
jW = w

�
�

@

@Wj

E(Y jW = w)

@

@Wj

E(ZjW = w)

= 0 (1.17)

for any j = 1; :::; r: This equation, linear with respect to ', combines integral and di¤er-
ential operators.
Instrumental variable estimation and its local extension de�ne ill-posed inverse prob-

lems as will be seen in Section 5.

1.3.3. Deconvolution

Another classical example of ill-posed inverse problem is given by the deconvolution prob-
lem. Let us assume that X; Y; Z be three scalar random elements such that

Y = X + Z (1.18)

Only Y is observable. The two components X and Z are independent. The density of
the error term Z is known and denoted g: The parameter of interest is the density ' of
X. Then ' is solution of

A('; F ) =

Z
'(y)g(x� y)dy � f(x) = 0

(1.19)

� K'� r:

This example is comparable to the instrumental variables case but only the r.h.s. r = f
is unknown whereas the operator K is given.

1.3.4. Regression with many regressors

This example also constitutes a case of linear ill-posed inverse problems. Let us consider
a regression model where the regressors are indexed by � belonging to an in�nite index
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set provided with a measure �. The model is

Y =

Z
Z(�)'(�)�(d�) + U (1.20)

where E(U j(Z(�))� ) = 0 and ' is the parameter of interest and is in�nite dimensional.
Examples of regression with many regressors are now common in macroeconomics (see
Stock and Watson (2002) or Forni and Reichlin (1998) for two presentations of this topic).
Let us assume that Y and (Z(�))� are observable. Various treatments of (1.20) can

be done and we just consider the following analysis. The conditional moment equation
E(U j(Z(�))� ) = 0 implies an in�nite number of conditions indexed by � :

E(Z(�)U) = 0; 8�

or equivalently Z
EF (Z(�)Z(�))'(�)�(d�)� EF (Y Z(�)) = 0; 8� (1.21)

This equation generalizes the usual normal equations of the linear regression to an
in�nite number of regressors. The inverse problem de�ned in (1.21) is linear in both F
and ' but it is ill posed. An intuitive argument to illustrate this issue is to consider
the estimation using a �nite number of observations of the second moment operator
EF (Z(�)Z(�)) which is in�nite dimensional. The resulting multicollinearity problem is
solved by a ridge regression. The �in�nite matrix�EF (Z(:)Z(:)) is replaced by �I +
EF (Z(:)Z(:)) where I is the identity and � a positive number, or by a reduction of the set
of regressors to the �rst principal components. These two solutions are particular examples
of regularization methods (namely the Tikhonov and the spectral cut-o¤ regularizations),
which will be introduced in Section 3.

1.3.5. Additive models

The properties of the integral equations generated by this example and by the next one
are very di¤erent from that of the three previous examples. We consider an additive
regression model:

Y = '(Z) +  (W ) + U (1.22)

where E(U jZ;W ) = 0 and X = (Y; Z;W ) is the observable element. The parameters of
interest are the two functions ' and  . The approach we propose here is related to the
back�tting approach (see Hastie and Tibshirani (1990)). Other treatments of additive
models have been considered in the literature (see Pagan and Ullah (1999)). Equation
(1.22) implies 8<:

EF (Y jZ = z) = '(z) + EF ( (W )jZ = z)

EF (Y jW = w) = EF ('(Z)jW = w) +  (w)
(1.23)
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and by substitution

'(z)� EF (EF ('(Z)jW )jZ = z)

= EF (Y jZ = z)� EF (EF (Y jW )jZ = z)
(1.24)

or, in our notations:
(I �K)' = r

whereK = EF (EF ( : jW )jZ). Back�tting refers to the iterative method to solve Equation
(1.23).
An analogous equation characterizes  : Actually even if (1.22) is not well speci�ed,

these equations provide the best approximation of the regression of Y given Z and W by
an additive form. Equation (1.24) is a linear integral equation and even if this inverse
problem is ill-posed because K is not one-to-one (' is only determined up to a constant
term), the solution is still continuous and therefore the di¢ culty is not as important as
that of the previous examples.

1.3.6. Measurement-error models or nonparametric analysis of panel data

We denote � to be an unobservable random variable for which two measurements Y1 and
Y2 are available. These measurements are a¤ected by a bias dependent on observable
variables Z1 and Z2. More formally:8<:

Y1 = � + '(Z1) + U1 E(U1j�; Z1; Z2) = 0

Y2 = � + '(Z2) + U2 E(U2j�; Z1; Z2) = 0
(1.25)

An i.i.d. sample (y1i; y2i; �i; z1i; z2i) is drawn but the �i are unobservable. Equivalently
this model may be seen as a two period panel data with individual e¤ects �i.
The parameter of interest is the �bias function�', identical for the two observations.

In the measurement context, it is natural to assume that the joint distribution of the
observables is independent of the order of the observations, or equivalently (Y1; Z1; Y2; Z2)
are distributed as (Y2; Z2; Y1; Z1). This assumption is not relevant in a dynamic context.
The model is transformed in order to eliminate the unobservable variable by di¤erence:

Y = '(Z2)� '(Z1) + U (1.26)

where Y = Y2 � Y1; U = U2 � U1; and E(U jZ1; Z2) = 0.
This model is similar to an additive model except for the symmetry between the

variables, and the fact that with the notation of (1.22), ' and  are identical. An
application of this model may be found in Gaspar and Florens (1998) where y1i and y2i
are two measurements of the level of the ocean in location i by a satellite radar altimeter,
�i is the true level and ' is the �sea state bias�depending on the waves�height and the
wind speed (Z1i and Z2i are both two dimensional).

8



The model is treated through the relation

E(Y jZ2 = z2) = '(z2)� E('(Z1)jZ2 = z2); (1.27)

which de�nes an integral equation K' = r. The exchangeable property between the
variables implies that conditioning on Z1 gives the same equation (where Z1 and Z2 are
exchanged).

1.3.7. Game theoretic model

This example and the next ones present economic models formalized by nonlinear inverse
problems. As the focus of this chapter is on linear equations, these examples are given
for illustration and will not be treated outside of this section. The analysis of nonlinear
functional equations raises numerous questions: uniqueness and existence of the solution,
asymptotic properties of the estimator, implementation of the estimation procedure and
numerical computation of the solution. Most of these questions are usually solved locally
by a linear approximation of the nonlinear problem deduced from a suitable concept of
derivative. A strong concept of derivation (typically Frechet derivative) is needed to deal
with the implicit form of the model, which requires the use of the Implicit Function
theorem.
The �rst example of nonlinear inverse problems follows from the strategic behavior of

the players in a game. Let us assume that for each game, each player receives a random
signal or type denoted by � and plays an actionX. The signal is generated by a probability
described by its c.d.f. '; and the players all adopt a strategy � dependent on ' which
associates X with �, i.e.

X = �'(�):

The strategy �' is determined as an equilibrium of the game (e.g. Nash equilibrium) or
by an approximation of the equilibrium (bounded rationality behavior). The signal � is
private knowledge for the player but is unobserved by the econometrician, and the c.d.f.
' is common knowledge for the players but is unknown for the statistician. The strategy
�' is determined from the rules of the game and by the assumptions on the behavior of
the players. The essential feature of the game theoretic model from a statistical viewpoint
is that the relation between the unobservable and the observable variables depends on the
distribution of the unobservable component. The parameter of interest is the c.d.f. ' of
the signals.
Let us restrict our attention to cases where � and X are scalar and where �' is strictly

increasing. Then the c.d.f. F of the observable X is connected with ' by:

A('; F ) = F � �' � ' = 0 (1.28)

If the signals are i.i.d. across the di¤erent players and di¤erent games, F can be
estimated by a smooth transformation of the empirical distribution and Equation (1.28)
is solved in '. The complexity of this relation can be illustrated by the auction model.

9



In the private value �rst price auction model, � is the value of the object and X the bid.
If the number of bidders is N + 1 the strategy function is equal to:

X = � �

Z �

�

'N(u)du

'N(�)
(1.29)

where [�; ��] is the support of � and 'N(u) = ['(u)]N is the c.d.f. of the maximum private
value among N players.
Model (1.28) may be extended to a non iid setting (depending on exogenous variables)

or to the case where �' is partially unknown. The analysis of this model has been done by
Guerre, Perrigne and Vuong (2000) in a nonparametric context. The framework of inverse
problem is used by Florens, Protopopescu and Richard (1997).

1.3.8. Solution of a di¤erential equation

In several models like the analysis of the consumer surplus, the function of interest is the
solution of a di¤erential equation depending on the data generating process.
Consider for example a class of problems where X = (Y; Z;W ) 2 R3 is i.i.d., F is the

c.d.f. of X and the parameter ' veri�es:

d

dz
'(z) = mF (z; '(z)) (1.30)

when mF is a regular function depending on F . A �rst example is

mF (z; w) = EF (Y jZ = z;W = w) (1.31)

but more complex examples may be constructed in order to take into account the en-
dogeneity of one or two variables. For example, Z may be endogenous and mF may be
de�ned by:

E(Y jW1 = w1;W2 = w2) = E(mF (Z;W1)jW1 = w1;W2 = w2) (1.32)

Economic applications can be found in Hausman (1981, 1985) and Hausman and Newey
(1995) and a theoretical treatment of these two problems is given by Vanhems (2006) and
Loubes and Vanhems (2001).

1.3.9. Instrumental variables in a nonseparable model

Another example of a nonlinear inverse problem is provided by the following model:

Y = ' (Z;U) (1.33)

where Z is an endogenous variable. The function ' is the parameter of interest. Denote
'z (u) = ' (z; u) : Assume that 'z (u) is an increasing function of u for each z: Moreover,
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the distribution, FU of U is assumed to be known for identi�cation purposes. Model (1.33)
may arise in a duration model where Y is the duration (see Equation (2.2) of Horowitz
1999). One di¤erence with Horowitz (1999) is the presence of an endogenous variable
here. There is a vector of instruments W; which are independent of U . Because U and W
are independent, we have

P (U � ujW = w) = P (U � u) = FU (u) : (1.34)

Denote f the density of (Y; Z) and

F (y; zjw) =
Z y

�1
f (t; zjw) dt:

F can be estimated using the observations (yi; zi; wi), i = 1; 2; :::; n. By a slight abuse of
notation, we use the notation P (Y � y; Z = zjW = w) for F (y; zjw) : We have

P (U � u; Z = zjW = w) = P
�
'z (Y )

�1 � u; Z = zjW = w
�

= P (Y � 'z (u) ; Z = zjW = w)

= F ('z (u) ; zjw) : (1.35)

Combining Equations (1.34) and (1.35), we obtainZ
F ('z (u) ; zjw) dz = FU (u) : (1.36)

Equation (1.36) belongs to the class of Urysohn equations of Type I (Polyanin andManzhi-
rov, 1998). The estimation of the solution of Equation (1.36) is discussed in Florens
(2005).

1.4. Organization of the chapter

Section 2 reviews the basic de�nitions and properties of operators in Hilbert spaces. The
focus is on compact operators because they have the advantage of having a discrete
spectrum. We recall some laws of large numbers and central limit theorems for Hilbert
valued random elements. Finally, we discuss how to estimate the spectrum of a compact
operator and how to estimate the operators themselves.
Section 3 is devoted to solving integral equations of the �rst kind. As these equations

are ill-posed, the solution needs to be regularized (or smoothed). We investigate the
properties of the regularized solutions for di¤erent types of regularizations.
In Section 4, we show under suitable assumptions the consistency and asymptotic

normality of regularized solutions.
Section 5 detail �ve examples: the ridge regression, the factor model, the in�nite

number of regressors, the deconvolution, and the instrumental variables estimation.
Section 6 has two parts. First, it recalls the main results relative to reproducing

kernels. Reproducing kernel theory is closely related to that of the integral equations
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of the �rst kind. Second, we explain the extension of GMM to a continuum of moment
conditions and show how the GMM objective function reduces to the norm of the moment
functions in a speci�c reproducing kernel Hilbert space. Several examples are provided.
Section 7 tackles the problem of solving integral equations of the second kind. A

typical example of such a problem is the additive model introduced earlier.
Finally, a web site containing an annotated bibliography and resources on inverse

problems complements this chapter. It can be found on
http://www.sceco.umontreal.ca/liste_personnel/carrasco/.

2. Spaces and Operators

The purpose of this section is to introduce terminology and to state the main properties of
operators in Hilbert spaces that are used in our econometric applications. Most of these
results can be found in Debnath and Mikusinsky (1999) and Kress (1999). Ait-Sahalia,
Hansen, and Scheinkman (2005) provide an excellent survey of operator methods for the
purpose of �nancial econometrics.

2.1. Hilbert spaces

We start by recalling some of the basic concepts of analysis. In the sequel, C denotes the
set of complex numbers. A vector space equipped by a norm is called a normed space.
A sequence ('n) of elements in a normed space is called a Cauchy sequence if for every
" > 0 there exists an integer N (") such that

k'n � 'mk < "

for all n; m � N (") ; i.e, if limn;m!1 k'n � 'mk = 0: A space S is complete if every
Cauchy sequence converges to an element in S: A complete normed vector space is called
a Banach space.
Let (E; E ;�) be a probability space and

LpC (E; E ;�) =
(
f : E ! C measurable s.t. kfk �

�Z
jf jp d�

�1=p
<1

)
; p � 1:

Then, LpC (E; E ;�) is a Banach space. If we only consider functions valued in R this space
is still a Banach space and is denoted in that case by Lp (we drop the subscript C). In
the sequel, we also use the following notation. If E is a subset of Rp, then the ���eld E
will always be the Borel ���eld and will be omitted in the notation Lp (Rp;�). If � has
a density � with respect to Lebesgue measure, � will be replaced by �: If � is uniform, it
will be omitted in the notation.

De�nition 2.1 (Inner product). Let H be a complex vector space. A mapping h; i :
H � H ! C is called an inner product in H if for any ';  ; � 2 H and �; � 2 C the
following conditions are satis�ed:
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(a) h';  i = h ; 'i (the bar denotes the complex conjugate),
(b) h�'+ � ; �i = � h'; �i+ � h ; �i ;
(c) h'; 'i � 0 and h'; 'i = 0() ' = 0:
A vector space equipped by an inner product is called an inner product space.

Example. The space CN of ordered N -tuples x = (x1; :::; xN) of complex numbers,
with the inner product de�ned by

hx; yi =
NX
l=1

xlyl

is an inner product space.
Example. The space l2 of all sequences (x1; x2; :::) of complex numbers such thatP1
j=1 jxjj

2 <1 with the inner product de�ned by hx; yi =
P1

j=1 xjyj for x = (x1; x2; :::)
and y = (y1; y2; :::) is an in�nite dimensional inner product space.
Example. The space L2C (E; E ;�) associated with the inner product de�ned by

h';  i =
Z
' d�

is an inner product space. On the other hand, LpC (E; E ;�) is not a inner product space
if p 6= 2:
An inner product satis�es the Cauchy-Schwartz inequality, that is,

jh';  ij2 � h'; 'i h ;  i

for all ',  2 H: Remark that h'; 'i is real because h'; 'i = h'; 'i: It actually de�nes a
norm k'k = h'; 'i1=2 (this is the norm induced by the inner product h; i).

De�nition 2.2 (Hilbert space). If an inner product space is complete in the induced
norm, it is called a Hilbert space.

A standard theorem in functional analysis guarantees that every inner product space
H can be completed to form a Hilbert space H. Such a Hilbert space is said to be the
completion of H:
Example. CN , l2 and L2 (R;�) are Hilbert spaces.
Example. (Sobolev space) Let 
 = [a; b] be an interval of R: Denote by ~Hm (
),

m = 1; 2; :::; the space of all complex-valued functions ' 2 Cm such that for all jlj � m;
'(l) = @l' (�) =@� l 2 L2 (
) : The inner product on ~Hm (
) is

h';  i =
Z b

a

mX
l=0

'(l) (�) (l) (�)d� :

~Hm (
) is an inner product space but it is not a Hilbert space because it is not complete.
The completion of ~Hm (
) ; denoted Hm (
), is a Hilbert space.
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De�nition 2.3 (Convergence). A sequence ('n) of vectors in an inner product space
H; is called strongly convergent to a vector ' 2 H if k'n � 'k ! 0 as n!1:

Remark that if ('n) converges strongly to ' in H then h'n;  i ! h';  i as n ! 1,
for every  2 H. The converse is false.

De�nition 2.4. Let H be an inner product space. A sequence ('n) of nonzero vectors
in H is called an orthogonal sequence if h'm; 'ni = 0 for n 6= m: If in addition k'nk = 1
for all n, it is called an orthonormal sequence.

Example. Let � (x) be the pdf of a normal with mean � and variance �2. Denote by
�j the Hermite polynomials of degree j:

�j (x) = (�1)
j
dj�
dxj

�
: (2.1)

The functions �j (x) form an orthogonal system in L2 (R; �) :
Any sequence of vectors

�
 j
�
in an inner product space that is linearly independent,

i.e.,
1X
j=1

�j j = 0) �j = 0 8j = 1; 2; :::

can be transformed into an orthonormal sequence by the method called Gram-Schmidt
orthonormalization process. This process consists of the following steps. Given

�
 j
�
,

de�ne a sequence
�
'j
�
inductively as

'1 =
 1
k 1k

;

'2 =
 2 � h 2; '1i'1
k 2 � h 2; '1i'1k
...

'n =
 n �

Pn�1
l=1 h n; 'li'l n �Pn�1
l=1 h n; 'li'l

 :
As a result,

�
'j
�
is orthonormal and any linear combinations of vectors '1; :::; 'n is also

a linear combinations of  1; :::;  n and vice versa.

Theorem 2.5 (Pythagorean formula). If '1; :::; 'n are orthogonal vectors in an inner
product space, then 

nX
j=1

'j


2

=

nX
j=1

'j2 :
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From the Pythagorean formula, it can be seen that the �j that minimize'�
nX
j=1

�j'j


are such that �j =



'; 'j

�
: Moreover

nX
j=1

��
'; 'j���2 � k'k2 : (2.2)

Hence the series
P1

j=1

��
'; 'j���2 converges for every ' 2 H. The expansion
' =

1X
j=1



'; 'j

�
'j (2.3)

is called a generalized Fourier series of ': In general, we do not know whether the series
in (2.3) is convergent. Below we give a su¢ cient condition for convergence.

De�nition 2.6 (Complete orthonormal sequence ). An orthonormal sequence
�
'j
�

in an inner product space H is said to be complete if for every ' 2 H we have

' =
1X
j=1



'; 'j

�
'j

where the equality means

lim
n!1

'�
nX
j=1



'; 'j

�
'j

 = 0
where k:k is the norm in H:

A complete orthonormal sequence
�
'j
�
in an inner product space H is an orthonormal

basis in H; that is every ' 2 H has a unique representation ' =
P1

j=1 �j'j where �l 2 C.
If
�
'j
�
is a complete orthonormal sequence in an inner product space H then the set

span f'1; '2; :::g =
(

nX
j=1

�j'j : 8n 2 N; 8�1; :::; �n 2 C
)

is dense in H:

Theorem 2.7. An orthonormal sequence
�
'j
�
in a Hilbert space H is complete if and

only if


'; 'j

�
= 0 for all j = 1; 2; ::: implies ' = 0:
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Theorem 2.8 (Parseval�s formula). An orthonormal sequence
�
'j
�
in a Hilbert space

H is complete if and only if

k'k2 =
1X
j=1

��
'; 'j���2 (2.4)

for every ' 2 H.

De�nition 2.9 (Separable space). A Hilbert space is called separable if it contains a
complete orthonormal sequence.

Example. A complete orthonormal sequence in L2 ([��; �]) is given by

�j (x) =
eijxp
2�
, j = :::;�1; 0; 1; :::

Hence, the space L2 ([��; �]) is separable.

Theorem 2.10. Every separable Hilbert space contains a countably dense subset.

2.2. De�nitions and basic properties of operators

In the sequel, we denote K : H ! E the operator that maps a Hilbert space H (with
norm k:kH) into a Hilbert space E (with norm k:kE).

De�nition 2.11. An operator K : H ! E is called linear if

K (�'+ � ) = �K'+ �K 

for all ',  2 H and all �; � 2 C:

De�nition 2.12. (i) The null space ofK : H ! E is the setN (K) = f' 2 H : K' = 0g :
(ii) The range of K : H ! E is the set R(K) = f 2 E :  = K' for some ' 2 Hg :
(iii) The domain ofK : H ! E is the subset ofH denoted D(K) on whichK is de�ned.
(iv) An operator is called �nite dimensional if its range is of �nite dimension.

Theorem 2.13. A linear operator is continuous if it is continuous at one element.

De�nition 2.14. A linear operatorK : H ! E is called bounded if there exists a positive
number C such that

kK'kE � C k'kH
for all ' 2 H.

De�nition 2.15. The norm of a bounded operator K is de�ned as

kKk � sup
k'k�1

kK'kE
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Theorem 2.16. A linear operator is continuous if and only if it is bounded.

Example. The identity operator de�ned by I' = ' for all ' 2 H is bounded with
kIk = 1:
Example. Consider the di¤erential operator:

(D') (x) =
d' (�)

d�
= '0 (�)

de�ned on the spaceE1 = f' 2 L2 ([��; �]) : '0 2 L2 ([��; �])g with norm k'k =
qR �

�� jf (�)j
2 d� :

For 'j (�) = sin j� , j = 1; 2; :::; we have
'j = qR ��� jsin (j�)j2 d� = p� and D'j =qR �

�� jj cos (j�)j
2 d� = j

p
�: Therefore

D'j = j
'j proving that the di¤erential

operator is not bounded.

Theorem 2.17. Each linear operator K from a �nite dimensional normed space H into
a normed space E is bounded.

An important class of linear operators are valued in C and they are characterized by
Riesz theorem. By Cauchy-Schwartz inequality, it follows that for any �xed vector g in
an inner product space H, the formula G (') = h'; gi de�nes a bounded linear functional
on H: It turns out that if H is a Hilbert space, then every bounded linear functional is of
this form.

Theorem 2.18 (Riesz). Let H be a Hilbert space. Then for each bounded linear func-
tion G : H !C there exists a unique element g 2 H such that

G (') = h'; gi

for all ' 2 H. The norms of the element g and the linear function G coincide

kgkH = kGk

where k:kH is the norm in H and k:k is the operator norm.

De�nition 2.19 (Hilbert space isomorphism). A Hilbert space H1 is said to be iso-
metrically isomorphic (congruent) to a Hilbert space H2 if there exists a one-to-one linear
mapping J from H1 to H2 such that

hJ (') ; J ( )iH2
= h';  iH1

for all ',  2 H1. Such a mapping J is called a Hilbert space isomorphism (or congruence)
from H1 to H2:

The terminology �congruence�is used by Parzen (1959, 1970).
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Theorem 2.20. Let H be a separable Hilbert space.
(a) If H is in�nite dimensional, then it is isometrically isomorphic to l2:
(b) If H has a dimension N , then it is isometrically isomorphic to CN :

A consequence of Theorem 2.20 is that two separable Hilbert spaces of the same
dimension (�nite or in�nite) are isometrically isomorphic.

Theorem 2.21. Let H and E be Hilbert spaces and let K : H ! E be a bounded op-
erator. Then there exists a uniquely determined linear operator K� : E ! H with the
property

hK'; iE = h';K� iH
for all ' 2 H and  2 E . Moreover, the operator K� is bounded and kKk = kK�k : K�

is called the adjoint operator of K:

Riesz Theorem 2.18 implies that, in Hilbert spaces, the adjoint of a bounded operator
always exists.

Example 2.1. (discrete case) Let � and � be two discrete probability density func-
tions on N: Let H = L2 (N; �) =

�
' : N! R; ' = ('l)l2N such that

P
l2N '

2
l � (l) <1

	
and E = L2 (N; �). The operator K that associates to elements ('l)l2N of H elements�
 p
�
p2N of E such that

(K')p =  p =
X
l2N

k (p; l)'l� (l)

is an in�nite dimensional matrix. If H and E are �nite dimensional, then K is simply a
matrix and K� = K 0.
Example 2.2. (integral operator) An important kind of operator is the integral

operator. Let H = L2C (Rq; �) and E =L2C (Rr; �) where � and � are pdf. The integral
operator K : H ! E is de�ned as

K' (�) =

Z
k (� ; s)' (s)� (s) ds: (2.5)

The function k is called the kernel of the operator. If k satis�esZ Z
jk (� ; s)j2 � (s) � (�) dsd� <1 (2.6)

(k is said to be a L2�kernel) then K is a bounded operator and

kKk �

sZ Z
jk (� ; s)j2 � (s) � (�) dsd� :
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Indeed for any ' 2 H, we have

kK'k2E =

Z ����Z k (� ; s)' (s)� (s) ds

����2 � (�) d�
=

Z
jhk (� ; :) ; ' (:)iHj

2 � (�) d�

�
Z
kk (� ; :)k2

H
k'k2

H
� (�) d�

by Cauchy-Schwarz inequality. Hence we have

kK'k2E � k'k2
H

Z
kk (� ; :)k2

H
� (�) d�

= k'k2
H

Z Z
jk (� ; s)j2 � (s) � (�) dsd� :

The upperbound for kKk follows.
The adjoint K� of the operator K is also an integral operator

K� (s) =

Z
k� (s; �) (�) � (�) d� (2.7)

with k� (s; �) = k (� ; s): Indeed, we have

hK'; iE =

Z
(K') (�) (�)� (�) d�

=

Z �Z
k (� ; s)' (s)� (s) ds

�
 (�)� (�) d�

=

Z
' (s)

�Z
k (� ; s) (�)� (�)

�
� (s) ds

=

Z
' (s)

�Z
k� (s; �) (�) � (�)

�
� (s) ds

= h';K� iH .

There are two types of integral operators we are interested in, the covariance operator
and the conditional expectation operator.
Example 2.3. (conditional expectation operator) When K is a conditional ex-

pectation operator, it is natural to de�ne the spaces of reference as a function of unknown
pdfs. Let (Z;W ) 2 Rq � Rr be a r.v. with distribution FZ;W ; let FZ ; and FW be the
marginal distributions of Z andW respectively. The corresponding pdfs are denoted fZ;W ,
fZ , and fW : De�ne

H = L2 (Rq; fZ) � L2Z ;

E = L2 (Rr; fW ) � L2W :
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Let K be the conditional expectation operator:

K : L2Z ! L2W
' ! E [' (Z) jW ] : (2.8)

K is an integral operator with kernel

k (w; z) =
fZ;W (z; w)

fZ (z) fW (w)
:

By Equation (2.7), its adjoint K� has kernel k� (z; w) = k (w; z) and is also a conditional
expectation operator:

K� : L2W ! L2Z
 ! E [ (W ) jZ] :

Example 2.4. (Restriction of an operator on a subset of H) Let K : H ! E
and consider the restriction denoted K0 of K on a subspace H0 of H. K0 : H0! E is such
that K0 and K coincide on H0: It can be shown that the adjoint K�

0 of K0 is the operator
mapping E into H0 such that

K�
0 = PK� (2.9)

where P is the projection on H0. The expression of K�
0 will re�ect the extra information

contained in H0.
To prove (2.9), we use the de�nition of K� :

hK'; iE = h';K� iH for all ' 2 H0

= h';K�
0 iH0

for all ' 2 H0

, h';K� �K�
0 iH = 0 for all ' 2 H0

, K� �K�
0 2 H?

0

, K�
0 = PK� :

A potential application of this result to the conditional expectation in Example 2.3 is
the case where ' is known to be additive. Let Z = (Z1; Z2) : Then

H0 =
�
' (Z) = '1 (Z1) + '2 (Z2) : '1 2 L2Z1 ; '2 2 L

2
Z2

	
:

Assume that E ['1 (Z1)] = E ['2 (Z2)] = 0: We have P' = ('1; '2) with

'1 = (I � P1P2)
�1 (P1 � P1P2)';

'2 = (I � P1P2)
�1 (P2 � P1P2)';

where P1 and P2 are the projection operators on L2Z1 and L
2
Z2
respectively. If the two

spaces L2Z1 and L
2
Z2
are orthogonal, then '1 = P1' and '2 = P2':

De�nition 2.22 (Self-adjoint). IfK = K� thenK is called self-adjoint (or Hermitian).
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Remark that if K is a self-adjoint integral operator, then k (s; �) = k (� ; s):

Theorem 2.23. Let K : H ! H be a self-adjoint operator then

kKk = sup
k'k=1

��hK';'i
H

�� :
De�nition 2.24 (Positive operator). An operator K : H ! H is called positive if it
is self-adjoint and hK';'iH � 0.

De�nition 2.25. A sequence (Kn) of operators Kn : H ! E is called pointwise conver-
gent if for every ' 2 H, the sequence Kn' converges in E . A sequence (Kn) of bounded
operators converges in norm to a bounded operator K if kKn �Kk ! 0 as n!1.

De�nition 2.26 (Compact operator). A linear operator K : H ! E is called a com-
pact operator if for every bounded sequence ('n) in H, the sequence (K'n) contains a
convergent subsequence in E .

Theorem 2.27. Compact linear operators are bounded.

Not every bounded operator is compact. An example is given by the identity operator
on an in�nite dimensional space H. Consider an orthonormal sequence (en) in H. Then
the sequence Ien = en does not contain a convergent subsequence.

Theorem 2.28. Finite dimensional operators are compact.

Theorem 2.29. If the sequence Kn : H ! E of compact linear operators are norm con-
vergent to a linear operator K : H ! E , i.e., kKn �Kk ! 0 as n ! 1; then K is
compact. Moreover, every compact operator is the limit of a sequence of operators with
�nite dimensional range.

Hilbert Schmidt operators are discussed in Dunford and Schwartz (1988, p. 1009),
Dautray and Lyons (1988, Vol 5, p.41, chapter VIII).

De�nition 2.30 (Hilbert-Schmidt operator). Let
�
'j; j = 1; 2; :::

	
be a complete or-

thonormal set in a Hilbert space H. An operator K : H ! E is said to be a Hilbert-
Schmidt operator if the quantity k:kHS de�ned by

kKkHS =
( 1X
j=1

K'j2E
)1=2

is �nite. The number kKkHS is called the Hilbert-Schmidt norm of K: Moreover

kKk � kKkHS (2.10)

and hence K is bounded.
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From (2.10), it follows that HS norm convergence implies (operator) norm convergence.

Theorem 2.31. The Hilbert-Schmidt norm is independent of the orthonormal basis used
in its de�nition.

Theorem 2.32. Every Hilbert-Schmidt operator is compact.

Theorem 2.33. The adjoint of a Hilbert-Schmidt operator is itself a Hilbert-Schmidt
operator and kKkHS = kK�kHS :

Theorem 2.32 implies that Hilbert-Schmidt (HS) operators can be approached by a
sequence of �nite dimensional operators, which is an attractive feature when it comes
to estimating K. Remark that the integral operator K de�ned by (2.5) and (2.6) is a
Hilbert-Schmidt (HS) operator and its adjoint is also a HS operator. Actually, all Hilbert-
Schmidt operators of L2 (Rq; �) in L2 (Rr; �) are integral operators. The following theorem
is proved in Dautray and Lions (Vol. 5, p. 45).

Theorem 2.34. An operator of L2 (Rq; �) in L2 (Rr; �) is Hilbert-Schmidt if and only if
it admits a kernel representation (2.5) conformable to (2.6). In this case, the kernel k is
unique.

Example 2.1 (continued). Let K from L2 (N; �) in L2 (N; �) with kernel k (l; p). K
is a Hilbert-Schmidt operator if

PP
k (l; p)2 � (l) � (p) < 1: In particular, the operator

de�ned by (K')1 = '1 and (K')p = 'p � 'p�1; p = 2; 3; ::: is not a Hilbert-Schmidt
operator; it is not even compact.
Example 2.3 (continued). By Theorem 2.34, a su¢ cient condition for K and K�

to be Hilbert-Schmidt and therefore compact isZ Z �
fZ;W (z; w)

fZ (z) fW (w)

�2
fZ (z) fW (w) dzdw <1:

Example 2.5 (Conditional expectation with common elements). Consider a
conditional expectation operator from L2 (X;Z) into L2 (X;W ) de�ned by

(K') (x;w) = E [' (X;Z) jX = x;W = w] :

Because there are common elements between the conditioning variable and the argument
of the function '; the operator K is not compact. Indeed, let ' (X) be such that E ('2) =
1, we have K' = ': It follows that the image of the unit circle in L2 (X;Z) contains the
unit circle of L2 (X) and hence is not compact. Therefore, K is not compact.
Example 2.6 (Restriction). For illustration, we consider the e¤ect of restricting K

on a subset of L2C (Rq; �) : Consider eK the operator de�ned by

eK : L2C (Rq; e�)! L2C (Rr;e�)eK' = K'
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for every ' 2 L2C (Rq; e�) ; where L2C (Rq; e�) � L2C (Rq; �) and L2C (Rr;e�) � L2C (Rr; �) :
Assume that K is a HS operator de�ned by (2.5). Under which conditions is eK an HS
operator? Let

eK' (s) =

Z
k (� ; s)' (s)� (s) ds

=

Z
k (� ; s)

� (s)e� (s)' (s) e� (s) ds
�

Z ek (� ; s)' (s) e� (s) ds:
Assume that e� (s) = 0 implies � (s) = 0 and � (�) = 0 implies e� (�) = 0: Note thatZ ���ek (� ; s)���2 e� (s)e� (�) dsd�

=

Z
jk (� ; s)j2 � (s)e� (s) e� (�)� (�)

� (s) � (�) dsd�

< sup
s

����� (s)e� (s)
���� sup

�

����e� (�)� (�)

���� Z jk (� ; s)j2 � (s) � (�) dsd� :

Hence the HS property is preserved if (a) there is a constant c > 0 such that � (s) � ce� (s)
for all s 2 Rq and (b) there is a constant d such that e� (�) � d� (�) for all � 2 Rr:

2.3. Spectral decomposition of compact operators

For compact operators, spectral analysis reduces to the analysis of eigenvalues and eigen-
functions. Let K : H ! H be a compact linear operator.

De�nition 2.35. � is an eigenvalue of K if there is a nonzero vector � 2 H such that
K� = ��: � is called the eigenfunction of K corresponding to �:

Theorem 2.36. All eigenvalues of a self-adjoint operator are real and eigenfunctions
corresponding to di¤erent eigenvalues are orthogonal.

Theorem 2.37. All eigenvalues of a positive operator are nonnegative.

Theorem 2.38. For every eigenvalue � of a bounded operator K; we have j�j � kKk :

Theorem 2.39. Let K be a self-adjoint compact operator, the set of its eigenvalues (�j)
is countable and its eigenvectors

�
�j
�
can be orthonormalized. Its largest eigenvalue (in

absolute value) satis�es j�1j = kKk : If K has in�nitely many eigenvalues j�1j � j�2j � :::,
then limj!1�j = 0.

Let K : H ! E ; K�K and KK� are self-adjoint positive operators on H and E respec-
tively. Hence their eigenvalues are nonnegative by Theorem 2.37.
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De�nition 2.40. Let H and E be Hilbert spaces, K : H ! E be a compact linear
operator and K� : E ! H be its adjoint. The square roots of the eigenvalues of the
nonnegative self-adjoint compact operator K�K : H ! H are called the singular values
of K:

The following results (Kress, 1999, Theorem 15.16) apply to operators that are not
necessarily self-adjoint.

Theorem 2.41. Let (�j) denote the sequence of the nonzero singular values of the com-
pact linear operator K repeated according to their multiplicity. Then there exist ortho-
normal sequences �j of H and  j of E such that

K�j = �j j; K
� j = �j�j (2.11)

for all j 2 N: For each ' 2 H we have the singular value decomposition

' =
1X
j=1



'; �j

�
�j +Q' (2.12)

with the orthogonal projection operator Q : H ! N (K) and

K' =
1X
j=1

�j


'; �j

�
 j: (2.13)

�
�j; �j;  j

	
is called the singular system ofK: Note that �2j are the nonzero eigenvalues

of KK� and K�K associated with the eigenfunctions  j and �j respectively.

Theorem 2.42. Let K be the integral operator de�ned by (2.5) and assume Condition
(2.6) holds. Let

�
�j; �j;  j

	
be as in (2.11). Then:

(i) The Hilbert Schmidt norm of K can be written as

kKkHS =
(X
j2N

j�jj2
)1=2

=

�Z Z
jk (� ; s)j2 � (s) � (�) dsd�

�1=2
where each �j is repeated according to its multiplicity.
(ii) (Mercer�s formula) k (� ; s) =

P1
j=1 �j j (�)�j (s):

Example (degenerate operator). Consider an integral operator de�ned on L2 ([a; b])
with a Pincherle-Goursat kernel

Kf (�) =

Z b

a

k (� ; s) f (s) ds;

k (� ; s) =

nX
l=1

al (�) bl (s) :
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Assume that al and bl belong to L2 ([a; b]) for all l: By (2.6), it follows that K is bounded.
Moreover, as K is �nite dimensional, we have K compact by Theorem 2.28. Assume that
the set of functions (al) is linearly independent. The equality K� = �� yields

nX
l=1

al (�)

Z
bl (s)� (s) ds = �� (�) ;

hence � (�) is necessarily of the form
Pn

l=1 clal (�). The dimension of the range of K is
therefore n and there are at most n nonzero eigenvalues.
Example. Let H = L2 ([0; 1]) and the integral operator Kf (�) =

R 1
0
(� ^ s) f (s) ds

where �^s = min(� ; s). It is possible to explicitly compute the eigenvalues and eigenfunc-
tions ofK by solvingK� = ��()

R �
0
s� (s) ds+�

R 1
�
� (s) ds = �� (�) : Using two succes-

sive di¤erentiations with respect to � , we obtain a di¤erential equation � (�) = ���00 (�)
with boundary conditions � (0) = 0 and �0 (1) = 0: Hence the set of orthonormal eigen-
functions is �j (�) =

p
2 sin ((�j�) =2) associated with the eigenvalues �j = 4= (�2j2),

j = 1; 3; 5; ::::We can see that the eigenvalues converge to zero at an arithmetic rate.
Example. Let � be the pdf of the standard normal distribution and H = L2 (R; �) :

De�ne K as the integral operator with kernel

k (� ; s) =
l (� ; s)

� (�)� (s)

where l (� ; s) is the joint pdf of the bivariate normal N
��

0
0

�
;

�
1 �
� 1

��
: Then K

is a self-adjoint operator with eigenvalues �j = �j and has eigenfunctions that take the
Hermite polynomial form �j; j = 1; 2; ::: de�ned in (2.1). This is an example where the
eigenvalues decay exponentially fast.

2.4. Random element in Hilbert spaces

2.4.1. De�nitions

Let H be a real separable Hilbert space with norm kk induced by the inner product h; i :
Let (
;F ; P ) be a complete probability space. Let X : 
! H be a Hilbert space-valued
random element (an H-r.e.). X is integrable or has �nite expectation E (X) if E (kXk) =R


kXk dP <1; in that case E (X) satis�es E (X) 2 H and E [hX;'i] = hE (X) ; 'i for

all ' 2 H. An H-r.e. X is weakly second order if E
�
hX;'i2

�
< 1 for all ' 2 H. For a

weakly second order H-r.e. X with expectation E (X) ; we de�ne the covariance operator
K as

K : H ! H
K' = E [hX � E (X) ; 'i (X � E (X))]

for all ' 2 H. Note that var hX;'i = hK';'i :

25



Example. Let H = L2 ([0; 1]) with kgk =
hR 1
0
g (�)2 d�

i1=2
and X = h (� ; Y ) where Y

is a random variable and h (:; Y ) 2 L2 ([0; 1]) with probability one. Assume E (h (� ; Y )) =
0, then the covariance operator takes the form:

K' (�) = E [hh (:; Y ) ; 'ih (� ; Y )]

= E

��Z
h (s; Y )' (s) ds

�
h (� ; Y )

�
=

Z
E [h (� ; Y )h (s; Y )]' (s) ds

�
Z
k (� ; s)' (s) ds:

Moreover, if h (� ; Y ) = I fY � �g � F (�) then k (� ; s) = F (� ^ s)� F (�)F (s) :

De�nition 2.43. An H-r.e. Y has a Gaussian distribution on H if for all ' 2 H the
real-valued r.v. h'; Y i has a Gaussian distribution on R.

De�nition 2.44 (strong mixing). Let fXi;n; i = :::;�1; 0; 1; :::;n � 1g be an array of
H-r.e., de�ned on the probability space (
;F ; P ) and de�ne An;b

n;a = � (Xi;n; a � i � b)
for all �1 � a � b � +1; and n � 1: The array fXi;ng is called a strong or ��mixing
array of H-r.e. if limj!1 � (j) = 0 where

� (j) = sup
n�1

sup
l
sup
A;B

h
jP (A \B)� P (A)P (B)j : A 2 An;l

n;�1; B 2 An;+1
n;l+j

i
:

2.4.2. Central limit theorem for mixing processes

Wewant to study the asymptotic properties of Zn = n�1=2
Pn

i=1Xi;n where fXi;n : 1 � 1 � ng
is an array of H-r.e.. Weak and strong laws of large numbers for near epoch dependent
(NED) processes can be found in Chen and White (1996). Here we provide su¢ cient
conditions for the weak convergence of processes to be denoted ) (see Davidson, 1994,
for a de�nition). Weak convergence is stronger than the standard central limit theorem
(CLT) as illustrated by a simple example. Let (Xi) be an iid sequence of zero mean weakly
second order elements of H. Then for any Z in H, hXi; Zi is an iid zero mean sequence
of C with �nite variance hKZ;Zi. Then standard CLT implies the asymptotic normality
of 1p

n

Pn
i=1 hXi; Zi : The weak convergence of 1p

n

Pn
i=1Xi to a Gaussian process N (0; K)

in H requires an extra assumption, namely E kX1k2 < 1: Weak convergence theorems
for NED processes that might have trending mean (hence are not covariance stationary)
are provided by Chen and White (1998). Here, we report results for mixing processes
proved by Politis and Romano (1994). See also van der Vaart and Wellner (1996) for iid
sequences.

Theorem 2.45. Let fXi;n : 1 � 1 � ng be a double array of stationary mixing H-r.e.
with zero mean, such that for all n; kXi;nk < B with probability one, and

Pm
j=1 j

2� (j) �
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Kmr for all 1 � m � n and n, and some r < 3=2. Assume, for any integer l � 1,
that (X1;n; :::; Xl;n), regarded as a r.e. of Hl, converges in distribution to say, (X1; :::; Xl).
Moreover, assume E [hX1;n; Xl;ni]! E [hX1; Xli] as n!1 and

lim
n!1

nX
l=1

E [hX1;n; Xl;ni] =
1X
l=1

E [hX1; Xli] <1:

Let Zn = n�1=2
Pn

i=1Xi;n. For any ' 2 H; let �2';n denote the variance of hZn; 'i : Assume

�2';n !
n!1

�2' � V ar (hX1; 'i) + 2
1X
i=1

cov (hX1; 'i ; hX1+i; 'i) : (2.14)

Then Zn converges weakly to a Gaussian process N (0; K) in H, with zero mean and
covariance operator K satisfying hK';'i = �2' for each ' 2 H.

In the special case when the Xi;n = Xi form a stationary sequence, the conditions
simplify considerably:

Theorem 2.46. Assume X1; X2; :::is a stationary sequence of H-r.e. with mean � and
mixing coe¢ cient �: Let Zn = n�1=2

Pn
i=1 (Xi � �).

(i)If E
�
kX1k2+�

�
<1 for some � > 0; and

P
j [� (j)]

�=(2+�) <1
(ii) or if X1; X2; :::is iid and E kX1k2 <1
Then Zn converges weakly to a Gaussian process G � N (0; K) in H. The distribu-

tion of G is determined by the distribution of its marginals hG;'i which are N
�
0; �2'

�
distributed for every ' 2 H where �2' is de�ned in (2.14).

Let felg be a complete orthonormal basis of H. Then kX1k2 =
P1

l=1 hX1; eli2 and
hence in the iid case, it su¢ ces to check that E kX1k2 =

P1
l=1E

�
hX1; eli2

�
<1:

The following theorem is stated in more general terms in Chen and White (1992).

Theorem 2.47. Let An be a random bounded linear operator from H to H and A 6= 0
be a nonrandom bounded linear operator from H to H. If kAn � Ak ! 0 in probability
as n!1 and Yn ) Y � N (0; K) in H. Then AnYn ) AY � N (0; AKA�).

In Theorem 2.47, the boundedness of A is crucial. In most of our applications, A will
not be bounded and we will not be able to apply Theorem 2.47. Instead we will have to
check the Liapunov condition (Davidson 1994) �by hand�.

Theorem 2.48. Let the array fXi;ng be independent with zero mean and variance se-
quence

�
�2i;n
	
satisfying

Pn
i=1 �

2
i;n = 1: Then

Pn
i=1Xi;n

d! N (0; 1) if

lim
n!1

nX
i=1

E
h
jXi;nj2+�

i
= 0 (Liapunov condition)

for some � > 0:
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2.5. Estimation of an operator and its adjoint

2.5.1. Estimation of an operator

In many cases of interest, an estimator of the compact operator,K; is given by a degenerate
operator of the form

K̂n' =

LnX
l=1

al (') "l (2.15)

where "l 2 E ; al (') is linear in ':
Examples:
1 - Covariance operator

K' (� 1) =

Z
E [h (� 1; X)h (� 2; X)]' (� 2) d� 2:

Replacing the expectation by the sample mean, one obtains an estimator of K :

K̂n' (� 1) =

Z  
1

n

nX
i=1

h (� 1; xi)h (� 2; xi)

!
' (� 2) d� 2

=
nX
i=1

ai (') "i

with

ai (') =
1

n

Z
h (� 2; xi)' (� 2) d� 2 and "i = h (� 1; xi) :

Note that here K is self-adjoint and the rate of convergence of K̂n to K is parametric:
2 - Conditional expectation operator

K' (w) = E [' (Z) jW = w] :

The kernel estimator of K with kernel ! and bandwidth cn is given by

K̂n' (w) =

Pn
i=1 ' (zi)!

�
w�wi
cn

�
Pn

i=1 !
�
w�wi
cn

�
=

nX
i=1

ai (') "i

where

ai (') = ' (zi) and "i =

24 !
�
w�wi
cn

�
Pn

i=1 !
�
w�wi
cn

�
35 :

In this case, the rate of convergence of K̂n is nonparametric, see Subsection 4.1.
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2.5.2. Estimation of the adjoint of a conditional expectation operator

Consider a conditional expectation operator as described in Example 2.3. Let K : L2Z !
L2W be such that (K') (w) = E [' (Z) jW = w] and its adjoint is K� : L2W ! L2Z with
(K ) (z) = E [ (W ) jZ = z] : Let f̂Z;W ; f̂Z (z), and f̂W (w) be nonparametric estimators
of fZ;W ; fZ (z), and fW (w) obtained either by kernel or sieves estimators. Assume that
K and K� are estimated by replacing the unknown pdfs by their estimators, that is:

K̂n' (w) =

Z
f̂Z;W (z; w)

f̂Z (z)
' (z) dz;

[(K�)n (z) =

Z
f̂Z;W (z; w)

f̂W (w)
 (w) dw:

Remark that [(K�)n 6=
�
K̂n

��
for H = L2Z and E = L2W . Indeed, we do not haveD
K̂n';  

E
E
=
D
';[(K�)n 

E
H
: (2.16)

There are two solutions to this problem. The �rst solution consists in choosing as space

of references Hn = L2
�
Rq; f̂Z

�
and En = L2

�
Rr; f̂W

�
. In which case, [(K�)n =

�
K̂n

��
for Hn and En because D

K̂n';  
E
En
=
D
';[(K�)n 

E
Hn

: (2.17)

The new spaces Hn and En depend on the sample size and on the estimation procedure.
Another approach consists in de�ningH = L2 (Rq; �) and E = L2 (Rr; �) where � and � are
known and satisfy: There exist c; c0 > 0 such that fZ (z) � c� (z) and fW (w) � c0� (w) :
Then

K� (z) =

Z
fZ;W (z; w)

fW (w)

� (w)

� (z)
 (w) dw

6= E [ (W ) jZ = z] :

In that case,[(K�)n =
�
K̂n

��
forH and E but the choice of � and � require some knowledge

on the support and the tails of the distributions of W and Z:
An alternative solution to estimating K and K� by kernel is to estimate the spectrum

of K and to apply Mercer�s formula. Let H = L2Z and E = L2W : The singular system�
�j; �j;  j

	
of K satis�es

�j = sup
�j ; j

E
�
�j (Z) j (W )

�
, j = 1; 2::: (2.18)

subject to
�jH = 1;



�j; �l

�
H = 0; l = 1; 2; :::; j � 1;

 jE = 1;


 j;  l

�
E = 0; l =

1; 2; :::; j � 1: Assume the econometrician observes a sample fwi; zi : i = 1; :::; ng. To
estimate

�
�j; �j;  j

	
, one can either estimate (2.18) by replacing the expectation by the

sample mean or by replacing the joint pdf by a nonparametric estimator.
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The �rst approach was adopted by Darolles, Florens, and Renault (1998). Let

Hn =

�
' : Rq ! R;

Z
' (z)2 d bFZ (z) <1� ;

En =

�
 : Rr ! R;

Z
 (w)2 d bFW (w) <1�

where bFZ and bFW are the empirical distributions of Z andW: That is k'k2Hn
= 1

n

Pn
i=1 ' (zi)

2

and k k2En =
1
n

Pn
i=1  (wi)

2 : Darolles, Florens, and Renault (1998) propose to estimate�
�j; �j;  j

	
by solving

�̂j = sup
�̂j ; ̂j

1

n

nX
i=1

h
�̂j (zi)  ̂j (wi)

i
, j = 1; 2::: (2.19)

subject to
�̂jHn

= 1;
D
�̂j; �̂l

E
Hn

= 0; l = 1; 2; :::; j � 1;
 ̂jEn = 1;

D
 ̂j;  ̂l

E
En
= 0;

l = 1; 2; :::; j � 1 where �̂j and  ̂j are elements of increasing dimensional spaces

�̂j (z) =
JX
j=1

�jaj (z) ;

 ̂j (w) =
JX
j=1

�jbj (w)

for some basis fajg and fbjg. By Mercer�s formula (2.13), K can be estimated by

K̂n' (w) =
X

�̂j

�Z
�̂j (z)' (z) d bFZ�  ̂j (w)

[(K�)n (z) =
X

�̂j

�Z
 ̂j (w) (w) d bFW� �̂j (z) :

Hence [(K�)n =
�
K̂n

��
for Hn and En:

The second approach consists in replacing fZ;W by a nonparametric estimator f̂Z;W .
Darolles, Florens, and Gouriéroux (2004) use a kernel estimator, whereas Chen, Hansen

and Scheinkman (1998) use B-spline wavelets. LetHn = L2
�
Rq; f̂Z

�
and En = L2

�
Rr; f̂W

�
where f̂Z and f̂W are the marginals of f̂Z;W : (2.18) can be replaced

�̂j = sup
�j ; j

Z
�j (z) j (w) f̂Z;W (z; w) dzdw, j = 1; 2::: (2.20)

subject to
�jHn

= 1;


�j; �l

�
Hn

= 0; l = 1; 2; :::; j � 1;
 jEn = 1;



 j;  l

�
En
= 0;

l = 1; 2; :::; j�1: Denote
n
�̂j; �̂j;  ̂j

o
the resulting estimators of

�
�j; �j;  j

	
. By Mercer�s
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formula, K can be approached by

K̂n' (w) =
X

�̂j

�Z
�̂j (z)' (z) f̂Z (z) dz

�
 ̂j (w)

[(K�)n (z) =
X

�̂j

�Z
 ̂j (w) (w) f̂W (w) dw

�
�̂j (z) :

Hence [(K�)n =
�
K̂n

��
for Hn and En: Note that in the three articles mentioned above,

Z = Xt+1 and W = Xt where fXtg is a Markov process. These papers are mainly
concerned with estimation. When the data are the discrete observations of a di¤usion
process, the nonparametric estimations of a single eigenvalue-eigenfunction pair and of
the marginal distribution are enough to recover a nonparametric estimate of the di¤usion
coe¢ cient. The techniques described here can also be used for testing the reversibility of
the process fXtg ; see Darolles, Florens, and Gouriéroux (2004).

2.5.3. Computation of the spectrum of �nite dimensional operators

Here, we assume that we have some estimators of K and K�, denoted K̂n and K̂�
n such

that K̂n and K̂�
n have �nite range and satisfy

K̂n' =
LnX
l=1

al (') "l (2.21)

K̂�
n =

LnX
l=1

bl ( ) �l (2.22)

where "l 2 E ; �l 2 H; al (') is linear in ' and bl ( ) is linear in  : Examples of such
operators are given in 2.5.1. Moreover the f"lg and f�lg are assumed to be linearly
independent. It follows that

K̂�
nK̂n' =

LnX
l=1

bl

 
LnX
l0=1

al0 (') "l0

!
�l

=
LnX
l;l0=1

al0 (') bl ("l0) �l: (2.23)

We calculate the eigenvalues and eigenfunctions of K̂�
nK̂n by solving

K̂�
nK̂n� = �2�:

Hence � is necessarily of the form: � =
P

l �l�l: Replacing in (2.23), we have

�2�l =
LnX

l0;j=1

�jal0
�
�j
�
bl ("l0) : (2.24)
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Denote �̂=
�
�1; :::; �Ln

�
the solution of (2.24). Solving (2.24) is equivalent to �nding the

Ln nonzero eigenvalues �̂
2

1; :::; �̂
2

Ln and eigenvectors �̂
1; :::;�̂Ln of an Ln � Ln�matrix C

with principle element

cl;j =

LnX
l0=1

al0
�
�j
�
bl ("l0) :

The eigenfunctions of K̂�
nK̂n are

�̂j =
LnX
l=1

�̂
j

l �l; j = 1; ...Ln

associated with �̂
2

1; :::; �̂
2

Ln :
n
�̂j : j = 1; ::; Ln

o
need to be orthonormalized. The estimators

of the singular values are �̂j =
q
�̂
2

j :

2.5.4. Estimation of noncompact operators

This chapter mainly focuses on compact operators, because compact operators can be
approached by a sequence of �nite dimensional operators and therefore can be easily esti-
mated. However, it is possible to estimate a noncompact operator by an estimator, which
is in�nitely dimensional. A simple example is provided by the conditional expectation
operator with common elements.
Example 2.5 (continued). This example is discussed in Hall and Horowitz (2005a).

Assume that the dimension of Z is p. The conditional expectation operator K can be
estimated by a kernel estimator with kernel ! and bandwidth cn

� bK'� (x;w) = Pn
i=1

hR
1
cpn
' (x; z)!

�
z�zi
cn

�
dz
i
!
�
x�xi
cn

�
!
�
w�wi
cn

�
Pn

i=1 !
�
x�xi
cn

�
!
�
w�wi
cn

� :

We can see that bK is an in�nite dimensional operator because all functions ' (x) that
depend only on x are in the range of bK.
3. Regularized solutions of integral equations of the �rst kind

Let H and E be two Hilbert spaces considered only over the real scalars for the sake of
notational simplicity. Let K be a linear operator on D(K) � H into E . This section
discusses the properties of operator equations (also called Fredholm equations) of the �rst
kind

K' = r (3.1)

where K is typically an integral compact operator. Such an equation in ' is in general
an ill-posed problem by opposition to a well-posed problem. Equation (3.1) is said to be
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well-posed if (i) (existence) a solution exists, (ii) (uniqueness) the solution is unique, and
(iii) (stability) the solution is continuous in r, that is ' is stable with respect to small
changes in r: Whenever one of these conditions is not satis�ed, the problem is said to
be ill-posed. The lack of stability is particularly problematic and needs to be addressed
by a regularization scheme. Following Wahba (1973) and Nashed and Wahba (1974), we
introduce generalized inverses of operators in Reproducing Kernel Hilbert Spaces (RKHS).
Properties of RKHS will be studied more extensively in Section 6.

3.1. Ill-posed and well-posed problems

This introductory subsection gives an overview of the problems encountered when solving
an equation K' = r where K is a linear operator, not necessarily compact. A more
detailed encounter can be found in Groetsch (1993). We start with a formal de�nition of
a well-posed problem.

De�nition 3.1. Let K : H ! E . The equation

K' = r (3.2)

is called well-posed if K is bijective and the inverse operator K�1 : E ! H is continuous.
Otherwise, the equation is called ill-posed.

Note that K is injective means N (K) = f0g ; and K is surjective means R (K) = E .
In this section, we will restrict ourselves to the case where K is a bounded (and therefore
continuous) linear operator. By Banach theorem (Kress, 1999, page 266), if K : H ! E
is a bounded linear operator, K bijective implies that K�1 : E ! H is bounded and
therefore continuous. In this case, K' = r is well-posed.
An example of a well-posed problem is given by

(I � C)' = r

where C : H ! H is a compact operator and 1 is not an eigenvalue of C. This is an
example of integral equation of the second kind that will be studied in Section 7.
We now turn our attention to ill-posed problems.
Problem of uniqueness:
If N (K) 6= f0g ; then to any solution of ' of (3.2), one can add an element '1 of

N (K), so that ' + '1 is also a solution. A way to achieve uniqueness is to look for the
solution with minimal norm.

Problem of existence:
A solution to (3.2) exists if and only if

r 2 R (K) :

Since K is linear, R (K) is a subspace of E , however it generally does not exhaust E .
Therefore, a traditional solution of (3.2) exists only for a restricted class of functions r.
If we are willing to broaden our notion of solution, we may enlarge the class of functions
r for which a type of generalized solution exists to a dense subspace of functions of E .
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De�nition 3.2. An element ~' 2 H is said to be a least squares solution of (3.2) if:

kK ~'� rk � kKf � rk , for any f 2 H (3.3)

If the set Sr of all least squares solutions of (3.2) for a given r 2 E is not empty and
admits an element ' of minimal norm, then ' is called a pseudosolution of (3.2).

The pseudosolution, when it exists, is denoted ' = Kyr where Ky is by de�nition the
Moore Penrose generalized inverse of K: However, the pseudosolution does not necessarily
exist. The pseudosolution exists if and only if Pr 2 R (K) where P is the projection
operator on R (K), the closure of the range of K. Note that Pr 2 R (K) if and only if

r = Pr + (1� P ) r 2 R (K) +R (K)? : (3.4)

Therefore, a pseudosolution exists if and only if r lies in the dense subspace R (K) +
R (K)? of E .
We distinguish two cases:
1. R (K) is closed.
For any r 2 E , ' = Kyr exists and is continuous in r.
Example. (I � C)' = r where C is compact and 1 is an eigenvalue of C. The

problem is ill-posed because the solution is not unique but it is not severally ill-posed
because the pseudosolution exists and is continuous.
2. R (K) is not closed.
The pseudosolution exists if and only if r 2 R (K) +R (K)? : But here, ' = Kyr is

not continuous in r.
Example. K is a compact in�nitely dimensional operator.

For the purpose of econometric applications, condition (3.4) will be easy to maintain
since:
Either (K; r) denotes the true unknown population value, and then the assumption r

2 R (K) means that the structural econometric model is well-speci�ed. Inverse problems
with speci�cation errors are beyond the scope of this chapter.
Or (K; r) denotes some estimators computed from a �nite sample of size n. Then,

insofar as the chosen estimation procedure is such that R (K) is closed (for instance
because it is �nite dimensional as in Subsection 2.5.1), we have R (K) +R (K)? = E .
The continuity assumption of K will come in general with the compacity assumption

for population values and, for sample counterparts, with the �nite dimensional property.
Moreover, the true unknown value K0 of K will be endowed with the identi�cation as-
sumption:

N (K0) = f0g (3.5)

and the well-speci�cation assumption:

r0 2 R (K0) : (3.6)
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(3.5) and (3.6) ensure the existence of a unique true unknown value '0 of ' de�ned as
the (pseudo) solution of the operator equation K0'0 = r0. Moreover, this solution is not
going to depend on the choice of topologies on the two spaces H and E .
It turns out that a compact operator K with in�nite-dimensional range is a prototype

of an operator for which R (K) is not closed. Therefore, as soon as one tries to generalize
structural econometric estimation from a parametric setting (K �nite dimensional) to
a non-parametric one, which can be seen as a limit of �nite dimensional problems (K
compact), one is faced with an ill-posed inverse problem. This is a serious issue for the
purpose of consistent estimation, since in general one does not know the true value r0
of r but only a consistent estimator r̂n. Therefore, there is no hope to get a consistent
estimator '̂n of ' by solving K'̂n = r̂n that is '̂n = Kyr̂n, when Ky is not continuous.
In general, the issue to address will be even more involved since Ky and K must also be
estimated.
Let us �nally recall a useful characterization of the Moore-Penrose generalized inverse

of K.

Proposition 3.3. Under (3.4), Kyr is the unique solution of minimal norm of the equa-
tion K?K' = K?r.

In other words, the pseudosolution ' of (3.2) can be written in two ways:

' = Kyr = (K?K)yK?r

For r 2 R (K) (well-speci�cation assumption in the case of true unknown values), K?r
2 R (K?K) and then (K?K)�1K?r is well de�ned. The pseudosolution can then be
represented from the singular value decomposition of K as

' = Kyr = (K?K)�1K?r =
1X
j=1



r;  j

�
�j

�j (3.7)

It is worth noticing that the spectral decomposition (3.7) is also valid for any r 2 R (K)+
R (K)? to represent the pseudosolution ' = Kyr = (K?K)yK?r since r 2 R (K)? is
equivalent to Kyr = 0:
Formula (3.7) clearly demonstrates the ill-posed nature of the equation K' = r. If

we perturb the right-hand side r by r� = r+ � j; we obtain the solution '
� = '+ ��j=�j:

Hence, the ratio
'� � '

 =r� � r
 = 1=�j can be made arbitrarily large due to the

fact that the singular values tend to zero. Since the in�uence of estimation errors in r is
controlled by the rate of this convergence, Kress (1999, p. 280) says that the equation
is �mildly ill-posed� if the singular values decay slowly to zero and that it is �severely
ill-posed�if they decay rapidly. Actually, the critical property is the relative decay rate
of the sequence



r;  j

�
with respect to the decay of the sequence �j: To see this, note that

the solution ' has to be determined from its Fourier coe¢ cients by solving the equations

�j


'; �j

�
=


r;  j

�
, for all j:

Then, we may expect high instability of the solution ' if �j goes to zero faster than

'; �j

�
. The properties of regularity spaces introduced below precisely document this

intuition.

35



3.2. Regularity spaces

As stressed by Nashed and Wahba (1974), an ill-posed problem relative to H and E may
be recast as a well-posed problem relative to new spaces H0 � H and E 0 � E, with
topologies on H0 and E 0 ; which are di¤erent from the topologies on H and E respectively.
While Nashed and Wahba (1974) generally build these Hilbert spaces H0 and E 0 as RKHS
associated with an arbitrary self-adjoint Hilbert-Schmidt operator, we focus here on the
RKHS associated with (K?K)�, for some positive �. More precisely, assuming that K
is Hilbert-Schmidt and denoting (�j; �j;  j) its singular system (see De�nition 2.40), we
de�ne the self-adjoint operator (K?K)� by

(K?K)� ' =

1X
j=1

�2�j


'; �j

�
�j:

De�nition 3.4. The ��regularity space of the compact operator K is de�ned for all
� > 0, as the RKHS associated with (K?K)� : That is, the space:

�� =

(
' 2 N (K)? such that

1X
j=1



'; �j

�2
�2�j

<1
)

(3.8)

where a Hilbert structure is being de�ned through the inner product

hf; gi� =
1X
j=1



f; �j

� 

g; �j

�
�2�j

for f and g 2 ��.

Note however that the construction of RKHS considered here is slightly more general
than the one put forward in Nashed and Wahba (1974) since we start from elements of a
general Hilbert space, not limited to be a L2 space of functions de�ned on some interval of
the real line. This latter example will be made explicit in Section 6. Moreover, the focus
of our interest here will only be the regularity spaces associated with the true unknown
value K0 of the operator K. Then, the identi�cation assumption will ensure that all the
regularity spaces are dense in H :

Proposition 3.5. Under the identi�cation assumption N (K) = f0g, the sequence of
eigenfunctions

�
�j
	
associated with the non-zero singular values �j de�nes a Hilbert

basis of H. In particular, all the regularity spaces �� , � > 0, contain the vectorial space
spanned by the

�
�j
	
and, as such, are dense in H .

Proposition 3.5. is a direct consequence of the singular value decomposition (2.12).
Generally speaking, when � increases, �� , � > 0, is a decreasing family of subspaces
of H. Hence, � may actually be interpreted as the regularity level of the functions '; as
illustrated by the following result.

36



Proposition 3.6. Under the identi�cation assumption (N (K) = f0g), for any � > 0,

�� = R
h
(K�K)

�
2

i
:

In particular, �1 = R (K�) :

Proof. By de�nition, the elements of the range of (K�K)
�
2 can be written f =P1

j=1 �
�
j



'; �j

�
�j for some ' 2 H. Note that this decomposition also describes the range

of K� for � = 1. Then:

kfk2� =
1X
j=1



'; �j

�2
�2�j

�2�j =
1X
j=1



'; �j

�2
= k'k2 <1:

Hence R
h
(K�K)

�
2

i
� ��:

Conversely, for any ' 2 ��; one can de�ne:

f =
1X
j=1



'; �j

�
��j

�j

and then (K�K)
�
2 f =

P1
j=1



'; �j

�
�j = ' since N (K) = f0g. Hence, �� � R

h
(K�K)

�
2

i
.

Since we mainly consider operators, K; which are integral operators with continuous
kernels, applying the operator (K�K)

�
2 has a smoothing e¤ect, which is stronger for

larger values of �. This is the reason why the condition ' 2 �� quali�es the level, �;
of regularity or smoothness of '. The associated smoothness properties are studied in
further details in Loubes and Vanhems (2003). The space �1 of functions is also put
forward in Schaumburg (2004) when K denotes the conditional expectation operator for
a continuous time Markov process Xt with Levy type generator sampled in discrete time.
He shows that whenever a transformation '(Xt) of the di¤usion process is considered with
' 2 �1, the conditional expectation operator E['(Xt+h) jXt] admits a convergent power
series expansion as the exponential of the in�nitesimal generator.
The regularity spaces �� are of interest here as Hilbert spaces (included in H but

endowed with another scalar product) where our operator equation (3.2) is going to be-
come well-posed. More precisely, let us also consider the family of regularity spaces 	�
associated with the compact operator K�:

	� =

(
 2 N (K?)? such that

1X
j=1



 ;  j

�2
�2�j

<1
)

	� is a Hilbert space endowed with the inner product:

De�nition 3.7. hF;Gi� =
P1

j=1



F;  j

� 

G; j

�
�2�j

for F and G 2 	�.
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Note that the spaces 	� are not in general dense in E since N (K?) 6= f0g. But they
describe well the range of K when K is restricted to some regularity space:

Proposition 3.8. Under the identi�cation assumptionN (K) = f0g,K(�� ) = 	�+1 for
all positive �. In particular, 	1 = R (K) :

Proof. We know from Proposition 3.6 that when ' 2 �� , it can be written:
' =

P1
j=1 �

�
j



f; �j

�
�j for some f 2 H. Then, K' =

P1
j=1 �

�+1
j



f; �j

�
 j 2 	�+1. Hence

K(�� ) � 	�+1:
Conversely, since according to a singular value decomposition like (2.12), the sequence�

 j
	
de�nes a basis of N (K?)?, any element of 	�+1 can be written as

 =
1X
j=1



 ;  j

�
 j with

1X
j=1



 ;  j

�2
�2�+2j

<1:

Let us then de�ne ' =
P1

j=1(1=�j)


 ;  j

�
�j .We have

1X
j=1



'; �j

�2
�2�j

=
1X
j=1



 ;  j

�2
�2�+2j

<1

and thus ' 2 �� . Moreover, K' =
P1

j=1



 ;  j

�
 j =  . This proves that 	�+1 �

K(�� ).
Therefore, when viewed as an operator from �� into 	�+1; K has a closed range

de�ned by the space 	�+1 itself. It follows that the ill-posed problem

K : H ! E
K' = r

may be viewed as well-posed relative to the subspaces �� into 	�+1 and their associated
norms. This means that
(i) First, we think about the pseudosolution ' = Kyr as a function of r evolving in

	�+1, for some positive �.
(ii) Second, continuity of ' = Kyr with respect to r must be understood with respect

to the norms krk�+1 = hr; ri
1=2
�+1 and k'k� = h'; 'i

1=2
�

To get the intuition of this result, it is worth noticing that these new topologies de�ne
another adjoint operator K?

� of K characterized by:

hK'; i�+1 =


';K?

� 
�
�
;

and thus:

K?
� =

1X
j=1

(1=�j)


 ;  j

�
�j:
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In particular, K?
� j = �j=�j. In other words, all the eigenvalues of K

?
�K and KK?

� are
now equal to one and the pseudosolution is de�ned as:

' = Ky
�r = K?

�r =

1X
j=1



r;  j

�
�j

�j:

The pseudosolution depends continuously on r because Ky
� = K?

� is a bounded operator
for the chosen topologies; it actually has a unit norm.
For the purpose of econometric estimation, we may be ready to assume that the true

unknown value '0 belongs to some regularity space ��. This just amounts to an additional
smoothness condition about our structural functional parameter of interest. Then, we are
going to take advantage of this regularity assumption through the rate of convergence of
some regularization bias as characterized in the next subsection.
Note �nally that assuming '0 2 ��, that is r0 2 	�+1 for some positive �, is nothing

but a small reinforcement of the common criterion of existence of a solution, known as the
Picard�s theorem (see e.g. Kress, 1999, page 279), which states that r0 2 	1 = R (K).
The spaces �� and 	� are strongly related to the concept of Hilbert scales, see Natterer
(1984), Engl, Hanke, and Neubauer (1996), and Tautenhahn (1996).

3.3. Regularization schemes

As pointed out in Subsection 3.1, the ill-posedness of an equation of the �rst kind with
a compact operator stems from the behavior of the sequence of singular values, which
converge to zero. This suggests trying to regularize the equation by damping the explosive
asymptotic e¤ect of the inversion of singular values. This may be done in at least two
ways:
A �rst estimation strategy consists in taking advantage of the well-posedness of the

problem when reconsidered within regularity spaces. Typically, a sieve kind of approach
may be designed, under the maintained assumption that the true unknown value r0 2 	�+1
for some positive �, in such a way that the estimator r̂n evolves when n increases, in an
increasing sequence of �nite dimensional subspaces of 	�+1. Note however that when the
operator K is unknown, the constraint r̂n 2 N (K?)? may be di¢ cult to implement.
Hence, we will not pursue this route any further.
The approach adopted in this chapter follows the general regularization framework

of Kress (1999, Theorem 15.21). It consists in replacing a sequence
�
1=�j

	
of explosive

inverse singular values by a sequence
�
q(�; �j)=�j

	
where the damping function q(�; �)

is chosen such that:
(i) fq(�; �)=�g remains bounded when � goes to zero (damping e¤ect),
(ii) for any given � : Lim�!0q(�; �) = 1 (asymptotic unbiasedness).
Since our inverse problem of interest can be addressed in two di¤erent ways:

' = Kyr = (K?K)yK?r;

the regularization scheme can be applied either to Ky (�j = �j) or to (K?K)y (�j =
�2j). The latter approach is better suited for our purpose since estimation errors will
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be considered below at the level of (K?K) and K?r respectively. We maintain in this
subsection the identi�cation assumption N (K) = f0g. We then de�ne:

De�nition 3.9. A regularized version '� = A� K
?r of the pseudosolution ' = (K?K)yK?r

is de�ned as:

'� =

1X
j=1

1

�2j
q
�
�; �2j

� 

K?r; �j

�
�j =

1X
j=1

1

�j
q
�
�; �2j

� 

r;  j

�
�j (3.9)

=

1X
j=1

q
�
�; �2j

� 

'; �j

�
�j

where the real-valued function, q; is such that

jq (�; �)j � d (�)� (3.10)

lim
�!0

q (�; �) = 1:

Note that (3.9) leaves unconstrained the values of the operator A� on the space
R (K�)? = N (K) : However, since N (K) = f0g, A� is uniquely de�ned as

A�' =
1X
j=1

1

�2j
q
�
�; �2j

� 

'; �j

�
�j (3.11)

for all ' 2 H. Note that as q is real, A� is self-adjoint. Then by (3.10), A� is a bounded
operator from H into H with

kA�k � d (�) : (3.12)

In the following, we will always normalize the exponent of the regularization parameter
� such that �d (�) has a positive �nite limit c when � goes to zero. By construction,
A�K

�K'! ' as � goes to zero. When a genuine solution exists (r = K'), the regular-
ization induces a bias:

'� '� =

1X
j=1

�
1� q

�
�; �2j

�� 

r;  j

�
(�j=�j) =

1X
j=1

�
1� q

�
�; �2j

�� 

'; �j

�
�j (3.13)

The squared regularization bias is

k'� '�k
2 =

1X
j=1

b2
�
�; �2j

� 

'; �j

�2
; (3.14)

where b
�
�; �2j

�
= 1 � q

�
�; �2j

�
is the bias function characterizing the weight of the

Fourier coe¢ cient


'; �j

�
. Below, we show that the most common regularization schemes

ful�ll the above conditions. We characterize these schemes through the de�nitions of the
damping weights q (�; �) or equivalently, of the bias function b (�; �) .
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Example (Spectral cut-o¤).
The spectral cut-o¤ regularized solution is

'� =
X

�2j��=c

1

�j



r;  j

�
�j:

The explosive in�uence of the factor (1/�) is �ltered out by imposing q (�; �) = 0 for
small � , that is j�j < �=c: � is a positive regularization parameter such that no bias is
introduced when j�j exceeds the threshold �=c :

q (�; �) = I fj�j � �=cg =
�
1 if j�j � �=c;
0 otherwise.

For any given scaling factor c, the two conditions of De�nition 3.9. are then satis�ed
(with d(�) = c=�) and we get a bias function b

�
�; �2

�
which is maximized (equal to 1)

when �2 < �=c and minimized (equal to 0) when �2 � �=c:

Example (Landweber-Fridman).
Landweber-Fridman regularization is characterized by

A� = c

1=��1X
l=0

(I � cK�K)l ;

'� = c

1=��1X
l=0

(I � cK�K)lK�r:

The basic idea is similar to spectral cut-o¤ but with a smooth bias function. Of course,
one way to make the bias function continuous while meeting the conditions b (�; 0) = 1
and b

�
�; �2

�
= 0 for �2 > �=c would be to consider a piecewise linear bias function

with b
�
�; �2

�
= 1� (c=�)�2 for �2 � �=c . Landweber-Fridman regularization makes it

smooth, while keeping the same level and the same slope at �2 = 0 and zero bias for large
�2, b

�
�; �2

�
=
�
1� c�2

�1=�
for �2 � 1=c and zero otherwise, that is

q (�; �) =

�
1 if j�j > 1=c;

1� (1� c�)1=� for j�j � 1=c:
For any given scaling factor c, the two conditions of De�nition 3.9 are then satis�ed with
again d(�) = c=�.

Example (Tikhonov regularization).
Here, we have

A� =
��
c
I +K�K

��1
;

'� =
��
c
I +K�K

��1
K�r

=
1X
j=1

�j

�2j + �=c



r;  j

�
�j
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where c is some scaling factor. In contrast to the two previous examples, the bias function
is never zero but decreases toward zero at a hyperbolic rate (when �2 becomes in�nitely
large), while still starting from 1 for �2 = 0 :

b
�
�; �2

�
=

(�=c)

�2 + �=c
:

that is:

q
�
�; �2

�
=

�2

�2 + �=c

For any given scaling factor c, the two conditions of De�nition 3.9 are again satis�ed with
d(�) = c=�.

We are going to show now that the regularity spaces �� introduced in the previous
subsection are well-suited for controlling the regularization bias. The basic idea is a
straightforward consequence of (3.15):

k'� '�k
2 � [sup

j
b2
�
�; �2j

�
�2�j ] k'k

2
� (3.15)

Therefore, the rate of convergence (when the regularization parameter � goes to zero) of
the regularization bias will be controlled, for ' 2 ��; by the rate of convergence of

M�(�) = sup
j
b2
�
�; �2j

�
�2�j

The following de�nition is useful to characterize the regularization schemes.

De�nition 3.10 (Geometrically unbiased regularization). A regularization scheme
characterized by a bias function b

�
�; �2

�
is said to be geometrically unbiased at order

� > 0 if:
M�(�) = O(��):

Proposition 3.11. The spectral cut-o¤and the Landweber-Fridman regularization schemes
are geometrically unbiased at any positive order �. Tikhonov regularization scheme sat-
is�es

M�(�) = O(�min(�;2));

therefore it is geometrically unbiased only at order � 2 (0; 2].

Proof. In the spectral cut-o¤ case, there is no bias for �2j > �=c while the bias is
maximum, equal to one, for smaller �2j . Therefore:

M�(�) � (�=c)�:
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In the Landweber-Fridman case, there is no bias for �2j > 1=c but a decreasing

bias
�
1� c�2j

�1=�
for �2j increasing from zero to (1/c). Therefore, M�(�) � [Sup�2�(1=c)�

1� c�2
�2=�

�2�]. The supremum is reached for �2 =(�=c)[� + (2=�)]�1 and gives:

M�(�) � (�=c)�[� + (2=�)]�� � (�=2)�(�=c)�:

In the Tikhonov case, the bias decreases hyperbolically and then M�(�) � sup�2

[ (�=c)

(�=c)+�2
]2 �2�: For � < 2; the supremum is reached for �2 = (��=c)[2� �]�1 and thus

M�(�) � �2� � [�=(2� �)]�(�=c)�:

As K is bounded, its largest eigenvalue is bounded. Therefore, for � � 2; we have

M�(�) � (�=c)2 sup
j
�
2(��2)
j :

Proposition 3.12. Let K : H ! E be an injective compact operator. Let us assume that
the solution ' ofK' = r lies in the ��regularity space �� of operator K; for some positive
�. Then, if '� is de�ned by a regularization scheme geometrically unbiased at order �,
we have

k'� � 'k2 = O
�
��
�
:

Therefore, the smoother the function ' of interest (' 2 �� for larger �) is, the faster
the rate of convergence to zero of the regularization bias will be. However, a degree of
smoothness larger than or equal to 2 (corresponding to the case ' 2 R [(K�K)]) may be
useless in the Tikhonov case. Indeed, for Tikhonov, we have k'� � 'k2 = O

�
�min(�;2)

�
:

This is basically the price to pay for a regularization procedure, which is simple to imple-
ment and rather intuitive (see Subsection 3.4 below) but introduces a regularization bias
which never vanishes completely.
Both the operator interpretation and the practical implementation of smooth regular-

ization schemes (Tikhonov and Landweber-Fridman) are discussed below.

3.4. Operator interpretation and implementation

In contrast to spectral cut-o¤, the advantage of Tikhonov and Landweber-Fridman regu-
larization schemes is that they can be interpreted in terms of operators. Their algebraic
expressions only depend on the global value of (K�K) and (K�r), and not of the singular
value decomposition. An attractive feature is that it implies that they can be implemented
from the computation of sample counterparts (K̂nK̂

�
n) and (K̂�

nr̂n) without resorting to
an estimation of eigenvalues and eigenfunctions.
The Tikhonov regularization is based on

(�nI +K�K)'�n = K�r ,

'�n =
1X
j=1

�j

�2j + �n



r;  j

�
�j
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for a penalization term �n and �j =
q
�2j , while, for notational simplicity, the scaling

factor c has been chosen equal to 1.

The interpretation of �n as a penalization term comes from the fact that '� can be
seen as the solution of

'� = argmin
'
kK'� rk2 + � k'k2 = h';K�K'+ �'� 2K�ri+ krk2 :

To see this, just compute the Frechet derivative of the above expression and note that it
is zero only for K�K'+ �' = K�r:
This interpretation of Tikhonov regularization in terms of penalization may suggest to

look for quasi-solutions (see Kress, 1999, section 16-3), that is solutions of the minimiza-
tion of kK'� r k subject to the constraint that the norm is bounded by k'k � � for
given � . For the purpose of econometric estimation, the quasi-solution may actually be
the genuine solution if the speci�cation of the structural econometric model entails that
the function of interest ' lies in some compact set (Newey and Powell, 2003).
If one wants to solve directly the �rst order conditions of the above minimization,

it is worth mentioning that the inversion of the operator (�I +K�K) is not directly
well-suited for iterative approaches since, typically for small �, the series expansion of
[I + (1=�)K�K]�1 does not converge. However, a convenient choice of the estimators K̂n

and K̂�
n may allow us to replace the inversion of in�nite dimensional operators by the

inversion of �nite dimensional matrices.

More precisely, when K̂n and K̂�
n can be written as in (2.21) and (2.22), one can

directly write the �nite sample problem as:�
�nI + K̂�

nK̂n

�
' = K̂�

nr ,

�n'+
LnX
l;l0=1

al0 (') bl ("l0) �l =
LnX
l=1

bl (r) �l (3.16)

1) First we compute al (') :
Apply aj to (3.16):

�naj (') +

LnX
l;l0=1

al0 (') bl ("l0) aj (�l) =

LnX
l=1

bl (r) aj (�l) (3.17)

(3.17) can be rewritten as
(�nI + A) a = b

where a =
�
a1 (') a2 (') � � � aLn (')

�0
; A is the Ln � Ln matrix with principal

element

Aj;l0 =

LnX
l=1

bl ("l0) aj (�l)
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and

b =

264
P

l bl (r) a1 (�l)
...P

l bl (r) aLn (�l)

375 :
2) From (3.16), an estimator of ' is given by

'̂n =
1

�n

"
LnX
l=1

bl (r) �l �
LnX
l;l0=1

al0 (') bl ("l0) �l

#
:

Landweber-Fridman regularization
The great advantage of this regularization scheme is not only that it can be written

directly in terms of quantities (K�K) and (K�r), but also the resulting operator problem
can be solved by a simple iterative procedure, with a �nite number of steps. To get this,
one has to �rst choose a sequence of regularization parameters, �n, such that (1=�n)
is an integer and second the scaling factor c so that 0 < c < 1= kKk2. This latter
condition may be problematic to implement since the norm of the operator K may be
unknown. The re�nements of an asymptotic theory, that enables us to accommodate a
�rst step estimation of kKk before the selection of an appropriate c; is beyond the scope
of this chapter. Note however, that in several cases of interest, kKk is known a priori even
though the operator K itself is unknown. For example, if K is the conditional expectation
operator, kKk = 1:
The advantage of the condition c < 1= kKk2 is to guarantee a unique expression for

the bias function b
�
�; �2

�
=
�
1� c�2

�1=�
since, for all eigenvalues, �2 � 1=c. Thus, when

(1/�) is an integer:

'� =
1X
j=1

1

�j
q(�; �2j)



r;  j

�
�j

with

q
�
�; �2j

�
= 1�

�
1� c�2j

�1=�
= c�2j

1=��1X
l=0

�
1� c�2j

�l
:

Thus,

'� = c

1=��1X
l=0

1X
j=1

�j
�
1� c�2j

�l 

r;  j

�
�j

= c

1=��1X
l=0

1X
j=1

�2j
�
1� c�2j

�l 

'; �j

�
�j

= c

1=��1X
l=0

(I � cK�K)lK�K':
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Therefore, the estimation procedure will only resort to estimators of K�K and of K�r,
without need for either the singular value decomposition nor any inversion of operators.
For a given c and regularization parameter �n; the estimator of ' is

'̂n = c

1=�n�1X
l=0

�
I � cK̂�

nK̂n

�l
K̂�
nr̂n:

'̂n can be computed recursively by

'̂l;n =
�
I � cK̂�

nK̂n

�
'̂l�1;n + cK̂�

nr̂n, l = 1; 2; :::; 1=�n � 1:

starting with '̂0;n = cK̂�
nr̂n. This scheme is known as the Landweber-Fridman iteration

(see Kress, 1999, p. 287).

3.5. Estimation bias

Regularization schemes have precisely been introduced because the right hand side r
of the inverse problem K' = r is generally unknown and replaced by an estimator.
Let us denote by r̂n an estimator computed from an observed sample of size n. As
announced in the introduction, a number of relevant inverse problems in econometrics are
even more complicated since the operator K itself is unknown. Actually, in order to apply
a regularization scheme, we may not need only an estimator of K but also of its adjoint
K� and of its singular system

�
�j; �j;  j : j = 1; 2; :::

	
. In this subsection, we consider

such estimators K̂n, K̂�
n; and

n
�̂j; �̂j, ̂j : j = 1; :::; Ln

o
as given. We also maintain the

identi�cation assumption, so that the equation K' = r de�nes without ambiguity a true
unknown value '0:
If '� = A�K

�r is the chosen regularized solution, the proposed estimator '̂n of '0 is
de�ned by

'̂n = Â�nK̂
�
nr̂n: (3.18)

Note that the de�nition of this estimator involves two decisions. First, we need to select a
sequence (�n) of regularization parameters so that limn!1 �n = 0 (possibly in a stochastic
sense in the case of a data-driven regularization) in order to get a consistent estimator
of '0: Second, for a given �n; we estimate the second order regularization scheme A�nK

�

by Â�nK̂
�
n: Generally speaking, Â�n is de�ned from (3.9) where the singular values are

replaced by their estimators and the inner products


'; �j

�
are replaced by their empirical

counterparts (see Subsection 2.5.3). Yet, we have seen above that in some cases, the
estimation of the regularized solution does not involve the estimators �̂j but only the
estimators K̂n and K̂�

n:
In any case, the resulting estimator bias '̂n � '0 has two components:

'̂n � '0 = '̂n � '�n + '�n � '0: (3.19)

While the second component '�n�'0 de�nes the regularization bias characterized in 3.3,
the �rst component '̂n�'�n is the bias corresponding to the estimation of the regularized
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solution of '�n : The goal of this subsection is to point out a set of statistical assumptions
about the estimators K̂n, K̂�

n, and r̂n that gives an (asymptotic) upper bound to the
speci�c estimation bias magnitude,

'̂n � '�n
 when the regularization bias '�n � '0


is controlled.

De�nition 3.13 (Smooth regularization). A regularization scheme is said to be smooth
when�Â�nK̂�

nK̂n � A�nK
�K
�
'0

 � d (�n)
K̂�

nK̂n �K�K
'�n � '0

 (1 + "n) (3.20)

with "n = O
�K̂�

nK̂n �K�K
� :

Proposition 3.14 (Estimation bias). If '� = A�K
�r is the regularized solution con-

formable to De�nition 3.9 and '̂n = Â�nK̂
�
nr̂n, then'̂n � '�n

 (3.21)

� d (�n)
K̂�

nr̂n � K̂�
nK̂n'0

+ �Â�nK̂�
nK̂n � A�nK

�K
�
'0


In addition, both the Tikhonov and Landweber-Fridman regularization schemes are smooth.
In the Tikhonov case, "n = 0 identically.

Proof.

'̂n � '�n = Â�nK̂
�
nr̂n � A�nK

�r

= Â�nK̂
�
n

�
r̂n � K̂n'0

�
+ Â�nK̂

�
nK̂n'0 � A�nK

�K'0 (3.22)

Thus, '̂n � '�n
 � d (�n)

K̂�
nr̂n � K̂�

nK̂n'0

+ Â�nK̂�
nK̂n'0 � A�nK

�K'0

 :
1) Case of Tikhonov regularization:

Â�nK̂
�
nK̂n'0 � A�nK

�K'0 (3.23)

= Â�n

�
K̂�
nK̂n �K�K

�
'0 +

�
Â�n � A�n

�
K�K'0:

Since in this case,
A� = (�I +K�K)�1 ;

the identity
B�1 � C�1 = B�1(C �B)C�1

gives
Â�n � A�n = Â�n

�
K�K � K̂�

nK̂n

�
A�n
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and thus, �
Â�n � A�n

�
K�K'0 = Â�n

�
K�K � K̂�

nKn

�
A�nK

�K'0 (3.24)

= Â�n

�
K�K � K̂�

nK̂n

�
'�n :

(3.23) and (3.24) together give

Â�nK̂
�
nK̂n'0 � A�nK

�K'0

= Â�n

�
K̂�
nK̂n �K�K

� �
'0 � '�n

�
;

which shows that Tikhonov regularization is smooth with "n = 0.
2) Case of Landweber-Fridman regularization:
In this case,

'� =
1X
j=1

h
1�

�
1� c�2j

�1=�i
< '0; �j > �j

=
h
I � (I � cK�K)1=�

i
'0:

Thus,

Â�nK̂
�
nK̂n'0 � A�nK

�K'0

=

�
(I � cK�K)1=�n �

�
I � cK̂�

nK̂n

�1=�n�
'0

+

�
I �

�
I � cK̂�

nK̂n

�1=�n
(I � cK�K)�1=�n

�
(I � cK�K)1=�n '0

+

�
I �

�
I � cK̂�

nK̂n

�1=�n
(I � cK�K)�1=�n

� �
'0 � '�n

�
:

Then, a Taylor expansion gives:I � �I � cK̂�
nK̂n

�1=�n
(I � cK�K)�1=�n


=

 c

�n

�
K̂�
nK̂n �K�K

� (1 + "n)
with "n = O

�K̂�
nK̂n �K�K

�.
The result follows with d(�) = c=�.
Note that we are not able to establish (3.20) for the spectral cut-o¤ regularization. In

that case, the threshold introduces a lack of smoothness, which precludes a similar Taylor
expansion based argument as above.
The result of Proposition 3.14 jointly with (3.19) shows that two ingredients matter in

controlling the estimation bias k'̂n � '0k : First, the choice of a sequence of regularization
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parameters, �n; will govern the speed of convergence to zero of the regularization bias'�n � '0
 (for '0 in a given ��) and the speed of convergence to in�nity of d (�n).

Second, nonparametric estimation of K and r will determine the rates of convergence ofK̂�
nr̂n � K̂�

nK̂n'0

 and K̂�
nK̂n �K�K

 :
4. Asymptotic properties of solutions of integral equations of the
�rst kind

4.1. Consistency

Let '0 be the solution of K' = r: By abuse of notation, we denote Xn = O (cn) for
positive sequences fXng and fcng, if the sequence Xn=cn is upper bounded:
We maintain the following assumptions:

A1. K̂n, r̂n are consistent estimators of K and r:

A2.
K̂�

nK̂n �K�K
 = O

�
1
an

�
A3.

K̂�
nr̂n � K̂�

nK̂n'0

 = O
�
1
bn

�
As before '� = A�K

�r is the regularized solution where A� is a second order regular-
ization scheme and '̂n = Â�nK̂

�
nr̂n. Proposition 4.1 below follows directly from De�nition

3.13 and Proposition 3.14 (with the associated normalization rule �d(�) = O(1)):

Proposition 4.1. When applying a smooth regularization scheme, we get:

k'̂n � '0k

= O

�
1

�nbn
+

�
1

�nan
+ 1

�'�n � '0
� :

Discussion on the rate of convergence:
The general idea is that the fastest possible rate of convergence in probability of

k'̂n � '0k to zero should be the rate of convergence of the regularization bias
'�n � '0

.
Proposition 4.1 shows that these two rates of convergence will precisely coincide when the
rate of convergence to zero of the regularization parameter, �n; is chosen su¢ ciently slow
with respect to both the rate of convergence an of the sequence of approximations of the
true operator, and the rate of convergence bn of the estimator of the right-hand side of
the operator equation. This is actually a common strategy when both the operator and
the right-hand side of the inverse problem have to be estimated (see e.g. Vapnik (1998),
corollary p. 299).
To get this, it is �rst obvious that �nbn must go to in�nity at least as fast as'�n � '0

�1. For '0 2 ��, � > 0, and a geometrically unbiased regularization scheme,
this means that:

�2nb
2
n � ���n
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that is �n � b
� 2
�+2

n . To get the fastest possible rate of convergence under this constraint,
we will choose:

�n = b
� 2
�+2

n :

Then, the rate of convergence of k'̂n � '0k and
'�n � '0

 will coincide if and only if
anb

� 2
�+2

n is bounded away from zero. Thus, we have proved:

Proposition 4.2. Consider a smooth regularization scheme, which is geometrically un-
biased of order � > 0 with estimators of K and r conformable to Assumptions A1, A2,

A3, and anb
� 2
�+2

n bounded away from zero. For '0 2 ��; the optimal choice of the regu-
larization parameter is �n = b

� 2
�+2

n , and then

k'̂n � '0k = O

�
b
� �
�+2

n

�
:

For Tikhonov regularization, when '0 2 ��, � > 0; provided anb
�min( 2

�+2
; 1
2)

n is bounded

away from zero and �n = b
�min( 2

�+2
; 1
2)

n , we have

k'̂n � '0k = O

�
b
�min( �

�+2
; 1
2)

n

�
:

Note that the only condition about the estimator of the operator K�K is that its rate

of convergence, an; is su¢ ciently fast to be greater than b
2

�+2
n . Under this condition, the

rate of convergence of '̂n does not depend upon the accuracy of the estimator of K
�K.

Of course, the more regular the unknown function '0 is, the larger � is and the easier it
will be to meet the required condition. Generally speaking, the condition will involve the
relative bandwidth sizes in the nonparametric estimation of K�K and K�r: Note that if,
as it is generally the case for a convenient bandwidth choice (see e.g. Subsection 5.4),
bn is the parametric rate (bn =

p
n), an must be at least n1=(�+2). For � not too small,

this condition will be ful�lled by optimal nonparametric rates. For instance, the optimal
unidimensional nonparametric rate, n2=5; will work as soon as � � 1=2:
The larger � is, the faster the rate of convergence of '̂n is. In the case where '0 is a

�nite linear combination of
�
�j
	
(case where � is in�nite), and bn =

p
n, an estimator

based on a geometrically unbiased regularization scheme (such as Landweber-Fridman)
achieves the parametric rate of convergence. We are not able to obtain such a fast rate
for Tikhonov, therefore it seems that if the function '0 is suspected to be very regular,
Landweber-Fridman is preferable to Tikhonov. However, it should be noted that the rates
of convergence in Proposition 4.2 are upperbounds and could possibly be improved upon.

4.2. Asymptotic normality

Asymptotic normality of

'̂n � '0 = '̂n � '�n + '�n � '0

= Â�nK̂
�
nr̂n � A�nK

�K'0 + '�n � '0
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can be deduced from a functional central limit theorem applied to K̂�
nr̂n � K̂�

nK̂n'0.
Therefore, we must reinforce Assumption A3 by assuming a weak convergence in H:
Assumption WC:

bn

�
K̂�
nr̂n � K̂�

nK̂n'0

�
) N (0;�) in H:

According to (3.22), (3.23), and (3.24), we have in the case of Tikhonov regularization:

bn ('̂n � '0) = bnÂ�n

h
K̂�
nr̂n � K̂�

nK̂n'0

i
(4.1)

+bnÂ�n

h
K̂�
nK̂n �K�K

i �
'0 � '�n

�
(4.2)

while an additional term corresponding "n in (3.20) should be added for general regular-
ization schemes. The term (4.1) can be rewritten as

Â�n� + Â�n (�n � �)

where � denotes the random variable N (0;�) in H and

�n = bn

�
K̂�
nrn � K̂�

nK̂n'0

�
:

By de�nition: D
Â�n�; g

E
�1=2Â�ng d! N (0; 1)

for all g 2 H. Then, we may hope to get a standardized normal asymptotic probability
distribution for

hbn ('̂n � '0) ; gi�1=2Â�ng
for vectors g conformable to the following assumption:

Assumption G Â�ng�1=2Â�ng = O (1) :

Indeed, we have in this case:���DÂ�n (�n � �) ; g
E����1=2Â�ng �

k�n � �k
Â�ng�1=2Â�ng ;

which converges to zero in probability because k�n � �k P! 0 by WC. We are then able to
show:
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Proposition 4.3. Consider a Tikhonov regularization. Suppose Assumptions A1, A2,
A3, and WC hold and '0 2 ��, � > 0; with bn�

min(�=2;1)
n !

n!1
0, we have for any g

conformable to G:
hbn ('̂n � '0) ; gi�1=2Â�ng d! N (0; 1) :

Proof. From (4.1) and (4.2), we have:

bn
�
'̂n � '�n

�
; g
�

=
D
Â�n�; g

E
+
D
Â�n (�n � �) ; g

E
+
D
bnÂ�n

h
K̂�
nK̂n �K�K

i �
'0 � '�n

�
; g
E

(4.3)

in the case of Tikhonov regularization. We already took care of the terms in � and �n, it
remains to deal with the bias term corresponding to (4.3):

bn

D
Â�n

�
K̂�
nK̂n �K�K

� �
'0 � '�n

�
; g
E

�1=2Â�ng
�

bn

D�
K̂�
nK̂n �K�K

� �
'0 � '�n

�
; Â�ng

E
�1=2Â�ng

� bn

K̂�
nK̂n �K�K

'0 � '�n


Â�ng�1=2Â�ng
= O

 
bn�

min(�=2;1)
n

an

!
:

Discussion of Proposition 4.3.
(i) It is worth noticing that Proposition 4.3 does not in general deliver a weak con-

vergence result for bn ('̂n � '0) because it does not hold for all g 2 H. However, the
condition G is not so restrictive. It just amounts to assume that the multiplication by
�1=2 does not modify the rate of convergence of Â�ng.
(ii) We remark that for g = K�Kh, Â�ng and �

1=2Â�ng converge respectively to h
and �1=2h. Moreover, if g 6= 0; �1=2h = �1=2 (K�K)�1 g 6= 0: Therefore, in this case,
not only the condition G is ful�lled but the asymptotic normality holds also with rate
of convergence bn, that is typically root n. This result is conformable to the theory of
asymptotic e¢ ciency of inverse estimators as recently developed by Van Rooij, Ruymgaart
and Van Zwet (2000). They show that there is a dense linear submanifold of functionals for
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which the estimators are asymptotically normal at the root n rate with optimal variance
(in the sense of minimum variance in the class of the moment estimators). We do get
optimal variance in Proposition 4.3 since in this case (using heuristic notations as if we
were in �nite dimension) the asymptotic variance is:

lim
n!1

g0A�n�A�n

= g0 (K�K)�1� (K�K)�1 g:

Moreover, we get this result in particular for any nonzero g in R (K�K) while we
know that R (K�) is dense in H (identi�cation condition). Generally speaking, Van
Rooij, Ruymgaart and Van Zwet (2000) stress that the inner products do not converge
weakly for every vector g in H at the same rate, if they converge at all.
(iii) The condition bn�

min(�=2;1)
n ! 0 imposes a convergence to zero of the regularization

coe¢ cient �n faster than the rate �n = b
�min( 2

�+2
; 1
2)

n required for the consistency: This
stronger condition is needed to show that the regularization bias multiplied by bn converges
to zero. A fortiori, the estimation bias term vanishes asymptotically.
The results of Proposition 4.3 are established under strong assumptions: convergence

in H and restriction on g. An alternative method consists in establishing the normality
of '̂n by the Liapunov condition (Davidson, 1994), see the example on deconvolution in
Section 5 below.

5. Applications

Awell-known example is that of the kernel estimator of the density. Indeed, the estimation
of the pdf f of a random variable X can be seen as solving an integral equation of the
�rst kind

Kf (x) =

Z +1

�1
I (u � x) f (u) du = F (x) (5.1)

where F is the cdf of X: Applying the Tikhonov regularization to (5.1), one obtains a
kernel estimator of f . This example is detailed in Hardle and Linton (1994) and in Vapnik
(1998, pages 308-311) and will not be discussed further.
This section reviews the standard examples of the ridge regression and factor models

and less standard examples such as the regression with an in�nite number of regressors,
the deconvolution and the instrumental variable estimation.

5.1. Ridge regression

The Tikhonov regularization discussed in Section 3 can be seen as an extension of the
well-known ridge regression. The ridge regression was introduced by Hoerl and Kennard
(1970). It was initially motivated by the fact that in the presence of near multicollinearity
of the regressors, the least squares estimator may vary dramatically as the result of a small
perturbation in the data. The ridge estimator is more stable and may have a lower risk
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than the conventional least squares estimator. For a review of this method, see Judge,
Gri¢ ths, Hill, Lutkepohl, and Lee (1980) and for a discussion in the context of inverse
problems, see Ruymgaart (2001).
Consider the linear model (the notation of this paragraph is speci�c and corresponds

to general notations of linear models):

y = X� + " (5.2)

where y and " are n�1�random vectors, X is a n�q matrix of regressors of full rank, and
� is an unknown q � 1�vector of parameters. The number of explanatory variables, q, is
assumed to be constant and q < n: Assume that X is exogenous and all the expectations
are taken conditionally on X: The classical least-squares estimator of � is

�̂ = (X 0X)
�1
X 0y:

There exists an orthogonal transformation such that X 0X=n = P 0DP with

D =

0B@ �1 0
. . .

0 �q

1CA ;

�j > 0; and P
0P = Iq: Using the mean square error as measure of the risk, we get

E
�̂ � �

2 = E
(X 0X)

�1
(X 0 (X� + ")� �)

2
= E

(X 0X)
�1
X 0"
2

= E
�
"0X (X 0X)

�2
X 0"
�

= �2trace
�
X (X 0X)

�2
X 0
�

=
�2

n
trace

 �
X 0X

n

��1!

=
�2

n
trace

�
P 0D�1P

�
=

�2

n

qX
j=1

1

�j
:

If some of the columns of X are closely collinear, the eigenvalues may be very small and
the risk very large. Moreover, when the number of regressors is in�nite, the risk is no
longer bounded.
A solution is to use the ridge regression estimator:

�̂a = argmin
�
ky �X�k2 + a k�k2

) �̂a = (aI +X 0X)
�1
X 0y
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for a > 0. We prefer to introduce � = a=n and de�ne

�̂� =

�
�I +

X 0X

n

��1
X 0y

n
: (5.3)

This way, the positive constant � corresponds to the regularization parameter introduced
in earlier sections.
The estimator �̂� is no longer unbiased. We have

�� = E
�
�̂�

�
=

�
�I +

X 0X

n

��1
X 0X

n
�:

Using the fact that A�1 �B�1 = A�1 [B � A]B�1. The bias can be rewritten as

�� � � =

�
�I +

X 0X

n

��1
X 0X

n
� �

�
X 0X

n

��1
X 0X

n
�

= �

�
�I +

X 0X

n

��1
�:

The risk becomes

E
�̂� � �

2 = E
�̂� � ��

2 + k�� � �k2

= E


�
�I +

X 0X

n

��1
X 0"

n


2

+ �2


�
�I +

X 0X

n

��1
�


2

= E

 
"0X

n

�
�I +

X 0X

n

��2
X 0"

n

!
+ �2


�
�I +

X 0X

n

��1
�


2

=
�2

n
trace

 �
�I +

X 0X

n

��2
X 0X

n

!
+ �2


�
�I +

X 0X

n

��1
�


2

=
�2

n

qX
j=1

�j�
�+ �j

�2 + �2
qX
j=1

�
(P�)j

�2
�
�+ �j

�2 :
There is the usual trade-o¤between the variance (decreasing in �) and the bias (increasing
in �). For each � and �2, there is a value of � for which the risk of �̂� is smaller than

that of �̂. As q is �nite, we have E
�̂� � ��

2 � 1=n and k�� � �k2 � �2. Hence, the

MSE is minimized for �n � 1=
p
n: Let us compare this rate with that necessary to the

asymptotic normality of �̂�: We have

�̂� � � = ��
�
�I +

X 0X

n

��1
� +

�
�I +

X 0X

n

��1
X 0"

n
:
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Therefore, if X and " satisfy standard assumptions of stationarity and mixing, �̂� is
consistent as soon as �n goes to zero and

p
n
�
�̂� � �

�
is asymptotically centered normal

provided �n = o (1=
p
n) ; which is a faster rate than that obtained in the minimization of

the MSE. Data-dependent methods for selecting the value of � are discussed in Judge et
al. (1980).
Note that the ridge estimator (5.3) is the regularized inverse of the equation

y = X�; (5.4)

where obviously � is overidenti�ed as there are n equations for q unknowns. Let H be Rq
endowed with the euclidean norm and E be Rn endowed with the norm, kvk2 = v0v=n:
De�ne K : H ! E such that Ku = Xu for any u 2 Rq. Solving hKu; vi = hu;K�vi, we
�nd the adjoint of K, K� : E ! H where K�v = X 0v=n for any v 2 Rn. The Tikhonov
regularized solution of (5.4) is given by

�̂� = (�I +K�K)�1K�y;

which corresponds to (5.3). It is also interesting to look at the spectral cut-o¤ reg-
ularization. Let fP1; P2; :::; Pqg be the orthonormal eigenvectors of the q � q matrix
K�K = X 0X=n and fQ1; Q2; :::; Qng be the orthonormal eigenvectors of the n�n matrix
KK� = XX 0=n. Let �j =

p
�j: Then the spectral cut-o¤ regularized estimator is

�̂� =
X
�j��

1

�j
hy;QjiPj =

X
�j��

1

�j

y0Qj

n
Pj:

A variation on the spectral cut-o¤ consists in keeping the l largest eigenvalues to obtain

�̂l =
lX

j=1

1

�j

y0Qj

n
Pj:

We will refer to this method as truncation. A forecast of y is given by

ŷ = K�̂l =
lX

j=1

y0Qj

n
Qj: (5.5)

Equation (5.5) is particularly interesting for its connection with forecasting using factors
described in the next subsection.

5.2. Principal components and factor models

Let Xit be the observed data for the ith cross-section unit at time t; with i = 1; 2; :::; q
and t = 1; 2; :::; T: Consider the following dynamic factor model

Xit = �0iFt + eit (5.6)
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where Ft is an l � 1 vector of unobserved common factors and �i is the vector of factor
loadings associated with Ft. The factor model is used in �nance, where Xit represents the
return of asset i at time t; see Ross (1976). Here we focus on the application of (5.6) to
forecasting a single time series using a large number of predictors as in Stock and Watson
(1998, 2002), Forni and Reichlin (1998), and Forni, Hallin, Lippi, and Reichlin (2000).
Stock and Watson (1998, 2002) consider the forecasting equation

yt+1 = �0Ft + �t+1

where yt is either the in�ation or the industrial production and Xt in (5.6) comprises 224
macroeconomic time-series. If the number of factors l is known, then � = (�1; �2; :::; �q)
and F = (F1; F2; :::; FT )

0 can be estimated from

min
�;F

1

qT

qX
i=1

TX
t=1

(Xit � �0iFt)
2 (5.7)

under the restriction F 0F=T = I. The F solution of (5.7) are the eigenvectors of XX 0=T
associated with the l largest eigenvalues: Hence F = [Q1 j ::: j Ql] where Qj is jth eigen-
vector of XX 0=T: Using the compact notation y = (y2; :::; yT+1)

0, a forecast of y is given
by

ŷ = Fb�
= F (F 0F )

�1
F 0y

= F
F 0y

T

=
lX

j=1

Q0jy

T
Qj:

We recognize (5.5). It means that forecasting using a factor model (5.6) is equivalent to
forecasting Y from (5.4) using a regularized solution based on the truncation. The only
di¤erence is that in the factor literature, it is assumed that there exists a �xed number of
common factors, whereas in the truncation approach (5.5), the number of factors grows
with the sample size. This last assumption may seem more natural when the number of
explanatory variables, q goes to in�nity.
An important issue in factor analysis is the estimation of the number of factors. Stock

and Watson (1998) propose to minimize the MSE of the forecast. Bai and Ng (2002)
propose various BIC and AIC criterions that enable us to consistently estimate the number
of factors, even when T and q go to in�nity.

5.3. Regression with many regressors

Consider the following model where the explained variable is a scalar Y while the ex-
planatory variable Z is a square integrable random function w.r. to some known measure
� (possibly with �nite or discrete support)
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Y =

Z
Z (�)' (�)� (d�) + U: (5.8)

Moreover Z is uncorrelated with U and may include lags of Y and E (U) = 0. The aim
is to estimate ' from observations (yi; zi (�))i=1;:::;n : When � has a continuous support,
this model is known in statistics as the functional linear model. However, when � has
a discrete support, it corresponds to a regression with an in�nity or a large number of
regressors . For a broad review, see Ramsay and Silverman (1997). Various estimation
methods of the function ' are discussed in recent papers including Van Rooij, Ruymgaart
and Van Zwet (2000), Cardot, Ferraty, and Sarda (2003), and Hall and Horowitz (2005b).

First approach: Ridge regression
(5.8) can be rewritten as0B@ y1

...
yn

1CA =

0B@
R
z1 (�)' (�)� (d�)

...R
zn (�)' (�)� (d�)

1CA+
0B@ u1

...
un

1CA
or equivalently

y = K'+ u

where the operator K is de�ned in the following manner

K : L2 (�)! Rn

K' =

0B@
R
z1 (�)' (�)� (d�)

...R
zn (�)' (�)� (d�)

1CA :

As is usual in the regression, the error term u is omitted and we solve

K' = y

using a regularized inverse
'� = (�I +K�K)�1K�y: (5.9)

As an exercise, we compute K� and K�K: To compute K�, we solve

hK'; i = h';K� i

for  = ( 1; :::;  n) and we obtain

(K�y) (�) =
1

n

nX
i=1

yizi (�) ;

K�K' (�) =

Z
1

n

nX
i=1

zi (�) zi (s)' (s)� (ds) :

58



The properties of the estimator (5.9) are further discussed in Van Rooij, Ruymgaart
and Van Zwet (2000) and Hall and Horowitz (2005). Hall and Horowitz show that this
estimator is more robust than the spectral cut-o¤ estimator when the eigenvalues are close
to each other.
Second approach: moment conditions
Alternatively, (5.8) can be rewritten as

E [Y � hZ;'i jZ (�)] = 0 for all � in the support of �

Replacing the conditional moments by unconditional moments, we have

E [Y Z (�)� hZ;'iZ (�)] = 0()Z
E [Z (�)Z (s)]' (s)� (ds) = E [Y Z (�)]()

T' = r: (5.10)

The operator T can be estimated by T̂n, the integral operator with kernel
1

n

Pn
i=1 zi (�) zi (s)

and rF can be estimated by r̂n (�) =
1

n

Pn
i=1 yizi (�) : Hence (5.10) becomes

T̂n' = r̂n; (5.11)

which is equal to
K�K' = K�y:

If one preconditions (5.11) by applying the operator T̂ �n , one gets the solution

'̂n =
�
�I + T̂ �n T̂n

��1
T̂ �n r̂n (5.12)

which di¤ers from the solution (5.9). When � goes to zero at an appropriate rate of con-
vergence (di¤erent in both cases), the solutions of (5.9) and (5.12) will be asymptotically
equivalent. Actually, the preconditioning by an operator in the Tikhonov regulariza-
tion has the purpose of constructing an operator which is positive self-adjoint. Because
T̂n = K�K is already positive self-adjoint, there is no reason to precondition here. Some-
times preconditioning more than necessary is aimed at facilitating the calculations (see
Ruymgaart, 2001).
Using the results of Section 4, we can establish the asymptotic normality of '̂n de�ned

in (5.12).
Assuming that
A1 - ui has mean zero and variance �2 and is uncorrelated with zi (�) for all � :
A2 - uizi (:) is an iid process of L2 (�) :
A3 - E kuizi (:)k2 <1:
we have
(i)
T̂ 2n � T 2

 = O
�

1p
n

�
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(ii)
p
n
�
T̂nr̂n � T̂ 2n'0

�
) N (0;�) in L2 (�) :

(i) is straightforward. (ii) follows from

r̂n � T̂n'0 =
1

n

nX
i=1

yizi (�)�
Z
1

n

nX
i=1

zi (�) zi (s)'0 (s)� (ds)

=
1

n

nX
i=1

uizi (�) :

Here, an =
p
n and bn =

p
n: Under Assumptions A1 to A3, we have

1p
n

nX
i=1

uizi (�)) N
�
0; �2T

�
in L2 (�) by Theorem 2.46. Hence

p
n
�
T̂nr̂n � T̂ 2n'0

�
) N

�
0; �2T 3

�
:

Let us rewrite Condition G in terms of the eigenvalues �j and eigenfunctions �j of T :(T 2 + �nI)
�1
g
2T 3=2 (T 2 + �nI)

�1 g
2 = O (1)

,

P1
j=1

hg;�ji2

(�2j+�)
2P1

j=1

�3jhg;�ji2

(�2j+�)
2

= O (1) :

Obviously condition G introduced in 4.2 will not be satis�ed for all g in L2 (�) :
By Proposition 4.3, assuming that '0 2 ��; 0 < � < 2 and

p
n�

�=2
n ! 0, we have for

g conformable with Condition G,

h
p
n ('̂n � '0) ; giT 3=2 (T 2 + �nI)

�1 g
 d! N (0; 1) :

The asymptotic variance is given by

T�1=2g2 = 1X
j=1



g; �j

�2
�j

:

Whenever it is �nite, that is whenever g 2 R
�
T�1=2

�
, h('̂n � '0) ; gi converges at the

parametric rate.
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A related but di¤erent model from (5.8) is the Hilbertian autoregressive model:

Xt = � (Xt�1) + "t (5.13)

whereXt and "t are random elements in a Hilbert space and � is a compact linear operator.
The di¤erence between (5.13) and (5.8) is that in (5.8), Y is a random variable and not
an element of a Hilbert space. Bosq (2000) proposes an estimator of � and studies its
properties. An example of application of (5.13) is given in Kargin and Onatski (2004).
Kargin and Onatski (2004) are interested in the best prediction of the interest rate

curve. They model the forward interest rate Xt (�) at maturity � by (5.13) where � is a
Hilbert-Schmidt integral operator:

(�f) (�) =

Z 1

0

� (� ; s) f (s) ds: (5.14)

The operator � is identi�ed from the covariance and cross-covariance of the processXt. Let
�11 be the covariance operator of random curve Xt and �12 the cross-covariance operator
of Xt and Xt+1. For convenience, the kernels of �11 and �12 are denoted using the same
notation. Equations (5.13) and (5.14) yield

�12 (� 1; � 2) = E [Xt+1 (� 1)Xt (� 2)]

= E

�Z
� (� 1; s)Xt (s)Xt (� 2) ds

�
=

Z
� (� 1; s) �11 (s; � 2) ds:

Hence,
�12 = ��11:

Solving this equation requires a regularization because �11 is compact. Interestingly,
Kargin and Onatski (2004) show that the best prediction of the interest rate curve in
�nite sample is not necessarily provided by the eigenfunctions of �11 associated with
the largest eigenvalues. It means that the spectral cut-o¤ does not provide satisfactory
predictions in small samples. They propose a better predictor of the interest rate curve.

5.4. Deconvolution

Assume we observe iid realizations y1; :::; yn of a random variable Y with unknown pdf h,
where Y satis�es

Y = X + Z

where X and Z are independent random variables with pdf ' and g respectively. The
aim is to get an estimator of ' assuming g is known. This problem consists in solving in
' the equation:

h (y) =

Z
g (y � x)' (x) dx: (5.15)
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(5.15) is an integral equation of the �rst kind where the operatorK de�ned by (K') (y) =R
g (y � x)' (x) dx has a known kernel and need not be estimated. Recall that the com-

pactness property depends on the space of reference. If we de�ne as space of reference,
L2 with respect to Lebesgue measure, then K is not a compact operator and hence has a
continuous spectrum. However, for a suitable choice of the reference spaces, K becomes
compact. The most common approach to solving (5.15) is to use a deconvolution ker-
nel estimator, this method was pioneered by Carroll and Hall (1988) and Stefanski and
Carroll (1990). It is essentially equivalent to inverting Equation (5.15) by means of the
continuous spectrum of K; see Carroll, Van Rooij, and Ruymgaart (1991) and Subsection
5.4.2 below. In a related paper, Van Rooij and Ruymgaart (1991) propose a regularized
inverse to a convolution problem of the type (5.15) where g has the circle for support.
They invert the operator K using its continuous spectrum.

5.4.1. A new estimator based on Tikhonov regularization

The approach of Carrasco and Florens (2002) consists in de�ning two spaces of reference,
L2�X (R) and L

2
�Y
(R) as

L2�X (R) =

�
� (x) such that

Z
� (x)2 �X (x) dx <1

�
;

L2�Y (R) =

�
 (y) such that

Z
 (y)2 �Y (y) dy <1

�
;

so that K is a Hilbert-Schmidt operator from L2�X (R) to L
2
�Y
(R), that is the following

condition is satis�edZ Z �
�Y (y) g (y � x)

�Y (y)�X (x)

�2
�Y (y)�X (x) dxdy <1:

As a resultK has a discrete spectrum for these spaces of reference. Let
�
�j; �j;  j

	
denote

its singular value decomposition. Equation (5.15) can be approximated by a well-posed
problem using Tikhonov regularization

(�nI +K�K)'�n = K�h:

Hence we have

'�n (x) =

1X
j=1

1

�n + �2j



K�h; �j

�
�j (x)

=
1X
j=1

1

�n + �2j



h;K�j

�
�j (x)

=

1X
j=1

�j

�n + �2j



h;  j

�
�j (x)

=

1X
j=1

�j

�n + �2j
E
�
 j (Yi)�Y (Yi)

�
�j (x) :
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The estimator of ' is obtained by replacing the expectation by a sample mean:

'̂n =
1

n

nX
i=1

1X
j=1

�j

�n + �2j
 j (yi)�Y (yi)�j (x) :

Note that we avoided estimating h by a kernel estimator. In some cases,  j and �j are
known. For instance, if Z � N (0; �2), �Y (y) = � (y=�) and �X (x) = �

�
x=
p
� 2 + �2

�
then  j and �j are Hermite polynomials associated with �j = �j: When  j and �j are
unknown, they can be estimated via simulations. Since one can do as many simulations
as one wishes, the error due to the estimation of  j and �j can be considered negligible.
Using the results of Section 3, one can establish the rate of convergence of k'̂n � '0k :

Assume that '0 2 ��; 0 < � < 2, that is

1X
j=1



'; �j

�2
�2�j

<1:

We have
'�n � '0

 = O
�
�
�=2
n

�
and

'̂n � '�n
 = O (1= (�n

p
n)) as here bn =

p
n. For

an optimal choice of �n = Cn�1=(�+2), k'̂n � '0k
2 is O

�
n��=(�+2)

�
. The mean integrated

square error (MISE) de�ned as E k'̂n � '0k
2 has the same rate of convergence. Fan (1993)

provides the optimal rate of convergence for a minimax criterion on a Lipschitz class of
functions. The optimal rate of the MISE when the error term is normally distributed is
only (lnn)�2 if ' is twice di¤erentiable. On the contrary, here we get an arithmetic rate
of convergence. The condition '0 2 �� has the e¤ect of reducing the class of admissible
functions and hence improves the rate of convergence. Which type of restriction does
'0 2 �� impose? In Carrasco and Florens (2002), it is shown that '0 2 �1 is satis�ed ifZ ���� '0 (t) g (t)

���� dt <1 (5.16)

where  '0 and  g denote the characteristic functions of '0 and g respectively: This con-
dition can be interpreted as the noise is �smaller�than the signal. Consider for example
the case where '0 and g are normal. Condition (5.16) is equivalent to the fact that the
variance of g is smaller than that of '0: Note that the condition '0 2 �1 relates '0 and
g while one usually imposes restrictions on '0 independently of those on g.

5.4.2. Comparison with the deconvolution kernel estimator

Let L2�(R) be the space of square-integrable functions with respect to Lebesgue measure
on R: Let F denote the Fourier transform operator from L2�(R) into L2�(R) de�ned by

(Fq) (s) =
1p
2�

Z
eisxq (x) dx:
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F satis�es that F � = F�1: We see that

F (g � f) = �gFf

so that K admits the following spectral decomposition (see Carroll, van Rooij and Ruym-
gaart, 1991, Theorem 3.1.):

K = F�1M�gF

where M� is the multiplication operator M�' = �'.

K�K = F�1Mj�gj2F:

We want to solve in f the equation:

K�Kf = K�h:

Let us denote

q (x) = (K�h) (x) =

Z
g (y � x)h (y) dy:

Then,

q̂ (x) =
1

n

nX
i=1

g (yi � x)

is a
p
n�consistent estimator of q.

Using the spectral cut-o¤ regularized inverse of K�K, we get

f̂ = F�1M 1

j�g j2
fj�gj>�gF q̂

Using the change of variables u = yi � x; we have

(F q̂) (t) =
1

n

nX
i=1

Z
eitxg (yi � x) dx

=
1

n

nX
i=1

Z
eit(yi�u)g (u) du

=
1

n

nX
i=1

�g (t)e
ityi :

f̂ (x) =
1

2�

Z
e�itxI

����g (t)�� > �
	 1���g (t)��2 (F q̂) (t) dt

=
1

2�

1

n

nX
i=1

Z
e�it(yi�x)I

����g (t)�� > �
	 1

�g (t)
dt:
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Assuming that �g > 0 and strictly decreasing as jtj goes to in�nity, we have I
����g (t)�� > �

	
=

I f�A � t � Ag for some A > 0 so that

f̂ (x) =
1

2�

1

n

nX
i=1

Z A

�A

e�it(yi�x)

�g (t)
dt:

Now compare this expression with the kernel estimator (see e.g. Stefanski and Carroll,
1990). For a smoothing parameter c and a kernel !, the kernel estimator is given by

f̂k(x) =
1

nc

nX
i=1

1

2�

Z
�! (u)

�g (u=c)
eiu(yi�x)=cdu: (5.17)

Hence f̂ coincides with the kernel estimator when �! (u) = I[�1;1] (u). This is the sinc
kernel corresponding to ! (x) = sin c (x) = sin (x) =x: This suggests that the kernel es-
timator is obtained by inverting an operator that has a continuous spectrum. Because
this spectrum is given by the characteristic function of g, the speed of convergence of the
estimator depends on the behavior of �g in the tails. For a formal exposition, see Carroll
et al (1991, Example 3.1.). They assume in particular that the function to estimate is
p di¤erentiable and they obtain a rate of convergence (as a function of p) that is of the
same order as the rate of the kernel estimator.
By using the Tikhonov regularization instead of the spectral cut-o¤, we obtain

f̂(y) =
1

n

nX
i=1

Z
�g (t)���g (t)��2 + �

e�itxieitydt:

We apply a change of variable u = �t;

f̂(y) =
1

n

nX
i=1

1

2�

Z
�g (u)���g (u)��2 + �

eiu(xi�y)du: (5.18)

The formulas (5.18) and (5.17) di¤er only by the way the smoothing is applied.

5.5. Instrumental variables

This example is mainly based on Darolles, Florens and Renault (2002).
An economic relationship between a response variable Y and a vector Z of explanatory

variables is often represented by an equation:

Y = ' (Z) + U , (5.19)

where the function '(:) de�nes the parameter of interest while U is an error term. The
relationship (5:19) does not characterize the function ' if the residual term is not con-
strained. This di¢ culty is solved if it is assumed that E[U j Z] = 0, or if equivalently
' (Z) = E[Y j Z]. However in numerous structural econometric models, the conditional
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expectation function is not the parameter of interest. The structural parameter is a rela-
tion between Y and Z where some of the Z components are endogenous. This is the case
in various situations: simultaneous equations, error-in-variables models, and treatment
models with endogenous selection etc.
The �rst issue is to add assumptions to Equation (5:19) in order to characterize '. Two

general strategies exist in the literature, at least for linear models. The �rst one consists
in introducing some hypotheses on the joint distribution of U and Z (for example on the
variance matrix). The second one consists in increasing the vector of observables from
(Y; Z) to (Y; Z;W ), where W is a vector of instrumental variables. The �rst approach
was essentially followed in the error-in-variables models and some similarities exist with
the instrumental variables model (see e.g. Malinvaud (1970, ch. 9), Florens, Mouchart,
Richard (1974) or Florens, Mouchart, Richard (1987) for the linear case). Instrumental
variable analysis as a solution to an endogeneity problem was proposed by Reiersol (1941,
1945), and extended by Theil (1953), Basmann (1957), and Sargan (1958).
However, even in the instrumental variables framework, the de�nition of the functional

parameter of interest remains ambiguous in the general nonlinear case. Three possible
de�nitions of ' have been proposed (see Florens, Heckman, Meghir and Vytlacil (2003) for
a general comparison between these three concepts and their extensions to more general
treatment models).
i) The �rst one replaces E[U j Z] = 0 by E[U j W ] = 0, or equivalently it de�nes ' as
the solution of

E[Y � ' (Z) j W ] = 0. (5.20)

This de�nition was the foundation of the analysis of simultaneity in linear models or
parametric nonlinear models (see Amemiya (1974)), but its extension to the nonparamet-
ric case raises new di¢ culties. The focus of this subsection is to show how to address this
issue in the framework of ill-posed inverse problems. A �rst attempt was undertaken by
Newey and Powell (2003), who prove consistency of a series estimator of ' in Equation
(5.20). Florens (2003) and Blundell and Powell (2003) consider various nonparametric
methods for estimating a nonlinear regression with endogenous regressors. Darolles, Flo-
rens, and Renault (2002) prove both the consistency and the asymptotic distribution of
a kernel estimator of '. Hall and Horowitz (2005a) give the optimal rate of convergence
of the kernel estimator under conditions which di¤er from those of Darolles, Florens, and
Renault (2002). Finally, Blundell, Chen, and Kristensen (2003) propose a sieves estimator
of the Engel curve.

ii) A second approach is now called control function approach and was systematized by
Newey, Powell, and Vella (1999). This technique was previously developed in speci�c
models (e.g. Mills ratio correction in some selection models for example). The starting
point is to compute E[Y j Z;W ] which satis�es:

E[Y j Z;W ] = ' (Z) + h(Z;W ), (5.21)

where h(Z;W ) = E[U j Z;W ]. Equation (5:21) does not characterize '. However we
can assume that there exists a function V (the control function) of (Z;W ) (typically
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Z � E[Z j W ]), which captures all the endogeneity of Z in the sense that E[U j W;V ] =
E[U j V ] = ~h (V ). This implies that (5:21) may be rewritten as

E[Y j Z;W ] = ' (Z) + ~h(V ), (5.22)

and under some conditions, ' may be identi�ed from (5:22) up to an additive constant
term. This model is an additive model where the V are not observed but are estimated.
iii) A third de�nition follows from the literature on treatment models (see e.g. Imbens,
Angrist (1994), Heckman, Ichimura, Smith, Todd (1998) and Heckman, Vytlacil (2000)).
We extremely simplify this analysis by considering Z and W as scalars. Local instrument
is de�ned by @E[Y jW ]

@W
=@E[ZjW ]

@W
, and the function of interest ' is assumed to be characterized

by the relation:
@E[Y jW ]
@W

@E[ZjW ]
@W

= E

�
@'

@Z
j W

�
. (5.23)

Let us summarize the arguments, which justify Equation (5.23).
Equation (5.19) is extended to a non separable model

Y = ' (Z) + Z"+ U (5.24)

where " and U are two random noises.
First, we assume that

E(U jW ) = E ("jW ) = 0
This assumption extends the instrumental variable assumption but is not su¢ cient to
identify the parameter of interest ': From (5.24) we get:

E (Y jW = w) =

Z
[' (z) + zr (z; w)] fZ (zjw) dz

where fZ (:j:) denote the conditional density of Z givenW and r (z; w) = E ("jZ = z;W = w) :
Then, we have

@

@w
E (Y jW = w) =

Z
' (z)

@

@w
fZ (zjw) dz +

Z
z
@

@w
r (z; w) fZ (zjw) dz

+

Z
zr (z; w)

@

@w
fZ (zjw) dz;

assuming that the order of integration and derivative may commute (in particular the
boundary of the distribution of Z given W = w does not depends on w):
Second, we introduce the assumption that V = Z �E (ZjW ) is independent of W: In

terms of density, this assumption implies that fZ (zjw) = ~f (z �m (w)) where m (w) =
E (ZjW = w) and ~f is the density of v: Then:

@

@w
E (Y jW = w) = �@m (w)

@w

Z
' (z)

@

@z
fZ (zjw) dz

+

Z
z
@

@w
r (z; w) fZ (zjw) dz

� @m (w)

@w

Z
zr (z; w)

@

@z
fZ (zjw) dz
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An integration by parts of the �rst and the third integrals gives

@

@w
E (Y jW = w) =

@m (w)

@w

Z
@

@z
'(z)fZ (zjw) dz

+

Z
z

�
@r

@w
+
@m

@w

@r

@z

�
fZ (zjw) dz

+
@m (w)

@w

Z
r (z; w) fZ (zjw) dz

The last integral is zero under E ("jw) = 0. Finally, we need to assume that the second in-
tegral is zero. This is true in particular if there exists ~r such that r (z; w) = ~r (z �m (w)) :
Hence, Equation (5.23) is veri�ed.

These three concepts are identical in the linear normal case but di¤er in general.
We concentrate our presentation in this chapter on the pure instrumental variable cases
de�ned by equation (5.20).
For a general approach of Equation (5.20) in terms of inverse problems, we introduce

the following notation:
K : L2F (Z)! L2F (W ) '! K' = E[' (Z) j W ],
K� : L2F (W )! L2F (Z)  ! K� = E[ (W ) j Z].
All these spaces are de�ned relatively to the true (unknown) DGP. The two linear oper-
ators K and K� satisfy:

h' (Z) ;  (W )i = E[' (Z) (W )] = hK' (W ) ;  (W )iL2F (W ) = h' (Z) ; K� (Z)iL2F (Z).

Therefore, K� is the adjoint operator of K, and reciprocally. Using these notations, the
unknown instrumental regression ' corresponds to any solution of the functional equation:

A('; F ) = K'� r = 0, (5.25)

where r (W ) = E[Y j W ].
In order to illustrate this construction and the central role played by the adjoint

operator K�; we �rst consider the example where Z is discrete, namely Z is binary. This
model is considered by Das (2005) and Florens and Malavolti (2002). In that case, a
function '(Z) is characterized by two numbers '(0) and '(1) and L2Z is isomorphic to
R2: Equation (5.20) becomes

' (0)Prob (Z = 0jW = w) + ' (1)Prob (Z = 1jW = w) = E (Y jW = w) :

The instrumentsW need to take at least two values in order to identify ' (0) and ' (1) from
this equation. In general, ' is overidenti�ed and overidenti�cation is solved by replacing
(5.25) by

K�K' = K�r
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or, in the binary case, by

' (0)E (Prob (Z = 0jW ) jZ) + ' (1)E (Prob (Z = 1jW ) jZ) = E (E (Y jW ) jZ) :

In the latter case, we get two equations which in general have a unique solution.
This model can be extended by considering Z = (Z1; Z2) where Z1 is discrete (Z1 2 f0; 1g)

and Z2 is exogenous (i.e. W = (W1; Z2)): In this extended binary model, ' is characterized
by two functions '(0; z2) and '(1; z2); the solutions of

'(0; z2)E (Prob (Z1 = 0jW ) jZ1 = z1; Z2 = z2) + ' (1; z2)E (Prob (Z1 = 1jW ) jZ1 = z1; Z2 = z2)
= E (E (Y jW ) jZ1 = z1; Z2 = z2) ; for z1 = 0; 1:

The properties of the estimator based on the previous equation are considered in Flo-
rens and Malavolti (2002). In this case, no regularization is needed because K�K has a
continuous inverse (since the dimension is �nite in the pure binary case and K�K is not
compact in the extended binary model).
We can also illustrate our approach in the case when the Hilbert spaces are not neces-

sarily L2 spaces. Consider the following semiparametric case. The function ' is constrained
to be an element of

X =

(
' such that ' =

LX
l=1

�l"l

)
where ("l)l=1;:::;L is a vector of �xed functions in L

2
F (Z) : Then X is a �nite dimensional

Hilbert space. However, we keep the space E equal to L2F (W ). The model is then partially
parametric but the relation between Z and W is treated nonparametrically. In this case,
it can easily be shown that K� transforms any function  of L2F (W ) into a function of X ,
which is its best approximation in the L2 sense (see Example 2.4. in Section 2). Indeed:
If  2 L2F (W ) ;8j 2 f1; :::Lg

E ("j ) = hK"j;  i = h"j; K� i :

Moreover, K� 2 X =) K� =
LX
l=1

�l"l; therefore

*
"j;

LX
l=1

�l"l

+
= E ( "j)

,
LX
l=1

�lE ("j"l) = E ( "j) :

The function ' de�ned as the solution of K' = r is in general overidenti�ed but the equa-
tion K�K' = K�r always has a unique solution. The �nite dimension of X implies that
(K�K)�1 is a �nite dimensional linear operator and is then continuous. No regularization
is required.
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Now we introduce an assumption which is only a regularity condition when Z and W
have no element in common. However, this assumption cannot be satis�ed if there are
some common elements between Z and W . Extensions to this latter case are discussed
in Darolles, Florens and Renault (2002), see also Example 2.5. in Section 2.

Assumption A.1: The joint distribution of (Z;W ) is dominated by the product of its
marginal distributions, and its density is square integrable w.r.t. the product of margins.

Assumption A.1 ensures that K and K� are Hilbert Schmidt operators, and is a
su¢ cient condition for the compactness of K, K�, KK� and K�K (see Lancaster (1968),
Darolles, Florens, Renault (2002)) and Theorem 2.34.
Under Assumption A1, the instrumental regression ' is identi�able if and only if 0 is

not an eigenvalue of K�K. Then, for the sake of expositional simplicity, we focus on the
i.i.d. context:

Assumption A.2: The data (yi; zi; wi) i = 1; � � �n; are i.i.d samples of (Y; Z;W ).
We estimate the joint distribution F of (Y; Z;W ) using a kernel smoothing of the

empirical distribution. In the applications, the bandwidths di¤er, but they all have the
same speed represented by the notation cn.
For economic applications, one may be interested either by the unknown function

'(Z) itself, or only by its moments, including covariances with some known functions.
These moments may for instance be useful for testing economic statements about scale
economies, elasticities of substitutions, and so on.
For such tests, one will only need the empirical counterparts of these moments and

their asymptotic probability distribution. An important advantage of the instrumental
variable approach is that it permits us to estimate the covariance between '(Z) and g(Z)
for a large class of functions. Actually, the identi�cation assumption amounts to ensure
that the range R(K�) is dense in L2F (Z) and for any g in this range:

9 2 L2F (W ), g(Z) = E[ (W ) j Z],

and thenCov['(Z); g(Z)] = Cov['(Z); E[ (W ) j Z]] = Cov['(Z);  (W )] = Cov[E['(Z) j
W ];  (W )] = Cov[Y;  (W )], can be estimated with standard parametric techniques. For
instance, if E[g(Z)] = 0, the empirical counterpart of Cov[Y;  (W )], i.e.:

1

n

nX
i=1

Yi (Wi) ,

is a root-n consistent estimator of Cov['(Z); g(Z)], and:

p
n

"
1

n

nX
i=1

Yi (Wi)� Cov['(Z); g(Z)]

#
d! N (0; V ar[Y  (W )]),

where V ar[Y  (W )] will also be estimated by its sample counterpart. However, in prac-
tice, this analysis has very limited interest because even if g is given,  is not known
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and must be estimated by solving the integral equation g(Z) = E[ (W ) j Z], where the
conditional distribution of W given Z is also estimated.

Therefore, the real problem of interest is to estimate Cov['(Z); g(Z)], or h'; gi by
replacing ' by an estimator. This estimator will be constructed by solving a regularized
version of the empirical counterpart of (5.25) where K and r are replaced by their estima-
tors. In the case of kernel smoothing, the necessity of regularization appears obviously.
Using the notation of 2.5, the equation

K̂n' = r̂n

becomes
nX
i=1

' (zi)!

�
w � wi
cn

�
nX
i=1

!

�
w � wi
cn

� =

nX
i=1

yi!

�
w � wi
cn

�
nX
i=1

!

�
w � wi
cn

� :

The function ' can not be obtained from this equation except for the values ' (zi) equal
to yi: This solution does not constitute a consistent estimate. The regularized Tikhonov
solution is the solution of

�n' (z) +

nX
j=1

!

 z � zj
cn

!
nX
i=1

'(zi)!

 
wj�wi
cn

!
nX
i=1

!

 
wj�wi
cn

!
nX
j=1

!

 z � zj
cn

! =

nX
j=1

!

 z � zj
cn

!
nX
i=1

yi!

 
wj�wi
cn

!
nX
i=1

!

 
wj�wi
cn

!
nX
j=1

!

 z � zj
cn

! :

This functional equation may be solved in two steps. First, the z variable is �xed to the
values zi and the system becomes an n�n linear system, which can be solved in order to
obtain the ' (zi) : Second, the previous expression gives a value of ' (z) for any value of
z:
If n is very large, this inversion method may be di¢ cult to apply and may be replaced

by a Landweber Fridman regularization (see Section 3). A �rst expression of ' (z) may
be for instance the estimated conditional expectation E (E (Y jW ) jZ) and this estimator
will be modi�ed a �nite number of times by the formula

'̂l;n =
�
I � cK̂�

nK̂n

�
'̂l�1;n + cK̂�

nr̂n:

To simplify our analysis, we impose a relatively strong assumption:

Assumption A.3: The error term is homoskedastic, that is:

V ar (U jW ) = �2:
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In order to check the asymptotic properties of the estimator of '; it is necessary to
study to properties of the estimators of K and of r: Under regularity conditions such as
the compactness of the joint distribution support and the smoothness of the density (see
Darolles et al. (2002)), the estimation by boundary kernels gives the following results:

i)
K̂�

nK̂n �K�K
2 = O

�
1

n(cn)p
+ (cn)

2�
�
where � is the order of the kernel and p the

dimension of Z:
ii)
K̂�

nr̂n � K̂�
nK̂n'

2 = O
�
1
n
+ (cn)

2�
�

iii) A suitable choice of cn implies

p
n
�
K̂�
nr̂n � K̂�

nK̂n'
�
=) N

�
0; �2K�K

�
This convergence is a weak convergence in L2F (Z) (see Section 2.4).

Using results developed in Section 4 and in Darolles et al. (2002) it can be deduced
that:
a) If �n ! 0; c

2�
n

�2n
! 0; 1

�2nnc
�
n
= O (1) the regularized estimator '̂n converge in proba-

bility to ' in L2 norm.
b) If ' 2 �� (0 < � � 2) ; the optimal choices of �n and cn are:

�n = k1n
� 1
2�

cn = k2n
� 1
2�

and, if � is chosen such that p
2�
� �

2+�
; we obtain the following bound for the rate of

convergence
k'̂n � 'k = O

�
n�

�
2+�

�
c) Let us assume that penalization term, �; is kept constant. In that case, the linear opera-
tors
(�I + K�

n Kn)
�1 and (�I + K�K)�1 are bounded, and using a functional version of

the Slutsky theorem (see Chen and White (1992), and Section 2.4), one can immediately
established that p

n('̂n � '� b�n) =) N (0;
), (5.26)

where
b�n = �

h
(�I + K̂�

nK̂n)
�1 � (�I +K�K)�1

i
',

and

 = �2(�I +K�K)�1K�K(�I +K�K)�1.

Some comments may illustrate this �rst result:
i) The convergence obtained in (5:26) is still a functional distributional convergence in
the Hilbert space L2F (Z), which in particular implies the convergence of inner productp
nh'̂n � '� b�n; gi to univariate normal distribution N (0; hg;
gi).
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ii) The convergence of '̂n involves two bias terms. The �rst bias is '� � '. This term is
due to the regularization and does not decrease if � is constant. The second one, '̂n�'�
follows from the estimation error of K. This bias decreases to zero when n increases, but
at a lower speed than

p
n.

iii) The asymptotic variance in (5:26) can be seen as the generalization of the two stage
least squares asymptotic variance. An intuitive (but not correct) interpretation of this
result could be the following. If � is small, the asymptotic variance is approximately
�2(K�K)�1, which is the functional extension of �2(E(ZW 0)E(WW 0)�1E(WZ 0))�1.
d) Let us now consider the case where �! 0: For any � 2 �� (� � 1), if �n is optimal

(= k1n
� 1
2� ) and if cn = k2n

�( 12�+") (" > 0) ; we havep
�n (�) h'̂n � '; �i �Bn =) N

�
0; �2

�
;

where the speed of convergence is equal to

�n (�) =
nK (�nI +K�K)�1 �

2 � O
�
n

2�
2+�

�
;

and the bias Bn is equal to
p
�n (�) h'� � '; �i ; which in general does not vanish. If �

= 1 for example, this bias is O (n�2n) and diverges.
The notion of �� permits us to rigorously de�ne the concept of weak or strong in-

struments. Indeed, if �j are not zero for any j; the function ' is identi�ed by Equation
(5.25) and '̂n is a consistent estimator. A bound for the speed of convergence of '̂n is
provided under the restriction that ' belongs to a space �� with � > 0: The condition
' 2 �� means that the rate of decline of the Fourier coe¢ cients of ' in the basis of �j
is faster than the rate of decline of the ��j (which measures the dependence). In order to
have asymptotic normality we need to assume that � � 1: In that case, if ' 2 ��; we
have asymptotic normality of inner products h'̂n � '; �i in the vector space ��: Then,
it is natural to say that W is a strong instrument for ' if ' is an element of a �� with
� � 1: This may have two equivalent interpretations. Given Z and W , the set of instru-
mental regressions for which W is a strong instrument is �1 or given Z and '; any set of
instruments is strong if ' is an element of the set �1 de�ned using these instruments.

We may complete this short presentation with two �nal remarks. First, the optimal
choice of cn and �n implies that the speed of convergence and the asymptotic distribution
are not a¤ected by the fact that K is not known and is estimated. The accuracy of the
estimation is governed by the estimation of the right hand side term K�r. Secondly, the
usual �curse of dimensionality�of nonparametric estimation appears in a complex way.
The dimension of Z appears in many places but the dimension of W is less explicit. The
value and the rate of decline of the �j depend on the dimension of W : Given Z; the
reduction of the number of instruments implies a faster rate of decay of �j to zero and a
slower rate of convergence of the estimator.
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6. Reproducing kernel and GMM in Hilbert spaces

6.1. Reproducing kernel

Models based on reproducing kernels are the foundation for penalized likelihood estimation
and splines (see e.g. Berlinet and Thomas-Agnan, 2004). However, it has been little used
in econometrics so far. The theory of reproducing kernels becomes very useful when the
econometrician has an in�nite number of moment conditions and wants to exploit all of
them in an e¢ cient way. For illustration, let � 2 R be the parameter of interest and
consider an L� 1�vector h that gives L moment conditions satisfying E�0 (h (�)) = 0,
� = �0. Let hn (�) be the sample estimate of E�0 (h (�)). The (optimal) generalized method
of moments (GMM) estimator of � is the minimizer of hn (�)

0��1hn (�) where � is the
covariance matrix of h. hn (�)

0��1hn (�) can be rewritten as
��1=2hn (�)2 and coincides

with the norm of hn (�) in a particular space called the reproducing kernel Hilbert space
(RKHS). When h is �nite dimensional, the computation of the GMM objective function
does not raise any particular di¢ culty, however when h is in�nite dimensional (for instance
is a function) then the theory of RKHS becomes very handy. A second motivation for the
introduction of the RKHS of a self-adjoint operator K is the following. Let T be such
that K = TT � then the RKHS of K corresponds to the 1�regularity space of T (denoted
�1 in Section 3.1).

6.1.1. De�nitions and basic properties of RKHS

This section presents the theory of reproducing kernels, as described in Aronszajn (1950)
and Parzen (1959, 1970). Let L2C (�) =

�
' : I � RL ! C :

R
I
j' (s)j2 � (s) ds <1

	
where

� is a pdf (� may have a discrete or continuous support) and denote k:k and h; i the norm
and inner product on L2C (�).

De�nition 6.1. A space H (K) of complex-valued functions de�ned on a set I � RL is
said to be a reproducing kernel Hilbert space H (K) associated with the integral operator
K : L2C (�)! L2C (�) with kernel k (t; s) if the three following conditions hold
(i) it is a Hilbert space (with inner product denoted h; iK);
(ii) for every s 2 I; k (t; s) as a function of t belongs to H (K) ;
(iii) (reproducing property) for every s 2 I and ' 2 H (K), ' (s) = h' (:) ; k (:; s)iK :
The kernel k is then called the reproducing kernel.

The following properties are listed in Aronszajn (1950) and Berlinet and Thomas-
Agnan (2004):
1 - If the RK k exists, it is unique.
2 - A Hilbert space H of functions de�ned on I � RL is a RKHS if and only if all

functionals '! ' (s) for all ' 2 H, s 2 I, are bounded.
3 - K is a self-adjoint positive operator on L2C (�).
4 - To a self-adjoint positive operatorK on I, there corresponds a unique RKHSH (K)

of complex-valued functions.
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5 - Every sequence of functions f'ng which converges weakly to ' in H (K) (that is
h'n; giK ! h'; giK for all g 2 H (K)) converges also pointwise, that is lim 'n (s) = ' (s) :

Note that (2) is a consequence of Riesz theorem 2.18: There exists a representor k
such that for all ' 2 H

' (t) = h'; ktiK :
Let kt = k (t; :) so that hkt; ksiK = k (t; s). (5) follows from the reproducing property.
Indeed, h'n (t)� ' (t) ; k (t; s)iK = 'n (s)� ' (s) :

Example (�nite dimensional case). Let I = f1; 2; :::; Lg ; let � be a positive de�-
nite L�Lmatrix with principal element �t;s: � de�nes an inner product on RL : h';  i� =
'0��1 : Let (�1; :::; �L) be the columns of �: For any vector ' = (' (1) ; :::; ' (L))

0, then
we have the reproducing property

h'; �ti� = ' (t) ; � = 1; :::; L

because '��1� = ': Now we diagonalize �, � = PDP 0 where P is the L � L matrix
with (t; j) element �j (t) (�j are the orthonormal eigenvectors of �) and D is the diagonal
matrix with diagonal element �j (the eigenvalues of �). The (t; s)th element of � can be
rewritten as

� (t; s) =
LX
j=1

�j�j (t)�j (s) :

We have

h';  i� = '0��1 =
LX
j=1

1

�j



'; �j

� 

 ; �j

�
(6.1)

where h; i is the euclidean inner product.

From this small example, we see that the norm in a RKHS can be characterized by
the spectral decomposition of an operator. Expression (6.1) also holds for in�nite dimen-
sional operators. Let K : L2 (�) ! L2 (�) be a positive self-adjoint compact operator
with spectrum

�
�j; �j : j = 1; 2; :::

	
. Assume that N (K) = 0. It turns out that H (K)

coincides with the 1/2-regularization space of the operator K :

H (K) =
(
' : ' 2 L2 (�) and

1X
j=1

��
'; �j���2
�j

<1
)
= �1=2 (K) :

We can check that
(i) H (K) is a Hilbert space with inner product

h';  iK =
1X
j=1



'; �j

� 

 ; �j

�
�j
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and norm

k'k2K =
1X
j=1

��
'; �j���2
�j

:

(ii) k (:; t) belongs to H (K)
(iii) h'; k(:; t)iK = ' (t) :

Proof. (ii) follows from Mercer�s formula (Theorem 2.42 (iii)) that is k (t; s) =P1
j=1 �j�j (t)�j (s). Hence kk (:; t)k

2
K =

P1
j=1

��
�j; k (:; t)���2 =�j =P1
j=1

���j�j (t)��2 =�j =P1
j=1 �j�j (t)�j (t) = k (t; t) <1: For (iii), we use againMercer�s formula. h' (:) ; k (:; t)iK =P1
j=1



�j; k (:; t)

� 

'; �j

�
=�j =

P1
j=1



'; �j

�
K�j (t) =�j =

P1
j=1



'; �j

�
�j (t) = ' (t) :

There is a link between calculating a norm in a RKHS and solving an integral equation
K' =  . We follow Nashed and Wahba (1974) to enlighten this link. We have

K' =

1X
j=1

�j


'; �j

�
�j:

De�ne K1=2 as the square root of K:

K1=2' =
1X
j=1

p
�j


'; �j

�
�j:

Note that N (K) = N
�
K1=2

�
, H (K) = K1=2 (L2C (�)) : De�ne K

�1=2 =
�
K1=2

�y
where ()y

is the Moore-Penrose generalized inverse introduced in Subsection 3.1.:

Ky =
1X
j=1

1

�j



 ; �j

�
�j:

Similarly, the generalized inverse of K1=2 takes the form:

K�1=2 =
1X
j=1

1p
�j



 ; �j

�
�j:

From Nashed and Wahba (1974), we have the relations

k'k2K = inf
�
kpk : p 2 L2C (�) and ' = K1=2p

	
;

h';  iK =


K�1=2';K�1=2 

�
, for all ';  2 H (K) : (6.2)

The following result follows from Proposition 3.6.

Proposition 6.2. Let T : E !L2C (�) be an operator such that K = TT � then

H (K) = R
�
K1=2

�
= R (T �) = �1 (T ) :

Note that T � : L2C (�) ! E and K1=2 : L2C (�) ! L2C (�) are not equal because they
take their values in di¤erent spaces.
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6.1.2. RKHS for covariance operators of stochastic processes

In the previous section, we have seen how to characterize H (K) using the spectral de-
composition of K: When K is known to be the covariance kernel of a stochastic process,
then H (K) admits a simple representation. The main results of this section come from
Parzen (1959). Consider a random element (r.e.) fh (t) ; t 2 I � Rpg de�ned on a prob-
ability space (
;F ; P ) and observed for all values of t. Assume h (t) has mean zero and
E
�
jh (t)j2

�
=
R


jh (t)j2 dP < 1 for every t 2 I. Let L2 (
;F ; P ) be the set of all

r.v. U such that E jU j2 =
R


jU j2 dP < 1. De�ne the inner product hU; V iL2(
;F ;P )

between any two r.v. U and V of L2 (
;F ; P ) by hU; V iL2(
;F ;P ) = E
�
UV
�
=
R


UV dP:

Let L2 (h (t) ; t 2 I) be the Hilbert space spanned by the r.e. fh (t) ; t 2 Ig. De�ne K
the covariance operator with kernel k (t; s) = E

�
h (t)h (s)

�
: The following theorem im-

plies that any symmetric nonnegative kernel can be written as a covariance kernel of a
particular process.

Theorem 6.3. K is a covariance operator of a r.e. if and only if K is a positive self-
adjoint operator.

The following theorem can be found in Parzen (1959) for real-valued functions and
in Saitoh (1997) for complex-valued functions. It provides powerful tools to compute the
norm in a RKHS.

Theorem 6.4. Let fh (t) ; t 2 Ig be a r.e. with mean zero and covariance kernel k. Then
(i) L2 (h (t) ; t 2 I) is isometrically isomorphic or congruent to the RKHS H (K) : De-

note J : H (K)! L2 (h (t) ; t 2 I) this congruence.
(ii) For every function ' in H (K) ; J (') satis�es

hJ (') ; h (t)iL2(
;F ;P ) = E
�
J (')h (t)

�
= h'; k (:; t)iK = ' (t) ; for all t 2 I (6.3)

where J (') is unique in L2 (h (t) ; t 2 I) and has mean zero and variance such that

k'k2K = kJ (')k
2
L2(
;F ;P ) = E

�
jJ (')j2

�
:

Note that, by (6.3), the congruence is such that J (k (:; t)) = h (t). The r.v. U 2
L2 (h (t) ; t 2 I) corresponding to ' 2 H (K) is denoted below as h'; hiK (or J (')). As
L2 (h (t) ; t 2 I) and H (K) are isometric, we have by De�nition 2.19

cov [h'; hiK ; h ; hiK ] = E
h
J (') J ( )

i
= h';  iK

for every ',  2 H (K) :Note that h'; hiK is not correct notation because h =
P

j



h; �j

�
�j

a.s. does not belong to H (K). If it were the case, we should have
P

j



h; �j

�2
=�j < 1

a.s.. Unfortunately


h; �j

�
are independent with mean 0 and variance



K�j; �j

�
= �j.

Hence, E
hP

j



h; �j

�2
=�j

i
=1 and by Kolmogorov�s theorem

P
j



h; �j

�2
=�j =1 with
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nonzero probability. It should be stressed that the r.v. J (') itself is well-de�ned and
that only the notation h'; hiK is not adequate; as Kailath (1971) explains, it should be
regarded as a mnemonic for �nding J (') in a closed form. The rest of this section is
devoted to the calculation of k'kK . Note that the result (6.3) is valid when t is multi-
dimensional, t 2 RL: In the next section, h (t) will be a moment function indexed by an
arbitrary index parameter t.
Assume that the kernel k on I � I can be represented as

k (s; t) =

Z
h (s; x)h (t; x)P (dx) (6.4)

where P is a probability measure and fh (s; :) ; s 2 Ig is a family of functions on L2 (
;F ; P ) :
By Theorem 6.4, H (K) consists of functions ' on I of the form

' (t) =

Z
 (x)h (t; x)P (dx) (6.5)

for some unique  in L2 (h (t; :) ; t 2 I) ; the subspace of L2 (
;F ; P ) spanned by fh (t; :) ; t 2 Ig.
The RKHS norm of ' is given by

k'k2K = k k
2
L2(
;F ;P ) :

When calculating k'k2K in practice, one looks for the solutions of (6.5): If there are several
solutions, it is not always obvious to see which one is spanned by fh (t; :) ; t 2 Ig. In this
case, the right solution is the solution with minimal norm (Parzen, 1970):

k'k2K = min
 s.t.

'=h ;hiL2

k k2L2(
;F ;P ) :

Theorem 6.4 can be reinterpreted in terms of range. Let T and T � be

T : L2 (�)! L2 (h (t; :) ; t 2 I)

' ! T' (x) =

Z
' (t)h (t; x)� (t) dt:

and

T � : L2 (h (t; :) ; t 2 I)! L2 (�)

 ! T � (s) =

Z
 (x)h (s; x)P (dx) :

To check that T � is indeed the adjoint of T; it su¢ ces to check hT';  iL2(
;F ;P ) =
h'; T � iL2(�) for ' 2 L2 (�) and  (x) = h (t; x) as h (t; :) spans L2 (h (t; :) ; t 2 I) : Us-
ing the fact that K = T �T and Proposition 6.2, we have H (K) = R (T �), which gives
Equation (6.5).
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Example. The Wiener process on [0,1] has covariance k (t; s) = t ^ s: k can be
rewritten as

k (t; s) =

Z 1

0

(t� x)0+ (s� x)0+ dx

with

(s� x)0+ =

�
1 if x < s
0 if x � s

:

It follows that H (K) consists of functions ' of the form:

' (t) =

Z 1

0

 (x) (t� x)0+ dx =

Z t

0

 (x) dx, 0 � t � 1

)  (t) = '0 (t) :

Hence, we have

k'k2K =
Z 1

0

j (x)j2 dx =
Z 1

0

j'0 (x)j2 dx:

Example. Let k be de�ned as in (6.4) with h (t; x) = eitx. Assume P admits a pdf
f�0 (x) ; which is positive everywhere: Equation (6.5) is equivalent to

' (t) =

Z
 (x) e�itxP (dx)

=

Z
 (x) e�itxf�0 (x) dx:

By the Fourier Inversion formula, we have

 (x) =
1

2�

1

f�0 (x)

Z
eitx' (t) dt:

k'k2K =
1

4�

Z ����Z eitx' (t) dt

����2 1

f�0 (x)
dx:

6.2. GMM in Hilbert spaces

First introduced by Hansen (1982), the Generalized Method of Moments (GMM) became
the cornerstone of modern structural econometrics. In Hansen, the number of moment
conditions is supposed to be �nite. The method proposed in this section permits to deal
with moment functions that take their values in �nite or in�nite dimensional Hilbert
spaces. It was initially proposed by Carrasco and Florens (2000) and further developed
in Carrasco and Florens (2001) and Carrasco, Chernov, Florens, and Ghysels (2006).
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6.2.1. De�nition and examples

Let fxi : i = 1; 2; :::; ng be an iid sample of a random vector X 2 Rp. The case where X
is a time-series will be discussed later. The distribution of X is indexed by a parameter
� 2 � � Rd. Denote E� the expectation with respect to this distribution. The unknown
parameter � is identi�ed from the function h (X; �) (called moment function) de�ned on
Rp ��, so that the following is true.
Identi�cation Assumption

E�0 (h (X; �)) = 0, � = �0: (6.6)

It is assumed that h (X; �) takes its values in a Hilbert space H with inner product h:; :i
and norm k:k :When f = (f1; :::; fL) and g = (g1; :::; gL) are vectors of functions of H, we
use the convention that hf; g0i denotes the L�L matrix with (l;m) element hfl; gmi : Let
Bn : H ! H be a sequence of random bounded linear operators and

ĥn (�) =
1

n

nX
i=1

h (xi; �) :

We de�ne the GMM estimator associated with Bn as

�̂n (Bn) = argmin
�2�

Bnĥn (�)
 : (6.7)

Such an estimator will in general be suboptimal; we will discuss the optimal choice of Bn

later. Below, we give four examples that can be handled by the method discussed in this
section. They illustrate the versatility of the method as it can deal with a �nite number of
moments (Example 1), a continuum (Examples 2 and 3) and a countably in�nite sequence
(Example 4).

Example 1 (Traditional GMM). Let h (x; �) be a vector of RL, Bn be a L � L
matrix and k:k denote the Euclidean norm. The objective function to minimize isBnĥn (�)

2 = ĥn (�)
0B0

nBnĥn (�)

and corresponds to the usual GMM quadratic form ĥn (�)
0Wnĥn (�) with weighting matrix

Wn = B0
nBn:

Example 2 (Continuous time process). Suppose we observe independent repli-
cations of a continuous time process

X i (t) = G (�; t) + ui (t) ; 0 � t � T , i = 1; 2; :::; n (6.8)

where G is a known function and ui = fui (t) : 0 � t � Tg is a zero mean Gaussian
process with continuous covariance function k (t; s) = E [u (t)u (s)], t; s 2 [0; T ] : Denote
X i = fX i (t) : 0 � t � Tg, G (�) = fG (�; t) : 0 � t � Tg ; and H = L2 ([0; T ]). The
unknown parameter � is identi�ed from the moment of the function

h
�
X i; �

�
= X i �G (�) :
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Assume h (X i; �) 2 L2 ([0; T ]) with probability one. Candidates for Bn are arbitrary
bounded operators on L2 ([0; T ]) including the identity. For Bnf = f , we haveBnĥn (�)

2 = Z T

0

ĥn (�)
2 dt:

The estimation of Model (6.8) is discussed in Kutoyants (1984).

Example 3 (Characteristic function). Denote  � (t) = E�
�
eit

0X
�
the characteris-

tic function of X: Inference can be based on

h (t;X; �) = eit
0X �  � (t) , t 2 RL:

Note that contrary to the former examples, h (t;X; �) is complex valued and jh (t;X; �)j ���eit0X�� + j � (t)j � 2. Let � be a probability measure on RL and H = L2C
�
RL;�

�
. As

h (:; X; �) is bounded, it belongs to L2C
�
RL;�

�
for any �. Feuerverger and McDunnough

(1981) and more recently Singleton (2001) show that an e¢ cient estimator of � is ob-
tained from h (:; X; �) by solving an empirical counterpart of

R
Eh (t;X; �)! (t) dt = 0

for an adequate weighting function !; which turns out to be a function of the pdf of X.
This e¢ cient estimator is not implementable as the pdf of X is unknown. They suggest
estimating � by GMM using moments obtained from a discrete grid t = t1; t2; :::; tM . An
alternative strategy put forward in this section is to use the full continuum of moment
conditions by considering the moment function h as an element of H = L2C

�
RL;�

�
:

Example 4 (Conditional moment restrictions). Let X = (Y; Z) : For a known
function � 2 R, we have the conditional moment restrictions

E�0 [� (Y; Z; �) jZ] = 0:

Hence for any function g (Z), we can construct unconditional moment restrictions

E�0 [� (Y; Z; �) g (Z)] = 0:

Assume Z has bounded support. Chamberlain (1987) shows that the semiparametric
e¢ ciency bound can be approached by a GMM estimator based on a sequence of mo-
ment conditions using as instruments the power function of Z : 1; Z; Z2; :::; ZL for a
large L. Let � be the Poisson probability measure � (l) = e�1=l! and H = L2 (N;�) =
ff : N! R :

P1
l=1 g (l)� (l) <1g : Let

h (l; X; �) = � (Y; Z; �)Z l, l = 1; 2; :::

If h (l; X; �) is bounded with probability one, then h (:; X; �) 2 L2 (N;�) with probability
one. Instead of using an increasing sequence of moments as suggested by Chamberlain, it
is possible to handle h (:; X; �) as a function. The e¢ ciency of the GMM estimator based
on the countably in�nite number of moments fh (l; X; �) : l 2 Ng will be discussed later.
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6.2.2. Asymptotic properties of GMM

Let H = L2C (I;�) =
�
f : I ! C :

R
I
jf (t)j2�(dt) <1

	
where I is a subset of RL for

some L � 1 and � is a (possibly discrete) probability measure. This choice of H is
consistent with Examples 1 to 4. Under some weak assumptions,

p
nĥn (�0) converges to

a Gaussian process N (0; K) in H where K denotes the covariance operator of h (X; �0) :
K is de�ned by

K : H ! H
f ! Kf (s) = hf; k (:; t)i =

Z
I

k (t; s) f (s)� (ds)

where the kernel k of K satis�es k (t; s) = E�0

h
h (t;X; �0)h (s;X; �0)

i
and k (t; s) =

k (s; t):Assume moreover thatK is a Hilbert Schmidt operator and hence admits a discrete
spectrum. Suppose that Bn converges to a bounded linear operator B de�ned on H
and that �0 is the unique minimizer of

BE�0h (X; �)
 : Then �̂n (Bn) is consistent and

asymptotically normal. The following result is proved in Carrasco and Florens (2000).

Proposition 6.5. Under Assumptions 1 to 11 of Carrasco and Florens (2000), �̂n (Bn)
is consistent and p

n
�
�̂n (Bn)� �0

�
L! N (0; V )

with

V =


BE�0 (r�h) ; BE

�0 (r�h)
0��1

�


BE�0 (r�h) ; (BKB

�)BE�0 (r�h)
0�

�


BE�0 (r�h) ; BE

�0 (r�h)
0��1

where B� is the adjoint of B:

6.2.3. Optimal choice of the weighting operator

Carrasco and Florens (2000) show that the asymptotic variance V given in Proposi-
tion 6.5 is minimal for B = K�1=2: In that case, the asymptotic covariance becomes

K�1=2E�0 (r�h) ; K

�1=2E�0 (r�h)
��1

:

Example 1 (continued). K is the L�L�covariance matrix of h (X; �) : Let Kn be

the matrix 1
n

Pn
i=1 h

�
xi; �̂

1
�
h
�
xi; �̂

1
�0
where �̂

1
is a consistent �rst step estimator of �.

Kn is a consistent estimator of K: Then the objective function becomesD
K�1=2
n ĥn (�) ; K

�1=2
n ĥn (�)

E
= ĥn (�)

0K�1
n ĥn (�)

which delivers the optimal GMM estimator.
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When H is in�nite dimensional, we have seen in Section 3.1 that the inverse of K,
K�1; is not bounded. Similarly K�1=2 =

�
K1=2

��1
is not bounded on H and its domain

has been shown in Subsection 6.1.1 to be the subset of H which coincides with the RKHS
associated with K and denoted H (K) :
To estimate the covariance operator K, we need a �rst step estimator �̂

1
that isp

n�consistent. It may be obtained by letting Bn equal the identity in (6.7) or by using
a �nite number of moments. Let Kn be the operator with kernel

kn (t; s) =
1

n

nX
i=1

h
�
t; xi; �̂

1
�
h
�
s; xi; �̂

1
�
:

Then Kn is a consistent estimator of K and kKn �Kk = O (1=
p
n) : As K�1f is not

continuous in f , we estimate K�1 by the Tykhonov regularized inverse of Kn :

(K�n
n )

�1 =
�
�nI +K2

n

��1
Kn

for some penalization term �n � 0: If �n > 0, (K�n
n )

�1 f is continuous in f but is
a biased estimator of K�1f: There is a trade-o¤ between the stability of the solution
and its bias. Hence, we will let �n decrease to zero at an appropriate rate. We de�ne
(K�n

n )
�1=2 =

�
(K�n

n )
�1�1=2 :

The optimal GMM estimator is given by

�̂n = argmin
�2�

(K�n
n )

�1=2 ĥn (�)
 :

Interestingly, the optimal GMM estimator minimizes the norm of ĥn (�) in the RKHS
associated with K�n

n : Under certain regularity conditions, we have(K�n
n )

�1=2 ĥn (�)
 P!

E�0 (h (�))

K
:

A condition for applying this method is that E�0 (h (�)) 2 H (K) : This condition can be
veri�ed using results from 6.1.

Proposition 6.6. Under the regularity conditions of Carrasco and Florens (2000, Theo-
rem 8), �̂n is consistent and

p
n
�
�̂n � �0

�
L! N

�
0;


E�0 (r�h (�0)) ; E

�0 (r�h (�0))
0��1
K

�
as n and n�3n !1 and �n ! 0:

The stronger condition n�3n ! 1 of Carrasco and Florens (2000) has been relaxed
into n�2 ! 1 in Carrasco, Chernov, Florens, and Ghysels (2006). Proposition 6.6 does
not indicate how to select �n in practice. A data-driven method is desirable. Carrasco
and Florens (2001) propose to select the �n that minimizes the mean square error (MSE)
of the GMM estimator �̂n: As �̂n is consistent for any value of �n, it is necessary to
compute the higher order expansion of the MSE, which is particularly tedious. Instead of
relying on an analytic expression, it may be easier to compute the MSE via bootstrap or
simulations.
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6.2.4. Implementation of GMM

There are two equivalent ways to compute the objective function(K�n
n )

�1=2 ĥn (�)
2 ; (6.9)

1) using the spectral decomposition of Kn; or
2) using a simpli�ed formula that involves only vectors and matrices.
The �rst method discussed in Carrasco and Florens (2000) requires calculating the

eigenvalues and eigenfunctions of Kn using the method described in 2.5.3. Let �̂j denote
the orthonormalized eigenfunctions of Kn and �̂j the corresponding eigenvalues. The
objective function in Equation (6.9) becomes

nX
j=1

�̂j

�̂
2

j + �n

���Dĥn (�) ; �̂jE���2 : (6.10)

The expression (6.10) suggests a nice interpretation of the GMM estimator. Indeed,

note that
Dp

nĥn (�0) ; �j

E
, j = 1; 2; ::: are asymptotically normal with mean 0 and vari-

ance �j and are independent across j: Therefore (6.10) is the regularized version of the
objective function of the optimal GMM estimator based on the n moment conditions
E
�

h (�) ; �j

��
= 0, j = 1; 2; :::; n:

The second method is more attractive by its simplicity. Carrasco et al. (2006) show
that (6.9) can be rewritten as

v (�)
0 �
�nIn + C2

��1
v (�)

where C is a n � n�matrix with (i; j) element cij; In is the n � n identity matrix and
v (�) = (v1 (�) ; :::; vn (�))

0 with

vi (�) =

Z
h
�
t; xi; �̂

1
�0
ĥn (t; �)� (dt)

cij =
1

n

Z
h
�
t; xi; �̂

1
�0
h
�
t; xj; �̂

1
�
�(dt) :

Note that the dimension of C is the same whether h 2 R or h 2 RL:

6.2.5. Asymptotic E¢ ciency of GMM

Assume that the pdf of X, f�; is di¤erentiable with respect to �: Let L2 (h) be the closure
of the subspace of L2 (
;F ; P ) spanned by fh (t;Xi; �0) : t 2 Ig.

Proposition 6.7. Under standard regularity conditions, the GMM estimator based on
fh (t; xi; �) : t 2 Ig is asymptotically as e¢ cient as the MLE if and only if

r� ln f� (xi; �0) 2 L2 (h) :
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This result is proved in Carrasco and Florens (2004) in a more general setting whereXi

is Markov of order L: A similar e¢ ciency result can be found in Hansen (1985), Tauchen
(1997) and Gallant and Long (1997).

Example 2 (continued). Let K be the covariance operator of fu (t)g and H (K) the
RKHS associated with K: Kutoyants (1984) shows that if G (�) 2 H (K) ; the likelihood
ratio of the measure induced by X (t) with respect to the measure induced by u (t) equals

LR (�) =

nY
i=1

exp

�

G (�) ; xi

�
K
� 1
2
kG (�)k2K

�
where hG;XiK has been de�ned in Subsection 6.1.2 and denotes the element of L2 (X (t) : 0 � t � T )
under the mapping J�1 of the function G (�) (J is de�ned in Theorem 6.4). The score
function with respect to � is

r� ln (LR (�)) =

*
r�G (�) ;

1

n

nX
i=1

�
xi �G (�)

�+
K

:

For � = �0 and a single observation, the score is equal to

hr�G (�0) ; uiK ;

which is an element of L2 (u (t) : 0 � t � T ) = L2 (h (X (t) ; �0) : 0 � t � T ) : Hence, by
Proposition 6.7, the GMM estimator based on h (X; �0) is asymptotically e¢ cient. This
e¢ ciency result is corroborated by the following. The GMM objective function is

kh (x; �)k2K =
*
1

n

nX
i=1

�
xi �G (�)

�
;
1

n

nX
i=1

�
xi �G (�)

�+
K

:

The �rst order derivative equals to

r� kh (x; �)k2K = 2

*
r�G (�) ;

1

n

nX
i=1

�
xi �G (�)

�+
K

= 2r� ln (LR (�)) :

Therefore, the GMM estimator coincides with the MLE in this particular case as they are
solutions of the same equation.

Example 3 (continued). Under minor conditions on the distribution of Xi, the
closure of the linear span of

�
h (t;Xi; �0) : t 2 RL

	
contains all functions of L2 (X) =�

g : E�0
�
g (X)2

�
<1

	
and hence the score r� ln f� (Xi; �0) itself. Therefore the GMM

estimator is e¢ cient. Another way to prove e¢ ciency is to explicitly calculate the as-
ymptotic covariance of �̂n. To simplify, assume that � is scalar. By Theorem 6.4, we
have E�0 (r�h (�0))

2
K
=
E�0 (r�h (�0))

2
K
= E jU j2
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where U satis�es

E�0
h
Uh (t; �0)

i
= E�0 (r�h (t; �0)) for all t 2 RL

which is equivalent to

E�0
h
U (X)

�
eit

0X �  �0 (t)
�i
= �r� �0 (t) for all t 2 R

L: (6.11)

As U has mean zero, U has also mean zero and we can replace (6.11) by

E�0
h
U (X)eit

0X
i
= �r� �0 (t) for all t 2 R

L ,Z
U (x)eit

0xf�0 (x) dx = �r� �0 (t) for all t 2 R
L ,

U (x)f�0 (x) = � 1

2�

Z
e�it

0xr� �0 (t) dt: (6.12)

The last equivalence follows from the Fourier inversion formula. Assuming that we can
exchange the integration and derivation in the right hand side of (6.12), we obtain

U (x)f�0 (x) = �r�f�0 (x),
U (x) = �r� ln f�0 (x) :

Hence E�0 jU j2 = E�0
�
(r� ln f�0 (X))

2� : The asymptotic variance of �̂n coincides with the
Cramer Rao e¢ ciency bound even if, contrary to Example 3, �̂n di¤ers from the MLE.

Example 4 (continued). As in the previous example, we intend to calculate the
asymptotic covariance of �̂n using Theorem 6.4. We need to �nd U the p�vector of r.v.
such that

E�0
�
U� (Y; Z; �0)Z

l
�
= E�0

�
r�� (Y; Z; �0)Z

l
�
for all l 2 N;,

E�0
�
E�0 [U� (Y; Z; �0) jZ]Z l

�
= E�0

�
E�0 [r�� (Y; Z; �0) jZ]Z l

�
for all l 2 N(6.13)

(6.13) is equivalent to

E�0 [U� (Y; Z; �0) jZ] = E�0 [r�� (Y; Z; �0) jZ] (6.14)

by the completeness of polynomials under some mild conditions on the distribution of Z.
A solution is

U0 = E�0 [r�� (Y; Z; �0) jZ]E�0
�
� (Y; Z; �0)

2 jZ
��1

� (Y; Z; �0) :

We have to check that this solution has minimal norm among all the solutions. Consider
an arbitrary solution U = U0 + U1: U solution of (6.14) implies

E�0 [U1� (Y; Z; �0) jZ] = 0:
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Hence E�0 (UU 0) = E�0 (U0U
0
0) + E�0 (U1U

0
1) and is minimal for U1 = 0. ThenE�0 (r�h (�0))

2
K

= E�0 (U0U
0
0)

= E�0
n
E�0 [r�� (Y; Z; �0) jZ]E�0

�
� (Y; Z; �0)

2 jZ
��1

E�0 [r�� (Y; Z; �0) jZ]0
o
:

Its inverse coincides with the semi-parametric e¢ ciency bound derived by Chamberlain
(1987).
Note that in Examples 2 and 3, the GMM estimator reaches the Cramer Rao bound

asymptotically, while in Example 4 it reaches the semi-parametric e¢ ciency bound.

6.2.6. Testing overidentifying restrictions

Hansen (1982) proposes a test of speci�cation, which basically tests whether the overiden-
tifying restrictions are close to zero. Carrasco and Florens (2000) propose the analogue
to Hansen�s J test in the case where there is a continuum of moment conditions. Let

p̂n =
nX
j=1

�̂
2

j

�̂
2

j + �n
, bqn = 2 nX

j=1

�̂
4

j�
�̂
2

j + �n

�2
where �̂j are the eigenvalues of Kn as described earlier.

Proposition 6.8. Under the assumptions of Theorem 10 of Carrasco and Florens (2000),
we have

�n =

(K�n
n )

�1=2 ĥn

�
�̂n

�2 � p̂nbqn d! N (0; 1)

as �n goes to zero and n�3n goes to in�nity.

This test can also be used for testing underidenti�cation. Let �0 2 R be such that
E [h (X; �0)] = 0. Arellano, Hansen and Sentana (2005) show that the parameter, �0;
is locally unidenti�ed if E [h (X; �)] = 0 for all � 2 R. It results in a continuum of
moment conditions indexed by �. Arellano et al. (2005) apply �n to test for the null of
underidenti�cation:

6.2.7. Extension to time series

So far, the data were assumed to be iid. Now we relax this assumption. Let fx1; :::; xTg be
the observations of a time series fXtg that satis�es some mixing conditions. Inference will
be based on moment functions fh (� ;Xt; �0)g indexed by a real, possibly multidimensional
index � . fh (� ;Xt; �0)g are in general autocorrelated, except in some special cases, an
example of which will be discussed below.
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Example 5 (Conditional characteristic function). Let Yt be a (scalar) Markov
process and assume that the conditional characteristic function (CF) of Yt+1 given Yt;
 � (� jYt) � E� [exp (i�Yt+1) jYt] ; is known. The following conditional moment condition
holds

E�
�
ei�Yt+1 �  � (� jYt) jYt

�
= 0:

Denote Xt = (Yt; Yt+1)
0. Let g (Yt) be an instrument so that

h (� ;Xt; �) =
�
ei�Yt+1 �  � (� jYt)

�
g (Yt)

satis�es the identi�cation condition (6.6). fh (� ;Xt; �)g is a martingale di¤erence se-
quence and is therefore uncorrelated. The use of the conditional CF is very popular in
�nance. Assume that fYt; t = 1; 2; :::; Tg is a discretely sampled di¤usion process, then Yt
is Markov. While the conditional likelihood of Yt+1 given Yt does not have a closed form
expression, the conditional CF of a¢ ne di¤usions is known. Hence GMM can replace MLE
to estimate these models where MLE is di¢ cult to implement. For an adequate choice
of the instrument g (Yt), the GMM estimator is asymptotically as e¢ cient as the MLE.
The conditional CF has been recently applied to the estimation of di¤usions by Singleton
(2001), Chacko and Viceira (2003), and Carrasco et al. (2006). The �rst two papers use
GMM based on a �nite grid of values for � , whereas the last paper advocates using the
full continuum of moments which permits us to achieve e¢ ciency asymptotically.

Example 6 (Joint characteristic function). Assume Yt is not Markov. In that
case, the conditional CF is usually unknown. On the other hand, the joint characteristic
function may be calculated explicitly (for instance when Yt is an ARMA process with sta-
ble error, see Knight and Yu, 2002; or Yt is the growth rate of a stochastic volatility model,
see Jiang and Knight, 2002) or may be estimated via simulations (this technique is devel-
oped in Carrasco et al., 2006). Denote  � (�) � E� [exp (� 1Yt + � 2Yt+1 + :::+ �L+1Yt+L)]
with � = (� 1; :::; �L)

0 ; the joint CF of Xt � (Yt; Yt+1; :::; Yt+L)
0 for some integer L � 1.

Assume that L is large enough for

h (� ;Xt; �) = ei�
0Xt �  � (�)

to identify the parameter �: Here fh (� ;Xt; �)g are autocorrelated. Knight and Yu (2002)
estimate various models by minimizing the following norm of h (� ;Xt; �) :Z  

1

T

TX
t=1

ei�
0xt �  � (�)

!2
e��

0�d� :

This is equivalent to minimizing
B 1

T

PT
t=1 h (� ;Xt; �)

2 with B = e��
0�=2. This choice

of B is suboptimal but has the advantage of being easy to implement. The optimal
weighting operator is, as before, the square root of the inverse of the covariance operator.
Its estimation will be discussed shortly.
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Under some mixing conditions on fh (� ;Xt; �0)g ; the process ĥT (�0) = 1
T

PT
t=1 h (� ;Xt; �0)

follows a functional CLT (see Subsection 2.4.2):
p
T ĥT (�0)

L! N (0; K)

where the covariance operator K is an integral operator with kernel

k (� 1; � 2) =

+1X
j=�1

E�0
h
h (� 1; Xt; �0)h (� 2; Xt�j; �0)

i
:

The kernel k can be estimated using a kernel-based estimator as those described in An-
drews (1991) and references therein. Let ! : R ! [�1; 1] be a kernel satisfying the
conditions stated by Andrews. Let q be the largest value in [0;+1) for which

!q = lim
u!1

1� ! (u)

jujq

is �nite. In the sequel, we will say that ! is a q�kernel. Typically, q = 1 for the Bartlett
kernel and q = 2 for Parzen, Tuckey-Hanning and quadratic spectral kernels. We de�ne

k̂T (� 1; � 2) =
T

T � d

T�1X
j=�T+1

!

�
j

ST

�
�̂T (j) (6.15)

with

�̂T (j) =

8><>:
1
T

PT
t=j+1 h

�
� 1; Xt; �̂

1

T

�
h
�
� 2; Xt�j; �̂

1

T

�
; j � 0

1
T

PT
t=�j+1 h

�
� 1; Xt+j; �̂

1

T

�
h
�
� 2; Xt; �̂

1

T

�
; j < 0

(6.16)

where ST is some bandwidth that diverges with T and �̂
1

T is a T
1=2�consistent estimator

of �. Let KT be the integral estimator with kernel k̂T . Under some conditions on ! and
fh (� ;Xt; �0)g ; and assuming S2q+1T =T !  2 (0;+1) ; Carrasco et al. (2006) establish
the rate of convergence of KT to K :

kKT �Kk = Op

�
T�q=(2q+1)

�
:

The inverse ofK is estimated using the regularized inverse ofKT ; (K
�T
T )�1 = (K2

T + �T I)
�1
KT

for a penalization term �T � 0: As before, the optimal GMM estimator is given by

�̂T = argmin
�2�

(K�T
T )�1=2 ĥT (�)

 :
Carrasco et al. (2006) show the following result.

Proposition 6.9. Assume that ! is a q�kernel and that S2q+1T =T !  2 (0;+1) : We
have p

T (�̂T � �0)
L! N

�
0;
�

E�0 (r�h) ; E

�0 (r�h)
0�
K

��1�
(6.17)

as T and T q=(2q+1)�T go to in�nity and �T goes to zero.
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Note that the implementation of this method requires two smoothing parameters �T
and ST : No cross-validation method for selecting these two parameters simultaneously
has been derived yet. If fhtg is uncorrelated, then K can be estimated using the sample
average and the resulting estimator satis�es kKT �Kk = Op

�
T�1=2

�
. When fhtg are

correlated, the convergence rate of KT is slower and accordingly the rate of convergence
of �T to zero is slower.

7. Estimating solutions of integral equations of the second kind

7.1. Introduction

The objective of this section is to study the properties of the solution of an integral
equation of the second kind (also called Fredholm equation of the second type) de�ned
by:

(I �K)' = r (7.1)

where ' is an element of a Hilbert space H, K is a compact operator from H to H and r
is an element of H. As in the previous sections, K and r are known functions of a data
generating process characterized by its c.d.f. F; and the functional parameter of interest
is the function '.
In most cases, H is a functional space and K is an integral operator de�ned by its

kernel k: Equation (7.1) becomes:

'(t)�
Z
k(t; s)'(s)�(ds) = r(t) (7.2)

The estimated operators are often degenerate, see Subsection 2.5.1. and in that case,
Equation (7.2) simpli�es into:

'(t)�
LX
`=1

a`(')"`(t) = r(t) (7.3)

where the a`(') are linear forms on H and "` belongs to H for any `.
The essential di¤erence between equations of the �rst kind and of the second kind

is the compactness of the operator. In (7.1), K is compact but I � K is not compact.
Moreover, if I�K is one-to-one, its inverse is bounded. In that case, the inverse problem
is well-posed. Even if I �K is not one-to-one, the ill-posedness of equation (7.1) is less
severe than in the �rst kind case because the solutions are stable in r.
In most cases, K is a self-adjoint operator (and hence I�K is also self-adjoint) but we

will not restrict our presentation to this case. On the other hand, Equation (7.1) can be
extended by considering an equation (S �K)' = r where K is a compact operator from
H to E (instead of H to H) and S is a one-to-one bounded operator from H to E with a
bounded inverse. Indeed, (S �K)' = r , (I � S�1K)' = S�1r where S�1K : H ! H
is compact. So that we are back to Equation (7.1), see Corollary 3.6. of Kress (1999).
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This section is organized in the following way. The next paragraph recalls the main
mathematical properties of the equations of the second kind. The two following para-
graphs present the statistical properties of the solution in the cases of well-posed and
ill-posed problems, and the last paragraph applies these results to the two examples given
in Section 1.
The implementation of the estimation procedures is not discussed here because it is

similar to the implementation of the estimation of a regularized equation of the �rst
kind (see Section 3). Actually, regularizations transform �rst kind equations into second
kind equations and the numerical methods are then formally equivalent, even though the
statistical properties are fundamentally di¤erent.

7.2. Riesz theory and Fredholm alternative

We �rst brie�y recall the main results about equations of the second kind as they were
developed at the beginning of the 20th century by Fredholm and Riesz. The statements
are given without proofs (see e.g. Kress, 1999, Chapters 3 and 4).
LetK be a compact operator fromH toH and I be the identity onH (which is compact

only if H is �nite dimensional). Then, the operator I �K has a �nite dimensional null
space and its range is closed. Moreover, I �K is injective if and only if it is surjective.
In that case I �K is invertible and its inverse (I �K)�1 is a bounded operator.
An element of the null space of I � K veri�es K' = '; and if ' 6= 0, it is an

eigenfunction of K associated with the eigenvalue equal to 1. Equivalently, the inverse
problem (7.1) is well-posed if and only if 1 is not an eigenvalue of K. The Fredholm
alternative follows from the previous results.

Theorem 7.1 (Fredholm alternative). Let us consider the two equations of the sec-
ond kind:

(I �K)' = r (7.4)

and
(I �K�) = s (7.5)

where K� is the adjoint of K. Then:

i) Either the two homogeneous equations (I �K)' = 0 and (I �K�) = 0 only have
the trivial solutions ' = 0 and  = 0: In that case, (7.4) and (7.5) have a unique
solution for any r and s in H

ii) or the two homogeneous equations (I � K)' = 0 and (I � K�) = 0 have the
same �nite number m of linearly independent solutions 'j and  j (j = 1; :::;m)
respectively, and the solutions of (7.4) and (7.5) exist if and only if h j; ri = 0 and
h'j; si = 0 for any j = 1; :::;m.
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(ii) means that the null spaces of I �K and I �K� are �nite dimensional and have
same dimensions. Moreover, the ranges of I �K and I �K� satisfy

R (I �K) = N (I �K�)? ;

R (I �K�) = N (I �K)? :

7.3. Well-posed equations of the second kind

In this subsection, we assume that I �K is injective. In this case, the problem is well-
posed and the asymptotic properties of the solution are easily deduced from the properties
of the estimation of the operator K and of the right-hand side r.
The starting point of this analysis is the relation:

'̂n � '0 =
�
I � K̂n

��1
r̂n � (I �K)�1 r

=
�
I � K̂n

��1
(r̂n � r) +

��
I � K̂n

��1
� (I �K)�1

�
r

=
�
I � K̂n

��1 h
r̂n � r +

�
K̂n �K

�
(I �K)�1 r

i
=

�
I � K̂n

��1 h
r̂n � r +

�
K̂n �K

�
'0

i
(7.6)

where the third equality follows from A�1 �B�1 = A�1 (B � A)B�1:

Theorem 7.2. If

i)
K̂n �K

 = o (1)

ii)
�r̂n + K̂n'0

�
� (r +K'0)

 = O

�
1

an

�

Then k'̂n � '0k = O

�
1

an

�
Proof. As I � K is invertible and admits a continuous inverse, i) implies that

k
�
I � K̂n

��1
k converges to

(I �K)�1
 and the result follows from (7.6).

In some cases kr� r̂nk = O( 1
bn
) and kK̂n�Kk = O( 1

dn
). Then 1

an
= 1

bn
+ 1

dn
. In some

particular examples, as will be illustrated in the last subsection, the asymptotic behavior
of r̂n � K̂n' is directly considered.
Asymptotic normality can be obtained from di¤erent sets of assumptions. The follow-

ing theorems illustrate two kinds of asymptotic normality.

Theorem 7.3. If

i)
K̂n �K

 = o (1)
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ii) an
��
r̂n + K̂n'0

�
� (r +K'0)

�
=) N (0;�) (weak convergence in H)

Then
an ('̂n � '0) =) N

�
0; (I �K)�1� (I �K�)�1

�
:

Proof. The proof follows immediately from (7.6) and Theorem 2.47.

Theorem 7.4. We consider the case where H = L2(Rp; �). If

i) kK̂n �Kk = o(1)

ii) 9 an s.t an
h�
r̂n + K̂n'0

�
� (r +K'0)

i
(x)

d! N (0; �2 (x)) ; 8x 2 Rp

iii) 9 bn s.t an
bn
= o(1) and

bnK̂
h�
r̂n + K̂n'

�
� (r +K'0)

i
=) N (0;
) (weak convergence in H)

Then
an ('̂n � '0) (x)

d! N
�
0; �2 (x)

�
; 8x:

Proof. Using
(I �K)�1 = I + (I �K)�1K;

we deduce from (7.6) that

an('̂n � '0)(x) = an

n
(I � K̂n)

�1
h
r̂n + K̂n'0 � r �K'0

io
= an(r̂n + K̂n'0 � r �K'0)(x)

(7.7)

+
an
bn

n
bn(I � K̂n)

�1K̂n(r̂n + K̂n'0 � r �K'0)
o
(x)

The last term in brackets converges (weakly in L2) to a N (0; (I �K)�1
(I �K)�1) and
the value of this function at any point x also converges to a normal distribution (weak
convergence implies �nite dimensional convergence). Then the last term in brackets is
bounded and the result is veri�ed.

Note that condition (iii) is satis�ed as soon as premultiplying by K increases the rate
of convergence of r̂n + K̂n': This is true in particular if K is an integral operator.
We illustrate these results by the following three examples. The �rst example is an

illustrative example, while the other two are motivated by relevant econometric issues.

Example. Consider L2(R;�) and (Y; Z) is a random element of R � L2(R;�). We
study the integral equation of the second kind de�ned by

'(x) +

Z
EF (Z(x)Z(y))'(y)� (dy) = EF (Y Z(x)) (7.8)
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denoted by '+V ' = r: Here K = �V . As the covariance operator, V is a positive opera-
tor, K is a negative operator and therefore 1 can not be an eigenvalue ofK. Consequently,
Equation (7.8) de�nes a well-posed inverse problem.
We assume that an i.i.d. sample of (Y; Z) is available and the estimated equation

(7.8) de�nes the parameter of interest as the solution of an integral equation having the
following form:

'(x) +
1

n

nX
i=1

zi(x)

Z
zi(y)'(y)� (dy) =

1

n

nX
i=1

yizi(x) (7.9)

Under some standard regularity conditions, one can check that kV̂n � V k = O
�

1p
n

�
and

that

p
n
1

n

X
i

�
zi(�)

�
yi �

Z
zi(y)'(y)�(dy)

�
� EF (Y Z (�)) +

Z
EF (Z(:)Z(y))'(y)�(dy)

�
) N (0;�) in L2(R;�).

Suppose for instance that EF (Y jZ) =
R
Z(y)'(y)�(dy): Under a homoscedasticity hy-

pothesis, the operator � is a covariance operator with kernel �2EF (Z(x)Z(y)) where

�2 = V ar

�
Y �

Z
Z(y)'(y)�(dy)jZ

�
:

Then, from Theorem 7.3,

p
n ('̂n � '0)) N

�
0; �2(I + V )�1V (I + V )�1

�
:

Example: Rational expectations asset pricing models
Following Lucas (1978), rational expectations models characterize the pricing func-

tional as a function ' of the Markov state solution of an integral equation:

' (x)�
Z
a(x; y)' (y) f (yjx) dy =

Z
a(x; y)b(y)f (yjx) dy (7.10)

While f is the transition density of the Markov state, the function a denotes the marginal
rate of substitution and b the dividend function. For the sake of expositional simplicity,
we assume here that the functions a and b are both known while f is estimated nonpara-
metrically by a kernel method. Note that if the marginal rate of substitution a involves
some unknown preference parameters (subjective discount factor, risk aversion parame-
ter), they will be estimated, for instance by GMM, with a parametric root n rate of
convergence. Therefore, the nonparametric inference about ' (deduced from the solution
of (7.10) using a kernel estimation of f) is not contaminated by this parametric estima-
tion; all the statistical asymptotic theory can be derived as if the preference parameters
were known.
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As far as kernel density estimation is concerned, it is well known that under mild
conditions (see e.g. Bosq (1998)) it is possible to get the same convergence rates and the
same asymptotic distribution with stationary strongly mixing stochastic processes as in
the i.i.d. case.
Let us then consider a n-dimensional stationary stochastic process Xt and H the

space of square integrable functions of one realization of this process. In this example, H
is de�ned with respect to the true distribution. The operator K is de�ned by

K' (x) = EF (a (Xt�1; Xt)' (Xt) jXt�1 = x)

and
r (x) = EF (a (Xt�1; Xt) b(Xt)jXt�1 = x)

We will assume that K is compact through possibly a Hilbert-Schmidt condition (see
Assumption A.1 of Section 5.5 for such a condition). A common assumption in rational
expectation models is that K is a contraction mapping, due to discounting. Then, 1 is
not an eigenvalue of K and (7.10) is a well-posed Fredholm integral equation.
Under these hypotheses, both numerical and statistical issues associated with the

solution of (7.10) are well documented. See Rust, Traub and Wozniakowski (2002) and
references therein for numerical issues. The statistical consistency of the estimator '̂n
obtained from the kernel estimator K̂n is deduced from Theorem 7.2 above. Assumption
i) is satis�ed because K̂n � K has the same behavior as the conditional expectation
operator and

r̂n + K̂n'� r �K'
= EFn (a (Xt�1; Xt) (b(Xt) + ' (Xt)) jXt�1)
�EF (a (Xt�1; Xt) (b(Xt) + ' (Xt)) jXt�1)

converges at the speed 1
an
=
�

1
ncmn

+ c4n

�1=2
if cn is the bandwidth of the (second order)

kernel estimator and m is the dimension of X.
The weak convergence follows from Theorem 7.4. Assumption ii) of Theorem 7.4 is

the usual result on the normality of kernel estimation of conditional expectation. As K is
an integral operator, the transformation by K increases the speed of convergence, which
implies iii) of Theorem 7.4.

Example: Partially Nonparametric forecasting model
This example is drawn from Linton and Mammen (2005). Nonparametric prediction

of a stationary ergodic scalar random process Xt is often performed by looking for a
predictor m (Xt�1; :::; Xt�d) able to minimize the mean square error of prediction:

E
�
(Xt �m (Xt�1; :::; Xt�d))

2�
In other words, if m can be any squared integrable function, the optimal predictor is

the conditional expectation

m0 (Xt�1;:::;Xt�d) = E [XtjXt�1;:::;Xt�d]
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and can be estimated by kernel smoothing or any other nonparametric way of estimating a
regression function. The problems with this kind of approach are twofold. First, it is often
necessary to include many lagged variables and the resulting nonparametric estimation
surface su¤ers from the well-known �curse of dimensionality�. Second, it is hard to
describe and interpret the estimated regression surface when the dimension is more than
two.
A solution to deal with these problems is to think about a kind of nonparametric

generalization of ARMA processes. For this purpose, let us consider semiparametric
predictors of the following form

E [XtjIt�1] = m' (�; It�1) =
1X
j=1

aj (�)' (Xt�j) (7.11)

where � is an unknown �nite dimensional vector of parameters, aj (:) ; j � 1 are known
scalar functions, and ' (:) is the unknown functional parameter of interest. The notation

E [XtjIt�1] = m' (�; It�1)

stresses the fact that the predictor depends on the true unknown value of the parameters
� and '; and of the information It�1 available at time (t� 1) as well. This information is
actually the �-�eld generated by Xt�j; j � 1. A typical example is

aj (�) = �j�1 for j � 1 with 0 < � < 1. (7.12)

Then the predictor de�ned in (7.11) is actually characterized by

m' (�; It�1) = �m' (�; It�2) + ' (Xt�1) (7.13)

In the context of volatility modelling, Xt would denote a squared asset return over
period [t� 1; t] and m' (�; It�1) the so-called squared volatility of this return as expected
at the beginning of the period. Engle and Ng (1993) have studied such a partially non-
parametric (PNP for short) model of volatility and called the function ' the �news impact
function�. They proposed an estimation strategy based on piecewise linear splines. Note
that the PNP model includes several popular parametric volatility models as special cases.
For instance, the GARCH (1,1) model of Bollerslev (1986) corresponds to ' (x) = w+�x
while the Engle (1990) asymmetric model is obtained for ' (x) = w + � (x+ �)2 : More
examples can be found in Linton and Mammen (2005).
The nonparametric identi�cation and estimation of the news impact function can be

derived for a given value of �: After that, a pro�le criterion can be calculated to estimate
�: In any case, since � will be estimated with a parametric rate of convergence, the
asymptotic distribution theory of a nonparametric estimator of ' is the same as if �
were known. For the sake of notational simplicity, the dependence on unknown �nite
dimensional parameters � is no longer made explicit.
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At least in the particular case (7.12)-(7.13), ' is easily characterized as the solution
of a linear integral equation of the �rst kind

E [Xt � �Xt�1jIt�2] = E [' (Xt�1) jIt�2]

Except for its dynamic features, this problem is completely similar to the nonparametric
instrumental regression example described in Section 5.5. However, as already mentioned,
problems of the second kind are often preferable since they may be well-posed. As shown
by Linton and Mammen (2005) in the particular case of a PNP volatility model, it is
actually possible to identify and consistently estimate the function ' de�ned as

' = argmin
'
E

24 Xt �
1X
j=1

aj' (Xt�j)

!235 (7.14)

from a well-posed linear inverse problem of the second kind. When ' is an element of the
Hilbert space L2F (X), its true unknown value is characterized by the �rst order conditions
obtained by di¤erentiating in the direction of any vector h

E

" 
Xt �

1X
j=1

aj' (Xt�j)

! 1X
l=1

alh (Xt�l)

!#
= 0

In other words, for any h in L2F (X)

1X
j=1

ajE
X [E [XtjXt�j = x]h (x)]

�
1X
j=1

a2jE
X [' (x)h (x)]

�
1X
j=1

1X
l=1
l 6=j

ajalE
X [E [' (Xt�l) jXt�j = x]h(x)] = 0

(7.15)

where EX denotes the expectation with respect to the stationary distribution of Xt: As
the equality in (7.15) holds true for all h, it is true in particular for a complete sequence
of functions of L2F (X). It follows that

1X
j=1

ajE [XtjXt�j = x]�
 1X

l=1

a2l

!
' (x)

�
1X
j=1

1X
l 6=j

ajalE [' (Xt�l) jXt�j = x] = 0

PX� almost surely on the values of x. Let us denote

rj (Xt) = E [Xt+jjXt] and Hk (') (Xt) = E [' (Xt+k) jXt] :
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Then, we have proved that the unknown function ' of interest must be the solution of
the linear inverse problem of the second kind

A ('; F ) = (I �K)'� r = 0 (7.16)

where

r =

 1X
j=1

a2j

!�1 1X
j=1

ajrj;

K = �
 1X
j=1

a2j

!�1 1X
j=1

X
l 6=j

ajalHj�l;

and, with a slight change of notation, F now characterizes the probability distribution of
the stationary process (Xt) :
To study the inverse problem (7.16), it is �rst worth noticing that K is a self-adjoint

integral operator. Indeed, while

K =

 1X
j=1

a2j

!�1 +1X
k=�1

Hk

0@ +1X
l=max[1;1�k]

alal+k

1A
we immediately deduce from Subsection 2.2 that the conditional expectation operator Hk

is such that
H�
k = H�k

and thus K = K�; since

+1X
l=max[1;1�k]

alal+k =
+1X

l=max[1;1+k]

alal�k:

As noticed by Linton and Mammen (2005), this property greatly simpli�es the practical
implementation of the solution of the sample counterpart of equation (7.16). Even more
importantly, the inverse problem (7.16) will be well-posed as soon as one maintains the
following identi�cation assumption about the news impact function ':

Assumption A. There exists no � and ' 2 L2F (X) with ' 6= 0 such thatP1
j=1 aj (�)' (Xt�j) = 0 almost surely.

To see this, observe that Assumption A means that for any non-zero function '

0 < E

" 1X
j=1

aj' (Xt�j)

#2
;

that is

0 <
1X
j=1

a2j h'; 'i+
1X
j=1

1X
l=1
l 6=j

alaj h';Hj�l'i :

98



Therefore
0 < h'; 'i � h';K'i (7.17)

for non zero ': In other words, there is no non-zero ' such that

K' = '

and the operator (I �K) is one-to-one. Moreover, (7.17) implies that (I �K) has eigen-
values bounded from below by a positive number. Therefore, if K depends continuously
on the unknown �nite dimensional vector of parameters � and if � evolves in some compact
set, the norm of (I �K)�1 will be bounded from above uniformly on �.
It is also worth noticing that the operator K is Hilbert-Schmidt and a fortiori compact

under reasonable assumptions. As already mentioned in 2.2, the Hilbert-Schmidt property
for the conditional expectation operator Hk is tantamount to the integrability conditionZ Z �

fXt;Xt�k (x; y)

fXt(x)fXt (y)

�2
fXt (x) fXt (y) dxdy <1

It amounts to saying that there is not too much dependence between Xt and Xt�k: This
should be tightly related to the ergodicity or mixing assumptions about the stationary
process Xt: Then, if all the conditional expectation operators Hk; k � 1 are Hilbert-
Schmidt, the operator K will also be Hilbert-Schmidt insofar as

1X
j=1

X
l 6=j

a2ja
2
l < +1:

Up to a straightforward generalization to stationary mixing processes of results only
stated in the i.i.d. case, the general asymptotic theory of Theorems 7.3 and 7.4 can then
be easily applied to nonparametric estimators of the news impact function ' based on the
Fredholm equation of the second kind (7.15). An explicit formula for the asymptotic vari-
ance of '̂n as well as a practical solution by implementation of matricial equations similar
to those of 3.4 (without need of a regularization) is provided by Linton and Mammen
(2005) in the particular case of volatility modelling.
However, an important di¤erence with the i.i.d. case (see for instance assumption A.3

in Section 5.5 about instrumental variables) is that the conditional homoskedasticity as-
sumption cannot be maintained about the conditional probability distribution of Xt given
its own past. This should be particularly detrimental in the case of volatility modelling,
since when Xt denotes a squared return, it will in general be even more conditionally
heteroskedastic than returns themselves. Such severe conditional heteroskedasticity will
likely imply a poor �nite sample performance, and a large asymptotic variance of the esti-
mator '̂n de�ned from the inverse problem (7.15), that is from the least squares problem
(7.14). Indeed, '̂n is a kind of OLS estimator in in�nite dimension. In order to better
take into account conditional heteroskedasticity of Xt in the context of volatility mod-
elling, Linton and Mammen (2005) propose to replace the least squares problem (7.14)
by a quasi-likelihood kind of approach where the criterion to optimize is de�ned from the
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density function of a normal conditional probability distribution of returns, with variance
m' (�; It�1) : Then the di¢ culty is that the associated �rst order conditions now charac-
terize the news impact function ' as solution of a nonlinear inverse problem. Linton and
Mammen (2005) suggest to work with a version of this problem which is locally linearized
around the previously described least squares estimator '̂n (and associated consistent
estimator of �).

7.4. Ill-posed equations of the second kind

7.4.1. Estimation

The objective of this section is to study equations (I �K)' = r where 1 is an eigenvalue
of K, i.e. where I � K is not injective (or one-to-one). For simplicity, we restrict our
analysis to the case where the order of multiplicity of the eigenvalue 1 is one and the
operator K is self-adjoint. This implies that the dimension of the null spaces of I �K is
one and using the results of Section 7.2, the space H may be decomposed into

H = N (I �K)�R(I �K)

i.e. H is the direct sum between the null space and the range of I �K, both closed. We
denote by PN r the projection of r on N (I �K) and by PRr the projection of r on the
range R(I �K).
Using ii) of Theorem 7.1, a solution of (I �K)' = r exists in the non injective case

only if r is orthogonal to N (I �K) or equivalently, if r belongs to R(I �K). In other
words, a solution exists if and only if r = PRr. However in this case, the solution is not
unique and there exists a one dimensional linear manifold of solutions. Obviously, if '
is a solution, ' plus any element of N (I � K) is also a solution. This non uniqueness
problem will be solved by a normalization rule which selects a unique element in the set
of solutions. The normalization we adopt is

h'; �1i = 0 (7.18)

where �1 is the eigenfunction of K corresponding to the eigenvalue equal to 1.
In most statistical applications of equations of the second kind, the r element corre-

sponding to the true data generating process is assumed to be in the range of I�K where
K is also associated with the true DGP. However, this property is no longer true if F is
estimated and we need to extend the resolution of (I �K)' = r to cases where I �K is
not injective and r is not in the range of this operator. This extension must be done in
such a way that the continuity properties of inversion are preserved.
For this purpose we consider the following generalized inverse of (I � K). As K is

a compact operator, it has a discrete spectrum �1 = 1; �2,... where only 0 may be an
accumulation point (in particular 1 cannot be an accumulation point). The associated
eigenfunctions are �1; �2; :::. Then we de�ne:

Lu =
1X
j=2

1

1� �j
hu; �ji�j; u 2 H (7.19)
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Note that L = (I �K)y is the generalized inverse of I � K, introduced in Section 3.
Moreover, L is continuous and therefore bounded because 1 is an isolated eigenvalue. This
operator computes the unique solution of (I �K)' = PRu satisfying the normalization
rule (7.18). It can be easily veri�ed that L satis�es:

LPR = L = PRL;

L(I �K) = (I �K)L = PR: (7.20)

We now consider estimation. For an observed sample, we obtain the estimator Fn of
F (that may be built from a kernel estimator of the density) and then the estimators r̂n
and K̂n of r and K respectively. Let �̂1; �̂2; ::: denote the eigenfunctions of K̂n associated
with �̂1; �̂2; ::: We restrict our attention to the cases where 1 is also an eigenvalue of
multiplicity one of K̂n (i.e. �̂1 = 1). However, �̂1 may be di¤erent from �1.
We have to make a distinction between two cases. First, assume that the Hilbert

space H of reference is known and in particular the inner product is given (for example
H = L2(Rp;�) with � given). The normalization rule imposed to '̂n is

h'̂n; �̂1i = 0

and L̂n is the generalized inverse of I � K̂n in H (which depends on the Hilbert space
structure) where

L̂nu =
1X
j=2

1

1� �̂j
hu; �̂ji�̂j; u 2 H

Formula (7.20) applies immediately for Fn:
However, if the Hilbert spaceH depends on F (e.g. H = L2(Rp; F )); we need to assume

that L2(R; Fn) � L2(Rp; F ). The orthogonality condition, which de�nes the normalization
rule (7.18) is related to L2(Rp; F ) but the estimator '̂n of ' will be normalized by

h'̂n; �̂1in = 0

where h , in denotes the inner product relative to Fn. This orthogonality is di¤erent from
an orthogonality relative to h ; i. In the same way L̂n is now de�ned as the generalized
inverse of I � K̂n with respect to the estimated Hilbert structure, i.e.

L̂nu =
1X
j=2

1

1� �̂j
hu; �̂jin�̂j

and L̂n is not the generalized inverse of I � K̂n in the original space H. The advan-
tages of this de�nition are that L̂n may be e¤ectively computed and satis�es the for-
mula (7.20) where Fn replaces F . In the sequel PRn denotes the projection operator on

Rn = R
�
I � K̂n

�
for the inner product < :;.>n.
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To establish consistency, we will use the following equality.

L̂n � L = L̂n(K̂n �K)L

+ L̂n(PRn � PR) + (PRn � PR)L: (7.21)

It follows from (7.20) and L̂n � L = L̂nPRn � PRL = L̂n(PRn � PR) + (PRn � PR)L �
PRnL+ L̂nPR and L̂n (Kn �K)L = L̂n (Kn � I)L+ L̂n (I �K)L = �PRnL+ L̂nPR:
The convergence property is given by the following theorem.

Theorem 7.5. Let us de�ne '0 = Lr and '̂n = L̂nr̂n: If

i)
K̂n �K

 = o (1)

ii) kPRn � PRk = O
�
1
bn

�
iii)

(r̂n + K̂n'0)� (r +K'0)
 = O

�
1
an

�
Then

k'̂n � '0k = O

�
1

an
+
1

bn

�
:

Proof. The proof is based on:

'̂n � '0 = L̂nr̂n � Lr

= L̂n(r̂n � r) + (L̂n � L)r

= L̂n(r̂n � r) + L̂n(K̂n �K)'0 (7.22)

+ L̂n (PRn � PR) r + (PRn � PR)'0

deduced from (7.21). Then

k'̂n � '0k � kL̂nkk(r̂n + K̂n'0)� (r +K'0)k
+ (kL̂nkkrk+ k'0k)kPRn � PRk (7.23)

Under i) and ii) kL̂n � Lk = o(1) from (7.21). This implies kL̂nk ! kLk and the result
follows.

If
an
bn
= O (1) ; the actual speed of convergence is bounded by

1

an
: This will be the

case in the two examples of 7.4.2 where
an
bn
! 0.

We consider asymptotic normality in this case. By (7.20), we have L̂n = PRn + L̂nK̂n;
hence:

'̂n � '0

= PRn

h
(r̂n + K̂n'0)� (r +K'0)

i
(7.24)

+ L̂nK̂n

h
(r̂n + K̂n'0)� (r +K'0)

i
(7.25)

+ L̂n(PRn � PR)r + (PRn � PR)'0 (7.26)

Let us assume that there exists a sequence an such that i) and ii) below are satis�ed
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i) anPRn

h
(r̂n + K̂n'0)� (r +K'0)

i
(x) has an asymptotic normal distribution,

ii) an
h
L̂nK̂n(r̂n + K̂n'0 � r �K'0)

i
(x)! 0, an

h
L̂n (PRn � PR) r

i
(x)! 0;

and an [(PRn � PR)'0] (x)! 0 in probability:
Then the asymptotic normality of an('̂n � '0) is driven by the behavior of (7.24).

This situation occurs in the nonparametric estimation, as illustrated in the next section.

7.4.2. Two examples: back�tting estimation in additive and panel models

Back�tting estimation in additive models
Using the notation of Subsection 1.3.5, an additive model is de�ned by

(Y; Z;W ) 2 R� Rp � Rq
Y = '(Z) +  (W ) + U
E(U jZ;W ) = 0:

(7.27)

It follows from (1.23) that the function ' is solution of the equation

'� E [E(' (Z) jW )jZ] = E(Y jZ)� E [E(Y jW )jZ]

and  is the solution of an equation of the same nature obtained by a permutation of W
and Z. The back�tting algorithm of Breiman and Friedman (1985), and Hastie and Tib-
shirani (1990) is widely used to estimate ' and  in Equation (7.27). Mammen, Linton,
and Nielsen (1999) derive the asymptotic distribution of the back�tting procedure. Al-
ternatively, Newey (1994), Tjostheim and Auestad (1994), and Linton and Nielsen (1995)
propose to estimate ' (respectively  ) by integrating an estimator of E [Y jZ = z;W = w]
with respect to w (respectively z):
We focus our presentation on the estimation of ': It appears as the result of a linear

equation of the second kind. More precisely, we have in that case:

� H is the space of the square integrable functions of Z with respect to the true data
generating process. This de�nition simpli�es our presentation but an extension to
di¤erent spaces is possible.

� The unknown function ' is an element of H. Actually, asymptotic considerations
will restrict the class of functions ' by smoothness restrictions.

� The operatorK is de�ned byK' = E [E(' (Z) jW )jZ]. This operator is self adjoint
and we assume its compactness. This compactness may be obtained through the
Hilbert Schmidt Assumption A.1 of Subsection 5.5.

� The function r is equal to E(Y jZ)� E [E(Y jW )jZ].
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The operator I � K is not one-to-one because the constant functions belong to the
null space of this operator. Indeed, the additive model (7.27) does not identify ' and  .
We introduce the following assumption (see Florens, Mouchart, and Rolin (1990)), which
warrants that ' and  are exactly identi�ed up to an additive constant, or equivalently
that the null space of I �K only contains the constants (meaning 1 is an eigenvalue of
K of order 1).

Identi�cation assumption. Z and W are measurably separated w.r.t. the distri-
bution F; i.e. a function of Z almost surely equal to a function of W is almost surely
constant.

This assumption implies that if '1; '2;  1;  2 are such that E(Y jZ;W ) = '1(Z) +
 1(W ) = '2(Z) +  2(W ) then '1(Z) � '2(Z) =  2(W ) �  1(W ) which implies that
'1 � '2 and  2 �  1 are a.s. constant. In terms of the null set of I �K; we have

K' = '

() E [E(' (Z) jW )jZ] = ' (Z)

=) E
�
(E [' (Z) jW ])2

�
= E [' (Z)E ('(Z)jW )]
= E

�
'2 (Z)

�
:

But, by Pythagore theorem

'(Z) = E(' (Z) jW ) + �

E
�
'2 (Z)

�
= E

�
(E (' (Z) jW ))2

�
+ E�2:

Then:

K' = ' =) � = 0

, '(Z) = E ['(Z) jW ] :

Then, if ' is an element of the null set of I �K, ' is almost surely equal to a function of
W and is therefore constant.
The eigenvalues of K are real, positive and smaller than 1 except for the �rst one,

that is 1 = �1 > �2 > �3 > :::1 The eigenfunctions are such that �1 = 1 and the condition
h'; �1i = 0 means that ' has an expectation equal to zero. The range of I �K is the set
of functions with mean equal to 0 and the projection of u; PRu; equals u� E(u).
It should be noticed that under the hypothesis of the additive model, r has zero mean

and is then an element of R(I �K). Then, a unique (up to the normalization condition)
solution of the structural equation (I �K)' = r exists.
The estimation may be done by kernel smoothing. The joint density is estimated by

fn(y; z; w) =
1

nc1+p+qn

nX
i=1

!

�
y � yi
cn

�
!

�
z � zi
cn

�
!

�
w � wi
cn

�
(7.28)

1Actually K = T �T when T' = E('jW ) and T � = E( jZ) when  is a function of W . The
eigenvalues of K correspond to the squared singular values of the T and T � de�ned in Section 2.
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and Fn is the c.d.f. associated with fn. The estimated K̂n operator satis�es

(K̂n')(z) =

Z
' (u) ân (u; z) du (7.29)

where

ân (u; z) =

Z
f̂n (:; u; w) f̂n (:; z; w)

f̂n (:; :; w) f̂n (:; z; :)
dw:

The operator K̂n must be an operator from H to H (it is by construction an operator

from L2Z(Fn) into L
2
Z(Fn)): Therefore,

!( z�z`cn
)P

` !(
z�z`
cn
)
must be square integrable w.r.t. F .

The estimation of r by r̂n veri�es

r̂n(z) =
1

nP̀
=1

!
�
z�z`
cn

� nX
`=1

 
y` �

nX
i=1

yi!`i

!
!

�
z � z`
cn

�

where !`i =
!

 w` � wi
cn

!
nX
j=1

!

 w` � wj
cn

! :

The operator K̂n also has 1 as the greatest eigenvalue corresponding to an eigenfunc-
tion equal to 1. Since Fn is a mixture of probabilities for which Z andW are independent,
the measurable separability between Z and W is ful�lled. Then, the null set of I � K̂n

reduces a.s. (w.r.t. Fn) to constant functions. The generalized inverse of an operator
depends on the inner product of the Hilbert space because it is de�ned as the function '
of minimal norm which minimizes the norm of K̂n'� r̂n. The generalized inverse in the
space L2Z(F ) cannot be used for the estimation because it depends on the actual unknown
F . Then we construct L̂n as the generalized inverse in L2Z(Fn) of I � K̂n. The practical
computation of L̂n can be done by computing the n eigenvalues �̂1 = 1; :::; �̂n and the n
eigenfunctions �̂1 = 1; �̂2; :::; �̂n of K̂n. Then

L̂nu =

nX
j=2

1

1� �̂j

�Z
u(z)�̂j(z)f̂n(z)dz

�
�̂j

It can be easily checked that property (7.20) is veri�ed where PRn is the projection
(w.r.t. Fn) on the orthogonal of the constant function. This operator subtracts from any
function its empirical mean, which is computed through the smoothed density:

PRnu = u� 1

ncpn

X
i

Z
u(z)!

�
z � zi
cn

�
dz

The right hand side of the equation (I� K̂n)' = r̂n has a mean equal to 0 (w.r.t. Fn).
Hence, this equation has a unique solution '̂n = L̂n'0 which satis�es the normalization

condition 1
ncpn

P
i

R
'̂n(z)!

�
z�zi
cn

�
dz = 0.
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The general results of Section 7.4 apply. First, we check that the conditions i) to iii)
of Theorem 7.5 are ful�lled.

i) Under very general assumptions, kK̂n �Kk ! 0 in probability.

ii) We have to check the properties of PRn � PR

(PRn � PR)' =
1

ncpn

X
i

Z
'(z)!

�
z � zi
cn

�
dz �

Z
'(z)f(z)dz:

The asymptotic behavior of the positive random variable, k(PRn � PR)'k2

=
��� 1
ncpn

Pn
i=1

R
'(z)!

�
z�zi
cn

�
dz � E(')

���2 ; is the same as the asymptotic behavior of
its expectation:

E

 
1

ncpn

nX
i=1

Z
'(z)!

�
z � zi
cn

�
dz � E(')

!2
:

Standard computation on this expression shows that this mean square error isO
�
1

n
+ c

2min(d;d0)
n

�
k'k2;

where d is the smoothness degree of ' and d0 the order of the kernel.

iii) The last term we have to consider is actually not computable but its asymptotic
behavior is easily characterized. We simplify the notation by denoting EFn(:j:) the
estimation of a conditional expectation. The term we have to consider is

(r̂n + K̂n')� (r +K') = EFn(Y jZ)� EFn(EFn(Y jW )jZ) + EFn(EFn('(Z)jW )jZ)
� EF (Y jZ) + EF (EF (Y jW )jZ)� EF (EF ('(Z)jW )jZ)
= EFn

�
Y � EF (Y jW ) + EF (' (Z) jW ) jZ

�
� EF

�
Y � EF (Y jW ) + EF (' (Z) jW ) jZ

�
� R

where R = EF
�
EFn (Y � ' (Z) jW )� EF (Y � ' (Z) jW )

	
:Moreover, from (7.27):

EF (Y jW ) = EF (' (Z) jW ) +  (W ) :

Then�
r̂n + K̂n'

�
� (r +K') = EFn (Y �  (W ) jZ)� EF (Y �  (W ) jZ)

� R:

The term R converges to zero at a faster rate than the �rst part of the r.h.s. of this
equation and can be neglected. We have seen in the other parts of this chapter that

kEFn(Y �  (W )jZ)� EF (Y �  (W )jZ)k2 = 0
�
1

ncpn
+ c2�n

�
where � depends on the regularity assumptions. Therefore, Condition iii) of Theo-
rem 7.5 is ful�lled.
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From Theorem 7.5, it follows that k'̂n�'0k ! 0 in probability and that k'̂n�'0k =

0

�
1p
ncpn
+ c�n

�
.

The pointwise asymptotic normality of
p
nc�n('̂n(z)� '0(z)) can now be established.

We apply the formulas (7.24) to (7.26) and Theorem 7.4.

1) First, consider (7.26). Under a suitable condition on cn (typically nc
�+2min(d;r)
n ! 0);

we have:
p
ncpn

n
L̂n(PRn � PR)r + (PRn � PR)'0

o
! 0 in probability.

2) Second, consider (7.25). Using the same argument as in Theorem 7.4, a suitable
choice of cn implies thatp

nc�nL̂nK̂n

h
(r̂n + K̂n'0)� (r +K'0)

i
! 0: (7.30)

Actually, while EFn(Y �  (W )jZ) � EF (Y �  (W )jZ) only converges pointwise
at a nonparametric speed, the transformation by the operator K̂n converts this
convergence into a functional convergence at a parametric speed. Thenp

ncpn

K̂n

�
EFn(Y �  (W )jZ)� EF (Y �  (W )jZ

�! 0:

Moreover, L̂n converges in norm to L; which is a bounded operator. Hence, the
result of (7.30) follows.

3) The term (7.24) remains. The convergence of
p
ncpn('Fn(z)�'F (z)) is then identical

to the convergence of
p
ncpnPRn

�
EFn(Y �  (W )jZ = z)� EF (Y �  (W )jZ = z

�
=
p
ncpn

"
EFn(Y �  (W )jZ = z)� EF (Y �  (W )jZ = z)

� 1
n

X
i

(yi �  (wi))� 1
ncpn

P
i

Z Z
(y �  (w))f(y; wjZ = z)!

�
z � zi
cn

�
dzdw

#
:

It can easily be checked that the di¤erence between the two sample means converge
to zero at a higher speed than

p
ncpn and these two last terms can be neglected.

Then using standard results on nonparametric estimation, we obtain:

p
ncpn('Fn(z)� 'F (z))

d! N
 
0; V ar(Y �  (W )jZ = z)

R
! (u)2 du

fZ(z)

!

where the 0 mean of the asymptotic distribution is obtained thanks to a suitable
choice of the bandwidth, which needs to converge to 0 faster than the optimal speed.
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Note that the estimator of ' has the same properties as the oracle estimator based on
the knowledge of  . This attractive feature was proved by Mammen, Linton, and Nielsen
(1999) using di¤erent tools.

Estimation of the bias function in a measurement error equation
We have introduced in Subsection 1.3.6, the measurement error model:�

Y1 = � + ' (Z1) + U1 Y1; Y2 2 R
Y2 = � + ' (Z2) + U2 Z1; Z2 2 Rp

where �; Ui are random unknown elements and Y1 and Y2 are two measurements of � con-
taminated by a bias term depending on observable elements Z1 and Z2: The unobservable
component � is eliminated by di¤erentiation to obtain:

Y = ' (Z2)� ' (Z1) + U (7.31)

when Y = Y2 � Y1 and E (Y jZ1; Z2) = ' (Z2) � ' (Z1) : We assume that i.i.d. obser-
vations of (Y; Z1; Z2) are available. Moreover, the order of measurements is arbitrary or
equivalently (Y1; Y2; Z1; Z2) is distributed identically to (Y2; Y1; Z2; Z1) : This implies that
(Y; Z1; Z2) and (�Y; Z2; Z1) have the same distribution. In particular, Z1 and Z2 are
identically distributed.

� The reference spaceH is the space of random variables de�ned on Rp that are square
integrable with respect to the true marginal distribution on Z1 (or Z2):We are in a
case where the Hilbert space structure depends on the unknown distribution.

� The function ' is an element of H but this set has to be reduced by the smoothness
condition in order to obtain the asymptotic properties of the estimation procedure.

� The operator K is the conditional expectation operator

(K') (z) = EF (' (Z2) jZ1 = z)
= EF (' (Z1) jZ2 = z)

from H to H. The two conditional expectations are equal because (Z1; Z2) and
(Z2; Z1) are identically distributed (by the exchangeability property). The operator
K is self-adjoint and is assumed to be compact. This property may be deduced as
in previous cases from a Hilbert Schmidt argument.

Equation (7.31) introduces an overidenti�cation property because it constrains the
conditional expectation of Y given Z1 and Z2: In order to de�ne ' for any F (and in
particular for the estimated one), the parameter ' is now de�ned as the solution of the
minimization problem:

' = argmin
'
E (Y � ' (Z2) + ' (Z1))

2

108



or, equivalently as the solution of the �rst-order conditions:

EF [' (Z2) jZ1 = z]� ' (z) = E (Y jZ1 = z)

because (Y; Z1; Z2) and (�Y; Z2; Z1) are identically distributed:
The integral equation, which de�nes the function of interest, '; may be denoted by

(I �K)' = r

where r = E (Y jZ2 = z) = �E (Y jZ1 = z) : As in the additive models, this inverse prob-
lem is ill-posed because I � K is not one-to-one. Indeed, 1 is the greatest eigenvalue
of K and the eigenfunctions associated with 1 are the constant functions. We need an
extra assumption to warrant that the order of multiplicity is one, or in more statistical
terms, that ' is identi�ed up to a constant. This property is obtained if Z1 and Z2 are
measurably separated, i.e. if the functions of Z1 almost surely equal to some functions of
Z2; are almost surely constant.
Then the normalization rule is

h'; �1i = 0
where �1 is constant. This normalization is then equivalent to

EF (') = 0:

If F is estimated using a standard kernel procedure, the estimated Fn does not sat-
isfy in general, the exchangeability assumption ((Y; Z1; Z2) and (�Y; Z2; Z1) are identi-
cally distributed). A simple way to incorporate this constraint is to estimate F using
a sample of size 2n by adding to the original sample (yi; z1i; z2i)i=1;:::;n a new sample
(�yi; z2i; z1i)i=1;:::;n : For simplicity, we do not follow this method here and consider an es-
timation of F; which does not verify the exchangeability. In that case, r̂n is not in general
an element of R

�
I � K̂n

�
; and the estimator '̂n is de�ned as the unique solution of�

I � K̂n

�
' = PRn r̂n;

which satis�es the normalization rule

EFn (') = 0:

Equivalently, we have seen that the functional equation
�
I � K̂n

�
' = r̂n reduces to a

n dimensional linear system, which is solved by a generalized inversion. The asymptotic
properties of this procedure follow immediately from the theorems of Section 7.4 and are
obtained identically to the case of additive models.
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