Chapter 1

Deep Neural Network
Sequence-Discriminative Training

Abstract The cross-entropy criterion discussed in the previous chapters
treats each frame independently. However, speech recognition is a sequence
classification problem. In this chapter, we introduce the sequence-discriminative
training techniques that match better to the problem. We describe the popu-
lar maximum mutual information (MMTI), boosted MMI (BMMI), minimum
phone error (MPE), and minimum Bayes risk (MBR) training criteria, and
discuss the practical techniques, including lattice generation, lattice compen-
sation, frame dropping, frame smoothing, and learning rate adjustment, to
make DNN sequence-discriminative training effective.

1.1 Sequence-Discriminative Training Criteria

In the previous chapters, deep neural networks (DNNs) for speech recogni-
tion are trained to classify individual frames based on a cross-entropy (CE)
criterion, which minimizes the expected frame error. However, speech recog-
nition is a sequence classification problem. Sequence-discriminative training
[8, 11, 9, 15, 16] seeks to better match the maximum a posteriori (MAP)
decision rule of large vocabulary continous speech recognition (LVCSR) by
considering sequence (inter-frame) constraints from hidden Markov models
(HMMs), dictionary, and the language model (LM). Intuitively better recog-
nition accuracy can be achieved if the CD-DNN-HMM speech recognizer is
trained using sequence-discriminative criteria such as maximum mutual in-
formation (MMI) [1, 7] , boosted MMI (BMMI) [13], minimum phone error
(MPE) [14] or minimum Bayes risk (MBR) [2] that have been proven to
obtain state-of-the-art results in the GMM-HMM framework. Experimental
results have shown that sequence-discriminative training can obtain from 3%
to 17% relative error rate reduction against the CE trained models depends
on the implementation and the dataset.
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1.1.1 MMI

The MMI criterion [1, 7] used in automatic speech recognition (ASR) sys-
tems aims at maximizing the mutual information between the distributions
of the observation sequence and the word sequence, which is highly cor-
related to minimizing the expected sentence error. Let us denote o™ =
o",---,0¢" .-+ ;op and w" =wi" .- wy" .- Wy the observation se-
quence and the correct word transcription of the m-th utterance, respectively,
where T, is the total number of frames in utterance m, and N,, is the to-
tal number of words in the transcription of the same utterance. The MMI
criterion over the training set S ={(o™,w™) |0 < m < M} is:

Jnnmr (0;5) Z Jaenr (6;0™,w™)

= Z logP (w™|0™;6)

(0™[s™;0)" P (w™)
_210 S o750 P(w)’ (1.1)

where 6 is the model parameter including DNN weight matrices and biases,
s™ = s+ 8¢, -+, s is the sequence of states corresponding to w™
and x is the acoustic scaling factor. Theoretically the sum in the denominator
should be taken over all possible word sequences. In practice, however, the
sum is constrained by the decoded speech lattice for utterance m to reduce
the computational cost. Note that the gradient of the criterion 1.1 with regard

to the model parameters # can be computed as
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where the error signal &L 1 is defined as V,, L JMM] (6; 0™, w™) and zL ¢ is the
softmax layer’s excitation (the value before softmax is apphed) for utterance

m at frame t. Since 36—%‘ is irrelevant to the training criterion, the only
difference the new training criterion introduces compared to the frame-level
cross entropy training criterion ?7? is the way the error signal is calculated.
In the MMI training, the error signal becomes
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where &%, (i) is the i-th element of the error signal, vZ, (r) = P (r|o") =
softmaxr (z#t) is the r-th output of the DNN,

DEN( ) = ZW;st:,‘p(Om\S)HP(W)
i S (07[s*) P (w)
is the posterior probability of being in state r at time t, computed over the
denominator lattices for utterance m, P (r) is the prior probability of state
r, p (o}") is the prior probability of observing o}*, and 0 (e) is the Kronecker
delta. Both P (r) and p (o) are independent of zZ,. Here we assumed that
the nominator reference state labels are obtained through a forced align-
ment of the acoustics with the word transcript. If we consider all possible
state sequences that lead to the reference transcription w”, we can use the
forward-backward algorithm over the word reference to obtain the numerator
occupancies ¥NUM (i) to replace § (i = s7*).

If your DNN training algorithm is defined to minimize an objective func-
tion, you can, instead of maximizing the mutual information, minimize
Nt (0;S) = —Jarar (6;S), in which case the error signals are negated.
Note that criterion similar to MMI has been explored in the early ANN/HMM
hybrid work [6].

(1.4)

1.1.2 Boosted MMI

The boosted MMI (BMMI) [13] criterion

0

(1.3)
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is a variant of the MMI objective 1.1 to boost the likelihood of paths that
contain more errors, where b, whose typical value is 0.5, is the boosting factor,
and A (w,w™) is a raw accuracy measure between word sequences w and
w™ and can be computed at word level, phoneme level, or state level. For
example, if it is measured at the phone level, it equals to the number of
correct phones minus the number of insertions. This raw accuracy must be
approximated efficiently. It has been shown that the BMMI criterion may be
interpreted as incorporating a margin term in the MMI objective [13]. Since
the only difference between the MMI and BMMI objective functions is the
boosting term e~?4(":%™) at the denominator, the error signal €L, (i) can
be similarly derived as

€5 (i) = Voo iy Jpmmr (050", w™)

r(8G=s) = 00N 6) (1.6)

where, different from the MMI criterion, the denominator posterior probabil-
ity is computed as

—bA(w,w™)

% DEN (i) = Zw;st:i p (Om|S)N P(w)e
mt YW P (0m[s®)" P (w) e bAww™)

The extra computation involved in BMMI as opposed to MMI is very small
if A(w,w™) can be efficiently estimated. The only change occurs in the
forward-backward algorithm on the denominator lattice. For each arc in the
denominator lattice we subtract from the acoustic log-likelihood bA (s, s™)
that is corresponding to the arc. This behave is similar to modifying the
language model contribution on each arc.

(1.7)

1.1.3 MPE/sMBR

The MBR |2, 8] family of objective functions aims at minimizing the ex-
pected error corresponding to different granularity of labels. For example,
the MPE criterion aims to minimize the expected phone error, while state
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MBR (sMBR) aims to minimize the expected state error when HMM topol-
ogy and language models are taken into consideration. In general the MBR
objective can be written as

B

JuBr (6;S) = JuBr (0;0™,w™)
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where A (w, w™) is the raw accuracy between word sequences w and w™. For
example, for MPE, it is the number of correct phone labels, while for sMBR
it is the number of correct state labels. Similar to that in the MMI/BMMI
case, the error signal is

o

; (1.8)

3
I
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whereA™ is the average accuracy of all paths in the lattice, A™ (r = s) is
the average accuracy of all paths in the lattice for utterance m that passes
through state r at time ¢, and 5 2FN () is the MBR occupancy statistics.
For sMBR,

N DEN ( Z(s P (s|o™) (1.10)

A(w,w™) = A(s¥,s™) = (s = s} (1.11)
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A = E{A(s,s")) = 25 Pz(s'gzlfnﬂs)’sm).

(1.13)

1.1.4 A Uniformed Formulation

There can be other sequence-discriminative training criteria Jggg (0; 0, w).
If the criteria are formulated as objective functions to be maximized (e.g.,
MMI/BMMI) instead of loss functions to be minimized we can always de-
rive a loss function to be minimized by multiplying the original objective
function by —1 . Such loss functions can always be formulated as a ratio of
values computed from two lattices: the numerator lattice that represents the
reference transcription and the denominator lattice that represents compet-
ing hypotheses. The expected occupancies vNYM (i) and yDEN (i) for each
state ¢ required by the extended Baum-Welch (EBW) algorithm are com-
puted with forward-backward passes over the numerator and denominator
lattices, respectively.
Note that the gradient of the loss with respect to state log-likelihood is

0JsEqQ (6; 0™, w™)
dlogp (of*|r)

=k (vmi (1) =i (1)) - (1.14)
Since logp (o}*|r) = log P (r|of*) —log P (r)+log p (o}*), by the chain rule,

DJspo (B;0m w™)  (YREN (r) — ANV (1))
aPlopy " Pl MY

Given that P (r|o}") = softmax, (z%,) we get

. oJ 0; 0™, w
e (1) = SEcéz(Lt (i) |

=5 (Ymi " (@) =i @) (L16)

This formula can be applied to all the above sequence-discriminative train-
ing criteria as well as new ones [8, 16, 15]. The only difference is the way the

occupancy statistics yNUM (i) and y2EN (i) are computed.

1.2 Practical Considerations

The above discussion seems to indicate that the sequence-discriminative
training can be trivial. The only difference between the sequence-discriminative
training and the frame-level cross entropy training is the more complicated
error signal computation, which now involves numerator and denominator lat-
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tices. In practice, however, many practical techniques would help and some-
times are critical to obtain good recognition accuracy.

1.2.1 Lattice Generation

Similar to training GMM-HMM systems, the first step in the sequence-
discriminative training of DNNs is to generate the numerator and denom-
inator lattices. As we have pointed out above, the numerator lattices are
often reduced to forced-alignment of the transcription. It was shown that it
is important to generate the lattices (especially the denominator lattices) by
decoding the training data with a unigram LM in the GMM-HMM [12]. This
still holds in the CD-DNN-HMM. In addition, people have found that it is
desirable to use the best model available to generate the lattice and to serve
as the seed model for the sequence-discriminative training [15]. Since CD-
DNN-HMMs often outperform the CD-GMM-HMMs, we should at least use
the CD-DNN-HMM trained with the CE criterion as both the seed model
and the model for generating the alignments and lattices of each training
utterance. Since lattice generation is an expensive process, the lattice is thus
typically generated once and reused across training epochs. Further improve-
ment can be obtained if new alignment and lattices are generated after each
epoch. It is important that all the lattices are regenerated using the same
model when doing so.

Table 1.1, based on results extracted from [15], clearly indicates the effect
of the lattice quality and the seed model to the final recognition accuracy.
From the table we can make several observations. First, compared to the CE1
model trained with the CE criterion and the alignment generated from the
GMM model, the model trained with the sequence-discriminative training
only obtains 2% relative error reduction if the lattices used are generated
from the GMM model. However, we can obtain 13% relative error reduction
if the lattice is generated from the CE1 model even though the same CE1
model is used as the seed model in both conditions. Second, if the same
lattice generated from the CE1 model is used to generate statistics in the
sequence-discriminative training, additional 2% relative error reduction can
be obtained if we use CE2 instead of CE1 model as the seed model. The
best result of 17% relative word error rate (WER) reduction can be obtained
using the CE2 model as both the seed model and the model for generating
the lattice.
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Table 1.1 The effect (WER on Hub5’00 dataset) of the quality of the seed model and
the lattice to the performance of the sequence-discriminative training on SWB 300hr task.
Relative WER reduction over the CE1 model are in parentheses. CEl: trained with the
alignment generated from GMM. CE2: refinement of CE1 model with alignment generated
from CEL. (Summarized from Su et al. [15])

. Seed Model
Model to Generate Lattice reinil | rSiop)
GMM 15.8% (-2%) -
DNN CE1 (WER 16.2%) |14.1% (-13%)|13.7% (-15%)
DNN CE2 (WER 15.6%) - 13.5% (-17%)

1.2.2 Lattice Compensation

Since the error signal is the weighted difference between the statistics calcu-
lated from the denominator and numerator lattices, the quality of the lattice
is thus very important. However, even if the beam width used in the lattice
generation process is large it is still impossible to cover all possible competing
hypotheses. Actually, if indeed all competing hypotheses are included, using
lattice to constraint the computation of the denominator lattice can no longer
speedup the training process.

The problem often happens when the reference hypothesis is missing from
or misaligned with the denominator lattice, under which condition the gradi-
ent can be unfairly higher since v2F™ (i) is 0. This behavior can be frequently
seen for silence frames since they are likely to be missing from the denom-
inator lattices but occur very often in the numerator lattices. One of the
behaviors introduced by poor lattice quality is the run-away silence frames.
The number of silence frames in the decoding results increases as the train-
ing epoch increases. This results in increased deletion errors in the decoding
result.

There are several ways to fix this problem. The first approach is to remove
the frames where the reference hypothesis is not in the denominator lattice
when computing the gradients. For silence frames, for example, this can be
achieved by counting silence frames as incorrect in A (s,s™) in sSMBR which
effectively sets the error signal of these frames to be zero. A more general
approach, referred as frame-rejection [16], is to just remove these frames di-
rectly. Another approach, which is believed to perform better, is to augment
the lattices with the reference hypothesis [15]. For example, we can add arti-
ficial silence arcs to the lattice, one for each start/end node pair connected by
a word arc, with an appropriate entering probability and without introducing
redundant silence paths.

Figure 1.1, shown in [16], is the result on the SWB 110hr dataset with
and without using the frame-rejection technique. From the figure we can
observe that, without frame-rejection, the MMI training starts overfitting



1.2 Practical Considerations 9

after epoch 3. However, when frame rejection is used the training is stable
even after epoch 8 and better test accuracy can be achieved.
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Fig. 1.1 Effect of frame-rejection (FR) measured as WER on Hub5’00 when the SWB
110hr training set is used. (Figure from Vesely et al. [16], permitted to use by ISCA.)

Figure 1.2, based on the results from [15], compares the WER on Hub5’00
using 300hr training set with and without using lattice compensation for
silences. In this figure, a relatively large learning rate was used. Without
using the silence treatment severe overfitting can be observed even at the
first epoch. However, when the silence frames are specially handled we can
see great WER reduction at the first epoch and relatively stable results after
that.

24.0% o— MMI
S 22.0% ——MMI+no silence update
5 MMI yment silence arcs
2 20.0% +augment silence arcs
s
o
e 18.0%
w
16.0%
14.0% T~
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Fig. 1.2 WER on Hub5’00 with and without using silence treatment. (Based on the results
from [15])
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1.2.3 Frame-Smoothing

Even if the lattices are correctly compensated, we can still observe the quick
overfitting phenomena during the training, which can be easily identified by
the diverge of the sequence training criterion and the frame accuracy com-
puted from the DNN score alone: The training criterion continues to improve
while the frame-accuracy computed from the DNN score alone tanks signifi-
cantly. While people have hypothesized that the overfitting problem is caused
by the sparse lattice (e.g., even the fattest lattices that can be practically gen-
erated reference only about 3% of senones [15]), we believe this is not the only
reason. The overfitting problem may also attribute to the fact that sequence
is in a higher dimensional space than the frames. As such, the posterior dis-
tribution estimated from the training set is more likely to be different from
that in the testing. This problem can be alleviated by making the sequence-
discriminative training criterion closer to the frame-discriminative training
criterion, for example, by using weak LM. The problem can be further al-
leviated using a technique referred as frame-smoothing (F-smoothing) [15],
which instead of minimizing the sequence-discriminative training criterion
alone, minimizing a weighted sum of the sequence and frame criteria

JFS—SEQ (9; S) = (1 — H) Jor (9; S) + HJSEQ (9; S) , (1.17)

where H is a smoothing factor often set empirically. It has been shown that
a frame/sequence ratio of 1:4 (or H = 4/5) to 1:10 (or H = 10/11) is often
effective. F-smoothing not only reduces the possibility of overfitting but also
makes the training process less sensitive to the learning rate. F-smoothing is
inspired by I-smoothing [12] and similar regularization approaches for adap-
tation [17]. Note that normal regularization techniques such as L1 and L2
regularization do not help.

Figure 1.3, based on [15], demonstrates the results on SWB Hub5’00 with
and without using F-smoothing. With F-smoothing it is much less likely to
overfit to the training set. Overall F-smoothing achieves 0.6% absolute or 4%
relative WER reduction.

1.2.4 Learning Rate Adjustment

The learning rate used in the sequence-discriminative training should be
smaller than that used in the frame cross-entropy training for two reasons.
First, the sequence-discriminative training is often started from the CE-
trained model which has already been well trained and thus requires smaller
updates. Second, the sequence-discriminative training is more prone to over-
fitting. Using smaller learning rate can control the convergence more effec-
tively. In practice people have found that using a learning rate that is similar
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Fig. 1.3 WER on SWB Hub5’00 with and without using F-smoothing in the sequence-
discriminative training of DNNs. (Based on results from [15])

to that used in the final stage of CE-training to be effective. For example,
Vesely et al. [16] reported that an effective learning rate of 1e=* per utterance
worked well for both (B)YMMI and sMBR, while Su et al. [15] showed that a
learning rate of 1/128,000 per frame (or 0.002 per 256 frames) worked well
when F-smoothing is used. The requirement to choose a good learning rate
may be eliminated if algorithms such as Hessian-free [9] are used.

1.2.5 Training Criterion Selection

There are different observations with regard to the training criterion. Most
results seem to suggest that the training criterion is not critical. For example
Table 1.2, which is extracted from [16], indicate that across MMI, BMMI,
MPE, and sMBR, the WER on the SWB Hub5’00 and Hub5’01 datasets are
very close although sMBR slightly outperforms other criteria. Since MMI is
best understood and easiest to implement, it is thus suggested to use MMI if
you need to implement one from scratch.

1.2.6 Other Considerations

Sequence-discriminative training is more computationally demanding. As
such it is much slower. For example, a simple CPU-side implementation may
increase runtime 12-fold compared to the frame CE training. Fortunately,
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Table 1.2 The effect of different sequence-discriminative training criteria measured as
WER on the Hub5’00 and Hub5’01 datasets when the 300hr training set is used. (Summa-
rized from [16])

| [Hub5°00 SWB[Hub5°01 SWB]|

GMM BMMI 18.6% 18.9%
DNN CE 14.2% 14.5%
DNN MMI 12.9% 13.3%
DNN BMMI 12.9% 13.2%
DNN MPE 12.9% 13.2%
DNN sMBR 12.6% 13.0%

with careful engineering, it is possible to achieve significant speedups through
parallelized execution on a GPGPU. To speedup the acoustic-score computa-
tion each arc can be processed at a separate CUDA thread. The lattice-level
forward-backward processing, though, requires special treatment since the
computation must be decomposed into sequential, dependency-free CUDA
launches. In an example provided by Su et al. [15], there are 106 dependency-
free node regions (=launches) for a 7.5-second lattice with 211,846 arcs and
6974 nodes at an average of 1999 arcs (=threads per launch). Moreover, lattice
forward /backward and error-signal accumulation require atomic summation
of log-probabilities. This can be emulated through CUDA’s atomic compare-
and-swap instruction. To reduce target-operand collisions it has been found
to be critical to shuffle operations into a random-like order.

Further speed improvement can be obtained by using a parallel read-ahead
thread to preload data and by generating lattices using a cluster of CPU
computers. In the runtime experiments conducted by Su et al. [15], it was
shown that the overall runtime increases only by about 70% compared to the
CE training (when lattice generation is not considered) even on fat lattices
of nearly 500 arcs per frame.

1.3 Noise Contrastive Estimation

In the above discussion, we assumed that the conventional minibatch-based
SGD algorithm is used for sequence-discriminative training. Although care-
ful engineering can speed up the training (e.g., as in [15]), the possible speed
improvement is limited by the nature of the algorithm. In this section, we in-
troduce noise contrastive estimation (NCE), an advanced training algorithm
that can potentially further improve the training speed.

NCE was first proposed by Gutmann and Hyvarinen [3, 4] as a more
reliable algorithm to estimate unnormalized statistical models. It was later
successfully applied to training neural network language models (LMs) [10].
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1.3.1 Casting Probability Density Estimation Problem
as a Classifier Design Problem

Assume py is an unknown probability density function (pdf) and X =
(X1,...,x7,) of a random vector x € R is sampled from p;,, where Ty is
the sample size. To estimate p, we assume it belongs to a parameterized fam-
ily of functions p,(.;6),, where 6 is a vector of parameters. In other words
pal(.) = pm(.;0%) for some parameter 9*. The parametric density estimation
problem can thus be converted into the problem of finding 9" from the ob-
served sample X.
Typically, we require, for any 6,

/pm(u;ﬂ)du =1, (1.18)

Pm(u;9) >0 Yu (1.19)

so that p,,(.;9) is a valid pdf. In this case we say the model is normalized and
the maximum likelihood principle can then be used to estimate 6. However,
in many cases, we only require that for certain 6 (e.g., the true parameter 6*)
the normalization constraint is satisfied. In this case we say that the model
is unnormalized. Since we assume p; belongs to py,(.;6),, we know that the
unnormalized model integrates to one at least for parameter 9*.

Following [4], we denote by p?, (.; &) the unnormalized model parameterized
by a. The unnormalized model p?, (.; &) can be converted into a normalized
one as p (.;«)/Z («), where

Z (o) = /p?n(u; a)du (1.20)

is the partition function and often is expensive to compute when u is of high
dimension. Since for each « there is a corresponding Z («), we may define a
normalizing parameter ¢ = —InZ («) and represent the likelihood of of the
normalized model as

Inp,(590)=Inpl (;a)+c (1.21)

with parameter 9 = (o, ¢). Note that at 9* we have 9% = (a*,0).

The basic idea of NCE is to convert the density estimation problem to a
two-class classification problem by describing properties of the observed sam-
ple X relative to the properties of some reference i.i.d. sample Y = (y1,...yT,)
of a random variable y € RY sampled from pdf p,,, which we can control,
where T, is the sample size. In [4] Gutmann and Hyvarinen proposed to
use logistic regression, a popular two-class classifier, to provide the relative
description on the form of the ratio py/py,-

Let’s construct a unified dataset U = XUY = (uy, ..., ur,+7,) and assign
to each data point u; a binary class label
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1 ifu eX
o= HwmE (1.22)
0 if u; € Y

Note that the prior probabilities are

Ty
PC=1)= — 1.2
C=1=—. (123
P(C=0)= I (1.24)
and the class-conditional probability densities are
p(u|C = 1) = pm(u;9), (1.25)
p(u|C =0) = p,(u) (1.26)
The posterior probabilities for the classes are therefore
:9)
h(w9) 2 P(C = 1u;0) = — LolW : 1.27
(w0 = PO=10) = ey sty
vpy ()
P(C=0u;9)=1—-h(u9) = , 1.28
(=00 =1 =0 =Ly oy Y
where
a P(C=0)
= = . 1.2
v2 Do D =TT, (129
If we further define G(.;0) as the log-ratio between p,,(.; %) and py,,
G(u;9) £ Inp,,(u;9) — Inp,(u), (1.30)
h (u;9) can be written as
1
h(u;9) = m =0, (G(u;9)), (1.31)
Y (o)
where
(W)= g (132
Tyt ~ 1+wvexp(—u) '

is the logistic function parameterized by v. If we assume the class labels C; are
independent and follow a Bernoulli distribution the conditional log-likelihood
(or negative cross-entropy) is
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Ta+Ty
£®)= > CilnP(C; =1|ug;9) + (1 — C;) P(Cy = 0]uy; 9)
Ttd:1 Ty
=Y I [h(x0)] + D In[l = h(ys;9)] (1.33)
t=1 t=1

By optimizing ¢ (%) with respect to 6 we get an estimate of pg. In other
words, the density estimation, which is an unsupervised learning problem, is
now converted into a two-class supervised classifier design problem as pointed
out firstly by Hastie et al. in [5].

1.3.2 Extension to Unnormalized Models

The above argument was further extended to the unnormalized model by
Gutmann and Hyvarinen in [4]. They defined the criterion

Ty Th
Jr (9) = Tid {Zln [P(xe;9)] + > In[1 — h(yt;m]}

T T,
_ Tid S In [f(xi;9)] + uTin S [l —h(ysd)]  (134)

to find the best 9 to estimate p4. It is obvious that improving Jr (¥) means
the two-class classifier can more accurately distinguish between the observed
data and the reference data.

As Ty increases and by fixting v, T,, = vT} also increases, Jr () converges
in probability to

J(0) =E{ln [h(x; )]} + vE{In[1 — h(y:;9)]}. (1.35)

It is proven [4], by defining f,, (.) = lnp,,(.;9) and rewritting the criterion
as a function of f,,, that

e J () attains a maximum when p,,(.;9) = pg. This is the only extrema
if the noise density p,, is chosen such that it is nonzero whenever py is
nonzero. More importantly, maximization is performed without any nor-
malization constraint for p,,(.;9).

e 0Op, the value of 6§ which (globally) maximizes Jp (9), converges to 6 if the
following three conditions are all satisfied: a) p,, is nonzero whenever py is
nonzero; b) Jr uniformly convergent in probability to J; and c) for large
sample sizes the objective function Jr becomes peaked enough around the
true value 6% .
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o Ty (f)T — 9*) is asymptotically normal with mean zero and a bounded

covariance matrix X.
e For v — oo, X is independent of the choice of p,,.

Based on these properties, it is suggested that we should choose noise for
which an analytical expression for Inp, is available, can be sampled easily,
and in some aspect similar to the data. It is also suggested that the noise
sample size should be as large as computationally possible. Example noise
distributions are Gaussian and uniform distributions.

1.3.3 Apply NCE in DNN Training

In the acoustic model training using the cross-entropy criterion, we estimate
the distribution P (s|o;8) of the senone s given the observation o. For each

observation o with label s we generate v noise labels y1,- - - , v, and optimize
Jr (0,8) = In[h(s|o;V)] + Z In[1 — h(y|o;9)]. (1.36)
t=1
Since
0 h(slo;®) [1 — h(s|o;¥)] O
— In[h(s|o;¥)] = —InP, ;0
gg n1h(sloi V)] h(s]0; ) g9 1 Fm (sloi )
= [1 — h(s|o;9)] 8% In P,, (s|o; )
vP, (slo)

9
= B (s]010) + v P, (s]o) 89 I (s|o;9)  (1.37)

and
K v ye]o39) [1 = h(yilo; )] O ,
55 11— hlunjord)) = ~ ST SOEL S P (o)
0
= _h(yt|0§ﬁ)% In P, (yt\o;ﬂ)
P (yt|0;9) 0

= — —InP, ;U)L.38
P, (y|o;%) + v P, (yi|o) 09 " (ye]o; %1.38)

we get
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0 vP, (s|o) 0

— 0,0 —In P, ;0
2677 ) = 5o )+VP (5j0) 99 1 Fm (sl059)
- m (Y]0;9) 0
— In P, (y¢|o;9) | .(1.39
X e B e g P 0] -0
Note that the weights 5= é?;ﬂiﬁ)(y o) are always between 0 and 1 and

so the NCE learning is very stable. In addition, since P, (s|o;9) is an un-
normalized model, the gradient a% In P, (.|o;9) can be computed efficiently.
However, in the unnormalized model there is a normalization factor ¢ for
each observation o which can become a problem when the AM training set
is very large. Fortunately, experiments have shown that there is no or little
performance degradation even if the same ¢ is used for all observations or
even when c is always set to 0 [4, 10]. Since it typically does not increase the
computation a lot and often helps to boost the estimation accuracy using a
shared ¢ is recommended.

Since the conditional probability distributions for different observations
are estimated with the same DNN, we cannot learn these distributions inde-
pendently. Instead, we define a global NCE objective

- Z Jr (00, . (1.40)

The above derivation can be easily extended to sequence-discriminative
training. The only difference is that in the sequence-discriminative training
there are significantly more classes than that in the frame-level training since
each label sequence is considered as a different class. More specifically, for
the m-th utterance the distribution we need to estimate is

log P (w™|0™;0) = logp (0™]s™;0)" P (w™) + c™. (1.41)

Recall that here o™ = of",--- ,0{",--- ;o and w™ = wi",--- ,wi" - W
are the observation sequence and the correct word transcrlptlon of the m-th
utterance, respectively, s™ = si",--- s{",--- sy is the sequence of states
corresponding to w™, k is the acoustic scaling factor, T}, is the total num-
ber of frames in utterance m, and N,, is the total number of words in the
transcription of the same utterance. In the sequence-discriminative training,
we can use uniform distributions over all possible state sequences or over
sequences in the lattice as the noise distribution.
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