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We discuss the calculatmnal procedures of the kernels of GCM, RGM and
OCM and some properties of them related to their calculation. The GCM
kernels for various types of systems are treated and methods are .discussed on
the analytical evaluation 'and on the decomposition in-terms of the number of
‘nucleons exchanged between clusters. The RGM kernels are evaluated by the
integral transformation of GCM kernels. Various formulas of this transformation
are presented including those for the systems of clusters with unequal oscillator
widths. The problems related to the RGM norm kernel (RGM-NK) are dis-
cussed; firstly on the solution of the eigen-value 'problem of RGM-NK for

various kinds of systems, secondly on the evaluation of kernels or physical
quantities obtainable from the knowledge of RGM-NK and finally on the cluster
model space for whose character the solution of the eigen-value problem of
RGM-NK gives an indispensable information. The projection operator onto the
Pauli-allowed states in OCM is obtained directly from the solution of the eigen-
value problem of RGM-NK. In this paper we also present another method of

" construction of this operator of OCM which needs not to solve the eigen-value -
problem of RGM-NK which is ted1ous for complex systems even with our present
calculational techniques.
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S§1. Introductlon and summary

t” ~® of cluster physics -and microscopic treatment of

'nuclear collisions is, as is discussed in the previous chapters, largely due to
the progress in the past few years of the microscopic models, RGM (resonating

Recent developmen
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group method) and GCM (generator coordinate method), and of the semi-
microscopic model OCM (orthogonality condition model), which describe the
interaction process between composite particles. The progress of the above-
mentioned models owes greatly to the development of the computational pro-
cedures, such as the calculation of the exchange (and also direct) integral
kernels of the physical quantities and the solution of the model equations
(usually integro-differential ones) under the suitable boundary conditions. We
can quote some characteristic points of the recent progress of these models
~as follows:® (i) It has been made possible to treat the heavy systems (such as
¥ 4%0) in these microscopic and semi-microscopic models, which is in marked
contrast to the former situation where the RGM is applied only for the systems
lighter than o+ a. (i) It has also become possible to treat the complex

systems in the framework of these models, which include the channel coupling

two-cluster systems where the processes of the internal excitation of clusters
and those of the cluster rearrangement take place, and also the systems com-
posed of three and more clusters. - (iii) The inter-relation of the model spaces
between shell and cluster models has been investigated in many nuclei in this
new situation of the enlarged cluster model space mentioned above in (ii),
‘which has revealed many important shell model configurations are contained
in the cluster model space and has promoted the studies of the relation between
different models, shell and cluster and those of the structure change 'prob‘lem
between shell and cluster structures. ‘

The purpose of this chapter is to discuss the calculatlon of the kernels

or the matrix elements of the phys1ca1 operators in GCM, RGM and OCM,
including some review of the recent developments of the calculational methods.
Another important ‘p.roblem of the computational procedures concerning how to
solve the model equations under the suitable boundary condition is treated in
Chap. V. The main cause which has brought about the development of the
computational procedures is the introduction of the GCM for the description
of the interaction process between clusters, which has become possible by
recognizing the transformation relation of the GCM wave function to the
RGM one.®”  The GCM adopts the linear combination of the Slater determi-
nants as the model wave function and therefore the usual shell model tech-
‘niques for the calculation of the matrix elements of the operators by using
the many-body wave functions can be utilized, by which we can avoid the
~ hitherto- considered difficulties of the RGM calculations like as (i) the tedi-
ousness of the integration with the use of the internal coordinates of clusters
~and the relative distance coordinates between clusters, and (i) the difﬁcuity
of the t’reatmerit of the full antisymmetrization opei‘ation within the above
internal and relative coordinate system. The computation of the RGM
o kernels in heavy or complex systems is now therefore done by first calculating

the’ corresponding GCM kernels and then transforming them to the desired
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RGM kernels with the use of the transformation relation between wave func-
tions of GCM and RGM. As for the OCM, the calculation of the projection
operator onto the Pauli-allowed states needs the solution of the eigen-value
problem’ of the RGM norm kernels, which is obtained now by noting the fact
that the corresponding GCM norm kernel plays the role of the generating
function of the eigen-values of the RGM norm kernel. The RGM norm
kernel determmes the character of the cluster model space and the solution of
the elgen—value problem of it is 1nd1spansab1e in the dlscusswn of the relation
between shell and cluster models. =

In this paper, we first discuss in § 2 the calculation of the GCM kernels
for various kinds of systems. The transformation process from the GCM
kernels to the RGM ones involves the integration of nearly singular character.
Although some numerical evaluations of this nearly singular integration are
reported® to have been executed, it is desirable to treat. this transformation
in an analytical way. Thus for the sake of the RGM and OCM calculations,
we have also discussed this problem of the analytical evaluation of the GCM
kernels in this section. What causes the tediousnesé in the analytical evalua-

tion of the GCM kernels is the non-orthogonality of the single particle wave

functions "of each Slater determinant of the GCM wave function and the te-
diousness increases toward the heavier and more complex systems. The sys-
tematic methods devised for the computer evaluation which greatly reduce this

difficulty are discussed in Chap. IV. What we discuss in this section is about

a method which is suitable for a manual evaluation of the analytical form of
the GCM kernel. For the understanding of the structure of the GCM kernel,
the decomposition of the kernel according to the number of the nucleons ex-
changed (NNE) between clusters is of great use. We show that NNE gov-
erns the range parameters of the GCM kernel.®™®  Usually the GCM kernels

have the form of the product of the polynomial function and the Gaussian

function of generator coordinates. That the range parameters of these Gauss-
ian parts are determined by NNE is a useful fact also for the ' analytical
~evaluation of kernels. _ , /

In § 3 we discuss the transformation procedure from the GCM kernels to
the RGM ones. We present a few different transformation formulas used by
different authors which are of course mutually equivalent. The matrix repre-
sentation of the RGM kernels in the harmonic oscillator (H.O.) basis of the
relative: wave functions is often useful as well as the usual coordinate repre-
sentation. The formulas are also given by which we get directly the matrix
elements in this H.O. representation of RGM kernel from the GCM kernel.
The GCM with the use of the complex generator coordinates is found to be
useful for the transformation from GCM to RGM especially in H.O. repre-
sentation. The methods for the computer execution of the analytical transfor-

mation which are especially desirable in treating the heavier systems like as
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0410 are given in'Chap. IV.

’ ' The problems related to the RGM norm kernel are discussed in § 4.
First we show how to solve the eigen-value problem of the RGM norm kernel,
where the recognition of the following two points is 'of essential impor-
tance,w”l‘” (i) the eigen-functions have as a quantum number, the definite
total number of the H.O. quanta and moreover they are neatly classified by
the Elliott SU3 group, (ii) the corresponding GCM norm kernel is a generating
function of the matrix elements of the RGM norm kernel in the H. O. basis of
the relat1ve wave functions. Solution of the eigen-value problem of the RGM
norm kernel directly accomplishes the construction of the. OCM projection

operators onto the Pauli- allowed states. Next we discuss the evaluation pro--

cedure of the kernels or the physical quantities which are intimately related to
the RGM norm kernel, like as the kinetic energy kernel, the reduced
width amplitude of cluster-transfer and so on. Finally we discuss the cluster

model space which is' determined by the RGM norm kernel. The so-called

almost-forbidden relative states'” are discussed from this viewpoint of the clus-

ter model space.  The inter-relation between the cluster model and shell model

spaces is briefly reviewed the investigation of which in many nuclei in the
new situation of the enlarged cluster model space has contributed much to the

studies of the coexistence and structure- change problems between shell and |

cluster structures.- , ~
_ The final section (§5) treats the evaluation of the OCM operators.  As
for the projection operator onto the ‘Pauli-allowed states, the solution of the

eigen-value problem of the RGM norm kernel discussed in § 4 gives, of course,

all the necessary quantities. We, however, give another method of construc-
tion ‘of the Pauli-allowed states in this section 5. This method avoids solving

the eigen-value- problem of the RGM norm kernel and therefore is powerful -

for the complex systems like as the multi-cluster system and the channel
coupling system including the cluster rearrangement, for which the elgen-value
problem of the RGM norm kernel becomes fairly tedious to solve even with
our treatment given in § 4. This method is explained in detail in the case
of the three- cluster system. We expect that, in view of the increase, of the
data in the wide regmn of light nuclei which need the cluster model analyses,
the present article st1mu1ates the further development of the semi-niicroscopic

model OCM which is an easier framework than GCM and RGM in parallel
with GCM and RGM

'§’2. GCM kernels and theirvcalculation \

2.1. GCM wave function and kernel
2.1.a. Definitions for various cases

For the sake of notations, we discuss here the form of the wave functions -

and kernels in the GCM."®?**®  The GCM wave function which we treat in
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Kernels d)f GCM, RGM and OCM and Their Calculational Methods _9’5
‘,this‘paper fer the desc;iption of the relative motien or collisions befween
~ composite particles is a superposition of the generating functions of the form,"™
(R, -, R,) =mA{) <CI,R1> G (Cum R}, |
”o—/mNu)/A' BRI (@11

Here ¢ (C;, R;) are the harmomc oscillator. (H 0) shell model wave functions

of the cluster C; located around R;, A is the ant1syn_1metr1zer which exchanges -

the nucleons” belonging to’ different clusters (A=1—>P;+--), N; is the
mass number of the cluster C; and A=3" N;=total mass number. When it
is necessary to denote the spin L; of the cluster C; we write like ¢z, (C;, R;)
and similarly if the oscillator parameter v; of ¢ (C;, R;) is needed to be exph—
citly shown, it is denoted by - ¢ (Ci, Ry, v:).

- Since ¢ (C;, Rz) are Slater determinants (or the superposition of the finite
number of the Slater determinants), ¢ (R,, ---, R,) is also a Slater determinant
(or ‘\superposition of Slater determinants). Thls fact makes the calculation by
GCM very practical and easy. Let ¢(C;, R;) be

. py_ 1
§(Co R) =t

AR - Goin K~ R)},  (2:1:2)

which we simply write as ¢ (C;, Rz) = (1/\/N_,') det {@cs1°**Oorwi}» then we get

IF(R1, "y R,) —ﬁ det {(Pol, (Pol,N,, (ﬂoa, @y, Ny """, (0on,1 f/’an,z\r,,}

(2 -1- 3)
The H.O. shell mo!iel wave function ¢ (C;, R;) can be Written as’”’w

0(Cy, R)) = (2N )

Cexp{—N:(Xi—R)% -4(Cy),  (2:1-4)
where X, = center-of-mass (CM) co’ordinatekc')f‘ Ci an_‘d?b(C,;) is the intefr;al
wave function of C; which does not depend on X;. We therefore have

T(Rl, o Ry ;no{ﬁ(wj)sﬂ} -

i=1 T
X Alexp{— 33 Novs (X~ )} $(C) - HEI] @15

To see the relative motion of clusters it is convenient to use the inter-cluster
relative coordinates §&; (z—lfvn 1) and the total center-of-mass (C.M.) coor-
dinate X An important case is when all the oscillator parameters y; are
equal y=y,=:.-=yp,. In this case the dependence on X; is factored out and
therefore ¥ (R, ---, R,) is a non-spurious wave function about the center-of-mass
(C.M.) motion. | If we adopt as §; the Jacobi coordinates, we obtain
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VZN(X —R)*= AV(XG RG>+ NN, 1ty (& 51)2

N+ N,
N+ NDNo ) g gyes
— _+_. ver
NﬁNﬁN3® 2)
&EQJM&VA¢a%&<x,Jz&—ﬁ%%%%ﬁ;»;
R,GE (Z NiRi) /A ’ SIERZ—‘“RI ’ Sz=—_”Rs“‘ N111\{711:2]\\771R2 sy Tt
(2-1-6)
and so ¥ is e‘xpressed as »
wu&~-nyﬁéﬁ) exp{— 4» (Xo—Ro)")
n—1 n B
X nou_q {J:[_l I'(&:,8:,72) El $(Co},
3/4 ‘ ’
r@ﬁmﬁ%ﬁ)emv¢@—$m.
7[ .
NWZ\Z(MHWM,.% (@21

7=

NﬁNz, N+ N,+ N,

When y; are different from each other, the C.M. coordinate X4 does not sepa-
rate and so ¥ necessarily contains the spurious component of the C.M. motlon

For example, for two-cluster system

N, (X;— Rl)z + Now, (X, — R2)2 =a(Xg — R6)2+ B(Xe— RG)" (r— R)+ 7(r— RY,

2NN N,N
a=Np;+ Ny, B—N J\;z(’)z V1), T:m<N2V%+N1”z),
ﬁa_& X,, R=S.=R,—R,. - (2-1-8)

The term exp{8 (Xs—R;) r— R)} causes the contamination of the spurious

C.M. excitation.
Since ‘we are not interested in the C.M. motion, the GCM wave function
,?FGCM is a superposition of (R, ---, R,) with respect to Si, ***, Sp—1,

WthHﬁJ@wumWU%WRJ @9

where usually AR;=>) N;R;=0. When the oscillator parameters y; are dlf

ferent from each other, T contains the spurious C.M. excitation and so it is-

desirable to project out the C.M. spurious component of ¥ (R, ---, R,). The

“weight function f of Eq. (2 1-9) is determined by the Griffin-Hill-Wheeler -

(GHW) equation,’ .
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n—1 . - ’ ;
H dSiI{H(SI, Y Sn—l;Slly Y ) EN(Sh i n 15 Sl s ° ',S:I«—~1)}

XFSY, e, Shy) =

{H(Sl’ ...;Sl” )

N (S, -3 Sy >}=<9’<R1,--~,Rn>i{ff}lw<R;, RO, (@110)

Where H is the Hamﬂtonlan

The matrix element of the operator ) Wlth the GCM wave functlon of Eq.
(2-1-9) is -

<T1GCM“@I¢'2GCM>': j(:[j:dsi) (Zl_;[idsi,)fl_* (Si, -+, Sncit)

| X (S, e, S;_l)@(RG,ASl, RS ),
O(Ry, S, -+ RS, S/, ) S - |
=Y (C,, Ry) - sb(Cn,Rn)l@ld{wcl,R/) ¢(Co, R}, (2:1-11)

@ is called the GCM (integral) kernel of the operator ). When the G.C.

R; are so chosen as to satisfy Ry=3, NR/A 0 we use the notation @ (S,
s RS .S, -) instead of @(RG—O Sl, - Ry, S/, --+) and similarly for the
case of Ry =0 we use @ (R, S, «-+; --+) instead of @ (R, S, 3 Ry =0,
S/, ++-). It is convenient for the later discussio_n to define the kernel M by

M(Sl; oty Spots Sl/, ' Srlz 1) ‘

The physical operator O does not contain the C.M. coordinate Xj. So for the
system with equal oscillator parameters y=y;, (i=1~n) the integration with
respect to Xy can be done independently of (@ and we obtain

O(Rs, S, ; Ry, S/, ) =exp{-%Av (Re— R¢&") 2}'M(Sl, -5 80, ),

OCSi, 38/, ) =M(Sy, 38/, ) for y;=p (i=1~m) (2:1:13)

For the case of the two- cluster system, ® (R; R’) and M(R; R') are denoted
by ®(R, R’) and M (R, R") respectlvely and if it is necessary to show ex-

plicitly the oscillator parameter y.of <I"(r, R, r)¢(C YO (CIOIAL (r, R, 7)
XP(CHP(C)}>(r=§=X,—X,) we denote M(R,R’") by M, (R, R')

The GCM kernels are often divided into the direct and exchange kernels
as follows,

O=0"+0", M=M"+M",
@D(RG: Si, 3 RS, S/, ) :
= (G B) -4 (Co, R O1¢(Ciy RY) ¢ (Co R,
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MP(S,, 38,7, +)

~“<1—I F(Eu Su Tz)H ¢ (Ci) l@l]:[ F(Ef’ Sz s T’E)H ¢(C1,)> (2'1 '14}

When we treat the system with definite ancular ‘momentum, we need to

pro_ject out the definite angular momentum components from % (R, -, R,).
Let us consider the non-spurious ¥ (R, ---, R,) with y;=yv(=1~n) of the

system -of spin-zero clusters. A projection procéllure of the angular momentum

s given by

n—1 .. N 3 N A
Lli dSiYLM,a<‘S}’ S ) (R, -, Ry)
n—1 ‘ l .
=10 A {E Iy, (5 55 St Ti) Prar, oy 00 (Xe) 5

husa=Yame iy -+ 0D 1L (G, |
 Yia @i s ) = Lo LY, (00 Y2 09 122 Yy () T T
. R 374 . .
1S =(2) i eres) exv(—r @+,

| wo(xg)__(?éi> exp{— AvX2, = (2-1-15)
i ) :
‘where « stands for the set of quantum numbers (L;, Ly L) and ‘We
assumed R,=3) N;R;/A=0. The systems which have non-zero spin clusters
.are treated similarly. In the simplest case of the two-cluster system with one
TON-ZEro spm cluster C,, the generatmg wave function is

 fafrw s (e 2 2,

= AT, (7, R, r)[Yh (r) B2, (C1) Junthe (Co) } o (X . (2-1-_'16) |

For the system compo%d of two spin-zero clusters, the projection of relative

angular momentum by IdRYLM(R) is of course equivalent to the usual pro-

Jectmn -of the total angular momentum

NzRNlR) - -
A N

JdRYLM(R) ?P‘(

~—(constant)>< jd,QD (Q)R(g)w(*ivz R,i’l R),‘

R(Q) =exp{— i, J} exp{— i} exp{—ilsT} . (2-1-17)

The GCM kernels corresponding to these wave functions with definite

angular momentum are obtained by the angular momehtum projection of the -
kernels ®. For the system with the ' generating wave function of Eq..
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" (2-1-15), .
O Gonyir, (St -, Saas SV, -+, o) |
. B TN n—1 /\‘ ) ~ B ! ’ o -
= (1_—_[1 dS’F’) (1:1[1 dS':,) Y}iMuaa (-5'1’ ";) YLsMg.“z (‘Sl,> "")@(Sla s ’, '“)‘
B | o (2:1- 18)

The angular momentum projection of the kernel for the channel coupling case

is treated similarly. We consider the system with the generating wave func-

tions of Eq. (2-1-16). Usually the wave function of the cluster C; is ex-
pressed by the projection of the angular momentum. from a smgle Slater deter-
minant

b (Cy R=0) =C, jd.e 5@y (G, Ri=0),

PGy R—0)=R@$©C, R =0), (2.1-19)

where we assumed for simplicity the axial symmetry of the intrinsic state.

S (Cy, R,=0) around z axis. - Then the kernel is
77 (R R) =C1.Cr. dedR’dgdsz’
X [ 2, (R) DE* (@ Tu[Y 10 (B DH* (@) Lo
/ =N;: 2\ (o Nip\ o "{f?’ =N pr\y
x {¢(cs, = R)sag(qg, R)f@IJZ’sbJ(CI, 4 R)sbo(cfz,

A A
(2-1-20)

" where i;— (Li, Ly) and j=(L,’, Ly’). When the SU; shell model wave func-

tion™ 2 is adopted for ¢;,(C,), the projection procedure of Eq. (2-1-19) be-

comes simpler. If the SUy symmetry (4, #£) of ¢z, (Cy) is (N, 0) or (0, N), we

havelﬁ), 20), 2v1)

¢ (Cy, R) :; AZ¢r(Cy, R),

o 4
P (Cy R =3 AL«/ 5 Lf— Y5 (2) 1x(Cyy ®),

7 .
AL—*( )(N L)/gx/(N (124)”—&&)_’_?—[—1)” ) Q‘E((h, b, . (2-1-21)

When we treat the system including rearrangement - channels the GCM -

Wave function has the following form:

N/

| dsafa(gd)__lzl_ 'u{(p(C;l, / j’ﬂ s)gb(caz,_A_m_sa)},
Na -

(2-1.22)

2R

1
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where the suffices of A, are put in order to remark their difference between

different channels. (A, is composed of (§,) terms of the permutatlon oper-
ators.) The GCM kernels necessary for this system are

O (Sur S =——2— (A fp(Cur, ~ Nt s )¢ (Can Vs )} 1O
ST R A S
hplen e splen ) wra

The kernels for a=f are new type of kernels while the diagonal kernels

‘w(Sa,S Y are of type- of Eq. (2-1-11). With these kernels the matrix

element of the operator @ by ¥SM and FEMis given by (FEM|O|FEMy

=3 iFul@usl fo>. When ¢(C;, R;) has a form of Eq. (2-1-2) these kernels

are rewritten as ‘ ‘

@u, 5 (Sas Sp) =<¢aa;,;.--<pca2.,-'--l@ldet{qoom,;--qa%l?--}> (2-1-24) -
because (1/V( ) Audb (Catr (— N/ A)S) ¢ (Casr (Nea/A)So)} is written as
(1/VADdet{go,, " @0, } as is shown in Eq. (2:1-3). In the case of
the common oscillator parameters V=Yu=DYa, @u5(Sa Sg) = A/V G GE))

X AAL (Fas Sas ) B (Ca) B (Catl | OLAAT (1 S5 70) HCo)H(Ci)}>. The direct
part of the kernels @, , which are denoted by @2, are defined by Eq. (2-1-23)
by dropping (1/v () A, and (1/V (§,)) Az The projection problem of the
angular momentum 'can be treated in a similar way to before.

When treating the interaction between clusters it is sometimes necessary
to evaluate the GCM kernel of the interaction operator

V=3 3 Vi (2125

iel, je0,

which is not totally symmetric. We define the GCM kernel @ correspondlng
to this operator as follows:

e (Rs, R; R/, R") |
- =G R) ¢ (Co, R) |V ALY (Cy, R P (Co, Rz')}> (2-1-26)
2.1.b. Complex GCM '

In the above the generator coordinates (GC) R; or S, RG are assumed to
be real numbers. As is well known, the GCM with real number GC (which

“we call real-GCM or R-GCM) has difficulties® such as the violent behaviour .

of the weight function f of Eq. (2-1-9) obtained by solving the Griffin-Hill-
‘ Wheeler (GHW) equation of Eq. (2-1-10). The extension of the GC to the
complex number® ™ resolves these difficulties of R-GCM. F or the sake of
~ simplicity we consider the two-cluster system. The oscillator parameters are
' taken to be the same, ¥, =V,=, in order to avoid the C.M. spurious problem.

In the R-GCM,
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WR-GCM=__1AE>’ [aRs R AT &, R, 18 (CI$(CHY0u(XK),  (2-1-20)
N, | |

while in C-GCM we adopt the following form,™®

WC'GCM = ~1: jdﬂ (z) f(z) Lﬂq {Ay* (T, z) ¢ (C]) ¢(C2) }a)ﬂ (XG> > (2 ' 1 28)

7@

where® . .
= ol )
ol re )
an =] ;lz—e%“d[Re(zi)Jd[1m<z¢>]., @19

The kernels in C-GCM are ob‘téined simply by replacing the real GC R by,
complex GC z*/4/7. A,(r,z) is the so-called coherent®™?®’ state and can be

expressed as follows:

A,(r,z) =e""W,(r),

W, = (Z;T) S/Ae 1t at=vr (r - é%? p)

pE_iﬁg_, o | (2-1-30)

r

Uslng the identity exp (z aexp(—z*-a) =exp (z: z*/Z) exp (z at—z*a), we .

obtain
A (r, z) =exp {%z z*} exp{z-al—z*-a} W,(r). : ‘(2- 1-31)

By expressing % as a sum of real and imaginary parts as follows,

=V 7 (R-!-%P)

1

Re(s) =+ T R, Im () .2%/_71)’ (2-1-32)

27

we get

A (r, z) =exp {%z -z*}»exp {7:{ P-r - R- p)} WO_(r)

220z 1snbny 0z uo 1san6 Aq €.6Y7¥81/06'29°'SdLd/EyL L 0L/1op/e1e/sdid/wod dno-ojwspede)/:sdiy woly papeojumoq



102 ' ; ‘ S . H Horiuchi

3/4 ; S 2
— (?79 exp{—"j TR+ P (T—R)} 'GXP{Z;T +’;“52}’
i 8 * \ . . l “ N | ‘
du(z) = (2n h) e**dRAP. (2:1-33)

" Noting -the normahzatlon of A, given by <A |A,>= jdrA (r z)A*(r %)

_=exp(z-3¥), we obtam .
A

alay AlAy T (@1-39

Equatmns (2- 1 32)N(2 1-34) show that the extension of the real GC to the ‘

complex GC means the extension of the wave packet at rest I'(r, R, 7) to

'

the movmg wave packet A, (r, z).

2 2 Calculatlon of GCM kernels

. 22a General prescrzptzon ,

We treat the calculation of the GCM kernel when G (G, Ry) is expressed '

by Eq. (2:1-2). When we use the fully antisymmetrized wave function, the
GCM kernel is a matrix element of an operator O by two Slater determinants..
The GCM kernel ® of Eq. (2-1-11) is written, by Eq. (2-1:3), as

,@(RG,SI,&-,RG,SI, >—<¢a1,1 Q0,1 §90n,1\{nl@ldet{§0ol, Qo1 §ﬂa,,1vn}>
: . | (2-2-1)

where Qo s =0¢c; (2;— R, ¢'00s=¢0: (x;— R:).
rearranged channels have the similar form as above as is shown in Eq.
(2-1-21).

The evaluation of the matrix element of an operator Wlth the use of Slater
“determinants composed of the non-orthogonal single particle orbltals isa well
1nvest1ga1:ed problem.” For the sake of the discussion in this section, we

‘. ﬁrst remlnd the reader of the Laplace expansmn of a general ‘determinant,

det{a; £ (k‘Hi)A ky, ks, ...’k B ks, kz".,..,kr
et{a; j} =21 (=)= <11 L, -, zr> <ll, L, "',lr>’

’2= Z or Z o v‘ | ‘ (2;2.2) N

(kg Ky ) G Lo 1)

~

~where (kl, ks, -+, kr) and (ll, ., +++, I,) are any sets of r numbers chosen from

@,2, ., 1) satlsfymg k1<k <k, L<l,<-+<1,, and A(rie ’i’ is a minor

determinant. composed by adoptlng kl, ks, -k, rows and L, s, -+, I, columns
A

from the orlgmal matrix ag,

A(kl’ ks, o, kr);

R 2:2-3
ll, lz, "', ZT ( . )

alctlla‘k PR al‘hlr

akrll e akrlr

while B(fri»o z) isa complementary minor determinant composed of remalnmg

The coupling kernels between
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rows and columns of a; other than used in A. When r=1,

det - a= det {a‘ij} =,; ’a]:;lckl‘ = ZL aCy

GmMEQ), @2

" and C,; satisfies

> auCu = (det-a)yp, S (2:2:5)

since if we use the notation det {a;;} =det{a,, a,, -+, a,} with a;=(a,;, as, -, i),
25 ayCyye with =17 is just equal to det{a, -

a; and therefore vanishes. Equation (2-2-5) means for det{a“} 0
 Cu=(deta) @y,

B<Zk>¢=‘(det-a‘)(¥)l+k(d_1)zk;v " |  <2-2-'6>,'

where (a™'),; are components of the inverse matrix of the matrix {ay;}. Gen-

erally we can express B(j» {‘:"""‘f) in terms of a”' as follows:
B<kl,k2’“’kr>—(det @) () & @Dun e e D g.p.7)

Ly, 1y, ++-, 1, : o ’

S - (61 l)zm e (@) g, |

which is known as the Jacobi formula and is proved in Appendix A.1. The
Laplace expansion for r=2 therefore, becomes '

det{a;;} =] C(ky /eg, v lz)

A1, Ak,

alczllak I,

: ky1<ly ‘ ll<i2 ’
C (s, 1,0) = (det - )

(@) (@D s, |- (2-2.8)
(@™, (d_l) Lok ‘
It is easy to see that Eq. (2-2-8) is rewritten as follows:
- det{ay} = 23 @, C (haker, L)
= zZz aklltakzlg(j(klkz, Lt). o o (2-2.9)

Let @ and ¥ be ‘Slater determinants expressed”vby @=(1/\/E)

/X‘det{qﬂl () palxn)}, U= (1/\/A') det {¢; (xl) ba(x4)}, respectt‘ively.‘ Then

the overlap between them is

<@IW> <¢1 () - @A (x4) ldet {Sbl (21) =+ (x)}>
= Z e(P) <¢1 |(HP,><§02I¢P2> {pa J¢P4>

Uy} Wheré a;. is replaced by
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=det{gilgdt. | | (2:2-10)
The matrix element of the one-body operator is

<@[§ @z VF> = 2 i (x1) = @a (x4) 1O;|det {1 (x2) - Pa(®a) }>

A

=§ oy (1) -+ (Ostos (24)) (pA (x4) ldet'{¢1 (2) ...(‘[,4 (x)}>
_ (<> e A !
T @01 e ol 016

gy e ot |

5132 <Ol (et B) (B

=P SOy B (2-211)
where | | |

By={¢:|¢s), R ‘ ,f (2-2:12)

and use is made of Egs. (2- 2~b4) and (2-2-6). In order to simplify the
treatment of the two-body operator (1/2) >0iQiy, we expand O as Ors
= Zmln1m2n2<m1m2l@ }n1n2>@m1n1 (xl) @M2nz (xz) Where @mn (x) = lm (x) > <7l (x) l-

Now we get

<@IE @w|§{7'> Z <§01 (x1> *Pa (24) IOz;ldEt { (xl) P4 (x0) }>

= Z <m1m2!© |7’ll7’L2> 2 <<01 (x1> ml'n.l (xz) 2] (xz>)

MMy Moty

o (Ohuyny () @3 (%)) -+ @ (2) [det {¢n (x1) - ¢A (@)} >

=m17§2n2<m1m2|@lnlnz>g <¢‘1]:¢1> ........,...<¢1|¢A>

o el Omn, | 910 --~--<¢z|@m,ml¢4>
O Onihd -+ il Ol |
Qaly e oo

_<@lw>2<%%|@|¢’k¢z>{(3 D (B~ 1)11—‘<B D (B~ 1)u}, 2-2- 13)

where Eqs (2-2-8) and (2-2-9) are utilized. Equations (2-2- 10) ~ (2-2-13)

are well known'® and furnish the calculational procedute for the GCM kernels

- of the type of Egs. (2-1-24) and Eq. (2-2-1). We can, of course, s1m1lar1y

treat the three-body operator like as the Skyrme force as in the above way,
Tikoky

where Eq. (2-2- 7) gives the necessary coefficients B(zllgza)
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The ealculation of the GCM kernel of the type of @ of Eq. (2-1-26)
is evident from the derivation proceSs of Eq. (2-2-13) and we get

- @ (Rs, R; RG , R")

=G R)P(Co B | 2 3 Vil 49 (€ RDG(Cy ROYS

N, N,
:<§901,‘1'”§00£ - 21 Z Vijldet{qui;l'"(ﬂz'z,l"'}'>
N, N, A4 |
=det {By} 1:;1 jZ ;‘z< c, Ponil View o>
XA{B Do, (B Die,;— (B™ 1005 (B D1 cb
By, ={gxle>, S ' , (2-2-14)

where gﬂ,c is an element of the set {gg, 5o “@o,1, - and ¢, belongs to {goéhl,
@02 1s '“} . . '
Now we consider the calculation of the direct kernel. First we treat the

two-cluster system as an illustrative case without rearrangement. The overlap
is evidently ‘

G (Chy RYP(Cyy R)1Y(Coy R G(Co R
=P(CL R B (G, RGP (Co R I (o R,

W(C, R (C, R)y=det-Bl=exp{~ L Nw,(R— R,
{p(Cs, R |$(Cy, RY) Y =det- Bl=exp { - %N 3 (R, — RY') } ,

\B~’> 5 =<00,s| 0, 1> (BT =0, |t ;> . " (2.2.15)

For the one-body operator, also ev1dent1y

(G R (Co R[5 01l (G B (Cu R
=P (G R)IZ Ol (G RO RIS Cu R
PG R (G ROYW(C R 32 O (C RS
= (det - BY) (det- B {3} <g0,l01¢t,.> (B0 |

+:V,Z;<¢”2’f'@.’5”3w><B”")ﬁ}- . (2-2-16)

For the two-body operator we get
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< . Ro«p (Co RY [ 0410y RS (Co R
= (det- BY) (det- B“)[Z <§001 ngC”I@I%'l £00,,1)
KB By (B (B +Z (Pouio,slO1 o sonsd.
KAB LB BB
423 5 e, 04101 s> B BTN (2021D)
This is. because - | |
WC RIBOMCRY |
= (et BY 3 iyl Oulgoni> By,
RS ‘R;>¢ (€ RIS 30,19 ROYC, B

N, Ny

= (det- B') (det- BY) 2 2 <0, zqﬂaﬂl@lqﬂol Py (B 5 (B -
(2-2-18)

We can easily see that all the expressions of Egs. (2-2- 15)' (2-2-16) and -

(2-2-17) are obtainable from Egs. (2-2-10), (2-2- 11) and (2-2- 13), respec-
“tively, simply by ‘the following replacements: ‘ ,

g_(B BT\ (B 0>
~\pu pr 0 BT

therefore B‘1—><<B(;)_1 (3?1)—1> 21

Next we con31der the direct rearrangement kernel for the process Cl—I-C

—C3+C,. We assume that N;>N; (and therefore N,<{IV,) and that IV nu-

~cleons of C, constitute C; and the remaining (N;— Nj) nucleons in C; are
absorbed together. with N, nucleons of C, into C,. The overlap kernel is

Gy R (Cay R [4/(Coy R (Coy R

= Vﬁf_EYTVTTT(det {@o,,1°@e,, .y det{@o, 1 Qo) |
i=1 i ) ' .

det {cﬂa,,, ‘@, v, det{@e, Do E) Y

N/ 1.--N, L .
= ]\[111\]’3l]\f4 d <51"'5N)<¢01"17“¢0{‘,’N1¢02’1'“%'2”2]

det{%s, @, x.} det{@e, 1 Vo, m} D
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—N/va Nsl N, & 2 e( g;)
X s, I<01 DAREES {9, ¢
W <<00N |05 oo+ ey, > |
’ X <¢GNS_+1I¢1>-~--<%N +1!¢N> , (2-2:20)
(o 0> Pl
’<¢12|%4> ..... @12!%)
Gl oo il

where we used the abbreviation qﬂisﬁvi, By using the following relation,

2P C)

3 61...6N 01

_ . <1 Ns N3+1 Nl > ‘
k1<k3<--"<7€N kt kN j Dy er"Na\

%5 aghy fé;)) locrrsomrs)
P< 1 Ny Nytlo N1f>
\a k) -alr) Bp) B Brn)”

where (P, *-py,—w,) .are the numbers which are left after subtractmg the

| ‘(2‘-'2-21,)

- numbers (’kl,- Ast) from (1,2, ---, N}) and satisfy P, <pp<-+<pbw,-w, WE

~obtain |
W(Cs, RYY(Cs, R | (Co RO$(Co RO
ZNV j' 21:778' (N2 = N3 ’(’V1<kz<"'<st)e </:1]/Zvi N;: llbi\tr—lzv)

X <¢k1|§01> ------ {pn|ow
(P |0 v by [ -

X[ L@p|@n®y oo lowy . 2-2-22)

? o |09 o Gy lbd| o

A7 IR Wllowy
(rlnty oo RO

Since, as is proved in Appendlx A-2,

8(1“.N3 .N3—]—1--' N1 >:<__)‘%al(z+ki),

- (2-2-23
k1‘~"]31vs 1 DN, ( - )
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we know that Eq. (2 2-22) is nothlng but the Laplace expansion of the

followmg overlap determinant:

K¢ (Cl, R)¢ (Cz, Ry) ¢ (Cs,’Rs) ¢ (Cy, R4)>

%(Nl—N;@)!-(detvE),
B( <ol o pllohy <ol e iloh)
(P10 rovee Tl <Ol e (b
“ A Wlle> oo <or'lowD
| <¢Na 12 > ------ o, low

For the one-body operator, we get

((Cy RY(C, RIS Ol (Co, RIG(C, RO

e
A Nl'Ns'Nu Ze(fn Oy,

7
% [Z <¢7.;,|(01> Trennent <§0¢1|:<0§v3> % <¢§N +1|'€914>
B <¢aiJ@I<ﬂ1”> ------ PhlOleh (Pl o> e
<<oz;;§1¢f> ------ W
[ <¢G,I¢N>
(g | oo <¢6N3,]¢N3>
x5 | Alo® e Wy b
| <lOlgi® - <l Ol
G AR GAGN
130 | Goy @i e <¢0N lowD H
i=1 . ‘
\<¢i2[@|¢14> """ <(Pi2|@|¢N4> |
<¢’§v;.| (014/> """ <¢N2|¢N >
By‘ notirx1g\ the relation .
‘ Qo N Qo 6(1. n> ay e ayn
bag e Bom i O On béi,l ...... oy |s
oy orree By oy e a

(2-2-24)

$Oog il

Al

(2.2.25)

* Zz0z 1snBny 0z uo 3senb Aq €.6Y7¥81/06'29°'SdLd/EyL L 0L/1op/e1e/sdid/wod dno-ojwspede)/:sdiy woly papeojumoq



Kernels of GCM, RGM and OCM and Their Calculational Methods 109

n , ’ .= \ n R ‘
Z a.dll ...... a'o-ln _ s<]. - n)Z a}l a;ln . (2'2'26)
i=1 : . Oqv++0,/ i=1 : . :
ba‘,;l gin > S btn
'ao‘,,,l ...... adnn : . anl ...... ann

and again with the aid of Egs. (2-2-21) andt (2-2-23), we get’
A
P (Cy, R)$(Cy, Ry) 125 O:ld(Cs, R)$(Ci, R

N,! N,!
= Nﬁ(N1“Ns)!

y {%1 <¢11]:¢13>* ........................ e <¢11|:¢§V4>

RV Py P R @l Olehy
<¢§v:|¢13> ..... s T <¢}V:|¢gv4>
O' <¢712:l<ﬂ14> AU <<ﬂfls¢§vé>
L RIa e oD
e PO v ok
AR ST e AT
<¢12J¢14>~ ......... <¢12,¢§V4>

x 0 <¢i2_:l@|¢1‘> <<0flf@l<0§v,>
Wl --oee bk

=V NN = NI @lOle/> B, @e2eomy

where {gi, G=1~A)} is {go,1@o.} and {g/, (=1~A)} is {Pey 100
@e,1°+}, and 2’41 means that @’ runs only on ¢g4,f(j%~1NM) when - ¢
belongs to- {¢qg,: i#l&l\@}. Now we consider the direct rearrangement ker-
nel for the fvvo-body operator. Below we show the calculation not for the -
full operator > % Oy but for the case of the operators of the type > 74> '¥2, O,
or 2 03, O, which are of interest for the calculation of the interaction
kernels between rearranged channels in the frameworks without full antisym-
- metrization. Of course the treatment of the two-body operators of the type
247 Oy is similar and is not difficult. Consider first 201 0, We ex-
press this operator as 2 Iminimang <Mty | O 12,12, 721 Onny (©) O, (5)  and
evaluate the métrix element for Y437 ©,(2) O, () (O;=0p1ns) which is

summed up as 3 ln nmun,{7.m,]1Olmn,> to give the final result. The matrix
~element for such separable operator is
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@e,RC, R) 15132 0,00.) G RIPCo RD> |

N/ 1--Np\
=N NI Ns' AR 8(@---%)

Z <%ll¢1> Cedpeasins ¥, <¢;N +1|¢14> ......

| <¢éil.@1l¢f> e oft ]©2|¢1> ......
<¢;Ng[¢13> ......... ’ <(ﬂml¢1> ......... i
BRRCAC DR §y §u[ byl e } |
. i=Ng+1l j=1}/ E
| {@ay J™D e AACORRES
. l | ‘ <¢j2J@2|(914> ’
<C0%v2-l§014> ........ .
N2 ’ b' N
N!NI(NI N\s) z=1§1
X <<ﬂ11l<01> ..............................
<g0z |@1Igp1> ...........................
<¢N1|¢1 > ........... e
<¢12|¢1 > ’- .......
0 <¢J I@zl% DIRREEEE
, ‘ <¢N2|(01 > .........
/N, N ! ‘ N, 4 N, T ) , : .
= -]\[_21-]\—[37<N1— Ns)' g ]2:1 k2=1 &~ <(Pc1ifﬂczj|@1@2|¢rc Peyi)

X {(B- 1)“(3 Y wertwers— B kwees B wprvish, (2"2/'28) _

which gives the vﬁnal formula,

WO R 6(Co R 1333 Ol (Cs, RYP(Cu RD)

N,

‘2\7'21]\[3 N, N,
.N]_'.Z\]'(.Z\f1 3) §j2=1

AT B wiras= B s B 2229

<¢cli¢cgil@|¢k,¢c4z>

=1

z EE’_]'»

The kernel for PR 2>, Oy is of course obtained by {P(Cs, Ry gb (C4, R4)
IZ 12 @w |¢ (Cla Rl) Sb (C2> Rz) >>X< |
29%b. On the analytical evaluation
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Thé analytical evaluation of the GCM kernels is often necéssary and

especially for the transformation of the GCM kernel to the RGM one it is .

highly desirable to have analytical form of the GCM kernel. The prescription

 given in § 2.2.a is stra1ghtforvvard and for lighter systems we can get the

analytical form of the GCM kernel in a manual calculation. When we treat
heavier systems like as a+*“Ca, *O+%0, however, the manual calculation

- becomes fairly tedious. So the techniques are developed which give the analyt-

" ical form of the GCM kernal by the computor evaluation following the pre-
scription of § 2.2.a. The methods of these kinds of the analytical evaluation
devised for the computor calculation are discussed in detail in Chap. IV.
What we discuss below is about a method which is suitable for ‘a manual
evaluatlon of the analytical form of the GCM kernel.

" In the prescription § 2.2.a, the evaluation of the inverse matrix. of the
matrix B of Eq. (2:2-12) is a main tediousness in the manual treatment.
When the system is composed of a heavy cluster and a lighter chister (or lighter

clusters) the form of the B matrix can be made into a simpler form by

treating the . hgh‘rer clusters as the valence clusters around the heavier core

. cluster. »

For the sake of explanation we consider the two-cluster system and in-

vestigate some properties of the kernel @ (Rg, R; R/, R’). In the case of the

common oscilator parameter we know from Eg. (2r1-13)
6 (R, R; Ry', R)) =exp{~+-A» (Re*~Rs)| 0(R, R)

for v;=v,. R o (2-2-30)

 This means that if we know the ’G\CM kernel @ (R; R") =0 (R;= O‘ R; R,/ =0,

o R’ the GCM  kernel @(Rg,R R,/, R’) with four GC is obtained easily.

Namely the essential part of the GCM kernel @ (Rq, R; Ry, R") which needs
so much computational effort is determlne_;d not by the set of full four GC
(Rs, R, Ry, R") but by a set of two GC R and R’ A set of values of the
GC R,;=0, R,=S, R/=0, R,’=8" which is equivalent to Ry;= (N,/A)S,
R=S, kRG'_:;(Nz/A)‘S', R’ =S’ is important for our later discussion. Using
the above Eq. (2-2-30) we know that the GCM kernel ® with arbitrary
. complex values' of four GC (Rg R, Ry, R’) is related to the GCM kernel @
with the above type of set of GC, as follows,

6 (Ro, R R/, R) =e‘X?‘[%A”’ ,K%Y(R* ~RY'- (B~ Rq) 2}]

N,
A

x@( R, R; NZR’ R')
B /V A

for v;=v,. ‘ S | (2-2-31)
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Almost the same results as the above case of y,=v, hold also for the
case. with unequal oscillator parameters y;==v,. We first note the following
relations, ‘

$(Ci, R)$(Cs, Ry) =q0(Xo— Ro7—R) ¢,

g= (RPN g cysc,
T ,

0(A, B) =exp{—ad'—fA4-B— B},
0(Xo— Ry, 7—R) =0(Rs, R) exp{—aXs— (fr—E) -Xo)
. X exp{—7ri+ F-r}, o
E=2aR;+BR, F=pR;+2rR. ' ' (2-2-32)
_ The GCM kernel (GC are arbitrary complex vectors) is |
®(Rs R; R/, R") |
={p(Ci, RYY(C, Ry) I@IJZ{sb (CJ, Rl’)w(Cz, Rz’)}>
=q"0 (Rs*, R*) o (Rs/, R")
X<{exp[ —aX;— (fr—E) -Xslexp[ — 1+ F-r13|0
X [ A{exp[ —aXs— (fr—E') - Xglexp[ —r*+ F’-r]¢} >, (2:2-33)
where E’=2dRG’+BR’, F' =R, +27R’. Now we express J as a sum of

‘the permutation operators P, as A=2.&P, and consider the matrix element
®. which is obtained by replacing 4 by P, in the above equatlon By using
the notation r ’=P,r, this @, is calculated as follows, . ‘

6000 ([ [dXy exp{—20Xs'— Br—E+fr' —E') - Xo}]
Xexp{— et Fr) O] Pulexp (-1 + For) 61>
— () (exo { L @r-E+r -]
X exp (= 7r* + F-r} 6|01 Pulexp {— o'+ F o]
) el e fonl 0
><exp{~rr2+G-r}¢l@IPc[eXP{'—rr2+G'-r}¢]>
‘——;qz exp{—éi—z—(E*+E’)2} (exp(~aXy—BXs-r)exp(—1r*+6-1r)¢|O

X |Pelexp(—aXy —BXq 1) exp(—ﬁ2+G’ r)$1>
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—exp{ L (B4 + B} o0 (6-1)0(C, 0)9/(C, 0)10
(04 ) ,

X | Pulexp (67 1) (C1, 004(Cs, 01,

C=F-F ®+E™, ¢=F-8 m+E). (2-2-34)
da = 4o ) ; .

Here we assumed that O does not contain differential operators and so com-

mutes with 7’. From this equation we get
O(Rs, R; R/, R") =0* (Re, R)0 (R’, R") exp {%% (E*+E") 2}

X {exp (6-7) § (Cs, 0)§(Cs, 0) [O] A{exp (67 ¥) §(Cy, 0)$(Cs, O} >,
E:2CKR6+BR ) vE,:zaRG,""*ﬁR,’

2 ) . 2, .
6= (or—E ) ms By B e By,
"4 2 4 g v
2 2 ) :
¢ = <2 -i>R’+ﬁR ' B px B 2.2.35)
" 2% 4a 2% ¢ )
This equation clearly shows that the essential part of the GCM kernel in the
case of the unequal oscillator parameters is also determined by a set of two
vectors G and G’ not by the original set of full four vectors Ry, R, R/, R'.
The GCM kernels @ with the GC(R;, R, Ry - R’) which give the same G and
G’ vectors are equated to each other by the simple multiplicative factors which
are independent of the operator ). Using this Eq. (2-2-35) we obtain a similar

relation to Eq. (2-2-31) which expresses the general GCM kernel by the

- special GCM kernel of the type @((N,/A)S,S; N,/A)S', 8, as below,

@ (RG, R;‘RG,, R’) = O*J\(]-RG’ R) Y (gG/, R,)
p* (JS’ S>p<___zsl’ S/)

A VA

exp {i (E* +Ez)z}

6(Yes,s; Mg, s');
} A 4

exp { (Navy)* (8*4+8%)
CK

_ CK+AV1 G vl G+
4N Nzyll)g 4-'-2\71’)1))2

a+ Ay Vo— Y,
/= + 1 pl 2 1 G*.
4N1N2u1))2 4N w,p,

(2-2-36)

As seen above in‘Eqs. (2-2-31) and (2-2'36) the GCM kernel can be
reduced to the type, ;
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@(Zzss s, s)

(‘”‘<¢’(Cl’ 0)¢(C, S) !@IJZ{<P (G, 0)¢ (G, S’)}> (2-2-37)

* Since the position of the cluster C, in bra and in ket is the same in this
* matrix element, the sub-matrix of the overlap matrix B which is formed only
by the orbitals in G is unity. By choosing C'1 larger than C, (M>N2) the
matrix B is thus falrly simplified.

The case when a lighter cluster C, is a Os- shell cluster (hke asn, d, t,
05) the kernel @((M/A)S S; (N,/A)S', §) is calculated as follows.® By
representmg P(Cy, S) as (1/\/N2') det {@os,1 (S) - %s 7, (S)} we note the follow-

ing relation,

\

det {¢01,1 e @0,'2;71(003,'1 (S) **Qos, W, S } ’
' =det{@e, 1** Yo, 5, Pos.1 (S) ;"@Os,zvz (S}

N NI/ s . , .
P (5) =¢0 (8) = 23 106,17 < 0,510 (5) (2-2-38)
which gives us

@(]Zzs S; JX? ’ S’> |

= <¢q1v1...¢01,N1¢\08,1 (S> .'“@08, Ny (S) IG
X |det{@e, 1" @0, 5, Pos.1 (S") - Pos, m, (S/>}>

@ for @=ﬁ O:,
‘(11) for O= | %i w,l
@ =5 {;E (06,310100,>+ B ;jl@os,}@ 1Ol gus (5) h
an = ﬁNa{l i {@o,1¢c, ,-I@Irpc, o,
% 2 {@os, ,(S) Pos.; (S) 1O1@0s.: (87 )C”o:;j(s,) >“

+P Z Z <§06', zqﬁﬂsj(s) [Olgﬂ(h Dos,i (8 )>a}

P09 00 ()5 = (9) |70 (9> =B (D o (8D,
et =loed—low>. | (2-2-39)

This is because the B matrix is now diagonal and is given by Bij—pﬁi, Where

pi=1if i€C, and pi—p { @os (S) |00 (8) > if i€C,. When O is a two- nucleen

§
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interaction V, the term in' the above equation 31, 721 <@e,, 1005 (S) [ Ve, i

@0 (87) D" is expressed as Y V2, (g, ; (8)| Usnip|¢u,; (87) > where the Hartree-Fock
- potential Ugp produced by the core' (C;) particles is defined by \

<ml UHFI”>E§11 <m, Qﬂc'l,z‘] Vin, §001,«;>(vL e 2-2- 40) |

for érbitrar’y single particle states- [m)> and |n). R
’ It is to be noted that the relations of Egs. (2:2-31) and (2:2:36) are
valid when we treat the direct GCM kernel simply by replacing @ by ©° as
is clear from the derivation of them. It is also easy to show that for O = V.
=214 2.72 Vi the corresponding Eerngl @ of Eq. (2-1-23) is given by
o (5,5 Neg, )
A A

=5 3 s (9) | Vsl o (81>

N, k : :
_'/}SN‘FZ 1;: <¢Os,i (S) Dos, 5 (S) I Vl@w,;‘ (S,) ao.s.j (S,) >a . (2 2- 41)
2.2.c. Decomposition of kernels accaréling to the number of the nucleons
exchanged ‘ : - o

Now we investigate the formulas of Egs. (2:2-10)~(2-2-13) by ex-
amining the number of exchanged nucleons between clusters. For this,

we
consider two-cluster system, the wave function of which is given by
i—det{(ﬂc‘ 1;"(00 ¥, Pe,,1 " Po N.} o
)‘/A! 1) 154V 2 27‘ 2 o
= %J{g& (Cs, R)$(C, R}
R M s.(P)PFlﬁ“det{%kr‘l'% m)
/\/(A) & ‘ '\/NI! ?) 19571
' N1 ’
X d t Y y i 2'2'42
o VN,! e Poxim, ( )

where P denotes the permutation of nucleons between C,; and C, and S(P) is
the signature of P! Equgtion (2-2-42) is, of course, just the Laplace expan-
sion of the single Slater determinant into the sum of the products of two Slater

; determinants. So following‘. Eq. (2-2-2) we can rewrite Eq. (2-2-42) in
a more concrete form, ‘ “

det {¢e,, 1" Qo MPeu1" Qo w,b -
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= X (= > E 9 et {go, (v, — R - gaolNl(ka —R)}

R

X det{@g,1 (x5, — Rz) * Doy v, (xp'N —Ry)}, ' (2‘2'43)'

where (pl,pz,- -px,) are the numbers which are left after subtracting the set
of numbers (&, ks, -++ky,) from (1,2, - - A) and satisfy p,<<pr<-<Dw, By
using Eq. (2-2-43) we re-calculate the kernels of Egs. (2-2: 10), (2-2- 11)
and (2-2-13).
First the overlap is _
Lo (1) -+ om, (VD) @1 (N1 + 1) pa(A)|
x det{@’ (1) @, (ND) @, e1 Ni +1) 04" (A}

. Ny . e P
= ‘ Z ( )iElrv(H_ z)<§061 (61> "'%N (O-N1> §06N 41 (5N1+1) "'%‘4 (O-A) |

[ <0'N
x det{¢," (01) - ‘O, <0N1)}det{<01\71+1 (Ow,+1) 40.4 (GA)}>
_ :%ll(i+0‘i) <%‘;I§:01 yo <%1[¢N> '
o‘1<ﬂ'2<‘..<0'2\71 ) <<00'N1l¢1/> ...... <¢0'N1|¢N1>
Loy P2 oo oy, |0a™>
x| o i L (2-2-49)
R Ay Lgsaloa’>

where we "~ denoted Peys BY @w,+is Qo0 as QOm,i and ki, -+ kg, D1, *+Py,) @S
(01, Ony Onys1s =+0a) This is just the Laplace expansion of the overlap de-

terminant det-B of Eq. (2-2- 12),
B BT BI_<<¢1|:¢;> ---<¢1l:¢5vl>>
BB T \pmlery o omloid)
= <<¢N1+11:¢:vl+l>---<¢N,:+1|¢A'>>, B_ (<<o1|:,<o5v1+1> e Lnloa’ >

det- B =

\C@albhrsy oo <paloay T \omlthn - <omload)

' '(<¢N1+1|¢1,> <§0‘N1+1I(9;V‘1>> | . - /
Bl = ' : , : (2-2-45)
paloy oo <¢A|(0N>

From the above procedure we can express the full overlap kernel (OV K.) as
the sum of the partial overlap kernel (OV.K.), which is coming from the '

n-particle exchange part of the wave function as follows:
(OV.K) =] (OV.K),,
: n=0 - ..
{pale’> oo <¢01|¢N >

<§00N1|(01,> """ <¢JN |0,

OVEK),= 1™ (=)&E™

0103 <0 )
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{Pay. +1’(va1+1> ------ <%N ol ¢>A’>

X ,  (2-2-46)

{¢s, } ¢N1+1> """"" <%A|§0A >

where Z(m means to sum over those (03, -+, 0y,) in which the number of 0;

satisfying ¢,>>N] is just #. Therefore, it is clear that (OV.K.), are obtained

from the following relation,”

det-B() =X #"(OV.K.),,

19(/1)3('19I IBIH) (2-2-47)%5

ABIT Bn

The direct overlap kernel is obtained by putting A= 0 in Eq. (2-2-47) re-

sulting (OV K.) girect = (OV.K.) .o =det (BI) det (BT). Next, for the. one-body

‘operator, by uslng 220:0:=320,,, we get
@D +0a(A) |3 O] det fpr (1) --pa(A)} >

. <¢O’1.k01/>‘ ....' ........ <¢0'1]¢N1>

Ny o N, :

RN COL A HECH T PORRER NI
(‘71<‘73<"'<‘7N1) i=1 .

Do loy oo Geg l04>

GO 17 SRR N I

<¢VA ’@5\71+l> ......... <¢0'AI<€A/>
<%N O e {Poy. 1|04

GulOlh > o <oalOles> |}

A

ZAIZ2 e <¢>U1 I<0N >
-+ .

| <<pgl;,l<a1'> ------ Gy 60>

zN+1

<<00‘A|¢N1+1> ......... <¢ﬂA|(ﬂAl> ’
(2.2.48)

Thus by a similar argument to the above we can decompose the one-body
operator kernel (OB.K.) as the sum of (OB.K.), which are defined i in entlrely
the same manner as (OV.K.),, as follovvs:

(OBK.) =% (OBK),,
(OBK.) @) =3 2*(OBK.),,,

(OB.K.) (1)

) We note the relations
’ Bl ,{ BI[[

Bl Bin| | B A2BIT
ABI1 RO |:‘

~leBrr g Bur  Bu |
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| Kl e alehd AR oo Manloa'>
_ B wOlery e <elOlek) KeOlgh - KelOles> |
T onle> o > Kemlen - Womlod>
B ‘ BT
‘ B! . : AB'T
o Kemale> e Komaloh) rnleiand - Comalos>
* iR 1dOlo> - 1alOIh. @Oldkd - pdOlod
/{<¢A:I¢1,‘> /1<¢)AI¢N1> <<2AI¢N1+1> ------ | <¢’A:I’<0,1’>
| | | (2-2-49)

We can calculate (OB.K.) (1) by the following formula,

(OBK) () = {det- BW} 3 el Ol > B

o {A for (1<i<N, N;<j<A) or (N;<i<A,1=j<N,),
i = ' . )

‘1 for other @, J). ;
S | | (2-2-50)
Similarly for the two-body operator kernel (TB.K.), we get |

(TBK) =3 (TBK.),, o
n=0 ’
(TBK.) () =3 2" (TBK.),,
(TB K) (1) = {det- B(/D}Z lmz@MI@I% o'
X‘{(B(D'l)m(B(l) Nig— (B@)~ 1)k,(B(/1) ks
(2 for (G,E), (j,l) e N
A for, (i, ) €N, (j, 1) &€ N'7,
A= or ‘\ : \ | E
o for (i,k) &€ N'%, (j,[)eN'" |
| 1 for G, (G,D &N, : '(2"2 51)

‘where (p,q) € N'I means (N;<p<A, 1<q<N0 or (1<<p<Nj, M<q<A)

Both in Egs. (2:2-49) and (2- 2 51), we obtain the direct kernels calculated .

in § 2.2.a. by putting A=0.

2.2d. Range of kernels « .
We denote the 0s single-particle H.O. wave function around R; as ¢;,os

= (2v;/7)¥*exp{—v; (x R;)*. Op orbit wave functions are obtained by the
differentiation of ¢;, 0s by Rz, for example, ¢; o2 =, Y2(8/0R:z) @1,05- If we have
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. the matrix elements by only the Os orbits, the differentiations of them with

respect to the GC (R;) g1ve the matrix elements by higher orbitals such as

0p, 1s, 0d and so on. We give below some formulas of the matrix elements
by Os orbitals;™® %

o 2\/W 3/2 ‘ ViV .
Bij.E<<ﬂi,os'l¢’j,os>= <y.~]—));> ' exp{—- _I_i‘ (Ri“jRj> 2},
novw; \ 299
. 72> S=B, " 3— 2% (R,—R 2},
ol (52 =By B R )

$@i,05| Vv (x) l(ﬂj,os> =By, (A“) , |
. <¢z,os¢j osle” #(w;—wz)zl% @, os> BikB]lC3/2 —{= O)Dz

R erf(ID)

5 sl S¥L,0s B, 2(am+azn)
<¢if0 gﬂj;“ l|x1__x l ,¢k0¢10> # '\/Z(azk_l—dfl)lDl
a;= 1 —, Ay =ay O}iRil_y"R"%

D,;"l‘y‘j )

CEI/[I—Fﬂ(aik'l—dfl)]’ D_ (Azk -A-:/l)/‘/"fl k"l"ajl ’
erf<x>~<2/¢n>j A, yu@=YL(@. (2259

For further details, see Refs. 11), 18), 33), 34).

We discuss the range of the GCM kernels below by usmg Eq. (2-2. 52)
in the case of the equal oscillator widths y=y,=y,= -, Usually, the GCM

> kernels are the sum of terms each of which is the product of the polynomial

part of GC’s and the Gaussian part of GC’s. In the case of the Coulomb
interaction kernel there appear the terms which are the product of the error
~function of GC’s and the Gaussian function of GC’s. The important factor to
‘deternnne the range of the GCM kernel is the form of the Gaussian parts of

the kernel. What we discuss here is how the Gaussian parts of the GCM

" kernels are. We will see in the followmg that- the Gaussian parts of the

GCM kernels are governed by the number of the exchanged nucleons between .

clusters

First we consider the overlap kernel. The Gaussian parts of the matrix
elements of overlap matrix B are the same within the same submatrices B,
B'I B]II B! in Eq (2-2-45). The Gaussian parts of the matrix elements
of the submatrix B! are all of the form exp{— (v/2) (R, — R,)?},
similarly for B'Y, B!, BU they are exp{— (/2) (R,—R,)*, exp{— (!)/2)
X (R, Rl')z} exp{— (v/2) (R,—R,)%, respect1vely, where R,= (—N,/A) R,
R,= (N,/AR, R/=(— N/AYR', R,/ = (N/A)R'. From the arguments
leading to Eq. (2-2-47) it is clear that (OVK)n has a Gaussian part of the

. formB)'\vIS)
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oo - nmof]* Jon| -]
[l mo s @m0}

_—:exp[~~g—{(N1 n)< >(R R+ (N~ )( )(R R

R+ %(NJ{‘!" N:R") 2}] :

) , Y (2NN, > 2 ‘y ! , 2}
Cmexpl— 2 (Ve )V (R—R): - R+R

=exp {—N’INZV (R—R")*— an-R’}
P17 24 |

NNy gy porny o (NN Jor- ,} | .
_exp{le »(R{FR)JF(A n)YR-R’}. (2-2-53)

~ In the case of the kernels of the one-body operators like as the kinetic energy
~ and the multipole operators, we see from Eq. (2-2- 52) and from the argu-

_ ments leading to Eq. (2-2-50) that the Gaussian part of (OB.K.), is the same
as that of the overlap kernel given in Eq. (2-2-53). Finally we con31der the
kernels of the two-body operators. As a representative example we study the
kernel of the single-range Gaussian 1nteract10n operator Zﬁwexp{ s (s — 2}
- From Eq. (2-2:52) we know that, in the present case of the equal oscillator
widths, <¢z 0s@s, Os[ exp{— (2 _xz)z} |§ﬂk 051, 0s) = BB, {”/ (V + 1) }5/2 exp{—v,(R;
—R,+R,—R))% where v,=vu/{4(v+x)}. Then, from the argument lead-
ing to Eq. (2-2-51) we see that the Gaussian parts of (TB.K.), have five
possible forms each of which is the product of the term of Eq. (2-2-53)
with one of the following five terms: 1, exp{—v,R%, exp{——)),,R'z} exp{ Yy
" (R—R’)? and exp{—v,(R+R)%. \

§ 3. Calculation of RGM kernels
— Transformation from GCM to RGM—

3.1. RGM wave function and kernel
For the sake of notations, we here discuss the form of the wave function
and kernel in the RGM framework.?*®*®  The wave function in RGM has the

following form in the case of the system composed of two spm zero clusters,

,noJZ-{x (1) ¢ (C1) B0 (Cz)’} = Jdax (a) 1 AL (r— @) §o (C1) o (C2) },

ne= NN,/ AL . o S | (3-1-1)
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The matrix element of the opérafor O with these wave functions is

<7’louq {Xl (r) bo (CI) Po (Cz) } | O |nouzz {Xz (r) Po (Cy) ¢o (Cy} >
= [ dadag* @)y (@ym (@, @),

m(ay, a2)5<5 (r— al) ¢0<Cl) ¢0(C2) |@ qu{a (rf az) ¢0(C1) QSO(Cz) } > . (3 -1- 2)‘

m (a;, a;) is called the RGM (integral) kerhel of the operatoi‘ 0.
For the multi-cluster system, the RGM wave function has the form

Ay (&1 -y Ea-1) TT721 60 (C))} where &; are the relative coordinates of 7 clusters .

(such as Jacobi coordinates), and the RGM kernel of the operator O is
m{(ala_ s Qg bl‘; ) bn—l) : ‘ |
! n—1 n . n—lv n ; :
:<11—:[16(§i'—ai)11;[1¢0(ci)IOIJ{ga(fi_bi>g¢o(Ci)}>- (3-1-3)

The RGM wave function of the system including rearrangement channels
has ‘the followmg form

2 A {Xa (ra)¢(ca1)¢(ca2)} | S (3-1:4)

“/(z‘él),

- The RGM kernels necessary for this system are
| 1

Mays (s @p) =
STV E)

X101 A0 (ry—a) $(Ca) $ (Co}>. (3-1-5)

(Al ra— ) (C) $ (C)

When we treat the relative motion with deﬁmte angular momentum, y (r)

is 1 (7) Yru(7) and the necessary kernel is

mL],M],LzMz(al’ az) = <ﬂra_%al)]h:1 1|@|u[2{5(7‘——az> hL2M2}>

1 ay’ «
hiw=Yrx (?) $e (C). QSO (Cy). ‘ ; : (3-1-6)

Slmllarly for the multi-cluster system, ¥ (&, *+-, &) s wa(él, ooy Enet) Yo o

(€, - & _ 1) where the definition of Yy, is given in Eq. (2-1-15) and the .

kernel is
m%ﬁ'szMz (ah ttty Ap—1s b], ceey, bn—l)
n—1 .
— <g W}u Ml,all@IuZZ{H 6(5 —b; )hLzMz,d2}>’ (3:1-7)

where the channel wave function hiw o is deﬁned in Eq. (2-1-15).
The channel coupling systems which involve the excitation of clusters are
treated sn“mlarly As an example, the two-cluster system where one cluster
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C, is allowed to be excited, is “described by the wave function

Axrs (A o,
hiM= [YL1 #) (15142 (C1)]JM¢0 (C2)a o
i= (Ll, L,). o ' (3-1-8)
The RGM kernel for this system is “ 7
<6(7;l—1—2 as) p 730 O] {a(ra—z; as) thZM,}>. : | (@3- 1.9)

» The above RGM kernels corresponding to the RGM wave functmns with
‘definite angular momentum are calculated by the angular momentum projection

. of the non- prOJected kernels m.  For example, the kernel of Eq. (3-1-7) is.

obtained from the kernel of Eq. (3:1:3) as follows:

@ . .
mL:Mz1LzMz (al, Tt bl; o .)

j(ﬂ da)(II 2B Y e @y ) Yty By - >m<a1, by ).
: - ' (3-1-10)

; The RGM‘ wave functions are often expressed by the linear superposition
- of the suitable basis wave functions like as ‘

\

A@=Tea®. S (311D

Usual ch01ces for {u;(r)} are the H.O. functions {RN“ () Y., (7))} or the
Gaussian wave packets with variable width parameters exp{— T Y, (7).
' The kernels necessary for this kind of wave functions are

m (4,7) = =y () o (C1) 0 (Co) 1Ol A (r)¢o(Cl)¢o(Cz)}> (3-1-12)

3.2. Transformatlon of wave functmn ’

3.2.a. - Gaussian transformatzon

The transformation of the kernels between GCM and RGM is based on
~that of the wave functions between two methods. We therefore first discuss
the relation between. GCM and RGM wave functions for the .preparation to
-later investigations. (See also ‘the discussion in Chap. II) The oscillator

widths of all the cluster wave functions in the system are taken . to be the

' same in the arguments of §§3.2 and 3.3. The more realistic case of unequal
oscillator ‘widths of clusters can be treated in almost similar ways and is

discussed in § 3.4. ‘

For the case of the system of two H.O. closed shell clusters, the GCM

‘wave functlon is written as follows, as is discussed in §21

oo def(R)uzz{o(cl, Aivz‘R)gbo(Cz, J;l’ln)}
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= L () B (C) o (Co) Yy (X,

x<r>=[dRr<r,R,r>f<R>, @2
Where | o |

(,bo (C;, R) =H.O. closed shell Wave functlon centered around R

wo<XG>—(2i”) XS, A=N+ N,

, ” e w
r ] R’ = <—I> ) _T(r—R)” = At 5
(r 7) x) e‘ wLor= N1+N2

Xz, XG—CM coordinates of the cluster C,; and the total system,
‘ respectively. (3-2-2)

Here the following simple but important relation 1is utilized,
2

[ (2R2) oo no =L v, R, 1) 0,(X0). @2

Ecjuation (3-2-1) shows the RGM wave function is related to the GCM one

6),7),389)

by the Gaussian transformation.® Similarly, in the multi-cluster system,

oo 11 dS,-f (S, ...,‘sn_1>u_2z{f=11 0o (Cs, R}
=u4{X (fl:""; fn—J)il:[l G (C) Yo (Xg),

G b = (TSI @870 /S, 800, 3200

where g: are Jacobi coordinates (or any" other suitably defined relative coordi-
nates) obtained by the linear combination of X, for example, & =X,—X,
&=X;— (N X, + N, X;)/(N:+Ny), ---, and S; are the correspondmg Jacobi ‘gener-

ator coordinates obtained by hnearly comblnlng R; just as in the same manner as

' the definition of & by X, namely S,= R,— Ry, S,= R,— (MR, + N;R)/(N, + N)),

Here the condition R1+Rz+ -+ R,=0 is assumed for R;.
The relative motion with definite angular momentum is treated by the
projection procedure applied to the above-mentioned relations. For the two-

cluster system with the relative angular momentum L, the GCM wave function
is ) ) ‘ ' : ' '

7 oo fch-RZf;(Rj Poudl {gbg (C - jlv R) w(Cs, JX R)}

= [ramrri: [arradafu(e, e, V)
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= Atz (DY 2 ) 60 (C1) $0(C) 00 (Ko,
w) = [(aRRI.GRDA®, @29
where o - '

Pw= (constant) JdﬂD,%‘ (@R,
! 2T 3/4 . e pt
I'y(r, R, r)E(—) 47iy, (277 R) e TTEY, (3:2.6)
The relation between I and [ is

IRy =30, R DY Vi (R) Yiu (7). (8-2:7)

Equation (3-2-5) is just Eq. (3-2-1) with insertion,
@ =0 Y@, R =R Ym®. (328

Similarly for the case of the multi—c\luste‘r vsystem,
n—1 .
¥ yoc [‘[1 dS;-Sit f1,a(Sy, -+, Sa-1)
n—1 ~ —~ ~ n N
X I]l dSi Y 1a,a(S1, -, Snv) J{l:l; Po (Cz, R)}. ;

e A Gy e En ) Y gara B oy B TT 40(C 00 (Ko,

n—1 '
na By, ) = f 1T dSe-S¢T5, (6, Sty 7D f1,0(Ssy -+, S, (3:2:9)

where « stands for the set of quantum numbers (L;, Ly, Llég"') as in § 3.1.
Equation (3-2-9) is just Eq. (3-2-4) with insertion of (&, -, En1)
. eErs oy Ea D)L (Y)Y Ta and AS,, s Spod) =FrolSis -+, St
X [[YL1 (81) YLZ;(SZ)]LM";]L- )

The cases when the system involves the non-closed-shell clusters with
non-zero spins are also treated similarly. As an example, for the simplest case
of the two-cluster system with one non-zero spin cluster C,, the corresponding

transformation formula is

Pooc f "dR-Rfy..(R) f dR

A

>% |:YL1 (E) - UZZ {‘,bLg <C1, _jfzﬁ> ¢’0 (CZ’ _&R> } ] 7
o e () [T, ) b (€D T C)}ouX,

XL,cc (7') = J;wdR ‘RZ]—'L (7", R: T)fL’,vc (R) 4 | ' . (3 -2 10) ‘ o
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where a= (L, L,).

3.2.b. Inverse of Gaussian transformation ‘

The inverse transformation of the RGM wave function to the GCM one
is done by finding the inverse kernel of I'(r, R,7) (or I';(r,R,7)). Since

I'(r, R, 7) is a function of only (r—R), the eigen functions of this integral
kernel are plane waves;

famr R, (L) st =[ () oxp{ -1 (L) e
| ¢ (3-2-11)

The spectral representations of /" and /"' are thus

I'(r,R,7)= | jdk <2_17—Z'> 3/26Xp {ikr} [<g;—r> 3/4exp { fz} ] <2—> 3/Zexp {—ikR},

:
7= () e [ o] () .
| ' (3-2.12)

Equation (3-2-12) shows I'! is a singular kernel®®* which is a well-known
fact as a high frequency catastrophe of the real number GCM. This means
that for some kind of relative wave functions x () (of Eq. (3-2-1)), there
is no corresponding weight function f(R) which is non-singular. Denoting

the Fourier component of x(r) as x"(k), f(R) is expressed by this " (k)
as follows,

1@ = [ar( L) exp i 70,
f(R):fdk(zinf’zexp{im}[( )3/4exp{k2}:| 2" (). /.(3.2.13)

In the case when the damping of " (k)  at high frequency is overwhelmed by
the growth of the factor exp(k?/4y), f(R) becomes singular. As an example,

when the width parameter 7, of the Gaussian wave packet % (r) is equal to or -

larger than 7 of I', there is no correspondlng regular f(R), while on the
contrary for 7,<(y we can find the regular function S (R) as below

(‘Zﬂ) exp{ Tar’t = deT (r,R,7) <%> 8/4\9XP{/—%R2}-

(3-2-14)

When 7w is near y this f(R) is sharply peaked around the origin and in the
limit of yz—7 it becomes the Dirac delta function ¢ (R). More generally for
a7, the H.O. wave function Viy,x(r, rx) =Ry, (r,70) You (7)) (N=2n-+1L

=number of oscillator quanta) has its corresponding f(R) as follows: ™4 -
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_ Ry (7, 7a) YLM‘(?‘) = j,dR]" r,R,7) By (R, 7, Tw)Yin (ﬁ) >

8/4 N' ’
BNL(R ’f, -rH) <T> / <T+TH>( +3/2)/2fexp{ TTH RZ}R <R TTH 2>’

2n/ \T—Tx S 1T
(2,)) s/ 2)N+L+4<N L> 172 .
B )= Nt LD 2| rrexp{—vr} LGB m(20r),
| | . @215

where L,*"+? (21)7”2) is the associate Laguerre polynomial and it should be
noticed that the number of the HO quanta N is used instead of the number
of nodes n(N=2n-+L). This relation is equivalent to the following relation®”
for the one-dimensional H.O. wave function X,

o - O\ I/A ¢ L
Xn(x,TH) = dew(Z—;zZ) eXp{;T(x_R$) Z}bn (Rz,‘ 7, TH)7

‘ YA/ . ’ : ;
= () (L) ol 2 i ),
| L aTeTen Ut o e £

X, (z, V) = (27;’> J%H(«/ﬁx) exp{— v}, ) (3-2-16)

where H, is the Hermite polynomial This transformation equation (3-2-16) »

is just equivalent to the formula about the Gauss1an transformation of the

Hermite polyno mlal @

jdy exp{———<z y>}H ) = fmp(1- por, (J_ ). oty

The equivalence of Eq. (3 2- 17) to Eq (3-2-16) is proved by putting
2=V T/ 2raT—T) % Re=v =71 /271y =215/ (r+70) in Ea.

(3:2-17). The f{unctional form of f(R,) =b,(Ra, 7> 7e) of Eq. (3-2-16) was’
obtained by Griffin and Wheeler™® by solving directly the ‘GHW equation for

the H.O.. Hamlltoman in the translated Gaussian basis. (They reported the
form of &, (R., 7, rH) for n=0, 1 and the recursion relation for higher 7. instead
of the explicit form.) By and b, are sharply peaked around the origin
when 7y is near 7 ‘having the same numbers of the nodal points with the
- corresponding H.O. functions, and they become singular in the region Ta=7-
The s1ngu1ar weight functions By and b, in the case of yg=7 can be ex-
‘pressed in the integral form as was discussed above in Eq. (3-2-13). The
Fourier transforms of Ryz (7, 7a) You (7). and X, (x, 7y) necessary in Ea.

(3 2-13) are aga}m the H.O. functions of k= (k, &) and k,, namely Ry (k,.
1/47y) You(®) and X, (ks 1/474), respectively. These integral forms will be.

- used in later discussion.
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The aim of this section 3 is to tfansforthhings in GCM space to those

in RGM space. As for the wave function, this transformation is done by the
Gaussian transformation kernel I’ (or I'y) but on the contrary for the 1ntegra1

kernels of operators the transformation is achieved by the inverse Gaussian

kernel I :

For the treatment of the dynamlcs in the GCM formahsm many works
confine the use of the GCM within ‘th‘e interaction region and for dealing with
‘the scattering or reaction probléms the connection is done between the inner
waves treated by GCM and outer waves whose functional forms are known
except the scattering matrix elements, with the use of the R-matrix theo-

7), 43)~46) 45)~47)

Ty’ or variational methods. But there are also many works which treat

®~®  In the former we usually need

every thing in ‘the entire GCM space.
not transform the quantities in RGM to GCM but in the latter the asymptotic
boundary condition in the usual space (namely RGM space) must be trans-
formed into that of GCM. Thus in the latter the Coulomb wave functions in
the outside region (in RGM) must be transformed into the corresponding
weight functions f7,(R) with the use of I';™". 'Since we do not discuss this
approach later we here only quofe the references. ‘

+3.2.c. Expansion of T by the H.O. functions

By using the generatmg functlon formula for the Hermite polynomlals

e;‘z=+2tz:i H, '(z) o (3-2-18)
B =

We can easily derive. the expansion formula of the Gaussian transformation

kernel I" by the H.O. functions Xy (@, 7) as follows:"
o 2 L /O 8/4
I, &)= (Z) exp (-1 —R)3

=exp{ TR?}E[WR)NNN']XN(r .

X (r, )= H< )Y \/ZN{N,

=Xy, (2, 7)XN2(y T)szs(z 7),

Hy, (W/Zrn) exp{—77s}

. 3 3
RY¥=]] RY, N!EH(N,;!). o _ (3-2-19)
i=1 i=1 .
- The angular momentum projection formula for Xeom (1, 7,

Ko, (r, 1) =33 AT Rus (r, D Y00 (7,

AV (_y@-np [ (2L+1) - N . (3:2-20
F=T “/(NfZ)zz(N+z+1)z!’ T e
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gives us the expansion formular of I as in the followirig form,*

R?) N2 A7
I R = { T R2} , (T AY
B 1) =exp =Ry 20 N

(R)RNl(r T)Ylm(r) o o (3-2-21)

3.2.d. Complex generator coordinates

‘The extension of the GC into complex numbers. can avoid the difficulties
~related to the singularity of the inverse Gaussian transformation I'”' encoun-

tered in the real number GCM. And further, as will be seen in later appli-

cations, the complex GCM (C- GCM) has many nice properties in the investi-
‘gation of RGM kernels. : ‘

N

From the form of the- C-GCM wave function in § 2. 1 the relation of wave

functions between C-GCM and RGM is written as follows,

¥oc .J}Z/J () () e®V 1] {% <C1’ ~A]\j/z':_ >¢)0 <C2’ 2757)}

— [dn@F @ AAZ (r, ) 4(CIA(C} 00(Xo)
=) $(C) 40(C} 00 (Xo), |
2 () = fda(z)A*@ DG, G222

where A (r,z) and du(z) are defined in Eq. (2-1- 29)

The space spanned by the -entire analytlc functions 'of z can be rnade

into a Hilbert space (Hj) by defining the inner product by the integral with
this measure du(z).*® As an example of the complete orthonormal set of
basis vectors of Hp, we can choose the following,

Un@=T= I

N

(3-2-23)

The corresponding complete orthonormal set of basis vectors in the usual con-
figuration space which is transformed by the kernel A*(r,z) from {Uy (=)}
is just the H.O. wave functions {Xy(r,7)} of Eq. (3:2:19) as follows,*

Xy = [de@ A @)U, (3-2:24)

Therefore A,(r,z) can be expanded by these two sets {Uy®}, Xy DY,

as

AeD =D K@D UG, (3-2:25)

® A Way\ tb derive Eq. (3:2:21) is as follows: First we expand I' (r;, R, v) with r,= (0,0, z) by

X,0,;m using Eq. (3-2:19), and then use I' r—R) =exp(—igJ,) exp(—i0J) I (rs; R, 1) ‘with

P=00,9).
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This equation is nothmg but Eq (3-2. 19) if we replace R by z/\/r in Eq
(3-2.19).
From Eq. (3 2. 25) we obtain

B EZOP NGOV EICRSES ap NURTS Mear S T

JﬁdrA'T (r,z")A*(r,z) = EN: Uy (') UN* (z) =exp (5" -z%). (3-2-26)

As is clear from the relation exp (s’ 5%) =3y UN(,J YUN* (), the function

exp (#"-z*) behaves like the Dirac del‘ca function in Hjp,
jd,u(z)exp(z )0 () =0 @) B2

for an arbitrary element o (z) of Hj. Therefore, in CGCM the inverse of

the transformation relation x(r) = _fd,a(z)A*(r ) f(3) causes no dlfﬁcultly
and can be written as

f) = jdrAT(r,z)x(rj. - (3-2.28)

As was discussed in § 2.1, the transformation kernel A*(r,z) is the

so-called coherent state and can be expressed as. follows,*

A*(r, z) ='W, ("), v |
3/4 ‘ .
Wo(r)—z<2—r> K g afE\/ﬂFl é@) (2-1-30)
By using Eq. (3 2:27), we get

7 () = jda 3) - exp (=*- aT)Wo(r)f(z)

=f(a) W, (r) | (3-2-29)

This direct relatlon between x(r) and f(z) was also noted by Ui and
Biedenharn.* :

3.3. Transformation of kernels

3.3.a.. RGM kernels in coordinate representation

Throughout § 3.3 we assume that the GCM kernels are already calculated
and we discuss how to transform these GCM kernels into RGM kernels First
we consider the RGM kernel of the operator O in the coordinate representation

® Equation (2-1:30) is related to Eq. (3-2:25) as follows, By inserting the relation Xy (r,7)
={1/vND (@)NW,(r) into Eq. (3-2-25), we obtain

40,8 =3 T 7 ()" Wo )

=exp(z-a) W, ().
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which in the illustrative case of the System of two closed shell clusters takes

‘the form,
- m(ay, @) “<5(”*a1)¢0 (Cl> o (Cz) |O1A{O (r —as) ¢ (C1) %o (Cz)}>
=m® (a,) 0 (ay—a,) —m (al, a). . (3 3. 1)
;Here m’ (a) is .the direct kernel given by o
@ = CHBCID DO CIACI  (52)

and m® (ay, a,) is the exchange kernel given by m”(a, a,) —<6 (r—/al)g% (CI)

>< ¢0 (oh) O (A~ 1) {0 (r—a,) $: (Cy) $o (Co) } ).
~ Because of v, =, @ (R, R’) =M, (R, R") and since the GCM kernel M

can be ertten as
M, (RuRz) =" (r, Rl,T)QSo(Cx)(ﬁo(Cz)[@‘JZ{F(T R, T)¢o(Cl) ¢0(Ca)}>
j dadasT” (s, Ry, T)m(al, @) T (ay, R, 2 |
| =rml, o 333
- the RGM kernel m is obtamed by the inverse transformation F from M, as
m(al, a)=I"MTI" | |
— j dRART" 1(121, ai, 7) M, (R, R)T™ I(Rz, a, .

= (57.1) jdkldkg exp{—zk1a1—~zkza2} o b \

X exp{ (k1 + kzz)} j‘de dR, exp {zklRl + zszz} M (Rl, R,),
(3.3.4)

where we used the integral representatlon of F ‘given in Eq. (3-2-12).

Equation (3-3- 4) ‘shows that the RGM kernel can be obtained from the GCM ‘

kernel by two- fold Fourier transformatmns in bra and ket respectlvely, first
from GC R to linear momentum k and second from the momentum k to the

" coordinate a, as shown in Ref. 7). This procedure is sometmles called ‘double

Fourier transformation.”

. A more straightforward transformation formula can be obtamed by using
the Fourier integral representatlon of the Dlrac delta function®~™

6(r’——a)= 57—]’_ fdkexp{ik(r~a)}. (335)
From th1s equation we get, |

5(1‘ a) 6(r~a)exp{ T(r—a)2}
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= <2l71>3 Jdk exp{ik(r—a) —7 (r’_\—a) é} ‘

\ . . :
_ 1 8 X ’ ) ‘k2 . _ . . i\ 2
= §_> jdk exp{ 4—7} exp{ r[r | aﬁ i;k]}

B e T

which when inserted ‘in’co Eq. (3-3-1) give_s us the. desired formula,

- 3/2
m(a, az) = (Zi) ) j i exp{ ~-—<k1 +k22)}
X M ki, e f-k) | - (3-3:7
r<al+2\rk1,az+2r, 2 ( 3 ) \
This procedure niay be called “single Foﬁrier transformation.” Sevéral au- -

thors call this “complex generator coordinate techmque”a) .50 since we use

complex generator coordinates a;+ (2/27)k; (j=1, 2) in the GCM kernel M.

But this “complex generator coordinate technique” described here is different
from our complex GCM (C-GCM) discussed in §§ 2.1 and 3.2 which uses the

~ coherent state (or the Bargmann transformation kernel) A, (r,z) and twice as

many integration coordinates Re (%) and Im(z). Thus to avoid the confusion -

we use the terminology “single Fourier transformation technique” for Eq.
(3-3-7). : ’ ' .; ,

The framework of C:GCM, of course, prov1des us - the transformatlon
formula from C-GCM kernels to RGM kernels -as follows,

) = [ d(a) A Gy ) Ao 5) |
XCAR G, =) B (CI(CD (O (r, 2 6 (CHB(CIY
= J‘dﬂ (zl> O\Z/,l (z2> AT* (aly.zl) AT (azy 52)

Xel/é<z12)+1/2<z22>¥ Mf(ﬁ Ei) | g (3-3-8)
T VAT o

where use is made of the relation of Eq. (3-2-27), 5(1’—.@;) = [du (=) A(a,z)

* Equation (3 +3:6) can be slightly generalized as follows:
0(r—a)=0(r—a)exp {—rr—a)’+dr—a)}

- (%)jdk exp{(ik+d) (r—a) —7 (r—a)?

NERVER _(k—id)2.< ik+d >
_(271) (/2T> Jdkexp{ pw }f’ r, a o 57 ).

~ Here d is an arbitrary complex vector.
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XAX(r,3).

" The above three transformation formulas (double Fourler single Fourier
transformations and C-GCM) are based on the different integral representations
of the Dirac delta function 6(f—a) with the use of I'(r, R,7), which are
- summarized as follows: : , |

. 6(r——a)=<2 > ( >3/4j‘dk exp{—zka+ } de exp{sz}
xI'(r, R,7) (double Fourier)

1 3/4 A i .
= < ) fdk exp{ }]" <r, a+—k, 7’) (single Fourier)
\27 4y 27 ’

= fd,a (z) A,(a, z)exp {—;— (z%) *} I <r, %, T> (C-GCM) >-
| | | (3-3-9)

The above procedures are all about the calculation of the entire kernel

of RGM. These automatically give both direct and exchange kernels m® (a), "

m”(a,, a;) defined in Eqgs. (3:3-1) and (3-3-2). When we want to calculate

only the direct kernel m? (a;) 0 (a;—a,), the calculational procedure of it is

simply to replace the GCM full kernels M, in Egs. (3-3-4), (3-3:7) and
(3:3-8) by the GCM dlrect kernel M,” in Eq. (2 1-14), . C

MD(RI, R,) =<{I"(r, RI’T>¢0(Cl)¢O(C2>[@IF(T R,, T)¢0(C1)¢O(Cz)}>
(2-1-14)"

When the operator O does not contain the dlfferentlal operation, the

calculation of the direct kernel can be done in the followmg simplified way. -

Since the definition of m?”(a) of Eq. (3-3-2) contains only one Dirac delta
" function, we need to express this Dirac delta functlon by the integral represen-
* tation which contains two I’ (r, R, 7), in order to relate m” to MP. A simple
way is to use the relation 0(r—a)= (n/27)*I'(r, a, T)é‘(r a) and to insert
the integral representations of Eq. (3-3- -9) into the right-hand-side 6(r—a) of
this relation, yielding :

mD(a) :<2\/2n’> jdk exp{—zka—l— } JdR exp{sz}MD(a R)

v=,<21n> >3/2jdk exp{—f—}MD<a a+— k) |
~ %) }’ Idu (2) A, (a, 5) exp {E =) *} M <a, %) )

Here we used the commutablh‘cy of the operator O with one I based on the
condition that (& does not contain the differential operators. We give here
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one more prescription, which utilizes the relation I’ (r,R,2y7) = (m/7)™
XI'(r, R,7)I"(r, R, 7). First we replace the width parameter 7 in Eg.
(3:3-9) by 27 and then insert the above mentioned relation into L' (r, R 27).
We thus obtain for m”(a) the following formulas,

m® (a) = J.dk exp{——zka—l— } de exp{ikR} M (R R)

=<;,>< )7 kool EJaer(a s )

=< > jd,a(z)Azr(a z)exp{ (zz)} ( fz j;)

(3-3-11)

Here we also used the commutability of the operator © with one I'. The
double Fourier transformation formula for m” is especially convenient since
it uses only the diagonal 'elemen’cs of GCM direct kernel' M? (R, R) which
is' very easy to compute as is shown‘below;”)

a0, 10— 30, = 2 010, ~ 2o

A
{(I) for one-body operater O,
B (L) for tW'o—body operator (0,

A jely

(e ) 0 o).

W BY | 3 O, Co R

® = {(c, “R)1 3 0,10, (cz, ZX ‘R))

:_Z<¢j(x—R;)i@l<ﬂj(x—Ri)>,
) = < (C ~Neg) =, 2,00 (G, —Nm))

# (o R 5 B nlw(cn T R)

< 0<C1, , N2R>¢O<Cz?’1_‘:lfi3>| ZOMJng(CI, ffzﬂ)¢o<cz, ZIR»

JE 1
k&0,

0 (Cy, R))

(#(Coy R

1
L .|
2 i,kZGIC’i 7

¢%(C,,0)) |

- [nc.0l3 5,00
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:l— PRI 0 ()7,
(s, RYG(Co R | 33 1On100(Coy RYY (Cs, R

SN <x1 R e (2 R Olos (R — RO
- ]m,n)“z]mn}——]nm} : | | (8-3-12)‘

" Our explanation has been limited to the single channel two-cluster system.
But it is evident that the methods explained here can be used in other various
cases since the essence is how to represent the Dirac delta funct1on by the

/ lntegral form containing one (or two) [I'(r, R, T)

3.3b. RGM kernels in H.O. and other re;bresenmtions

As discussed in § 3.1, when we express the RGM relative wave function
X(r) by the linear superposition of some " basis wave -functions {u;(r)} as in
Eq. (3-1-11), we need to calculate the kernel 7 (7,7) of Eq. (3-1- 12). If we
‘know the kernel in coordinate representatlon m(a;, a,), we can, of ‘course,

get m(z J) as follows

G5 = fdaldaéui* (@) m (e, @)ty (an). . (3-3-13)
v What we diaCuss her’e are the prescriptions to get 7 (,7) directly from
the GCM kernel M(Rl, R,) not by the indirect method of Eq. (3-3-13).

, A general prescrlptlon is to ﬁnd the functions Wi=I"""u; (u;(r) = de
‘ ><f'(r R, W, (R)). Then we get ,

7 G, ) = [ dARARIW (R W (R)
x f darda,T (a, Ry, 7)m (ay, a5) I (as, Ry 7)

=IdedR2W-*<R1)W-(R;)M(RI,RZ).”  (33:19)

When we adopt for {w}, the H.O. functions {Ruy, (7, TH) Yin (r)} or the Gauss- -

ian wave packets with variable width parameters {e ""*7'Y,, (7) o Ry, (7, To)
X Yy, ()}, we know W;(R) for these u; (r) as was glven in Eq. (3 -2.15),

under the condition 75<7 or 7:<y. This pr escription was dlscussed in deta1l’ ‘

in Ref. 11).

. The complex GC ’cechmque prov1des a similar prescr1pt10n to the above :
- We calculate W; (z) such that z; (r) fdu (=) A*(r,z) W, (=), and then we get-

- mG, j) = J‘dﬂ ()t (=) W* (z) W5 (22)
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X JdaldazA, (a1, z) m (ay, dz) AX(a,, zz)

= jdu (50 dn () W () Wy (s)

o ST DR B e
Xexp{—z——k(zl)—l—?(zg)’ }Mr<ﬁ ”ﬁ> (3-3-15)

An interesting and impbrtant case is when {u;} are H.O. functions {Xy, @, 7)}.
Then W;(z) =Uy,(5) as was discussed in § 3.2.d.  If we define M, by

Mr (zl? 22*) EeXp{ (z 2) + = (522) } , <;Z/L’ f/zT>
= <A (=) B (O A(CD IO1AA 0, 5)B(CHRCI)
(3-3-16)

m (4, J) are obtalned as the expansion coefﬁments of the power series expansmn
of M, (z,=* by (zl)M (%*). Let the power series expansion of M, be

B, (s, 22" >~2 v Uy, () UM(zz) o (3-3-17)

"chen from Eq. (8- 3 15) and from W (z) UM () we obtain
m (]V;.’ N) = <XNz (r, T) Po (Cl) Po (C2> I@IJ{XNj (r, 1) $o (C1) Gy (Cz) 1D
—-CN%NJ , _‘ . Co - (3- 3. -18)

“The result Eq. (3-3.18) can be derlved in a d1fferent way. Consider
M (R, R,) where R; need not be complex number vectors. We insert the
expansmn formula of I by H.O. functions which is given in Eq. (3 2- 19)
mto ‘the defining equation Eq. (3-3-16) of MT, obtalnlng

M, (R, R,) = Z Uy, (R) Uy, (R.)

XXy, (r, 7’) o (C:) o (CZ)I@IJI{XM (r, 7’)¢o (CD) ¢s (Cz)}> (3-3- 19)

This gives a proof for the relation of Eq. (3-3-18).  Therefore we call the

above procedure to get m(V, N) - Xy, (r, 1) o (C) (ZSQ(CZ)I@IuZZ{XNz (1’ 7). (Cy)
X by (Cy)} >, the generating function technique.

If we insert the expansion formula of I" by H.O. functlons with definite -
angular momenta which is given in Eq 3- 2 21) into Eq. (3 3- 16) deﬁmng _

M we obtain®

4

M(R,R = RY: \/N’ R¥:/\/ N,
b NZ,;:( D R 2)«/(211+1) (2zz+1) o
><A Yllm,_ (-R1) Yz 2hng (R2>m(N1l1m1, Nzl2m2)s o

m (N1Z1m1, N olamnsy) “<RN111 (r, T) Yzlm1 (7”) bo (C1) $a(Cs) l
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<O R (. Vi, Y (CHA D (3‘-3-20>

Eq. (3-3-20) is wused to calculate m(Mllml, N,ylym,) from M (Ry, Rz)
namely, we expand M (R;, R,) by -RlNlYllml (RI)RZ,Vz lemz(RZ) and then we
obtain 7 (Nilym,, N,lym,) as the expansion coefficients of M (R, R).

We finally study the case when the system includes the non-zero spin
- clusters. The simplest system is that described by the wave function of Eq.
(3-1-8) where the SU; shell model wave function is adopted for ¢, (Cy). By
usmg Eq. (2-1-21) we obtain the followmg relatlon ‘

exp {—2— (R12,+ R22>} <¢"Q1 <Cl, ;l jv2 R1> Sbo< 25 A]\f/l—RJ

<olalm(on T er)n(cn L))

— AL, RY$(C,(C 101 A, (r, RY S (CI(CID
(4n)? AT AV AT AT

ZNZZJVZRI R/ N NZ'JMZJM V@L+1) @L+1) (2L +1) 2L;+1)
X [Y (R ) YL, (@) s, [Yl, (R) Y 1,(2:) ] s,
5 (Rosyus (7, 7) BT O A{Rur s, (7, 1) RIS - (3-3:2D)

3.3.c. Range of kernels

Correspondlng to § 2.2.d we discuss here the range of the RGM ‘kernels.
When the Gaussian form is assumed for the two- nucleon potential, both the
norm kernel and the Hamiltonian kernel without Coulomb part i in two-cluster

system have in general the following form in GCM,

> ¢,R%R'™ (R-R)™ exp{— E.R*— EyR”— E,R-R’},  (3-3-22)

where E;(k=1~3) are éhovyn in §2.2.d to be determined by the number
of the exchanged nucleons between clusters. What we discuss is the range .

of the RGM kernel transformed from GCM one of Eq. (3-3-22). By using
the prescriptions of § 3.3.a, the transformed RGM kernel from the GCM one

of Eq. (3-3-22) is®

<><><><> “

X exp{— Ej;r*— Eyr’? — Eyr-r’}

_Z c; /2 IZm,;" (r-r’)""exp{—E{irz—E’ r2_ ;’»,,;T-r’},

CO_‘]' (Elz + EZi) /T + F / (47‘2) > F 4E1'LE27. 31. s
E1iE {Ey;—Fi/ (47)}/Cy, Ey=A{Ey—F;/(47)}/Cs,
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{=Ey/Cy. | - (3323

In the case of the overlap and kinetic energy kernels Ey; (k=1~3) are,
~from Eq. (2-2- 53)

Eli:Em;:NlNZV:%,‘Esi:<n—%>”:nl)—‘r, : (3‘3'24)

Where n is the number of nucleons exchanged Then the range parameters

E;(k=1~3) of the RGM kernels are calculated by Eq. (3-3- 23) to beg)

, /_T{ ny _1_27’——71))}’

li: 2-_-_
"2 2r—ay ny

‘éi=r{ 7Y —27’_””}. . (3-3-25)
2y —ny ny . .

We can similarly evaluate E"(k 1~3) of the RGM kernel of the Gaussian
two-nucleon interaction although they are slightly more complicated compared
with Eq. (3-3-25).

3.4. System of clusters with unequal osullator w1dths
3.4.a. Transformation formulas

As was dlscussed in § 2.1, when the clusters of the system are represented
by the H.O. shell model wave functions with unequal oscillator width parame-
ters, the GCM wave functions contain the spurious component of the excitation
of the center-of-mass motion. Nevertheless, the GCM kernels constructed
with these GCM wave functions containing spurious components can be
used™ #0796 evaluate the RGM kernels which have no problem of the spuri-

ousness since RGM wave functions do not contain the center-of-mass variable at
all. '

First we give a prescription which uses the two-fold Fourier transforma-
tion. Using the relation of Eq. (2-1-6), we obtain

j AR exp {ikR) " <cl, ;M@ b (Cg, %R>

<2N1V1 2N2

3/4
v > ! JdR exp {sz}

X exp{—aXs — L Xq (r—R) -7 (" —~R) 2} bo (Cl) Bo (Cz)

= <4N‘li\§2))1y2>’3/4 <%> 3/Zexp {——f—;} exh { | <6K—— é;) X’ | + ZBls: Xa}

| X exp{zkr} ¢, (Cy) 40 (C>), .

JdRidR2 €xXp {ik1R1 + iszz}

(.
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(oo 2m)o(c, Bemontcn =om)cn Mo
(4N1;\:2"’1Vz>3’2’< % > Xp{—’_ <k2+k2)} |

exp{ (aﬁ—~é)i>X +22§k2Xe}>

X <é:;p{~,<a—%z’>rxa2~;£kiX } i

X {exp [— Zkl"] 0 (C1) 60 (Cs) | O | A {eXP [Zkar] (150 (Cy) ¢o (Cz) }>

. 3/2
=(?T’—T) exp{— (k' ) — ald

X <CXP [ —ikyr] ¢o (C 1) $o(C>) I@ | J {exp[ik,r] ¢0‘(C1) $e(Cs) >, i

‘ QEN1P1+N2V2, B—%(”Z 1), T_%NHJ—G—N(NWI"’“NWZ),
e , .
pmty B = F (3-4.1)

167 (ct— %) .

Thus fhe‘ desirgd formuia ‘for m is

- Ay

m (aI, az) = (é;z-) ) dk;ldkg eXp { —_ zk1a1 - lkzag}

. xexp{p (k12+ B2 + aheides} deldRz |

% exp {iky R+ ik Ry} O (Ry, Ry). B (3-4-2)

: Equation (3- 4. 2) reduces to Eq. (3-3- 4) when y;=v,(8=0) and so it may

“also be called the double Fourier transformation formula.
Secondly we give another formula‘i‘”“'m ‘Whlch reduces to Eq. (3:3:7)
‘ When V=V, We note the relation, ’

0(r— a)exp{ aXgt =00 — a)exp{ aXs—BXe(r—a) —7(r—a)?

2 2
. ?5(r~a)exp{—val<X1+%a) “Nz”z(Xz—%a) }‘, |

3 —a) = (_1_>f [k exo tikr—ary

2 fawenn{ (520~ (1 ] .

- 0(r—a)exp { — QfXGZ}' $o(C1) $(C2)

= (L) ( dk expi— + T K
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. . : ' 2 ’
* eXP{_Nl”‘ <X1+%“+2N1»1k> }

Z ta— Nv )}qso(ca #:(C)

<27z.' AN Ny, »2 exp T \Ny, sz) 1

‘ —N Z N, o 4
X | C ’a— k < f,f,,,k .. (8-43)®
¢< ’ A ’a, 2N, >(/)0 T A +22\52 Vs ) ¢ )

From this relation we obtain

méal,‘az)=<2l7r> Z )3’2 fdkldkz exp{———-(/zl +k2)}

X exp{ N2v2<Xz

e L gy 100 +——k>
2Av.9, 2 24w, ™

N N,
N1V1+N2”2 ‘ \
It is clear that Eq. (3-4-4) reduces to Eq (3 3-7) when y; =y,, and therefore
we may call this formula also the single Fourier transformation formula.

The trouble of the system of clusters with unequal oscillator widths lies
in the non-separability of the center-of-mass motion. So the trouble vanishes
" the depéndence of the GCM wave function on the
center-of-mass coordinatev We note the following relation,

deagbo (Cuy Ro— Zz R)i(C., RG+%71R>

away simply by effacing

(ﬁ% S/A[JdReexp{ a(Xe—Rg)*— 5(XG Ra)(r—R)}]
xexp{ T(r~R)2}¢a(Cl>¢o(CZ)

<%‘1:72£>3/4e { <T-—_\) r— R) }(250 (Cl) %239 (Cz) >

jzRG <¢o <C1;Ra Zz R1> b (Cz, R;+ JZI R1> ¥,

<1afp(c, “r)a(c, )

= (N oy (B Ry s (CoR(C O

124

I expl—aXe X~ R)exp 7 (~ R 18, 4(CD))

f

© ® Just as in the case of Eq (3-3:6), Eq. (3-4-3) also can be generalized shghtly by introducing
. an arbitrary complex vector d as 0(r—a)exp{—aXs’}=0(r—a)exp{—aXe® —pXg(r—a)
—r(r—a)*+d(r—a)}. This results in replacing k in' Eq. (3:4-3) by k—id,
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_ (M) ’ <eglg[.— <}~f;) (r—Ry) ] 52(C 30 (C) 0

CKZ

xu{exp[—(«f—fi> (f—RZ)2]¢O(‘¢1)'¢O(CZ)}>. (3-4:5)

24

This last equality which can be rewritten as

‘ ' a\¥2 _ )
M (R, R) = ()" | dRo6 (RoRs, R)
' Fo% 3/2 i 4 [
- <_> j AR,6 (R, R.Ry),
27 ‘ ‘
2 . ,
NET—£= NN, , (3-4-6)
4“ . val -+ .Nzl)g ’

gives thé desired quantity M; from which we obtain 7 (ai, @,) by using Eq.
(3-3-4), Eq. (3-3-7) or Eq. (3-3-8). Of course, we can use this quantity
M, for the evaluation of 7 (Z, 7) following the prescriptions described in § 3.3.b.

The calculation of the direct kernel m?” (a;)0 (a;—a,) is done simply by

replacing @ by ®” in Egs. (3-4-2) and (3-4-4). When we use Eq. (3-3-2)
for m? (@), we can utilize Eq. (3-3-10) or Eq. (3-3-11) by inserting for
M7 in these equations the kernel M;” calculated by M,;”(R;, R,) = (a/2m)**
. X.deG@D(Rg, R R, = (a/27)**[dR®" (R,; Ry, R;) following the same ar-
gument which has lead to Eq. (3-4-6). The calculation of m”(a) of Eq.
(3-3-2) without using M;” is, of course, possible. ‘We only give here some
formulas which are analogous to Egs. (3:3:10) and (3:3-:11) and are easy
to prove, . ‘ ' '

h’LD(d) = <—1~>3<£>8/2 [dkexp{—ﬁ} 6* (a; Mk, a+ Lk)

\ 21/ \27 47) - 24,9, 27

_ <2l>3 jdk exp{—ika+ p' k) fczR exp{ikR)6” (R, R),
7T ) .

N . 2 . ) .
P/Eggl""J—T' : (3-4-7)
T 32T2<CK—§—-> ‘ ~ ‘
, 4y .
The diagonal elements of the direct GCM kernel ®”(R; R) (more generally
®@” (Rs, R; Ry, R)) are very easy to compute just like as MP (R, R) for y;=v,
and we can calculate them entirely in the same way as in Eq. (3-3-12).
" 3.4.b. Some extensions

When the wave function of the system is expressed by

D@ h(Cumd b (Cordl, (348
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we need to calculate ’:’che kernels of the type ’
€O (r=a) 6y (s, 5) 60 (Cor WIOIALB (r—B) o (Cs, 5) 0 (Car )} 5. (3-4-9)

 Kernels of this type also appear when the internal wave function of the
- cluster is expressed as

50(C) =2 o (C, ). (3410

It is evident that the calculation of the kernel of Eq. (3-4-9) can be done
entirely in the same manner as in Egs. (3-4-.1) and (3-4-3).

The size parameters of the clusters may change depending on the inter-
cluster distance. One way to treat this effect is to use the wave function of
Eq. (3-4-8). As another prescription we may adopt the wave function of the
type,

A @) 6y (o 2 () 6 (Cor 0, ()}
= [dar@ a0 —a sy Cn @) Cont@)),  @-41D)

where we assume p; (@) and v, (a) are the width parameter function depending

smoothly on the distance parameter of @=]|a|. The necessary kernel for this

type of wave function is of the type of Eq (3 4-9) and ecan be calculated
in the same way. '

' §4. RGM norm kernel

4.1. Eigeh-value problem
41.a. Orthonormal basis functions of the system - :
In géneral, to solve the eigen-value problem of the norm kernel (or

overlap kernel) of the system is equivalent to construct the orthonormal ba51s
functions of the system.

In our case of the systems composed of composite partlcles the wave
functions have the form, ‘

Zj: A i (€5) és}s
Ay = Ay, ny=m A (NGN G, (4-1-1)
\/”j . ,

where ¢; denote the channel wave functions which are product of internal
cluster wave functions (and the spherical harmonics of the angle variables

of relative coordinates) and & mean the set of relative coordinates in j-channel.

Now 'we choose a suitable complete orthonormal set of function for each

channel which is denoted by X7 (m;=1,2,--+). The set of functions {Q;ZZJ-"‘

X A{x;"¢;}} covers our functional space of the system, The orthénormal basis -

!
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wave functions @, are obtained by constructing the Gram matmx by these
functions 4’ {xj”JgZS,} and by solvmg the elgen—value problem of this Gram
matrlx, as follows

Z<L}¥ {iniqs}ldf {X1n1¢1}>c]'ﬂj laacgﬂi_a

Jng

\/ﬂaJZWECMj‘-"q/{%janSj}- | | @12

From thls Eq (4-1-2) we obtain.
Z LA A0 (Ei—as) g} | A {X’}’ (&; )¢,} >C%n, = la Z Cwin (as), (4.1.‘3)

jng
‘because if we expand. the left-hand side quantity of Eq. (4-1- 3)‘ which is a
furiction of a; by the complete. orthonormal set of functions %" (at) (nl—l
2,:+-.) as

- 2 KA {5(5 z)(]sz}lj {anj<$)¢j}'>cjn, Zzbmxa, (ai) (4-1-4)

jng

 we easily get pm——,uacm due to the orthonormal property of {1:"%;. n,—l 2 -}
and from Eq (4 1-2). If we define

X (6) ZC?n,-xi €, | - (@15
‘we can rewrlte Eq. (4:1-3) as, follows

31 [t 06—a) i L 0@ =) b B) = s @. @16

This ‘is just the equation of the eigen-value problem of the RGM norm kernel,
and we see that the eigen-values /., obtained from Eq. (4-1-2) are just the

eigen-values of the RGM norm kernel and funetions %;* defined by Eq. (4-1-5)

~ with the use of C%, obtained from Eq. (4-1-2) are eigen- -functions of the RGM
norm kernel. We need to show that there are no other eigen-functions of the
"RGM norm kernel besldes X% =2 1, Con X" obtained from Eq. (4-1- 2). Thisis
done by 1nvert1ng our dlscussmn from Eq. (4:1-2) to Ea. (4 1-6). Let us
consider any eigen-function X;* belonging to the eigen- -value #, of the RGM
norm kernel which satisfies Eq. (4-1-6). We expand this ¥;* by the complete
orthonormal set of functions %™ as in Eq. (4-1-5), by the expansion coeffi-
cients C%,. By inserting this expanded form of X“ into Eq (4-1-6), we
easily know that u, and C%, just satisfy, Eq. (4-1-2). ‘ o

We can, of course, choose as a set of functions which covers our functional *

space of the system { A {0 (&;—a;) ¢} } instead of { A {x¢;}}. In this case
the equation of the eigen-value ‘problem of the Gram matrix of these functions
A {0(&;—a;) ¢;; -is nothing but Eq. (4- 1-6), and so we immediately know
that the orthonormal basis wave functons @ of our functional space are given

by
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1
g,— 1 4.1.7)
N Ve (-1-7)

by the eige_n—fﬁnctions % of the RGM norm kernel.

. The eigen-value '#,=0 needs a special attention. Since =X A’
X {0 ED B Ho=0 means > ;A" {x;%(€;) ¢;} =0. This is the linear depend-

' ‘ence among the functions 4’ {x]“qﬁ,} which is caused by the Pauli principle.
Needless to say, the basis funetions of the system, @, are deﬁned for Ha7=0
byEq (4-1-2) or Eq.. (4-1-7).

When the wave functions of the constltuent clusters are described by the
harmonic oscillator (H.O.) shell model wave functions with common osc;llator
parameters Y=Y, ==y, the eigen-value problem of the RGM norm kernel
can be solved analytically, The eigen-functions %;* are the linear combinations

of the finite number of H.O. functions. We prove this below following the |

- argument from Eq. (4-1-2) to Eq. (4-1-6). We adopt as %," (&) the H.O.
- functions. Then {Xj"f (7)) ¢;} are the eigen functions of the operator of the
total H.O. quanta, N?=3 a' -a;—a'(xe) -a(xs), where a;'(a;) “are the
creation’ (destruction) operator of the H.O. quanta of z—th nucleon and a' (x4)
(a (xg)) that of ceriter-of-mass coordinate. 'The Gram matrix by these func-
tions clearly decomposes into submatrlces which are constructed- by the func-
‘tions A" %", } havmg the same number of the total H.O. quanta. Thus the
eigen-value equation of Eq. (4-1-2) is reduced to the infinite sets of the eigen-
value problems of the submatrlces which are of finite dlmensmn The diago-

nalization of  the matrix of finite dlmensmn is treated easily by numerlcal'

evaluation but as we see below in many cases this diagonalization can be done
analytically (or algebralcally) In this subsection we therefore investigate the

- eigen-value problem of the RGM norm kernel in the case of the eqﬂal oscil- -

lator widths. The problem in the case of the unequal oscillator widths is
discussed in §4.3. ‘ ’

4.1.b. System of two SU3 scalar clusters

The eigen-value problem of the two-cluster system is especially" s1mple
when the internal wave  functions ¢(C’) are both described by the SU, shell
‘model wave functions belonging to the scalar (namely (6,7) =(0,0)) repre-

. _ sentations. So the systems composed of the’clusters such as nucleon, deuteron,

triton or *He, o (*He), “O and 4OCa are the subgects under . consideration.
The eigen-value equation is’

<¢O(Cl)¢o(Cz)IJ{X“(T)¢0(C1)¢O(C2)}> L), (4-1-8)

and the elgen functions %%(r) are the H.O. functions Vm,n (r, T) =Ry, (r, T)
XYim (r) 7= (MN/(N —f—N))u as'is shown in § 4.1. a. The eigen-values x4,

are therefore

 tain =V (e, ) d <cl>¢o <cz>iu4{vm (r, mso <cl>¢o <cz>}> (4-1-9)
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(When C, and C, are 'identical, it is usual to define the half of the value of
Eq. (4:1-9) as the eigen-value.) First we show that /iy, depends only on

N(=2n+1) and not on 7 and m. This fact is due to the SU, scalar property

 of the antlsymmetnzatlon operator A that ] commutes with all the SU,
generators which are totally symmetric with respect to the permutations of

nucleons. Equatlon (4-1- 9) shows that Yy, is just the diagonal matrix ele-

ment of A by Viym® (C1) $o (C,) which has the SU; symmetry (4, #) = (N, 0)

since both ‘¢, (Cy) and ¢, (C,) are SU; scalar. Due to the Wigner-Eckert the-

orem the matrix element of the SU; scalar operator depends only on the label
of the irreducible representation (4, %) of the wave function and so in our case
Uwim depends. only on N We therefore. denote /y, simply by uxy. The
above argument also means that sy can be expressed as /y=<{V,o: ()¢ (C1)
X G C) | ALV .08 (1) B0 (C) $o(C3) } > where Viy,p: (1) is an arbitrary H.O. func-
tion of r belonging to (IV,0) representation. We thus obtain

/"N - <XN (7‘, T) ¢0 |J {XN (r9 T)¢0} >7
Xy(r,n= X«)o 0 (T 7, do=0(C1) b (Co), ' (4-1-10)

where Xy=Xw,,n, vy denotes the H.O. functlon with ]\71, N and Ns osc111ator
quanta in z,y and z directions, respectlvely as was defined in §3. Now we

use the generating function technlque explalned in § 3.3.b. which gives the -

calculatlonal procedure of the RGM kernel in the H. 0. representatlon From
. (3-3- 16) and (3-3-19), we obtain™®

N (R) =<4, (r, R) §o| A {4, (r, R) >

=l e osalr(e B )

= 2 Uzvi(R)Uzva(RzKszl(r 1) ol ALKy, @, ) S0} >

NN

= Z {U<oozv> (R} Xy (r, T)¢o|uZZ{sz(r T) b} >

o RN
Z0 NI

(0 R, L (4-1-11)

Where we used U, w, ¥y (R ) =0y,.00m,0Uw.0xp (R.) =0, ob‘Nz R/ Vv N,! and the
fact that Xy, (r, T)(ﬁo‘UZZ{XNz(T 7) Go} > =0, N3<XN1¢OIUZZ{XN1¢O}> due: to the
conservation of the number of the oscillator quanta in each direction. Thus
the function N (R) which is essentially the GCM norm kernel is the generating
function of the eigen values sy of the RGM norm kernel. '
We here show some examples.”” Let x be any Os-shell cluster like as
p, n, d, t, *He and a(*He) and N, be the mass number of the cluster x.
Then the generating function N (R) and the eigen-values iy for a+x system

:uN,’
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are V

N@®) = egp (R <1 - egp{ :Nl\:' . Rz})

ﬂN—‘~2( ' ) (=) (1—4+N%) , 4(4-1-12>‘

140y, k=0 4N,

where the factor 1/(1+0y,,) is inserted for sy because when N,=4 we have

the identical. two-cluster system of &+« and usual definition of yy is just the
half of <XN¢0!J{XN¢O}> Equation (4-1-12) for gy for &+« can be rewritten

in a usual form, %

=even. Similarly for ®O+x system,

N(R) =e*{1— (1 + q,Rz) e s

ﬂNENZ:< ) (8 2 (Baroav—r (N]\_’_\Ir)!l» 28",

where 0(x) is deﬁned by 6(x) 1 for x>0 and 0(x) =0 for x<0. For
N 40Ca_l_x’ ’

H

N (R) =™ - {1+ a.r+ @Ry e'—qzaz] %

= § () o PUIC T

‘ N .
- XO(N = p—2k+27) A 1— g, k) N-r=tesin
i( ‘P -2k -+ 27) (N—p—2k+‘2r)!( q.k) ¢

40+ N,

=0T Ny | 4:1-14
=="40N, | ' . - )

For O -+*Q, ‘
s B .. R\? Rz_'Rz44
N(R) = {(2 sinh iZ;)' <_ sinh E‘> } ,

ﬂNsé‘<XN¢0,J{XN¢’0}> ;

B Ot E ot
= for N=24, '
0  for N<22. " | (4-1.15)

Values of uy for a+a, a+"0, @+*Ca and *O+0 systéms are given in

namely yy=0 for N—odd and ,aN—l 2% 1 36y, for N
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Table I (CK+CK 160—{—160) and in Table v (ac+160 CK—%—‘“’Ca)

Table I E:gen-values Uy of the norm kernel for (a) a-l—oz ‘and (b) lleO—i—“‘“O
' systems. Superfices denote minus power of 10 for example, 3.1683

| o =3.168x10°
(@) ata : |
N 4 6 | 8 o100 | 12 e
sy 0,7500. - 0.9375 0.9844 +0.9961 0.9990 - '
(b) 16() 1160 _ ’ ; !

N | 24 2 28 s0 | 32 | 34
Cuw | 8.168° | 1502 | . 4.089* | 8.141° . 0.1371 0.2045
N | 3 38 S0 42 4 46
Uy 10.2792 . 0.3571 0.4345 0.5085 | +0.5774 " 0.6399
N 4 | s | 2 | 54 56 58
tx 0.6955 0.7443 0.7865 |  0.8227 0.8533 . | = 0.8792 '
N | e | 7. | 8 90 100 | 10
i 1 0.9008 | 0.9644 0.9878 0.9960 |  0.9987 0.9996

41.c. Two-cluster system including. SUS non-scalar cluster

In order to understand the structure of the norm kernel of the system

: Whlch includes clusters described by the shell model Wave functions belonging »

to the .SU, non-scalar representations ((f z’)#(O 0), it is instructive to investi-

gate the norm kernel of the enlarged system ‘where all the excited states

with the same (0,7) are included.

~Let C, be an SU; non- -scalar. cluster 'belonging to (0, 2‘)7&(0 0) and G,
be an SU, scalar cluster. The channel coupling wave function of this illustra-
tive two-cluster system where ‘all the excited states of C; within (0, z‘)\ are

mcluded is (cf. Eq. (3-1-8)) ; \
5 A <r>[YZ,<r>¢p,L,<cl>JJ¢o<cz>} o (‘4-1-‘16>>

y

- where j stands for the set of channel quantum numbers (Zj, 05, Ly) and ¢pL is

the abbreviated notation for (/5(‘,,,),,1,. The eigen-value equation of the norm

kernel is

| XA ) > = s @, \

[Y“(r>¢p,Li(Cl)] $(Cs). @11
To solve thls we follow the procedure from Eq. (4 1-2) to Eq (4 1. 6)

- We choose as the set of functlons Whlch cover our system space, the following

one,

UZZ‘{ [ VfN,g) (r, T) beo0r (C1) ] (z,u>m.}¢o (C») }', . (4-1-18)

220z ysnbny oz uo 3senb Aq €/6+%181/06°'29'SdLd/EY | L 0 1L/10p/3[o1He/sdid/wod dno-olwspede//:sdiy woy DSPEOIUMOG



Kernels of GCM, RGM and OCM and Their Calculational Methods 147

where

[V(N o7 ¢w 0 (C) 1awss .
*XK (N, 0)L;, (o, T)Oijll (/1 ﬂ)lfJ>[Vm, 7 %z, (Cl)]J:

[V, (r, r)szsp,Lj(cl)]J—ij(r PR . (4-1-19)

Here ((N,0)/, (6,7)oL] (/1 W) EJ> is the reduced Clebsch Gordan (or Wigner)
coefficient (abbrev1ated as C-G coefficient) of SU, group for the coupling

(N,0) X (0,9, 1). Due to the SU, scalar property of 4, these antisym- |

- metrized functions of Eq.  (4-1-18) have the SU, quantum numbers (4, ),

'k, J. Thus the Gram matrix constructed by these functlons is already diago- -

nal.  The answer of Eq. (4-1-17) is thereforem
( S (r ) (N, 0) lz, (0,7) PzL I, ) KT R, (7‘ 7’)
=<{ga, ﬂ),cJ}uZZ{g(z ll)IcJ}> |
I wwr=LVao 1) beo (C1)]u mm¢o (Cz) /
a= {N(Aﬂ)/cJ} : . : (4-1-20)

From the SU, scalar property of A, we know that )7 depends only on N
and (}. #) and it is independent of & and J.® We therefore denote Uo by
M3, s ~
The practical calculatlonal procedure of the eigen-values ,a(,l » 1S to evalu-

ate the matrix elements (Ry; A JIJZ{Rm/zj }> by the methods givenin § 3.3.b .-

and then to diagonalize the matrix. This procedure glves us not only /“(1 2 but
also. the C-G coefficients; namely the solution of

33 Rys, (r, 1) b/ | AL Ry, DR =1 Ct, (4 1‘- 21)
’v gives us | | |
Ua /l(z P
Ci*={(N,0)L, (cf f)sz I, u)ch> \ @1 22)

There is a method of calculatlng the eigen-values Ua B Whlch av01ds the
_numerical dlagonahzatlon procedure of Eq.” (4-1-21). In order to Ainterpret
this method,"”” we consider a simple case of (0,7) = (0' 0). Then, (A, #) re-
sultmg from (N,0) X.(0,0) are (N+g-= 2k, k) with k=0, 1, mm(N 0).
Here we are reminded of Elliott’s rule for obtaining the representatlon of R,
(rotation group) contained in a Tepresentation of SUs For a given (4, ), the
possible J values (angular momenta) are ' /

J=K,K+1,,K+1  for K40, |
=2,2=2,++,10r 0  for K=0 (4-1-23)
with the integer K taking the values ‘ ‘
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 K=mp—2,,1 01 0. | . (4-1-24)

- From this rule, we find that J=N-+0 is contained only(ir\l (A, 1) = (N+0,0)
© with multiplicity one. So with the use of the notation

a(J, ) =R, (r, 1) b | AR, (r, D12 - (4-1-25)
‘we get ; | - '
#(N+00)—4(J—‘N+6 ), ; v (4'1'26)
) Where of course, p0331ble i is unique, namely = ([;=N, L; —0‘) Similarly
J=N+o—1 is contained only in (/l ,a) (N+06—2,1) with multiplicity one.
Thus .we get . A
V7 21)£a(J+N+a—1 D, (4-1-27)
- where the unique channel number 7 is also 7= (I,=N, L;=0). For J=N
+0—2, there are three (4, #) which contain this J value. They are (4, 4)
= (N+0,0), N+0—2,1) and (N+0—4, 2) each of which contains J=N

+0— 2 with multiplicity one. Three channel numbers which yield this J=N
—l—(f 2 are i=(;=N, L;y=0), (l;=N, L;=0—2) and (li=N—-2,L;=0).

The essence of our method lies in the ‘use of the invariance of the trace in the

diagonalization procedure of Eq. (4-1-21). From this invariance of the trace

we get
D aU=Nt0-2,D) =Moo+ M-y T ilesn - . (41-28)
S1nce we already know values of ,Lt(N+,, o and ,u(NM_z y by Egs. (4-1- 26) and
(4 1 27), we can calculate U vo—s2 from the known quantities as
,U(N+a~4 2) =Z a(J—N—}—(T—Z 1) — ﬂ(N+a 0) ﬂ(N+6;2 I (4 1'29>
-In this way similarly, we can calculate all the e1gen—values L - ‘Since the

matrix elements a(J,7) are obtained analytically by the method in § 3.3.b,
" this calculational method of ﬂu n gives us the analyt1cal expressions for

: ﬂ(l ION

Equation (4-1-20) shows that the structure of the norm kernel is gov- -

erned by the relatively small number of quantities /g, » which are independ-

ent of £ and J. (The eigen-functions are determined automatically with the

. use of the known quantities, the SU, C-G coefficients.)

We express below by using 4%, the quant1t1es in the norm kernel
problem of the narrower system Where the excitation of the cluster €, is
restricted. Let us consider the case. where only one state of C; with the wave
function gb,,L (C,) is involved. The wave function of this system is -

Zl AL () [V @) $or (C) 1560 (C2) T 5 . (4-1-30)

and the eigen-value equation of the norm kernel is
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Z<hﬂ!u‘2{7€“ () by )= i (),

'=[Y, (?> Boz (C1) 1560 (C, ) ' ' : (4 1-31)

The answer to this equation is obtained by solving the follovvlng equatlon

Zum@rmmﬂmmvrm+XL—ma,' (4-1-32)
which gives us #, and %, |
' 1,%=C,“Ry (r, 7). O (41-33)
The matrix elements in Eq. (4:1-32) are expressed by |
Ruhd | ARy b}y = 53CQ, 0, (0, D0L| (O, DTy
’mmmrw@@wmwmm," (4-1-34)

which is due to the relation
mwmm=Wme¢®Lm@ .
= Z SN, 002, (0, ) oL || (&, ) BTG, iyes - (4-1-35)

It is easy to show that the answer to Eq. (4-1-32) is also obtained by solving
the followmg equation,

Z W[(l’ U)K l(l u)m]da 5= ey, wyw »

W[ @A, e (A, ﬂ)ﬁ]z\/ﬂa u)ﬂ(& e '
><2<(N 01, (o, DOL| A, 1)K T (N, 0)1 (0 D oL| A, 1) kT,

, (4-1-36)
which gives us A, and Cl“; : '

CH= «/,a Zd« u>m<(N O)Z (0, ) 0L| (4, ﬂ)lfJ>

for /a0, L (4-1-37)

while  C,* for U.=0 are obtained as the vectors Whlch are orthogonal to C*

with #,=40.

As an example, let us consider *C+aq system,”® where 12C is descrlbed
by the SU; shell model wave functlon (05) (Op) [4] which has (0, 7) = (0, 4).
U with (4, #) = (N, O) X (0,4)=>"_, (N k 4—Fk) are obtamed by

ﬂ(N,4):a(J=N+4, 2)9 :
ﬂ?zrv;l,a) :; a (JZN‘[‘Z’ 7) _‘zﬂz(gVA) >

/ll(g\rv—z,Z) = ; a(J=N, ) — 3ﬂzv,4) - 2#?17\7—1,3) >
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| ﬂ?lv—a,;) ZZ a(J=N—2,7) —3uiys 2#(1\7 19 2/1(1\7 2,95

»ﬂ-z(vzsi—_‘i, 0= 2; a (J= N—4,1)— 3ﬂ1(VN,4) - 2#(1\7—1,3)“" 2#€7N—2; 2) _‘ﬂivzv-s, 1) .
R | (4-1-38)

The matrix elements a(J i) are obtained by usmg the generating function .

techmque of §3.3.b. The generating funct1on for the general overlap matrix
elements <Rmi JluZZ{Rm] 7> is : *

F(RER’QQ) - |
=l Rn(e Mm )l )
ozza\;lu V@t 1)((42”1)2:il 1 (2L +Aél1]l)j(2L;+1)[ ”(R)Y“w)]m

XY, (R)Y, (9'>]m<Rm <r Nk JIJZ{RM, 1) hﬂ}> :
(4-1-39)

where R and R' have ‘the common length- R. The calculated results for

~ the generatmg functlon F and the matrix elements <Rmi iJluZZ{ij J}}
19, 61 . \ ‘

are-~
F(R; RR,9,9)
=exp{~——1—R-Rf} [u-u’ {exp(lR-R')'—'l—iR-R’}
LT 3 | 3 3
' / 1 . V ' i 4 B
FLww @,

Ry, 1) b | AR, (ry DR FYY

_Y@i+D @L+1) CL: +1> @Ly+1) N3 525 e<z‘v+\k-~4~_s§>.

AAA‘*

. > < > (k — 1) N+k 4- sl:(4zk)/2j [@—k)/2] [k/2] [NV +%—~ 4)/2]
(OO S s s B a A

X [A4 k—2q4 i 2q’Ak szzz\lilg i-2pr]’
><W(N+k 4 29" k—2p, 1, L, J, 4 k —2q)"
><W(N+k —4—-2p", k 2p,1;, L;,J,4—k— 2q’)
, ><C(4 k— 2q,N—|—k 4-—2p’, Zi)C(4 k—2q’, N+k 4— 2p7, lj)
‘ ‘><C(4 k 2q,k 2p, L)C(4 kE—2q", k— 215 L), (4-1-40)

where u and u’ are unit vectors Whose polar angles are 2 and 2’ respecmvely,

“[z] denotes the integer I which satisfies I+1>x=1, W is the R, Racah
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N

coefficient, and C(s, ¢,v) is the R, Clebsch-Gordan coefﬁcieﬁt (5,0, 00v,0).
The calculated values Qfﬂul(‘;,,‘) for the above “C+a system are given

in Ref. 15). For reference we give here the generating function of 4 , for |

the *Ne +« system where for *Ne the SU; shell model wave function” (sd)*[4]
A pn)=(8,0) is adopted '

F(R,R, R’ 2, !2’) )
fexp{Rz} <¢g(zoNe 6\/7‘)%( 65\%)1 .
,X“’q{g'(mNe aur )l g«?f)p
3

T ; {
—exp —-—R-R’)[ o’ 2{ (—R-R’>—~1———~R-R’}
exP ( e R L T A T

13 o, , 14 ‘
SlpERo®@ol], @i
where also R=|R|=|R’| and w and @’ are unit vectors in the directions 2
and £, respectively. The oVerlap matrix elements {Ry;1; | A{Ry 1’} are
 extracted from this F(R, R ﬁ' £2,8") by the same expansmn formula as Eq
(4-1-39) except the replacement of AZ,A%, by Al

- When we-treat more complex systems where both clusters C, and C, are
SU; non-scalar, we generally have an SU, representation (4, /) more than once.
For the (Z,#) with the multiplicity more than one, we need to diagonalize
the antisymmetrizer- A by the states with the same. quantum numbers N,

2
(A, 1), £, J. Thus the SU; classification is necessary but not sufficient for the
. complete determination of the eigen-functions of the. norm kernel forthe gen-

- eral complex two-cluster systems.

41.d. Multi-cluster system

For the sake of the explanation, we consider the system of three SUS

scalar clusters. The elgen-value equatlon of the norm ‘kernel  is

| <¢5!J{XW(51> 52) ¢u}/>:./«laxa (Ei, fz) ¢QEH ¢6 (C) ‘ T (4'1'42) o

The elgen functlons x* are c1a531ﬁed by the number of the H.O. quanta N and
the SU; labels (4, z), /f J, and so we denote %% by %xa D7D where p is the
quantum number to distinguish the states with the same N, (4, 4), &, J.
The eigen- functlons are obtained by the following dmgonahzatlon

Z <V§é1f?:‘r¢0]<_;q {Vz(é,f‘z)v"ﬂo}}Af%;f).: /«f(/z 2, pANSV % R

VGO (51, 52) = [V, (51, Tl) V(Nzx“) (&, Tz) ] (2, 5T
g =>] <(N1, 0) ll, (N3, 0 2] (4, 22) ICJ>Vm 7 (El, £,

il
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2J (fl, 52) =[Vy, (51, Tl) Vs, (&2, 72) 10 ) <4 -1-43)
which gives ' o
AN(J,p)xJ,p(El, 52) = Z AN(A PYVRED (£, £, o (4-1-49)

Here we shold no’ce that the matrix elements’ <V%(§v§)’°"¢0|uzl{ VEEOF o} > do not
depend- on £ and J due to the SU; scalar property of 4 and this fact means
that the coefficients ATG® which are eigen-vectors of this overlap matrix also
do not depend on 'k and J The eigen-values 43, ., are of course 1ndependent
of £ and J just like as in §§4.1.b and 4.1l.c. We show in Table II the
SUj-classification of the functional space spanned by Vi m, (&1, 1) Vivgym, (s 7o)
with fixed N=N;+V,, by using the rule (V;, 0) X (Nz, O) S (N, + N, — 2k,
k) with Npi,=min (M, Ng)

Table L S U, class1ﬁcat1on of the three-body relative H. O. Wa\}e functwns
' with the total number of H. O. quanta N. S. denote the qudsi- spm
operators defined by Eq. (5.2.14)."

N N L (4 )= N2k, )
N 0. (N, 0)
N-1 1 (N, 0) (N-2,1) ' TS+
- N-2 2 W0 - (N-2,D) (N-4,2) f
1 N-1 0 (N2 ' l g
0 N (N, 0) ' ‘ ‘ :

In order to solve Eq (4-1-43) we need to calculate the matrix elements

VI (84, £2) Gol ALV (£1, E2) Bo} >, which is done by the generating function
technique of §3.3. b as follows: ,

N (81, S25Ss, S4)~E<An (&1, S0 A‘fz (&2, S2) &l A {4,,(£1, Ss) ATz (&2 S4> ¢’o}>
sl e
cafr(en S ) Sl

% (].;I «/lif ',\/21 ANi) [Yz, (Sl) Yzz <S2)]JM[Y;8 (Ss) Yl‘ (S4)]JM'

X <Vz I,/ (&, E2) ¢0|<_,ZZ{V§V%{T, (&1, &2) Do} > - (4-1.45)

“Kato and Bando®™ have proposed an intereSting and powerful method to -
“solve the eigen-value problem of the multi-cluster system. Their method is
especially suited for the systems composed of a-nuclei (self-conjugate 4z nuclei
" or clusters with [44---] orbital symmetry). For such systems the generating
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function of Eq. (4-1-45) has generally the form,®

N (81, 82585, 8) = {7 (S, Sa; S, )} ‘ (4-1-46)

Here for the sake of interpretation, we consider the case when clusters are
all SU; scalar (like as «, O or *Ca). To investigate the properties of 7,
we erte N as follovvs : SRR ’

NS, 52 5, S0 =exp {Larsddrec, R AP 0C, ROP

) 1.4 o ) ‘ .
—eXP{EZSf <¢>a,1 Wogt Qog | det{gh, Qe Pl 3D

4 .
=exp {%— ; Szg} [<¢c’ 1 %‘21‘”%131"“ |det {Cﬂolq"'@oz'r : ‘(ﬂosf1"'}>]4
1 4 3 N R , '
{52&2}[ LL#Co RY I $Co RN, (4-1-47)
where - |
1 ‘ 8 ‘
§(Coy R) = det{ghy}, 33 NWR=0,

R~ Ri=5/V1, Ri— (N:Rut NuRy) /(N + N =8/v7s,

(?;(Ci, )

Ve he @

and A is an antlsymmetrlzer of A/4 particles which have no spm—1sosp1n
coordinates. Just like as the relation of Eq. (2-1-4) we can express ¢ (C;, R;)

<;,(Ci, R;) = (l;:f:)> 3/4€¥P {— %1’ (y:i—R)) 2} 50 C,

L y= (N/4) 2O : | (4-1-49)

where ¢, (Ci) are functlons of only the relative coordinates x;—x, and are SU,
scalar since ¢, (C;) are assumed to be SU;,, scalar #(S,, -+:) of Eq. (4-1-46)

is now ertten as

322} L1 BoCo RO LA Bu(Co ROY

58 {r o 30 ) 32,260

<l 3 o 5 28

B (Sl, Sz, Ss, 84) =exp
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2

<A ) 24 )

M=Y2— Y1, MN=Ys— (N1y1+N2y2)/(N1+N2)

‘:<Anx4 (77;,' —SZL > AM(% ' §£>$q] |

(,;EI:qu(ci). PR N

We expand 7 in power series of S; by using Eq (3 2:19) or Eq. (3-2- 25)'

as follows
: - ) 4 R ‘
7 (S;[, Sz; Ss, 84) :§ r(Ml,jMZ; M3, M4) ]:I; UMi (S'L) ’

1

(M M M, My = (L) <XM1(,,1, I )xm(m L2)g)

b0
| X J {XMa (7710 T1> XM4 ﬂz, T2 }
— " 4
4 '3 . » v . ' . B |
Mo=2,2 M. o © (4-1-51)
i=1z=1 o . | .
’ Heryer we shbuld note that I(M, ---) has a property

O M M, M) =0, i M+ MMM, (4152)

\ Whlch means that the matrix T(M, ]‘Iz, M;, M,) with row indices (Ml, Mz) and

column indices (M, M4) has a decomposed form into submatrices with ﬁmte
dimension. By dlagonahzmg these submatrices of 7 as follows,

Y (M, My; My, M) e, (My, M) =G, (My, M), (4-1-53)

My+M.=M
) n
we ‘obtain

7 (81, Sg, Ss, S4) — Z O-/Ipl (Sls Sz)?z (839 S4) s

28, S)=, 2 _e1<Mz,M>UM,<si>UM,<s> @150

M+ Mj—M

By 1nsert1ng thls expressmn into Eq. (4-1- 46) we get

R (S0, S1: S 8 — haf (T 0 (T 24 <sl, $)) (H B2s (s, $)). (4155

On ‘the other hand by 1nsert1ng the power series expansion of A,, or I" given

by Eq (3 -2-19) or Eq (3 -2- 25) ‘into Eq (4-1- 45) we have :
N(Sb S2> 83, Sd;) 2 <XN1 (El: TI)XNR (fz, Tz) ¢0|L/'4
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X {szs (Eu T:)Xm (Ez, 72) B} > ll Uy, (S ) - (4-1-56)
*Comparing Eq. (4 1-56) W1th Eq (4-1-57) we obtaln
<XN1 (&1, Tl) XNZ (&2 72) 0o qu {Xn, (El, 7)) XN, (fZ, Tz) ¢o}>

(ll NDH™” 2 2

A~Ay My~ ot Mz"\*Mz“ Mgi~Mg* M41~M4
4

X I1 oue (M3’ M) e, (M, M) (,I_J; M)

=summation over M~ M, under the condition i M}=N,,
- M~M 2 o =1 ‘
- | (4-1-57)
which is the formula of the Kato—Bando~' method to ealculate the matrix ele-
ments of<the norm'kernelin the Cartesian H.O. function representation.
\ The d1agonallzatlon process of Eq. (4-1-53) is equlvalent to solvmg ‘the
following equatlon

, <¢ IOZZ{ZI(771, ﬂ2)$0}>:0121 (7]1, 7]2), . \‘ ‘ | (4'1'58)
the eigen- functlons 7 of which are given by , o ? ,

% (771, 7s) ZM‘ 2 € (Ml, MZ)XMI (771, 7’1/4) XMz (72, 72/4) (4-1-59)

1+Me=

Since A and ¢0 are ‘both SU, scalar it is ev1dent that 5’1 are class1ﬁed by the
SU, scheme, the labels of which are the Cartesran ones M, (Z e, &, 4, v,

‘ - M=M,+ M, —l—Mz, 8—2M —M,— M, J)_Z(M M,), (4-1-60) -
where we used the notatlon M= (M,, M,, M,). l ‘

Our explanation of the Kato-Bando method given above is in the Cartes1an

, coordlnates It goes without saying’ that everythmg can be restated in the‘

spherical (or angular momentum) coordlnates ’
The powerful points of the Kato-Bando method are as follows. The

small- -generating- functlon A (S;, --+) is simpler than N(Sl, -) ‘and the dimen- -

sions of the matrices to be diagonalized are smaller than the case of treat-
) mg N(Sl, ). Moreover what is important is that for low H.O. quanta

- M= Z M,, most eigen-values 0, of Eq. (4-1-53) are zero usually Whlch is

due to the Pauh principle expressed by the operator . Therefore when we

need the solutlons of the eigen-value problem of Eq (4 1-42) with lovv H.O.

quanta, this method is especially convenient. o
The Kato-Bando method acquires the mathemat1cal transparency When

it is formulated in framework of complex-GCM.'® The eigen-value equation
of the RGM norm kernel which is expressed in Eq (4-1-42) is equivalent tox

the followmg elgen -value equation of the CGCM norm kernel
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(8 (S0 R (8,85 8%, 807 (51,8 =af* (5,89, (4-1-6D

where C-GCM norm kernel N has entirely the same form as the genérating
function N of Eq. (4-1- 45) except that now the generator coordinates are
all complex number vectors; ‘

N‘<Sly Sz;Ss*, Sﬁ) =<A;i<§1, SI)A fz, Sz)¢0luq{A (El: Ss)A (fz» 54)¢0}>
\ o (4-1-62)

The relation between-y* and f* is
x* (&1 Ez) = fdﬂ (S) du(S.) AF, (El: S) Af, - (&2 So) Sf* (Su S:). (4' 1- 63)

- The eigen- value equation of the small-norm- kernel of C -GCM 7 (S,, Sz, 3?“, S
defined by Eq. (4-1-46) is

\[‘dﬂ (SS> dﬂ (84) n (Sls SZ’ 83*: Sé*)j)l (SB; S4) Uipx (sb Sz) (4' 1 * 64:)
which is equwalent to Eq. (4 1. 58) It is easy to see that ¢; and p; are

given by Egs. (4-1-53) and (4-1-54). By using the form of N given in
Eq. (4-1-55), we obtain the solution of Eq. (4-1-61) as follows: '

a fhs

fe (51, Sz) = /7 Z Cs.. ’1"\/]:[ 01 H 21,(Sy, Sz) (4-1-65)

where Cf .., and x4, are ~obta1ned by solving the secular equation,

51 TL0TT 220080 9111 2,51, 89>y 110, €51 = 1G5, 41:66)

V1~V

where <H phlﬂpy; denotes the inner product with the use of the measure

au (S, d,u (S.). For p,=0, the corresponding f“ are obtained as the functions

-which are orthogonal to f* with u,==0. ,
As an example, we consider an application to many—alpha system. N and

7 are given by

RS, o Siss S%, 51 =TT A% (B, S8l ALT] A @6 SI903

: . ' 4 n " 4
28/, St 8%, 510 = ([T 4 (w2 et {4 (s 1))
o i=1 g=1

|exp{RY - R*/4}exp{Ry - Ri*/4)
exp {RA’.; R*/4}---exp {RA -R,*/4}

Al
~Ste(Pyexp |t 3 R/PR;*}
P 4 =1

/
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=§ 8<P)e;<p{— gsi’PSi*},ﬁ‘ o (4-1.67)

where 7=4y, ¢0——Z ¢, (C;) and P are permutation operators of levRA The

definition of the Jacob1 coordinates &; is slightly changed from that of Eq.
(2-1-6) with respect to their lengths and it is-

i o1y .
gin ﬁ(X—T RX), 1<i<4-1, |
. A ) ‘, ) ‘
£ E Z S / (4-1-68)

‘The relation ‘between (S, i=1 1~A) and (R;, i'—lNA) is entirely the
same as that between (&i,i=1~A) and (X;,i=1~A) and the restriction
Z‘ R,= VA, SA =0 is 1mposed " By us1ng the delta functlon property of

eXp (z- z*) given by Eq. (3-2-27), we can erte the elgen—va]ue equation of

72 as

!

41 - ‘ B : :
; e(P)pa (£ PS;, -+, %f,PSA—I) =0102(S1, +++, Sa-1). (4-1-69)

As is seen in Eq. (4-1-54) p, is a homogeneous polynomial of S, 4---, Sac1,
and so we obtain

1 A ‘ ,4110-1 . ’ )
(E,‘;a(P)P>P1(Sh"',SA—1)= a 22(Sy, -, 8a-1),  (4-1-70)

Where I, is the degree of the homogeneous polynomial p;. From Eq. (4-1-70),

= Al/4"% and b3 is an arbitrary totally antisymmetric function (with respect
to the permutations of R;~R,) of the polynomlal degree I, Further and
detailed discussion: of the 3a and 4 systems is glven in Ref 16).

4.1.e. SU, symmetry

\ In previous subsections §§ 4.1. bfv41 d, we have seen that the (Elliott)
SU, group plays a vital role in solving the eigen-value probleém of the RGM
norm kernel. This originates from the use of the H.O. shell model wave
functions in representing the internal states ¢ (C) of the constituent clusters.
The SU; classification is valid and necessary for any kind of systems (includ-

ing the rearrangement channels which are not treated explicitly in previous

subsections), but; needless to say, this group does not give the complete classi-
fication of the eigen-functions for complicated systems. .
Since the H.O. functions are used to describe the radial (or spatial) parts
of the nucleon orbitals, the SU, group is concerned with the symmetry of the
radial or spatial part of the cluster wave function. As for the spin-isospin
degrees of freedom of nucleons, the SU, supermultiplet symmetry™® is valid

* The author is indebted to Professor A, Arima for his remark on this symmetry.
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and necessary as is shown below.

As an illustrative example, we consider the systems of 3N+ N, namely .~

| 3He—{—n and £-+p configurations which are coupled to good total spin S and
isospin T"’s) The eigen-value problem of the norm kernel of 3N+N system
with definite S and 7T is

) <YL (7"> kmluq{Rm (7, T) Y, (7’) hTS}> ,UTSRNL (7, T)
r== XN XSN, —ﬁVl o . -
rs=[6 BN TN Irs=_ ) <%mt:12~mt'lTMT>' (ymmy’|SMs)

mygmsmy’mg”

X B BN Ty D, S @1

where Wmtms (N) is the isospin-spin function of a single nucleon (neutron (m;
=1/2), proton (m,=—1/2)), and @mnm, (3N) is the internal wave function

of 3N (¢(m,=1/2), *He (m,= —1/2)) In Eq.. (4-1:71), the eigenvalue Us

does not depend on the orbital angular momentum / due to the SU; symmetry
d1scussed in §4 1.b. By expressmg UFs as

ﬂz's—— Ry (r, )Y, (#) hTSlLJquNl s 7) Yz #) h'TS> | (4-1 72)

~and by noting the SU, scalar property of <A (which means A cornmutes with

all the SU, generators) we know that the dependence of U on T and S is”

“unified to the dependence on the label [ F1 of the irreducible representatmn

of SU, group to which iz belongs This can be said to be due to the
- Wigner- Eckart theorem of the SU, group Since the spatial permutatmn sym-
metry [f] of A{Ry (r, 7)Y, (#)hrs} is conjugate to the above label [f] of
the SU, symmetry, we use [f] instead of [f]. Thus we cansay that within
the same [f], /&8s does not depend on 7T and S In this sense we can
use more: appropmate notation Uty With the use of the generating functicn
technique of § 4.1. b we get - . .

N(R) <A (r, R)hrle{A (r, R)hrs}>

[ _ oo RZN ¥ :
—Ngo—ﬁ!_ﬂﬁs "‘ .
o R,=(0,0, R). (4-1-73)
The calculated result of N(R) is
| : N(R>_eR*{1+(46“630—1>e woRh, C L (4-1-74)
from which we obtain ‘ :
‘ ; . ‘_‘.1 N-1
. ﬂTN=o,S=o=ﬂ€l]=1~ (——-) ,
SR 3
pE =l =1 (__3_> , where (T,8)%(0,0). (4-1-75)
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4.2, Calculatlon of kernels or physmal quantities related to norm
- kernel i ‘

- What we here add about the calculation of the kernels or physical  quanti-
‘ties is the use of the knowledge of the norm kernel by which we obtain
- simpler or more convenient procedure of calcylation than the general calcula-
~ tional procedures given in §§ 2 and 3. In this subsectlon we assume all the
~ oscillator parameters of clusters are ‘the same.

.4.2.a. Kznetw energy and Hamzltonmn

- We divide the klnetlc energy operator mto the mtrlnsm and relat1ve kinetic
energies' as follows: ' ‘

T:Z Ti“TGZ'T01+T02+TT, Z(JT Tal’
= ’ SN
2 2 ’ 2
ZT TG27 ,I'G,E —# < a > » T,.E —h ) ,<_0_>2’
icCy . ZAm aXG . 2(N1N2/A)m arr
‘ g2 2 , Lz S : \
To= T ( 0 )  To=—" < 0 ) . o @42-D)
2N,m\0X] . 2N,m\ 80X, o

The matrix elements of T in the H.O. representation can be calculated in the
followmg way; we assume N<ZN’. First we get

T(N,N', ) ={Vy(r, T)¢0(C1)¢O(C)ITIJ{VM(T 7’)¢o(C)¢u(Cz)}>
={Vmt (C1) ¢ (Cy) IJZ{ (T, Vi) do (Cl)¢0 CD}>
< Vit (C) ¢ (€. | ALV (T, (€)) ¢y (Cy) }> :
+< Vi (C) 8 (C) | ALV wahy (C) (T, () P, (4-2-2)
Next we insert the following vexpansiens into Eq. (4-2:2),
TV =Vl TV Vst Vi st T Vi) Vi
| Vel T Vi) Vi
T b0 (C) =< (C) [T, (C) >+ ¢ (C)
+ (higher H.O. quantum states of c),
TC’2¢0 (C) =<5 (C) | T, by (Cz)> b, (Cz) , ,
+ (higher H.O. quantum states of C). (4-2-3)

By con51cler1ng the conservation of the number of the H.O. quanta between
bras and kets, we get .

T(N,N'; 1) =0y, {<leT IVm>+<¢o <C1> IT01|¢0 (C1)>
+<¢0(Cz>IT02I¢O<C)>}ﬂN+6N+2N<VNLIT lVNz>ﬂNa (4-2+4) ‘

‘ Where IUN_< Vo (Cl) Po (Cz) IJ{VquéO <C1> By (C,) } accordlng to Eq (4- 1- -9).
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When N>N’, we get a similar expression by operating 7" in this time to the’

ket state Viy$(C1)¢o(Cy). The final result valid for arbitrary N and N is,
| V(D6 (C) 60 (C) ITIALV wa (1, D 0 (€ 60 (Ca)}>
=0yt 30 (N(C) +N(C) +N+3/2)
+ Owsame a0V (N —1+2) (N +1+3) |
e - OV N =15 8) (N T1+3),  (4-275)

Whére use is made of the following relations and definitions:

Vil Tr | Vi) =4ho (N+ %) y

Voo Tol Vi, =0V (N —1) (N +1+1),
- N(C;) =number of the total H.O. quanta of ¢, (C;). (4:2-6)

Similarly for the case of the total Hamlltonlan by d1v1d1ng it into the
internal and relatlve parts, ‘

1

,H:ZIVTi“TG‘I“%_;Vu H01+H02+T "|‘Vr;
! t= i3 7

H chl"z Z Viis VFZ Z Vi (Eq @- 1. 25)), 4- 2 7)

%, 7€0; . ieC; jEC,

we get by entlrely the same procedure,
(Vi (D60 (C2) b0 (C VHI ALV (7 1) 60 (C) 6o (€0}>
= O tin{E (Cy) +E(C) +4ho (N+9)}
- Ooomr U zha)«/(N z+2) (N +1+3)
4O yrsar thye OV (N =1 + 2) (N’ +1+3)
F Vit (P 8 (C1) 60 (C) 1WI Vi G )0 (€ 6 (C) s
E(C)={$:(C)|Halh(C>

; {V,-g)q for N=N',
A for N<N’.

- (4-2-8).

This expression is useful when we measure the energies from the two-body

threshold energy E(C,) +E(C,).
4.2.b. Miltipole operators

] Essentially the same techmque as in §42a is apphcable to the case
of the multipole operators. What is necessary for us is to divide the multipole
: operators into the internal and relative parts and their coupling part.

What we consider here is the multipole operator

Tm_zmxi Xo), u(a)=a'Yy(a). - (4-29)
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In order to treat this operator, we introduce the operator
: , . |
Tzo‘(k)E;J‘z(klxz XGI)Y/IO(xz XG) (4-2-10) .

With slight modification we can use the results for these operators to the
cases of the electric multipole transition operators in gamma decay and electron
scattering. The relation of T}, with Ty (k) is

TXO: (2].—1" 1)”1im k_le (k). ’ : (4'2'11)
k>0 .
We first express T (k) as ‘follews,‘
. '——l : . . A . - ) . \
T =1 j AEY 1(B) 3 etk @i-Xor | (4-2-12)
7/ t=1 . }

We introduce the function k(z) which tells us that i-th nucleon is included in
k(i)-th cluster Ciy. By using this function k(i) we get -
x;— Xg= (xi‘*Xk(i>) + (XWF‘XG)- i (4‘2'13)

Since X — Xg is expressed by the Jacobi coordinates §; as

‘ n—1. .
X ~Xe=j§_]1az’c<z—)§f > ‘ 4-2-14)
we get
A . A n;l L : . ) . L '
) Zl gt (®imXe 2_21 H; exp il k- E;} -exp{ik- (x;— Xiw) }
= Lo t= i= .

A n n—1 : ‘
:i; (4m) nlg AP ]-]1 I, (kS 5) "J'xn(k{xi—"ch(oD
ﬂl'\‘/«‘n . o .

X H Y}‘fﬂi (k> Y’-JM (57) Yln#n (k) Yln,un (xi Xk(z)) (4 2. 15)

For simplicity, we consider the three~cluster system Then we have

T“(k) (477:)2 Z jlriitle=t Z e(l AeJ)e (JAh)

. 1"’3

A 2
X2 ,I=Il o, (k€ ) 7, (klxi— Xigs )

X [[YA (51) Yz (‘52) ]Jst(x; ch(z)) ]m >

e Gadzdd) = (707:017:0) | <2];;§;J§if;;r1>. EENCES0)

By using Eq. (4-2-11) we obtam

A+ dgtag=24

Ti= G, 3 [@+DI/STT @At D e (R, oy it 2)
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‘ | R -
X e (A + 12, Asy ) Zl (af}ca))“(“i@'))“
P X [[yzl(fl)yzg(fz) ]11+z Vi, (X — Xk('b)) ]Ao ‘ (4'2'17)
(The form of T,m (k) by Eq (4 -16). is useful for the OCM calculatlon of

electron scattering form factor) : ;
- «We reduce the form of T of Eq. (4-2- 17) mto more convement form

by using the followlng relatlons,

Z Vi= 1(-% ch) =0,

1E0y .
Q{II:—— ~_N2 | a{12:'—"N3‘ afZl:___._.‘_'Nl ‘ azzz_z_\_ri
N1+N2’ | A > ‘ N1+N2’ Av’
aJ:O,af:M. : = ' c (4-2-18)
F‘olr 1=2 we obfain
T'oo =110 (El) +sz20 (fz) +P3 Z yzo (xi ch(i)) ) (4-2- 19)

“where p; are constants. Equatlon (4-2. 19) is, of course, “directly obtainable -
from the invariance of the unit gquadratic form agalnst the ‘essentially orthog

. onal transformatlon {x;— XG} —{&;, % — X m} For 1=3,
T = Q1yso (51) “I‘ szao (52) + ds ;1 Vso (xz — X (:i))
| +aq. [3’2 (El) Y1 (fz) ]so +qs [3’1 (51) Ve (52) ] 30

‘ + Qé g[yl (E-I)yz'(x,, “ka.)) ]so +qy :;1[3’1 (fa) yz'(xi —Xk(i)) jéo > (4 2 20)

where q; are constants. Let all C; be closed shell clusters and the matrix

element. I, of T is
L=V TAOIJ{Véin\;‘2¢O}>
W, (&5, £)= [VN 1 (E1, 70 Vg, (&, Tz) I (Eq (4 1 43))

m—Hmwa - S (de2:2D)

By as‘suming" l\ﬁ—}—{l\@éNa—l—N without loss of generality, and by using
, o

. Z Zo(xz ch(z)>¢0 <¢o|Z yzo(xq: ch(z))|¢o>¢o

—l—Z (2hw exc1ted states'of ¢0),

<m2me.mmw0(>‘ | @22
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we obtain for A=2

I,= h Z | < lg 3 .!1] {Pﬁyzo (EI) + D3V a0 (52)} lvfﬁva i
. .!\75+1\r‘1‘;_L.l\T1+2\l'2 ) . .
XLV f¢oPJZ{V§Vz§VJ]¢O}> S (4-2.23)
For A=3, agam by assuniing N—I~N<7\7 —[—N and by using |

t=1

e
Z Y30 (x, Xm)) QS’O =21 (1 or 3 ha) excited states of ¢,),

1N

Z RACHES (2, — - Xk(t)) Jao Vii®edh =Z (higher H.O. quantum states.

than V¥, by at least 1), (4-2-24)
we obtain ' | ' ’ |

Isz o g <V§Vl§11l{%ysu(f1>+QZ}'30(§2)+Q4[3’2(§1) yl(fz)]so .

5+N8—N1+N2

+Q5 [y1 <§1) yz(fz) ]so} I V?Tzﬁf‘2> ‘ ’ o
X <Vl 1,7, %o uq{l’rzjﬁf1¢0}> . ’ : ) (4-2-25)‘

/o

The case of the system Which'incllides open shell clusters is treated
similarly. As'an example, we consider a two-cluster system composed of an
 SUynon-scalar cluster C, with ((7 7) symmetry and SU, scalar cluster C &
The forms of 717 are :

- ‘ T20 =PV (r) +2, Z Yz (xz ka)
Ty = Q1{ysq- (r) +q," Z—l yso (% — Xewr)

) o o B o
+ a5’ Zl [ () v, (s — Xwr) Jso - o (4-2-26)
’T‘he matrix element Ié of Ty |

Iz~<[Vzm(r T)¢LL (C») 1590 <Cz) lelu‘l{[Vv 2, ) ¢Lj(cl):lu"2¢0 (Cz)}>
(4-2.27)

is calculated as follows by assuming NN’ without loss of generality.

(When N>N' we operate Tw to the bra state [VMlgéLl (C) ]quﬁo (Cy).) For
i=2 .

L= 2’< [Vithz, (Cs >L1 R @)+ 2 Yan (s XD} [Virs 5, (C) 1o
< [vmasm (C)10ha(C) M{[mG% (€116 (C)}>,  (4-2-28)

Where we used the fact that the operation of D g, ¥ (2;— X1) t0 Bs, 00z (C1) can
change the state within the same irreducible ;‘epresentatidn (0, 7) in the O#w-
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 jump states, namely
Z yzo (xz Xl) ¢<a o)L (01) = 2 <¢(a 'L’ (C1) 12 3’20 (xz X1) |¢(a ©)oL (C1> > ‘
X ez (C) +20 (Cho excited eonﬁgu\ratmns). ‘ (4-2- 29)
For 1=3, similarly

Z [V (C)1rHar' v () + a8’ [vs () 3 (61— X1) Tao}

I [VN z,¢L, (Cl) ]J2><[VNL1¢L1 (C1) 15,90 (Cz) | AL Vi@, (C1) 15,60 (Co) } -
(4-2-30)

4.2.c’. Reduced width amplitude of cluster‘decay or transfer
The caléulation of the reduced width amplitude (R-W.A.) of cluster decay

or transfer has been discussed for a long time by many authors. What we

discuss heré is limited to the application of the delta function technlque of §3
and that of the knowledge of the norm kernel. About the other approaches

see Refs. 64)~71). ~
The RWA of the model wave functlon v, Wlth the angular ‘momentum

L s
n@=p 2 ($) (7 (fr DY 1) (CIh(C |0

Where we assume that the model wave function TL is non-spuriotus about the
C.M. motion and its dependence on Xg is separated from the internal wave

function @; as follows:

- 4 8/4 P
—on(X) 01, o (Xoy=(PEE) et (4-2-32)

> (4-2-31)

For s1mphc1ty, the channel is con31dered above Where the spins of clusters

are Zzero.
ERRY
» de e""R< 0<C1, 5%)%(02, NlR ‘rf

_V AN, N,,p, 2A9\** B2\
= " T eXp\ — =

4y

oo -
X (e T (C 4o(C) |02,

<6(r—a> bo (C1) (/50(02) |¢L>=b1 j"dk e—v-ik-a,. eﬁzkz j-dR eik-R

e 4x az> :

We can utilize the delta function technique of § 3.4 for the evalua-
tion of Eg. (4-2-31) with Eq (4-2-32). From the prescrlptlon of Eq.
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x{ule eas(c, e,
)

0 (r— a) Po (01) ¢o (Co) |0

Dy, 3y sCh(C 0
A 7t

YLO( )

= b (am)® J dle- s (ka) de JL(/eR)YLo(R) (4-2:33)

X <¢0 (C1, NZR)% (Cz, WL
L A
where b,, b, are constants involving v, ¥; and v,.. From Eq. (3-4-3) we get

another formula“)

O lr—a)do(C)én (C) |0 éés fdk eXR{“( Nl,, B lepg) kz}

B i a

A IN v, A ZNH >’WL> (4-2-34)

where &, is also a constant involving J) Y, and V,.

When @, has a definite number of the total oscillator quanta IV(QL) with
- respect to the oscillator parameter v, y,(a) of Eq. (4-2-31) can be expressed
by the linear combination of the finite number of the H.O. functlons Ryi(a, 7))
- where T,»—NN})/A :

vi(a)= ZCNRJ\L(a Tv) : ‘ (4-2-35)

To prove thls we eXpand & (Cy, v;) by the shell model wave functlons Wlth
oscillator parameter v as follows:

&0 (Cy, 1) :<¢o (Ci, 9) |96 (Ci, v3) >33 (Cy, v) )
+2 (higher oscillator quantum states than ¢,(C;,v)). (4; 2-36)
~ By inserting this expansion into .

:«/1+1601,02~/(N1> 3 Rusla, )

X<V w1 (r 7) Go (C1, V1) 3o (Co, v2)| 01> - (4'2-'37)

and by considering the conservation of the total number of the H.O. quanta
between bra and ket we obtam '

yL(“)

Ne=N@)—N(C)~N(C, | (4-2:38)
WEefe N(C;) are the numbers of the H.O. quanta of the states ¢(C¢, Y).
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When @L are of the type of the RGM (or GCM) wave functlon we can
calculate!®960:69.99 v (a) by the knowledge of the norm kernel obtained in

§4.1. Below We;_assume that all the oscillator constants are the same. For

the case

, @L;“

: 4 o }
\/9'1 UZZ {#z (7”) Y0 (#) ¢o (Cl> Po (Cz) } » 1= <N1> 1+ 601%) , (4-2 39)

we get . ) *
Yz (a) = ZN exlxRyr(a,7), 1 (4-2-40)
where ey are obtamed from™®

4 (a) = ZeNRNL(a N, (4-2-41)

In Eq. (4-2-40) we used the usual definition of uy that when Cl—Cg, Uy is

half of the value of Eq. (4- 1-9). ‘
Similarly we can calculate the R'W.A. of O Whlch are channel- couphng

or multi-cluster RGM (or GCM) wave functmns As an example for the
case of Eq (4-1- 16) ‘

0,— ——ZJ{xJ ClE T <cl>]J¢o<cz>} (4:242)

su@=(7) (N) (Wr DY ()90, 0L (CL4(C

we get .

a)J>
_.Z e’N(g,cC, N(Mb)mJC N(M)mJﬂ(MRNZ (a T) , ‘

C N“”’”Z((N 0)Z;, (0,7 OiL,-H awely, (4-2-43)
Where ¢;y are obtained from / | N '

25 (r) = ZeJNRNL r, 7). B . (4-2-44)‘.

It should be noted that the SU, shell model wave functions @; can be
usually rewritten in the form of the RGM wave function due to the Bayman-
Bohr theorem™ (see also § 4.3) and so the calculational method like as Egs.
' (4-2-20) and (4-2- 43) is . very useful also for those shell model wave. func-

thIlS

-

4.3. Cluster model spaee
4.3.a. PrOJectzon operator of Feshbach

- Any A-ucleon Wave function @, can be broken up into two mutuallyk \

# " The normalization <@L\|!DL>=1 means the normalization of ey is Slyes’un=1.

\
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orthogonal pai‘ts as follows: -

b, =T (1 + 81 h;E‘YLo(?>¢o<;cl>\_¢o<cz>.., 31
ﬁLR satisfies ‘ ' |

<kLI@L> 0. L '(432)‘

The. projection operator Py Whlch prOJects out of b the component of tWo-
cluster wave funct1on AL () b} as ’

PL@L—J{XL () hL} _ : ‘, - (4-3-3)
. has been obtalned by Feshbachm as follows (see also Chap. II)

) PLzluq{lkL><hL| + Zﬁ;ol Iaa]XLahL><XLahL]}

di2 a0 a
‘ ¥

q125<l€1> (71+601,02>-' , ,‘ | | (434)

‘

Here y.* (r) and 4, are the eigen-fnnctions and eigen-values of the RGM norm
kernel defined similarly to Eq. (4-1-8) by

b AL D iy > = A4 Ooio) et (). (4-3-5)
When the H.O. pai‘ametere of ¢, (Cl) and ¢y (Cs) are the same, we have the

solutions of this eigen-value equation as was discussed in § 4. 2, and so we have
the "explicit form of P,.
Accorchng to the discussion of §4 1, we know that ’che orthonormal basis

wave. functlons @D, of the functional space spanned by the two-cluster wave "

“ functions of the form J{a)L (r) hL}‘ are given by

@Lo_c UZZ{XLa(r)hL} = « (4-3-6)

\/ﬂaf_hz ;

We can easily check that

PL= 302500l “-3.7%

~

When @, is normahzable and is normahzed to umty <@L|@L> 1 it 1is
important to evaluate the following quantity:

ox E“PL@L”2:<@L|PL|@L> 1 \' - (4-3-8)

7

which tells us how much the clustering component is contained in D, By
using Eq. (4-3-4) we obtain the formula to calculate 0% as

* . To prove Eq. (4.3.7) we need to use
O Gr—r’)

rr!

by x:f"(r)x )=

' This is safe at least when we are dealing the normalizable states.
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=Sy DTy,
< U0 ﬂ

(44

/

y1 ()= ﬁﬂﬁy@ymm>sf{dmwmw (4:3:9)

where y;-is the R.W.A. of D, ,
The 0% values for the deformed oscillator (anisotropic H.0.) model wave

- functions in *Be and *Ne are given in Ref. 14). |

Here we introduce the notation K; by

A=Ky gr=<bs|Alns (@) hs}), A= T 50;0;&2. (4-3-10)

K; is usually called the exchange norm kernel, and. is a bounded operator.
The reason to introduce a factor [1/ (l+§blgz)],is to normalize the coefficient of
the Dirac delta function operator 1 (an unbounded kernel) in Eq. (4-3-10)
to‘unity. '(1—Kp) is the full norm kernel

<mt¥QMF%@%§Q“D=Q%£Q%Kmam.~7Medn

By using the solutions of Eq. ‘(4‘-3-5) we have
 U-K) @b =D s @u®),
K@h=S0-wn@n®.  @312)

With the use of the followmg deﬁn1t1on
(1—K;) "(a, b)—Z Ha” xL”‘(a)xL“*(b) n>0, (4-3-13)

we obtain

A=K, @) hal Au{A— Koy Vi, bty =20 4.3.14)

 This equation means that the following functions .9
0= ¥<_;4{(1 K. 1/2(r a)h}, - (4-3-15) -
v ‘ ‘/Q12 . :
constitutes an orthonormal set
(0,20, =9(2=0) - (4-3-16)®

ab

. This set of functions is a complete set since we can easily prove the following

relations:

' PL—_%‘J‘CZCZ af‘zlm‘La>§me| —q—uq{lhz,>

s |} (4-3-17)

"#* When the forbidden states x:* with sa= 0 are existent, this relation is valid within the space
. of the allowed functions xc*(a) or x:*(#) with #%0. Similarly Eq. (4:3-27) is valid for
the allowed space. With use of the projection operator 4 of §5.1, the r.h.s. of Eqs (4-3-16)
and 4-3- 27) are A(a,b) and 4;;(ai, by), respectively.
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The formal relation between @;, and @,* is

0,4 =370, (a) O (4:3-18)
Wltil the use of the notation K; we have ’
ve= A=Kz, . (4-3:19)
and if we define the following quantity, / :
| S 1 JTA\ s A
2. (a)=<{0,°|d =*‘———%m/< ) 1-K) 7 (r,a) hel05),
1(a)=K0."01) \/1—4‘60102 \v, ( z) ( Yhil0z)
v ' ‘ (4-3-20)
we get ; :
£.,=(1-K;) —1/23’1,'3 (1—Kp) "y . 0 (4-3-21)
and ‘ |

02 =212, =l A=K lyd =Cpal A=K s>, (4:3:22)

Since 0;? is the total probébility,of the  clustering component in @\'L, 2. (a) is
~ the probability amplitude that the clusters C; and C, are located at the relative
distance a. Thus £;(a) can be said to be the relative wave function between
clusters in the sense that |£;(a)|® can be interpreted as to be the probability
density at the relative distance a. The importance of this relative wave func-
tion ‘£; has been emphasized by Saito and his coworkers™ and by Fliessbach
and his coworkers.™  (See Chap. IL.) '

The projection operator of Feshbach can be similarly defined and calculat-
75), 15), 91),'92)

ed also for the complicated systems.

For the system with the wave
functions of Eq. (4-1-1) we have '

P A Pulodtl+ 5 Ao B il A

1—-K/1
‘where U and %1:;% are defined By Eq. (4-1-6) apd K is defined by
(A Gema) b | A/ 10 &) 83 > = A=Ky (an, by).  (4-3-24)

=§Ji’{l¢i>< 1 )_]_<¢fl}ﬂj’, | (4-3-23)

We can also express P as

P:Zl@a><@a|zzj‘dclil@mi>'<@mil, . (4_3_25)
where @, is defined by Eq. (4-1-7) and 0% is defined by ;
0= A AA- K Enad . (4:3:26)

{@™} constitutes an orthonormal basis set, satisfying
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.<@mi,@ﬂ,’>:5~ﬁ.o«(ai_b.). o @s2n

/

© 4.3.b. Norm kernel wztk unequal osczllator widths and almost forbzdden‘

states

Here we discuss some aspects of norm kernel of the system of clusters,
whose oscillator parameters are mutually different. The eigen-valie problem

of such system is no more solvable analytlcally in general and we need to rely

upon the numerical procedure. A characteristic difference. of the case of un-
equal oscillator parameters from the case of equal ones is the dkisappe‘arance
of the forbidden states (F.S.) which are defined as the eigen-states of the
‘norm kernel belonging to the zero eigen-value #,=0.

When we use the reasonable values of the oscillator widths for cIusters’

the situation is not so much different from the case of equal oscillator widths

andso we have the eigen-values /1, Whlch are very near zero and which approach

to zero cqntmuously if we continuously change the oscillator widths to the

same limiting valyue y—vl—vg—— --. The eigen-functions belonging to these
almost zero eigen-values are called the almost forbidden states (A.F.S.)."” In
order to catch the feeling we show some calculated examples. Foi‘ the presen-

tation of the calculated results we consider the'dependence of the eigen-value
/s on the oscillator parameters. The eigen- va]ue /e is an overlap of the two
wave - functlons and should therefore be dlmenslonless When the s,ystem in-

volves' only one oscillator parameter v. ‘whose dimension is fm™2, 4, cannot

include v in its expression in order to be dimensionless. Thus we know for

- the case where all the oscillator parameters of clusters are of the same value

v, the eigen-values g, do not depend on y at all, as was in fact the case with -

the examples in § 4.2. The direct proof Qf this result is easy, if we notice

the y-dependence of the A—nucleon H.O. wave function @, (which inVolves“)_gg) :

is

o @ﬂ“ &g 1 (\/Vxl,\/Vx ..... \/ij). ’ - l(4-3-28)

‘ The change of the integration varlables from «; to yr««/x)xZ in the calculation

of the overlap of two such A-nucleon wave functlons gives the ‘expression of #,
which does not include v at all. If the two oscillator parameters VY, and p, are
involved in the system, /. can depend only on the dimensionless ra‘po 1/ v,).
In Table ITI, we give the eigen-values® 1, of the systems, a—}—lGO and o +*Ca.
The e1gen—va1ues ﬂLAF’ of the A.F.S. 12 are seen to. be very small.

We belovv consider an illustrative system of two closed-shell clusters

The ‘F.S. % F satisfy \ ,
A <r>hL}EOQ- (i=1~nf) - (829)

But for the AFS xL J{x AFl (YA} no more vanish and so the corre-

# These values are calculated by Dr. A. Tohsaki—Suzuki.
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sponding normalized wave functions

0 = L NGy Ry, (=1 (4-3-30)

! A/(ﬁ) #LAFi

are the members of the basis states of the cluster model space, as was discussed
in §4.1. Let us divide the eigen-functions into the A.F.S. 727 and other

Table IIL - Eigen-values of the norm kernels of the systems, (a) ¥O4q and
h (b) “Ca+ta, in the two cases of the equal and unequal oscillator
‘widths of clusters. Superfices denote minus power of 10, for ex-

. ample, 0.32656=0.3265%107.

(@) 1%0+a
: Vo/ve=1.47 L
N Va=Yo - , « - —" :
. : 0 2 ‘ 4 ‘ 6 , 8

0 0.3265¢

2 10,1117 | 0.6202°

4 0.6617:. ©  0.2997 |  0.177% | ‘

6 10,1345 0. 12341 0.99132 0.6197*

8 0.2292 0. 2391 0.2384 |  0.2366 0.2339 ©0.2302
10 | 05103 | 0.5131 | 0.5127 ©0.5119 0.5105 0.5088
12 0.7185 0.7163 | 0.7161 0.7159 0.7154 | 0.7147
14 | 0.8459 0.8424 0.8423 0.8422. 0.8420 0.8418
16 0.9178 0.9146 0.9146 0.9146 - 0.9145 0.9144
18 | 0.9568 0.9545 10,9545 0.9545 = [ 0.9545 0.9544
20 0.9775 . 0.9760 - 0.9760 | 0.9760 0.9760 0.9760
22 0.9884 |  0.9875 0.9875 0.9875 |  0.9875 ©0.9875
24 | 0.9941 0.9935 0.9935 | 0.9935 0.9935 0.9935
26 0.9970 .|  0.9966 . 0.9966 |  0.9966 0. 9966 0.9966
N o 1 3 5 7 | 9
1 0.13415

3 0.4780¢ | - 0.2784*

5 0.14312 . 0.11112 . | = 0.8070°

7 0.27261 | 0.25971 0.2370! 0.20411

9 | 0.3438 0.3518 0.3513 0.3505 0.3494 10.3479
11| 0.6196 | 0.6179 0.6177 0.6174 | . 0.6170 0.6164
13 | 0.7900 | 0.7861 0.7860 | 0.7858 0.7856 |  0.7854
15 | 0.8871 0.8834 | 0.8834 0.8833 0.8832 |- 0.8831
17 | 0.9403 0.9375 |  0.9375 0.9375 0.9874 |  0.9374
19 | 0.9688 0. 9669 0. 9669 0.9669 0.9669 | 0.9669
21 | 0.9839 | 0.9827 09826 | 0.982% 109826 0.9826
23 | 0.9917 0.9910 0.9910 | 0.9910 09910 | 0.9910
25 | 0.9958 0.9953 |  0.9953 0.9953 | 0.9953 0.9953
27 0.9979 0.9976 0.9976 - 0.9976 | 0.9976 |  0.9976
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(b) *Ca+ta
Va/Voa=2.0 L
N | ve=vea — - - :
’ 0 2 4 6 8 10 12

0 0. 15806 ‘
2 0.6685° | 0.9303°
4 0.3433% | 0.3717% | 0.5443!

6 0.28923 | 0.3090% | 0.4123° | 0.30213 .

-8 0.2768 | 0.28362 | 0.2950% | 0.2758 | 0.1850°
10 0.2202: | 0.2167' | 0.2081' | 0.1924' | 0.1662' | 0.1266"

12 | 0.6914t | 0.1124 | 0.1117 |.0.1100 | 0.1073 | 0.1034 | 0.9809" | 0.9129!
14 | 0.2641° 0.2896 | 0.2890 | 0.2877 | 0.2856 | 0.2826 | 0.2787  0.2739
16 | 0.4751 | 0.4794 | 0.4790 | 0.4782 | 0.4768 | 0.4750 | 0.4726 | 0.469
18 | 0.6479 | 0.6305 | 0.6392 | 0.6387 | 0.6379 | 0.6368 | 0.6354 | 0.6337
20 | 0.7728 | 0.7593 | 0.7592 | 0.7589 | 0.7585 | 0.7578 | 0.7570 | 0.7561
92 | 0.8571 | 0.8433 | 0.8432 | 0.8431 | 0.8428 | 0.8425 | 0.8420 | 0.8415
24 | 0.9117 | 0.8998 | 0.8997 | 0.8996 | 0.8995 | 0.8993 | 0.8991 | 0.8988
26 | 0.9462 | 0.9368 | 0.9367 | 0.9367 | 0.9366 | 0.9365 | 0.9363. | 0.9362
28 | 0.9676 | 0.9607 0.9605 | 0.9605 | 0.9604 | 0.9604 = 0.9603 | 0.9602
30 0.9806 | 0.9760 | 0.9757 | 0.9756 | 0.9755 = 0.9755 | 0.9755 | 0.9754

N 1 3 5 7 9 11 13
1 , 0. 1547

3 - 0.13094 | 0.2179*

5 ’ | 0.9950¢ | 0.12198 | 0.11793

7 0.8103.| 0.8838% = 0.92715 | 0.6984%

9 0.66112 | 0.66342 | 0.65202 | 0.5897 | 0.4371%

11 0.43311 | 0.42441 | 0.4074* | 0.3803* 0.3400 | 0.2843!
13 0.1573 0.1924 0.1915 | 0.1896 0.1869 0.1832 0.1783 0.1722
15 0.3723 0.3853 0.3851 0.3838 0.3818 0.3791 0.3758 0.3716
17 0.5675 0.5641 0.5637 | 0.5628 0.5616 0. 5600 0.5579 0.5555
19 0.7161 0.7043 0.7040 0.7035 0.7028 0.7018 | 0.7007 | 0.6993
21 0.8193 0.8052 0.8051 0.8048 | .0.8044 | 0.8039 | 0.8032 0.8025
23 0.8875 0.8744 0.8743 0.8742 0.8740 0.8737 0.8733 0.8729
25 0.9310 0.9203 0.9202. | 0.9201 0.9200 0.9198 0.9196 0.9194
27 . ' 0.9582 0.9500 0.9499 0.9499 | 0.9498 0.9497 | 0.9496 0. 9495
29 0.9749 0. 9690 0.9689 0. 9689 0.9688 0.9688 0.9687 0.9687
© 31 0.9851 | 0.9813 0.9810 0.9809 0.9808 0.9808 0. 9807 0.9807

normal states yz¥7. In the limit of Yy, —V,, yAF >y, F? and x>y, where
xz*? are the allowed eigen-states belonging to the eigen-value #,;70 in the
equal oscillator width limit. In this limiting process we also have 4 CHY % e
X ALp by =L B pagy TP AL}, But, as for the states 722" there are
no corresponding limit states since A{yFhr}=0. The limit states bf @, AT
are out of the cluster model space composed of. clusters with the common
oscillator widths, since this space is spanned by the complete orthonormal
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basis states {(#) s} *A{yhs}. This fact can be checked also in the

following Waym

lim <A |a7,,AF% hm«/,aL AR =0, (4-3-31)

We expand 22 () in terms of Ry (7, 7) where 7= (N.N,;/A)v,,
A0 =T CaRu (7). (SICul'=1) (4-3-32)

C;y satisfy ‘ ‘ : ’ .
lim Ciy=0  for N=N,, : (4-3-33)

Where N, is the lowest allowéd number of the oscillator quanta in the equal
~oscillator width limit, namely for N<NA, Uy=0 and for N>NA, Ux==0.
‘ Equatlon (4-3-33) is proved as follows:

0=lim #, AFi——hm {2 Fihy, |J{xLAF‘h >

V1oV, yy—>vy

=lim ) CzNICiN2<RNlL @, 7 hLIJ{RNgL (r, 1 hi}>

v;—vy NNy -

—Z(hmlcml) iy " - (4-3-34)

Vi—Vy

- By Eq. (4- 3. 32) we have

0;
AF — NL
¢ Z CzN AFT:@NL ’

/

Dyr= {<§I>6NL} uZZ{RJ\/L' (7, T) hi}, . (4-3-35)
where 0y is defined by l ) | —
| = Rue DA R DR, (4:3:36)
by which | {(#) 0y} ;1/2J{RNLhL} | =  .' The values of hmwl_,,,z)Cm«/(‘)‘NL/ﬂLAFi
cannot be singular since |@*F| —||@NL[| =1, namely, :

TSR O . | |
lim C,y Z —m=0 or finite. ; (4-3-37)
V1Y, L ) .

In order to see limg, ., @y, we expand ¢, (C,, ))1) as follows:
¢o (Cl, V1) = ; (Vl - l)2>ﬂ§1§0(n) (Cl, ))2) »
HO(C, ) = L @/024:(C, %) (4:3:38)

We notice the ¢, (C,,v,) has at most 2n-Hiw, higher quanta than ¢0 (C1, )
W =mw,/2#). The reason is eas1ly understood from the form of the H.O.
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shell model Wave functlon By (Cl,»z)

> X exp (—— ”ch} (xi — XY .

(4+3-39)

polynomial of \/I)zx

whose degree is #

B0 (Cy, vs) =9, H¥DE=D % <

By inserting Eq (4-3- 37) into @y, we have
ARz (r, 1) s} = iy O AR r)hL<"> )},
Oni= )PV, <__N ,1'2—,1\/ ) (?igher power of © . )
z b= ) than (Na—N)/2)
(n)(vz) YLo(T)cﬁo(")(Cl, Db (Co v, ,
OVNL(”) <RNL(7‘ T)kL(“’(VZ)Iu‘Z{RNL(T r)h,;(">(v2)}> (4-3-40)

Thus we get

. hm,@NL, * = 1 JZZ{RNL(T r)hL(”")())z)}
[ N/(N)ovmno) | |
po= (Na—N)/2. . | @ .3.41)

If OV (Na—N)/2)=0 and OV (Na— N)/2+1) 20, we only need to put
no=(N,—~N)/2+1 in Eq. (4-3-41). From Egs. (4-3-33), (4-3-37) and

(4-3-41), we know that the limit states limg, ., @2 generally have the same

- total ‘number of the oscillator quanta as the lowest basis state of the

“cluster model space, {(#,) s} " A{Ry 1 (T, 7)do(Ci, v2) 60 (Co, vz)} if OV

((Ny— N)/Z)#O for some NN, for which hm(yﬁ,,z)CLN(6NL//,¢LAF1)1/2;&()~

AFT are expected

Namely, for example, for a +0 system, the limit states of @y,
to be of the (sd)* configuration, under the above mentloned conditions.

For more detailed discussion of A.F.S.. espec1a11y in the dynamical prob-
lems, related to the Levinson theorem, the foundation of OCM and others,

. see Chap. II and also Refs. 17), 76).
4.3.(:. Relation of the cluster model states ‘wzth the shell model states

- The inter-relation between cluster model space and' shell model space
" has long been discussed by many authors. Wildermuth® and Sheline,”” Bay-

 man and Bohr,”” and Horie™ have 1nvest1gated the relation between the RGM
wave functlons with the H.O. relative wave functions (which may ‘be called the
‘Wildermuth wave functmns) and ‘the shell model wave functions. When the .

“ number of the H.O. quanta of the relative wave function is small, seemlngly

- different wave functions of the cluster model and the SU; shell model were,
- found to be equivalent. This is due to the Pauli principle. We are now able

to construct the (orthonormal) basis wave functions of the various cluster

model spaces, which are ;claSSIﬁed by the H.O. quanta and SU, labels. The
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comparison of the two model spaces have shown that many important shell
model configurations are contained in the cluster model space, as is displayed
for example, in Ref. 15) and Table IV. In the “C+ « system in Ref. 15), the
cluster model state with N=4, (4, 1) = (0, 0) is just the closed:shell state,

the ones with N=5, (4, x) = (2,1) are the 1p-1h (T -0) states, the ones with

N=8, (A, un) = (8, 4) are the most, deformed 4p—4h states and so on. In the
case of the ®C+ 2« syétem of Table IV, the states with N=12, (4, /A) = (8, 0),
(4, 2), (0,4) are equivalent to the shell model states (sd)*[4], (4, 1) =(8,0),
4,2), (0,4), the ones 'With N=13, (4, ,a) (8,2) are the so-called Op-hole

states with (8, 2). symmetry and so on.

'On the other hand Perring and Skyrme,m) and Brink™® have discussed the.

connection of the shell model wave functions with the cluster model wave
functions with geometrical cluster arrangements. In the case of Brink model,
the cluster model wave functions are the GCM-ones discussed in § 2. The
Brink wave functions or the generatmg wave functions of GCM. use ‘the co-

herent states of the HO quanta for the relative rnotlon (see §2.1.b) in.

contrast to the Wlldermuth wave functions with definite number of H.O.
quanta. Brink has showed how the normalized cluster intrinsic states with
various geometrical conﬁguratlons are connected with the intrinsic states of

the SU; shell model wave functions of the ground or many-particle many-hole °
~ states in ‘the limit of vanishing GC, S8,-0. To see the limits, the H.O.

expansion of F(fi\, S:;, 1) (or equiValentIy power series expansion with respect

to S; of I'(&:, S:, 7)) is uséful. For details especially about the - limiting

process of the orthogonal single-particle orbitals in the cluster 1ntr1ns1c states

see Ref. 18). (See also Refs. 80) and 81).)

§ 5. Calculation of OCMV'dp/e\vrators

5.1. OCM operators

The framework of the orthogonah‘cy condltlon model (OCM). of Saito®.
demands to calculate the projection operator onto the allowed states and the.

effective potentials between clusters.
For the system with the wave functlons of Eq. (4-1- 1) the OCM equa‘clon
is (see Chap 1I)

W1-K K(E T Veff)«/l K{z}=0, - o (5-1-1)

i

namely

Z (‘\//nl———K>ij’((E‘—‘T—-Veff)’jlc('\/i_';K)EZXZ:’O: - (612

Kkl

where (E T) is dlagonal (E T)Jk— (E;,—T}) - 5,,0 If we introduce {&;} ‘by‘

(see Eq. (4-3- 20))
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@} =V1-K{y, (5+1-3)
we can rewrite Eq. (5-1-1) as | » :
CAE-T-Va A2y =0, (5-1-4)

where A is the projection operator onto allowed states,

A= T . 61E)

Equation (5 1 1) means to approxnnate the RGM kernel of the Hamlltonlan '

H as follows:!?-8 5%
(0 Gmad 8| =B 1y 0= b))
=~ {\/H(Tﬂ_ Ver) ‘/1———1-{}51' (_“i, b3,
E,=internal binding energy of the i-channel. - (5-1-6)

The knowledge of the solution of the eigen-value problem of the norm
kernel is sufficient to construct the operators +v1—K or A. But when we

. treat the complicated systems like as the channel coupling systems and the

multi-cluster systems, the eigen-value problem of fhe norm kernel becomes
fairly tedious to solve. The purpose of this section is to  give the methods®™
of the construction of the operator A which avoid solving the eigen-value
problem of the norm kernel. The oscillator parameters of the clusters are
 assumed to be the same mutually.

As for the effective interaction Vg, it is usually assumed and sometimes
checked by comparing with the results of the RGM (or GCM) calculations
that the RGM direct interaction kernel can give a good approximation to Vg
if we introduce suitable modification if necessary. The evaluation methods of
the RGM direct interaction kernel are discussed in § 3 and so we do not enter
this problem of the direct potential here. Recently Friedrich and Canto® have
searched V.g in the two closed-shell cluster systems assuming the superposition
of the several range Gaussian potentials for the form of V.. The parameters
of Vg are so determined as to make the approximation of Eq. (5:1-6) és
good as ‘possible. In actual calculétibn they utilize the GCM matrix elements
of both the sides of Eq. (5-1-6). We here study a little how good the
'épproximaﬁon of Eq. (6-1-6) is for the case of the kinetic energy operator
‘in the two closed-shell cluster systems. The exact kernel in the H.O. repre-
sentation is given in Eq. (4-2-5), while we have

VaV1I=RTAN1= KV =V tiwttal Vi TrVuiy . (5:1-7)

Thus we know that for N=N’ our approximation gives an-exact answer
while for N=N’+42 the error of the approximation is

(A= twa/ ttx) XV oty (ho/H V(N =1 (N +1+1D),
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which is small if yy changes slowly as a function of N.

5.2. Construction of ﬂ,thye allowed states

9.2.a. Two-cluster system

The allowed states of the single channel two-cluster system can be known
usually with ease without explicitly solving the eigen-value problem of the
norm kernel. Let us denote by N(A) the lowest possible total number of the
H.O. quanta of the A-nucleon H.O. wave function. Since the total number of
the H.O. quanta of A{Vym (7, 1) e (Cs) $(Cy) } is N+ N(Cl)—{—N(sz)‘ N should
be N>=Nd, where Nd=N(A) —N(C)- —N(C,), for Vsz to be an allowed
‘state.  (IN(C,;) is the total number of the H.O. quanta of ¢, (C;) as was defined
in Eq. (4-2:6)). Thus, the condition N->Nd is a necessary condition for
Vim to be allowed. Usually this condition N>>Nd is also a sufficient one for
the allowed states. We know some cases where this condition is insufficient,
but even then with some more careful examination, we usually get a correct
sufficient condition for the allowed states. ~ For example, Nd of O +*0 is 20,
while the correct condition for Vi, to be allowed is N=>24. The reason why

N=20, 22 are forbidden numbers is easily given by considering the conservation |

of the number of the H.O. quanta in each x, v and z direction. As another
example, Nd of 3N—I—N system with 77=0 is 0, but Vy,, with N=1 is for-
- bidden. The reason is that the 1-%w excited states with T 0 in ‘He do not
exist except the spurious state of the C.M. excitation.
- When we treat the channel coupling two-cluster system, we have no more
simple method as above to determine what states are allowed. So we need to
- solve the eigen-value problem of the norm kernel in general.. In §5.2.b,
however, we will find that we have a method, for some kind of the channel
coupling two-cluster systems, to construct the allowed states, which avoids
- calculating the norm kernel and solving it.

5.2.b. Multi cluster system

Flrs’c we consider the case where all the constituent clusters are SU,
scalar. As a general property of the eigen-function of the norm kernel Wlth
non-zero eigen-value (u,70), we notice that they are orthogoﬁal to all the
“two-cluster forbidden states” between any two constituent clusters. Let
Vi.F (t;;) be any two- cluster forbidden state between clusters C; and C;, satisfy-
ing ALV (i) 60 (Cy) $o (C;) } =0, Where t;=X;—X,. Since there follows

LV (€5) 60 (C) -+ (C)} =0, . B-2-D)
by combining this with . i
o (C) o (C LA (C) o CY> =™ (5-2:2)

we get

0=C Vi (24 0 (Cs) b (C) | A0 (C2) 60 (C) }>
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zﬂa<VkF(tij) IX“> o - (5-2-3)
which means that for ﬂoﬁ/:O <Vk (i) Ix*> = -0. We introduce the notation
- NT(i,7) which expresses the set of all the forbidden numbers of the H.O.
quanta between clusters C; and C;; namely for N N” (Z,7), J{Vm,n (tw) ¢0 (C)
X ¢y (Cy) } =0.

~ Now let us deﬁne a functlonal space H,’, which is spanned by the multi-
cluster relative wave functions that- are orthogonal to all the two- cluster for-
bidden states Vi© (&) between any two constituent clusters If we denote by
H, the space spanned by all the allowed states (or elgen functions with Ue0),
~the above argument shows that this space I, is contained in H,/; H,CH, .

We here introduce a hypothe31s63) that H,=H,’ . ‘This hypothesis was shown
to be true for 3¢ and O+ 2« systems by constructing H, and H,' exphatly
and then by comparing them. What we discuss here is the construction meth-
od of H,’, which, according to this hypothes1s is equWalent to the construction
of the allowed states. .

- Even if H,++H,', the space H,” has its own s1gn1ﬁcance To solve the
~ many-body Schrédinger equation within the space H,’ where the interaction
- operator is given by the sum of pair 1nteract10ns between clusters DV (tu) '

namely to solve S \
A <E~T—Zi‘>jvgff> @NA2=0 (524

Wlth A denotlng the prOJectlon operator onto F,/; is just equivalent to solving
the many-body Schrédinger equation . where the interaction process between

any two constituent clusters is described by the two- CIUSter OCM, 4, (E—Ty
(zJ) (Ej))flugu — () 698, 86)

Neudatchln and his coworkers®™ ‘have: proposed a method to treat Eq :

(5-2-4) which does not construct A’ explicitly. They introduce . pseudo- po-
tentials /IZ,cIV,C (t“) ><Vk (t;)) | in addition to the original interaction VE&D (L)

for-each pair (4,7) and solve the many-body Schrédinger equation W1thout A

The stable finite solutions in 1ett1ng l—>00 are the desired answer Whose wave
functions are surely orthogonal to all the two-cluster forbidden states.™

Our construction method®™ of the basis states of: H, of n-cluster system
is based on the concept of the “coefficient of fractional parentage” (cfp). We

first construct the basis states of H,’ of three-cluster system on the basis of -

the knowledge of the two- cluster allowed states. Then we construct the basis
states of I,/ of four-cluster system using the knowledge of H,’, and so on.

We expand the state Yre (1) of H by the basis states yz,(7—1) of H, ;

as follows:

a0 =, 31 O JILANI) [Vig, () s D1,

%' The same idea as that of Neudatchin et al. has also been proposed by Saito et al. © The point
of th1s method is how to get the numer1ca1 stability of .the pract1ca1 calculation in letting 1-—>00.

220z ysnbny oz uo 3senb Aq £26%¥81/06'29'SdLd/EY L L 0 L/10p/ajoiHe/sdid/woo dno-olwepese//:sdiy wouy papeojumog



Kernels: of GC’M RGM and AOCM and Their Calculational Methods 179

s=X,~X,(—1), (5-2+5)

where X, and X;(z—1) are the center-of-mass (C.M.) coordinates of the n-th
- cluster and (n— 1) -eluster. system, respectively. Since all the basis states
xze(n—1) of H,_, are assumed to be already known cour task is to calculate
the cfp C™ (Ja|LANL). The cfp are determined by the ortho_gonah’cy condi-
tion ‘of %, () to all the two-cluster forbidden states between constituent two
clusters. In Zz(n—1), all the two-cluster forbidden states between any two
clusters in the (n—1)-cluster system are already eliminated, and so what is
remained to do is the elimination of the. two-cluster ferbidden states between
the n-th cluster C, and the cluster C;(1<<i<n—1) in the (z—1)-cluster
system.. For this purpose we expand %, (72—1) by the basis states 2ey(m—2)

of I, , of the (n—2)-cluster system just as in Eq. (5-2:5) with the use of

“the cfp G,V (LB|PyN,l,) which are assumed to be already known; yz,(7—1)
= Zprzvgzg Ci(nﬂ)‘(L,@]Pﬂ\lez) [Vzvzz2 (s) %iP'r (n—2) ]z where s;=X;—X; (71—*2) ’
1<i<{n—1 with X, (z—2) denoting the C.M. coordinate of the (n—2)-cluster
system composed of the clusters C; (1<j<n 1) except C - Then %, (n) can
be written as follows:

tra () = Z C(") (Jo|LBN, L) 2 C @ (LBIPTle)

PyNyly

>< [VNIZ (82) [ Vg, (83) 9, (0 — 2)]L]J ‘ .
=3 C" (JCKIL.@NJ)C "= D(LBIPTle) Z \/(2L+1> (2Q+1)

LBN 1
PNy,
X W (LLJP; QL) [ V% (5., 8) X%T (n—Z)JJ, 7 - (5-2-6)

where Vi is. defined in Eq. (4-1-43). By 'using the Talmi—Moshlnsky—
- Smirnov (TMS) coefficient we express Vil (sn, s:) of s, s; coordinates by
the linear combination of the H.O. functions of the coordlnates sni= (M,X,
-+ M X))/ (M, +Mi) — X (n—2) and t,,=X, —X; as Vi 1% (8, 80) *ZN:, LV,
XN NI NG N L, Q) VI (5,44, ) where 61 is the angle of the TMS
transformation (sn,s)—>(sm, f,;) which is' shown in Fig. 1. Then by putting
zero every coefficient of [ Vi ($uis tni) 25, (n—2) 1, with N,& NT (n,7), in order

to guarantee the orthogonahty of xJa(n) to VNM(tM) Wlth N,eN"(n, 1),
we get ‘ ‘ :

Lﬂ;l c” (JaiLBNJJC " (LBIPer)\/(ZL+1) 2Q+1)

2la \

X W (L WP QL)<NZNZINZNZ4,~>W—O 52 7)

Where N, eN'(ni),1<i<n—1, and P 7, Q, Nj, Zg, l, are arbitrary possible |
values. Equation (5-2-7) shows that the cfp C™ (Ja|LBN,L) of the n- cluster ,

system are calculable successively from the knowledge of the cfp C;*® (LB
|PyNely) of the  (n—1)-cluster systems The solutions C("? (JCK]LBNZ) of
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180 ’ ‘ S H. Hdriuchi‘

(n-1)-system

(n-2)-system

' Fig. 1. Internal coordinates. Xg'(n—2) is the C.M. coordinate of (n—2)
clusters excluding i-th and n-th clusters. Xg(n—1) is the C.M.
coordinate of (n—1) clusters except n-th cluster. s,=X,—X*°
(n—1), s;=X;—X¢'(n—2), are related to £,;=X,— X, Sp= (M X,
+ M. X))/ (M,+M;) — Xa (n— 2) by the TMS transformatmn of
the angle 0

Eq. (5-2 7) are obtained as the eigen-vectors with the eigen- value q.,=0 of

the followmg secular equation,
L%‘_,L Q® (L'F'N/L/|LBN.L) C™ (JOélLﬁNlll) —qaC("’ (JOélL B M )5
BNl

n—1

O WHNLILEND =5, 2, 0 (PIOLLNIL/ENIL)
~ N, ENFm, 1y .

% 0 GPyOLLN | LAN:L),
w(ZPTle 4N4|L[5’N1l) \/(2L+1) 20+1) Z C;" (LBIPTN L,)

X W (LLJP; QL) (N NG| Nyly N, Q>e,, . : (5 2 8)

It is easy to show that the matrix elements Q(") (L'B’'N, L’ |LBMZ) are just
the matrix elements of the operator Q" defined in Eq. (5- 2 9) by the func-
tions [VNJ (Sn) XLs (?’L 1)]J with fixed J :

Q"")—Zl S lvmmﬁnaxvﬂ ) | (5-29)

) i=1 N,&ENF(n, z) lyymy
Clearly Q(") preserves the number of the H.O. quanta. So if yzs (72— 1)/ have
the definite number of the H.O. quanta, % (n) also have the definite number
" of H.O. quanta. ‘

The fact that the TMS (Talmi- Moshlnsky Smlrnov) transformation pre- ;

served the Elliott SU, symmetry makes it. possible to classify the elements
of I, space by SU; group.”*™®* Moreover what:is important is that the
1ntroduct10n of SU, group greatly slmphﬁes the construction process of the
basis states of FI, described above. We show this shghtly in detail in the
_ case of the three-cluster system. The cfp expansion of the basis states

AN, wET, of Hgl is written as.

AN, WET,p ™ A\g,%’:) @ V%f%u#)“ (ss, L12), (56-2-10)
N, aeNF@,2 ) ‘
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where the cfp Ag(}v’;‘) (2) are to be identical with AY$» of Eq. (4-1-44) if
Hy = H, and 8,=X;— (M, X, + M X,) / (M, +M,). VEEP are defined in Eq. .

(4-1-43) and they transform under the TMS transformation as follows:

VEGD (55, 1) = 2. ANN(N:N,, (4, ﬂ)>eLVN§§vf‘)“’(sz, ts), (5-2-11)

Ny+N,=N

where (4,7,%k) = (1,2,3) or (2,3,1) and 0, is the angle of TMS transformation
(85, t1z) = (85, 1;,).  The reduced TMS coefficients {N,N,|N,N,, (l ) Yo, do not
depend on £ and J due to the SU3 scalar property of TMS transformation.
We substitute Eq. (5-2-11) into Eq. (5-2-10) and put zero every coefficient
of V&P (s;, ) with N,& N7 (7, k)'. This gives us the orthogonality equation
. of Xﬁ(z.mm,;: to the two-cluster ‘forb'idden states Viyu,m, (&) with N, N” (jk),
3 ATGP @ ANGNLNN, (4, )6, =0, (5-2-12)
N,ENF L2 ,
~where N,eN"(G, k), (4,7,k)=(@1,273), (2,3,1). Equation (56-2-12) shows
‘that Aﬁaﬁzﬂ)v(Z) “do not depend on £ and J since {NsNNN,, (4, 1) o, do not
depend on £ and J. To solve Eq. (5-2-12)"is equivalent to obtaining the
eigen-vectors with the zero eigenvalue.gp':o of the following secular equation,

NyENF(1,2)

Q4P (NI NS INND A4 () =0, 4552 (),

QN“’”(N'NZINl D=3, 3 NNANYNY, Gy D

i=1 N,eNF(j, k)

K (NN NN, (A, )30, (52419

We can easily show that QY% (N,'N,’|N.N,) are just the matrix elements
of the operator Q® of Eq. (5-2-9) with »=3 by the functions V§< MET (8, 115)
with N,&N"(1,2), N,+N,=N. ‘

What are necessary for the practical treatment of the above procedure in
SU, scheme are the simple and rapid evaluation of the SU, C-G coefficients
{(NV; 0)L (N, 0) ZZH (A4, ) EJ)y and the reduced TMS coefficients {N;N,|N;N,

(A, 1) >s. An answer to this problem is glven by the quasi-spin S 1ntroduced
by Bargmann and Moshinsky,® \

+=aT (ss)'a(tlz)a S—;(S+>T:' Sz 5 (a (33) a(s3) '”aT (t2) - a(tlz))
[S:,8-1=2S,, [S,S.]=+S., . . (5-219)

where a'(v) is the creation operator of the H.O. quanta of the coordinate

v; a'(v)=v7.(v—1/27)0/0v). By using the SUS, scalar property of S, we can
easily show the following relations,®

SZV%E%I?M (33, t12> =~'_J (] +1) 'Vg,(%\'r:)w (Ss,'tm) ,
S Vllgf%?f)w (ss, £12) = v GFm) (GEm+ 1) V%I(if‘)z'\cf;l (ss, ‘tlz) >
j=1/2, m=(N,—N/2. o (5-2-15)
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From this We obtaln

| 1«/(/1$N1j:N2) (l:&N1$N2+2)<(N1:|:1 0)11, (N2F1,0) L]l (3, £) 5T
= ZK(Nl, 0)2y7, (Na, 02" 4, 1) &I )V iE ”mlSi[Vzl 0t

VTS, | VIS = () +J+1W<zlzzzl'zz . J1)
XVl @[V, ><VN2 ]l @] VNZ L1y 5

VIN+U+3) ' +1), I=U'+1,

Y-, =1,

(5-2-16)

Ve[V ={

which we can use as the recursion formula to calculate the reduced CG.
'cbefﬁcient's - The TMS coefficients are given simply by the familiar rotation -

matrlx as
<N3N|N1N2: (Z /1)>0 drm (0) ={jm’ le” ZﬂJyIJm> '
i=1/2, m'= (Ny— Ny/2, m=(N,—N) /2, (5-2-17)

which is due to the following relat;on,

' o C cosﬁ—smﬁz | " . ' _ o
RIS ( a- (s3) ) ™5y = 2 2 ( a’ (s:) > = < al (s:) > (5 e 2 18)
/ a' () sin% cos 02 @' (b) @ ()

where cos 0;/2= — «/M Mg/ (M, +M2) (M +M,) and .
sin 0,/2 = e, M, (M, + M,~+ M) / (M, + M) (M;+M,) with &= —1 and

&;=+1. TFor more detailed discussion and applications of the above mention-ed

procedure, see Ref. 63).

~ Our method descrlbed above to construct the allowed states of the system
composed of the many SUjyscalar clusters can be utilized to construct the
allowed states of some kind of coupled channel systems including non- -SU,-
scalar clusters. For the sake of explanation, we consider *Ne-« system
where the ground band states of ®Ne are descrlbed by the SU; shell model
configuration (sd)*[4](8,0). The point of our method is to use the fact that
'this shell model wave function ¢, (*Ne) is equivalent to the two-cluster wave

functlon 1/«/ () s ALV iz (Eoa) Po (*O)¢o (@)}.  From the discussion of §4.l.c,

the orthonormal basis wave functions of this *Ne 4« system should have

deﬁmte SU, symmetry as

0%, = —i— (Vv 0 (1) b ("N T, ety @}
N/ < 4 > /«‘cz "

= (const) A{VEE®D (1, 0s) $ (*O) ds (@) ¢o @ (5-2:19)
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' For the allowed syfﬁmetry A, 1), ALVEE @O (100) ¢y () By ()} cannot

vanish. This requires that Vi ®m87 should have non-vanishing overlap with
at least one allowed state of the three SUs—scalar cluster system of O+ a+«.
This condition for V¥i*@®®# s not only necessary but also sufficient for the
symmetry (1, #) to be allowed in the Ne+a system. From the, form of
Avawsrp of Ea. (5-2-10), we see ‘that if the cfp A¥4.%® (2) is non-zero at
least for one p the symmetry (4, %) is an allowed quantum number in the
*Ne + system. Thus we can determine what (4, %) are-allowed in some kind
of the channel coupled systems without calculating the norm kernel and with-

~ out solving the eigen-value problem of it. '

Finally - we discuss below the general construction procedure® of the

allowed states of the multi-cluster system which includes non-SUy-scalar clus-

' ters. We explain in the case of three-cluster system in which the cluster

~

C, is described by a non-SUjscalar wave function with SUs symmetry (0, T5)
while C, and C; are SUgscalar. From the investigation of § 4.1.c, we know
that we have three sets N*(1,7), N*(1,7), N'(1, 7) to which we classify
the number of the HO quanta of the relative wave function between clusters
C, and C, (1=2,3). For NeN*(1,7), A{[Va.n (t11) gy ey (‘Ci>](l,ﬂ)ch¢,(Ci>}
with any (4, #) resulting from (I, 0) X (0, ;) are allowed (or non-vanishing),

while for NeN"(1,7) all (4, #) are forbidden, and for NeN*Q,7), A, u)
‘are divided into allowed and forbidden. In the case of ®!C+a, N*(*C, )
={N; N=8}, N7 (C, @) ={N;7=Nz=4} and N"(*C, @) ={N; N=3}. First

we regard” N*7(1,7) as if it were contained in N%(1, i) and construct
the quasi-allowed state ¥we, o0 p exactly following the prescrlptlon discussed

above for the three SUs- scalar cluster system The truely-allowed three-

cluster state ZNQ wks,r  can be expanded by using these Xye,00p,, as fol-
Iows

ZN@;;)NJJ Z H r @, r)p[XN(a,f),p¢(-ro,rg) (Cl)](x,,‘)w, - (5-2-20)

where [y, 00w, ]an denotes the SUS vector coupling ((7 7) X (0, \2'0) ~ A, 0.

The coefficients HY$# are determined by requiring the orthogonality of

Zya wrr.r to the two-cluster forbidden states LVa,o &) ¢(dm,u> (CY) 1oy with
N,eNT1,47), (0',7) e Wy, (1, 2) which are‘r:egarde'd as if they were allowed
in constructing %y, oep,, By the notation Wy,(1,7), we mean the set com-
posed of those (67, t’) which gives the forbidden state [V w0 ®i) Dyep(Ci) s en
for "IN, ENPF(I ), namely uq{[v(zvz o (&) ¢(o‘o o) (Cl) Jotenorr 0 (C7) } =0. The

equation to determine HFE&ZX), is therefore =
= HG £,%,((0,7), 2, N, (@, ) =0
X:((0,9), 8, Ny, (07, 7)) o |
=437 DU (W, 0) N, 0) (4 1) (00, %) 5 (0, 9) (07, 7)),
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for NZENPF(l i), (0‘ f)EWNz(l i), (i=2,3) (5 -2-21)

‘where Aﬁ&"v;) (i=3) are the cfp of the expansion of Xyw,0erp bY VEIH (52 tls)

. while Ag%:) (=2) are by V)T (ss, 11;) like as in Eq. (5-2-10). U((V,, 0)
X (N,, 0) (4, /L) (00, 70); (0,7) (07, z‘)) are the SU; recouphng coefficient de-
fined by

[[ Ny, 0) (st O)](a ) (60, 7o) 1w
=23 U((NV1, 0) (N, 0) (4, 1) (0o, 70) 5 (0, T) (0’,7'))

@)
XL 0) [NV, 0) (00, @) Taren T - (5-2-22)

(Here the multiplicity of (4, ) is assumed to be one for simplicity. This is

true when (0, %) is either (0y,0) or (0,7).) Equation (5 2.-21) is equiv-
alent to finding the eigen-vector H, N8 with eigen-value g, =0 of the following

equation,

> QYR (3, 7) 81 (0,0 p) HEGBy =0, HY 385,

@, 0p

QY& (@, D) B0, )= 3 X;(@, 715, N, <o )
. $=2,8 N,&NPF(1,17)
’ (a",r’)EW%VZ(l,z) :

x X;((0, ), p, N, (07,7)). (5-2-23)

“We give in Table IV as an example of appllcatlon, the allowed states of
Cta+a System where “C is “described by the SU, shell model wave function
with (O 4) symmetry and is allowed to be excited to the ground band member
. states ‘2" and 4%,

- Table IV SUS cla551ﬁcat1on of the allowed states (of H;") of the 2C+2a system

N | , ' (Z w"

12 @, 0@, 2)0, 4) ' '

13 ©, 0)(@8, 2)@, 1)6, 3)G, 224, @G, 32, 5J, 4)

14 11, 1)(10, 0)* (9, 2)2 (8, 1)* (8, 4)(7, 3)* (6, 2)° (6, 5)(5, 4)®

4, 3% (4, 6)2(3, 5)2(2, 4, 6)(, 8 \

15 (12, 1) (11, 0y (11, 3) (10, 2)4 (9, 1)6(9, 4)2 (8, 3)° @, 2)7 (8, 6)(7, 5)3 (6, 4)3
‘ 5, 3)5(6, 7)(5, 6)* @, 5% (3, H* (4, 8)@3, T2 (2, 6)2(1, 52 (2, 9, 8)(0, 7)
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» Appendix
A.l. \Proof of Jacobi formula Eq. (227) |

We note the following relation,

clflll ------ Clc,.l,_ 613111 ------ Cpn_r ll
‘ ckllr ...... Ckrlr Cp1lr ...... an-r,lr
C"flzl ...... ck‘rll 3 1
c’?llr ...... Ckrlr 0 O
0
| ‘ 1 )
ciy=C(det-a) (@, : (A-D

where (b1, b, -+, Puy) are the numbers which are left after subtracting the

set of numbers (%, &, ---,

k;) from (1,2, --;,

Next we consider

where (g, qs,

(Zl, lg’ ey Z,-) from (1, 2,
determinant is equal to & (k';"",?r orepnm) X €Q

the determinant ’

a]f.lll ...... a{‘:.lr a{hql

akr’q ...... a;érlr :

a!’1l1 ............... a,.;qul
-rll‘ ........... ’ a‘p;‘_rql

n) and satisfy p<<py<-+<Pur

(A-2) :

a’Pn—rqn-r >

‘,Qn_r) are the numbers which are left after sﬁbtracting

72) and satisfy‘ Q1</Q2<"'<Qn——r-
i geetnsy) rdet{a;;}, €(P) denoting

Clearly this

the signature of the permutation P. By multiplying the two determinants
of Egs. (A-1) and (A-.2) and by using Eq. (2-2-5) we obtain

Crit, """ Crpyy

Chyp =t C krlr

) 220z ¥snbny oz uo 3senb Aq €/64181/06'29°'SdLd/EYL L'oL/!op/epuJe}sd}d/woo'an'O!LuepEOE//:Sduu woJ} papeojumod



186 " . ‘ ‘ H. Horiuchi

det-a
det:a . 0
0o 0
= det:a
a?lll ............... af_ll'h' ......... al’fl‘ln-r
aPn Jy e aZ’n-h“h ...... aPn—rQn-r
‘ Y A - :
= (det-’a)’-B( ! r) , : (A-3)
e Liooonel,) - |
where we used the fact
NN k, Bppay " A : g
B ] ; = : : . (A-9)
e T apn Y P al’n-r"ln—f ’ ' )

' Whlch is ev1dent from the definition of B(’cl ’“’) By using the relations

‘1.'...,,._. AT By PO s
s( ror n >= (_)igl(zﬂei) ,
- klkr Dy Por N
I Tevorrir pfdeceenin T .
: Zl ...... lr ql ...... Q'n.-—T .

Wh1ch are proved in Append1x A.2, we get from Eq. (A- 3) the des1red
formula -

kk v | Crpty "t Cleyy
B(} )= ety (- S
A, ‘ Caveor B,
‘ (a Y (@D
= (det- a) - (— )2(’z T, R (A-6)
(a‘“l) Lkttt (a—l) Loky

r r+1 ...... n

. A2 Slgn of permutatlon G, DB

The sign e(P) of the permutatlon P= (p‘; """" " can be calculated
by knowing the number of inversion I(p;) for each number p; which is
7 defined. as the number of letters p; Whlch satisfies J>Z and ;<p; (namely

which locates to the right of p; and is smaller than 2,). The relatlon '
eP)=(~ >“‘“ @A

N

can be proved as follows; Consider the process to put back the numbers
(p1, D3, -+*5 Pa) to the original order (1,2,---,7). Let p; be p,=n. In

/order to put back P, to the or1g1na1 position, we need (nmzl) -time trans-.

positions and this number (z—z,) is just the number of inversion for p,l n,
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namely I(p“)—n—z1 since all the letters locating to the rlght of p =n
are smaller than p; =n. After putting back p; =mn to the original posmon ’

we recalculate the number of inversions for the remaining letters p;==p; =

Quite clearly I(p;) (for Pj#pil;—:n) receive no change at all. Now let
by be p,=n—1, and we put it back to the original position by I(p,)-time
transpositione. After putting back p; and p;, to their original positions we

know again that the numbers of inversion for the remaining p; (p;#p:,

\pﬁﬁpiz) receive no change at all also.. Repeating the same process, the

numbers (ps, P, -+, Pn) are put back to their original order (1,2, -+, 7)

after (31, I(p,))-time transpositions. Thus Eq.(A-7) is proved. '
Now consider the permutation . : o

By ooy D1yl Do s (A-8)

Clearly the numbers of inversion for p; (i:lfvn—‘f) are all zero; I(pi) =0,

i=1~n—r. For each k; there are (k;—1) letters (namely 1,2, --- k; ,——-1)
which are smaller than %, Among these (k;—1) letters (z—l) letters are

located to the left of %, ‘(namely /el, ks, +++, k1), and so we obtain. I(k)
= (k;—1)— ({—1) =k;—i. From Eq. (A- 7) we therefore obtain - -

T a(P)-( JEEH

, By usmg Eq. (A- 9) we can prove the Laplace expansion glven in Eq.
(2 <2 2) F1rst we note ‘

(A-9)

1 ...... r r_]_.]_ ...... 7n
det{a,;j} = N
| ’ Litosly Gree oG
- ) all’_ ...... all,- alql ------ alqn_r . - .
I= : (A-10)
o anll ...... Ay, \‘,a"flh ...... Angpr :
Next we use the relatlon of Eq. (2-2-21), Whlch glves us
\’ . Teeeers 7 1. 7n alclll """ ak.:;_l, ap.ﬂh ........ alfl‘ln-r
I= 3> e .k’ 2 . . : :
(By<bgl-<kp) \ Ryeovore L Piesrens : .
1<y 7) 1 7 pl pn—r ag PARRRERR A I al’n-r‘h ....... qpn-r‘In-r .

| (A-11)
Thus by Eq. (A-9) we have proved Eq 2- 2. -2) for the case of. >
S Z(k1<kz< <l The proof Of Eq (2 2 2) ln the Case of Z 2(1'1<l2< <L)

is 31m11ar and ev1dent
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