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We discuss the calculational procedures of the kernels of GCM, RGM and 

OCM and some properties of them related to their calculation. The GCM 

kernels for various types of systems are treated and methods are , discussed on 

the analytical evaluation and on the decomposition i11. te_rms of the number of 

nucleons exchanged between clusters. The RGM kernels are evaluated by the 

integral transformation of GCM kernels. Various formulas of this transformation 

are presented including those for the systems of clusters with unequal oscillator 

widths. The problems related to the RGM norm kernel (RGM-NK) are dis­

cussed; firstly on the solution of the eigen-value problem of· RGM-NK for 

various kinds of systems, secondly on the evaluation of kernels or physical 

quantities obtainable from the knowledge of RGM~NK and finally on the cluster 

model space for whose character the solution of the eigen-value problem of 

RGM-NK gives an indispensable information. The proje~tion operator onto the 

Pauli-allowed states in OCM is obtained directly from the solution of the eigen­

value problem of RGM-NK. In this. paper we also present another method of 

construction of this operator of OCM which needs not Jo solv'e the eigen-value 

problem of RGM-NK which is tedious for complex systems even with our present 

calculational techniques. 
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§ 1 .. lntroductiQn and summary 

Recent developmentn~ 5 ) of cluster physics and microscopic treatment of 

nuclear collisions is, as is discussed in the previous chapters, largely due to 

the progress in the past few years of the microscopic models, RGM (resonating 
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92 H. Horiuchi 

group method) and .GCM (generator coordinate method), and of the sen:~i­

microscopic model OCM (orthogonality condition model), which describe the 

interaction process between composite particles. The progress of the above­

mentioned models owes greatly to the development of the computational pro­

cedures, such as the calculation of the exchange (and also direct) integral 

kernels of t~e physical quantities and the solution of the model equations 

(usually integra-differential ones) under the suitable boundary condition~. We 

can quote some characteristic points of the recent progress of these models 

. as follows :5
l (i) It has been made possible to treat the heavy systems (such as 

160 + 160) in these microscopic and semi-microscopic models, which is in marked 

contrast to the former situation where the RGM is applied only for the systems 

lighter . than a+ a. · (ii) It has also become possible to treat the co~plex 

systems in the framework of these models, w~ich include the channel coupling 

two-cluster systems where the processes of the internal excitation of clusters 

and those of the, cluster rearrangement take place, and also the systems com­

posed of three and more clusters. · (iii) The inter-relation of the model spaces 

bet;veen shell and cluster models ,has been investigated in many nuclei in this 

new situation of the enlarged cluster model space mentioned above in (ii), 

, which has revealed many important shell model configurations are contained 

in the cluster model space and has promoted the studies of the relation between 

different models, shell and cluster and those of the structure change problem 

between shell and cluster structures. 

The purpose of this chapter is to discuss· the calculation of the kernels 

or . the matrix elements of the physical operators in GCM, RGM and OCM, 

including some review of the recent developments of the calculational methods. 

Another important problem of the computational procedures concerning. how to 

solve the model equations under the suitable boundary condition is treated in 

Chap. V. The main cause which has brought about the development of the 

computational procedures is. the introduction of the GCM for the ·description 

of the interaction process between clusters, which has become possible by 

recognizing the transformation relation -of the GCM wave function to the 

RGM one.6
l,

7
l Th'e GCM adopts the linear combination of the Slater determi­

nants as the model wave function and therefore the usual shell model tech­

niques for the calculation of the matrix elements of the operators by using 

the many-body wave functions can be utilized, by· which we can avoid the 

hitherto-considered difficulties of the RGM calculations like as (i) the tedi­

ousness of the. integration with the use of the internal coordinates of clusters 

and the relative distance coordi'uates between clusters, and (ii) the difficulty ' 

of the treatment of the full antisymmetrization operation within the above 

internal and relative coordinate system. The computation of the RGM 

kernels in heavy or complex systems is now therefore done by first calculating 

the corresponding GCM kernels and then transforming them to the desired 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 93 

RGM kernels with the use of the transformation relation between wave func­

tions of GCM and RGM. As for the OCM, the calcu)ation of the projection 

operator onto the Pauli-allowed states needs the solution ~f the eigen-value 

problem of the RGM norm kernels, which is obtained now by noting the fact 

that the corresponding GCM norm kernel plays the role of the generating 

. function of the eigen-values of the RGM norm kernel. The RGM norm 

kernel determines the character of the cluster model space and the solution of 

the eigen-value problem of it is indispe_nsable in the discussion of the relation 

between shell and cluster models. 

In this paper, we )irst discuss in § 2 the calculation of the GCM kernels 

for various kinds of systems. The transformation process from the GCM 

kernels to the RGM ones involves the integration of nearly singular· character. 

Although some numerical evaluations of this nearly singular integration are 

reported8
l to have been executed, it is desirable .to treat. this tra,nsformation 

in an analytical way. Thus for the sake of the RGM and OCM calculations, 

we have also discussed this. problem of -the analytical evaluation of the GGM 

kernels in this section. What causes the tediousness in the analytical evalua­

tion of the GCM kernels is the non-orthogonality· of the single particle wave 

functions of each Slater determinant of the GCM wave funCtion and the te­

diousness increases toward the. heavier and more complex systems. The sys­

tematic methods devised for the computer evaluation which greatly reduce this 

difficulty are discussed in Chap. IV. vVhat we disc~ss in this section is about 

a method which is suitable for a manual evaluation of the analytical form of 

the GCM kernel. For the understanding of the structure of the GCM kernel, 

the decomposition of the kernel according to the number of the nucleons ex.:. 

changed {NNE) between clusters is of great use. We show that NNE gov­

erns the range parameters of the GCM kernel. 8 J~Izl Usually the GCM kernels 

have the form of the product of the polynomial function and the Gaussian 

function of generator coordinates. That the range parameters of these Gauss­

ian parts are determined - by NNE is a useful fact also for the · analytical 

evaluation of kernels. 

In § 3 we discuss the transformation procedure from the GCM kernels to 

the RGM ones. We present a few different transformation formulas used by 

different authors which are of course mutually equivalent. The matrix repre­

sentation of the RGM kernels in the harmonic oscillator (H.O.) basis of the 

relative wave functions is often useful as well as the usual coordinate repre­

sentation. The formulas are also given by. which we get directly the matrix 

elements in this H.O. representation of RGM kernel from the GCM kernel. 

The GCM with the use of the complex generator coordinates is found to be 

useful for the transformation from GCM to RGM especially in H.O. repre­

sentation. The methods for the comput~r execution of the analytical transfor­

mation which are especially desirable in treating the heavier systems like as 
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94 H. Horiuchi 

160,+ 160 are. given in I Chap. IV. 

I The problems related to the" RGM norm kernel are discussed in § 4. 

First w~ show how to solve. the eigen-value problem of the RGM norm kernel, 

whe~e the recognition of the following two points is of essential impor­

tance ;14
)""'

16
) (i) the eigen-functions have as a quantum number, the definite 

total number of the H.O. quanta and moreover they are neatly classified by 

the Elliott ~U 3 group, (ii) the corresponding GCM norm kernel is. a generating 

function of the matrix elements of the RGM norm kernel in the H.O. basis of 

the relative wave functions. Solution of the eigen-value prob,lem of the RGM 

norm kernel directly accomplishes the construction of the OCM projection 

operators onto' the Pauli-allowed states. Next we discuss the. evaluation pro­

cedure of the· kernels or the physical quantities which an~ intimately related to 

the RGM norm kernel, like as the kinetic energy kernel, the reduced 

width amplitude of cluster-transfer and so on.. Finally we discuss the cluster 

model spqce which is' determined by the . RGM norm kernel. The so-called 

almost-forbidden relative states1
n are discussed from this viewpoint of the clus­

ter .model space. The inter-relation between the cluster model and shell model 

spaces is briefly reviewed the investigation of which in many nuclei in the 

new situation of the enlarged cluster model space has contributed much to the 

studies of the coexistence ·and structure-change problems between shell and 

cluster structures. 

The :final section (§ 5) treats the evaluation of the OCM operators. As 

·for the projection operator onto the ·Pauli-allowed states, the solution of the 

eigen-value problem of.the RGM norm kernel discussed in § 4 gives, of cours.e, 

all the n'ecessary quantities. We, however, give another· method of construc­

tion 'of the Pauli-allowed states in this section 5. This J;nethod avoids solving 

the eigen-value problem of the RGM norm kernel .and therefore is powerful 

for the complex systems like as the multi-cluster system and the channel 

coupling system including the cluster rearrangement, for which the eigen-value 

problem of the RGM norm kernel becomes fairly tedious to solve even' with 

our treatment given in § 4. This method is explained in detail in the case 

of the three-cluster system. We expect that, in view of the increase
1 

of the 

data in the wide ;~gion of light nuclei which need the cluster model analyses, 

the present article stimulates the further development of the semi-microscopic 

model OCM wh1ch is an. easier framework than GCM and RGM, in parallel 

with GCM and RGM. 

§ .2. GCM kernels and their calculation 

. ~~1. GCM wave function and kernel 

2 .. 1.a. Definitions for various cases 

For the sake of notations, we discuss here the form of the wave functions 

and kernels in the GCM. 18
);

22
)'

30
) The GCM wave function which we treat in 
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Kernels qf GCM, RGM and OCM and Their Calculational Methods 95 

this paper for the description of the relative motion or collisions between 

composite particles is a 'superposition of the generating functions of the form, 18
> 

1JI (Rh ···, Rn) =.noJl{<f; (C1~ R1) ···<f;{Cn. Rn) }., 

no==j g (Ni !) /A! . (2·1·1) 

Here </; (Ci> Ri) are the ·harr~:10nic oscillator (H.O.) shell model wave functions 

of the cluster Ci located around Ri, Jl is the antisymmet:dzer which exchanges 

the nucleons/ belonging to different clusters (Jl = 1- :EPii + ···), Ni is the 

mass number of .the cluster Ci and A= :En Ni =total mass number. When it 

is necessary to denote the spin Li of the cluster ci we write like </JL~ (Ci,_Ri) 

and similarly if the oscillator parameter vi of </; (Ci, Ri) is needed to be expli­

citly shown, it is denoted by </; ( Ci, Ri, vi) . 

Since </; (Ci, Ri) are Slater determinants (or the superpositio:p of the finite 

number .of the Slater determinants), </; (Rh. · · ·, Rn) is also a Slater determinant 

(or superposition of Slater determinants). This fact makes the calculation by 

GCM very practical and easy. Let </J (Ci, Ri) be .. 

1 . 
¢ (Ci, Ri) = 1 ~ det {'Pai~l (X!- Ri) · · ·(j?ai;Ni (XNi- R£)}, 

vNi! · . 
(2·1·2) 

which we simply write as <j;(Ci> Ri) = (1/VNi!) det{Y?ci, 1 ·'·Y?ai.NJ, then we get 

1 ' 
1JI (R1, · · ·, Rn) =VA! det {'Paul" .. 'Pc 1 ,Nn 'Pa2 ,1· .. 'Pa2 ,N2 , • • ·, 'Pcn,l' · · 'Pcn,N J • 

(2 ·1· 3) 

The H.O. shell model wave function </; (Ci, Ri) can be written as·7'' 28
> 

(2·1·4) 

\ 

where xi= center-of-mass (C.M:) coordinate of ci and -¢ ( Ci) IS the internal 

wave function of Ci which does, not depend on Xi. We therefore ha~e 

, n 

xJl[exp{-:E NiYi(Xi-Ri) 2}¢(C1) ... ¢(Cn)J. (2·1·5) 
i=l 

To see the relative motion of clusters. it is convenient to use the inter-cluster 

telative coordi!J.ates ~i (i = 1"--'n -1) and the total center-of-mass (C.M.) coor­

dinate Xa. An important case is when all the oscillator parameters vi are 

equal v == V1 = · · · = Vn· In this case the dependence on Xa is factored out and 

therefore 1JI (Rh ·· ·, Rn) is a non-spurious wave function about the center-of-mass 

(C.M.) motion. , If we adopt as ~i the Jacobi coordinates, we obtain 
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96 H. Horiuchi 

. ~I:: Ni(Xi-Ri) 2=Av(Xe-Re) 2+ N 1N 2 v(~ 1 -S 1 ) 2 

i N1+N2 

n 

Xe= (:L; NiX£)/ A, 

n 

Re= (L; NiRi)/A, 

+ (N1+N2)Ns v(~ 2 -S 2 )2+ ... , 
N1+N2+N3 · 

~1=X2-X1' ~2=Xs- N1X1 + N2X2 
· N1+N2 

S
2
=Rs- N1R1+N2R2 

N1+N2 

and so 7Jf is expressed as 

(
2Av) 3

;
4 

7Jf (R1, · · ·, Rn~ = n exp {- Av (Xe- Re) 2} 

(
2 ) 3j4 

T (~,8, r) = : exp{ -r(~-S) 2 }, 

(2·1· 6) 

When Vi are different from each other, the C.M. coordinate X 0 does not sepa­

rate and so 7Jf necessarily contains the spurious component of the C.M. motion. 

For example, for two-cluster system 

(2·1·8) 

'I'he term exp{S (X0 - R 0 ) (r- R)} causes the contamination of the spurious 

C.M. excitation. 

Since we are not interested in the C.M. , motion, the GCM wa-ye function 

pGCM is a superposition of 7jf (R1, ... ' Rn) with respect to sh ••• 'Sn-b 

(2·1:9) 

where usually AR0 = L; NiRi = 0. When the oscillator parameters vi are dif­

ferent from each other, 7ffGCM contains the spurious C.M. excitation and so it is 

desirable to project out the C.M. spurious component of 7Jf (Rb · · ·, Rn). The 

we:lght function f of Eq. (2 ·1· 9) is determined by the Griffin-Hill-Wheeler 

(GHW) equation, 19
) 
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Kernels of GCM, ,RGM and OCM and Their Calc/.tlational Methods 97 

SIT dS/ {H(Sb ... , Sn-1; S/, ... , s~-1) -EN(Sb ... , Sn-1; S/, ... , s~-1)} 

Xf(S/, ···,S~-1) =0, 

{ z ~~:: :::: ~::: : ::~} = <'F (R,, · ··, R.) I{~ I'F (R,', · ··, R.')), (2 ·1·10) 

where H is the Hamiltonian. 

The matrix element of the operator ()with the GCM wave function of Eq. 
(2 ·1· 9) is 

<W1GCMj(Jj!J12GCM>= s ctr dSi) err: dS/).ft* (S1, ... , Sn-1) 

X}; (S/, : .. , S~-1)@ (Ra, Sh ... ; Ra', S/, ... ) , 

@(Ra, Sh ... ; Ra', S/, ... ) 

@ is called the GCM (integral) kernel of the operator tJ. When the G.C. 
Ri are so chosen as to satisfy R0 = 2:: NiRd A= 0 we use the notation @ (Sh 

... ·; Ra', S/, .. ·) instead of @ (Ra = 0, Sh .. ·; Ra', S/, · .. ) and similarly for the 
case of Ra' = 0 we use @ (Ra, Sh · · ·; S/, · · ·) instead of @ (Ra, 81, · · ·; Ra' = 0, 
S/, · · ·). It is convenient for the later discussion to define the kernel M by 

M(Sb .. ·, Sn-1; S/, .. ·, S~-1) 

The physical operator () does not· contain the C.M. coordinate X 0 • So for the 
system with equal oscillator parameters v =vi (i = 1"'-"n) the integration with 
respect to Xa can be done independently of () and we obtain 

(2·1·13) 

For the case of the two-cluster system, @ (R; R') and M(R; R') are denoted 
by @ (R, R') and M(R, R') respectively and if it is necessary to show ex­
plicitly the oscillator parameter r-of <T(r, R, r)¢(Ct)¢(C2 ) /tJ/cA{T(r, R', r) 
x¢(C1)¢(C2)})(r=E1=X2-X1) we denote M(R,R') by Mr(R,R'). 

The GCM kernels are often divided into the direct and exchange kernels 
as follows, 
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98 H. Horiuchi 

n-1 n n-1 n 

==<II r CEi, Si, ri) IT¢ (Ci) 10 Ill r CEi, S/, ri) II¢ (Ci)). (2·1·14) 
' i=l ' i=1 _i=1 . . i=l 

When we treat the system _with definite angular momentum, we need to 

project out the de:fi~ite angular momentum components from 7Jf (Rb · .. , Rn). 

Let ·us consider the non-spurious 7Jf (R~> ·· ·, Rn) with J)i = J) (i = 1r-Jn) of the 

system -of spin-zero clusters. A projection procedure of the angular momentum 

1s .glVen by 

n-1 

::;::: noJl {II r Li (~i, Si, r/) hur. a} {))0 (Xo); 
i=l 

(
2Av)

3
1

4 

Wo (Xa) === -n- exp {- AvX0
2
}, (2·1·l5) 

where a stands for. the .set of quantum numb~rs (Li, L 1 ~, L 12s·") and we 

assumed Ra = ~ NiR-tf A= 0. The systems. which have non-zero. s·pin . clusters 

are treated similarly. In the simplest c;;tse of the two-cluster system with one 

non-zero spin' cluster C1, the generating wave function is 

For the system composed of two spin-zero clusters, the projection of relative 

angular momentum by J dRYur(R) is of course equivalent to the usual pro-. 

jection ~of the total angular .momentum 

= (constant) X J dSJDi"t (SJ)R (SJ) 7Jf ( ::.
2 R, -~ 1 R), 

R (SJ) =exp {- i81Jz} exp { _:__ i8zJy} exp {- i8sJz} . · (2-1·17) 

The GCM kernels corresponding to these wave functions with definite 

angular momentum are obtained by the angular momentum projection of the 

kernels . @. For the system with the ·.generating wave function of Eq .. 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 99 

(2 ·1·15)' 

£lata a. (S . . . S . S ' . • • S' ) . 
UL1M 1L 2M 8 1, , n-l' 1 , , n-1 

= s c[( dSi) cg dS/) YtM1,a1 (Sl, ... ) YLzMa.aa(S/' ... ) @ (Sh ... ; S/' ... ) . 

(2·1·18) 

The angular momentum projection of the kernel for the channel coupling ca~e 

is treated similarly. We consider the system with the generating wave func­

tions of Eq. (2 ·1·16). Usually the wave function of the ·cluster C1 is ex­

pressed by the projection of the angular momentum from a single Slater deter,­

minant 

cf;LN:(Cl, Rl = 0) = cLfd.QD1':o (.Q)ij/
2 
(Ch Rl = 0)' 

{Jn(Ch R1 = 0) =R (.Q) {J (Ct.R1 = O), 

where we assumed for simplicity the axial symmetry of the intrinsic state. 

cf; (C1, R 1 = 0) around z axis. Then the kernel 1s 

e[,~J'M' (R, R') = CLac L2' s dRdR' dQdQ' 

x [Y L 1 (R) D1~6* (tJ) J jM[Y Lt' (R') n;t* CtJ') ]J'l'f' 

x ~~(c1, : 2 R)¢o(c2, ~ 1 R)l0lcA{¢n'(cl, -:2R')¢o(c2, ~ 1 R')}),· 

(2·1·20) 

·where. i (Lh L 2) arid }= (L/, L/) .. When the SU3 shell model wave func­

tion20>' 2n ~,is adopted for cpL
2 

( C 1), the projection procedure of Eq. (2 · 1·19) be­

comes simpler. If, the SU3 symmetry (A, fJ.) of cfJLa (C1) is (N, 0) or :(0, N), we 
ha vel5>, 2o>, 21> 

¢
0 

(Cb R) = f;j Af/2£:1 YiM(Q)¢ur(Gt, R), 

AN-(. )<N-L)f2j (2L+l)·N! -'- ) 
' L=- (N-L)!!(N+L+1)!!' !J=(Bl,{}Z. (2·1·21) 

When we treat the system including rearrangement· channels, the GCM 

wave function has the following form: 

1[7GCM_: ~ s dS.f.(S.) j ( lA ) Jl.{¢( C.,, -~"' s.)¢( C.,, ~ 1 s.)}, 
Nal . 

(2·1·22) 
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100 H. Horiuchi 

where the. suffices of cAa are put in order to remark their difference between 

different channels. (Jla is composed of (~ aJ terms of the permutation oper­

ators.) The GCM kernels necessary for this system are 

1 . I Jl {"· (c - N a2 s ) "· (c N al s ) } I o J(;;_) (:.) \ "~ "'' A "~ "'·-T " · 

(2·1·23) 

The kernels for a=/=j3 are new type of kernels while the diagonal kernels 

®~.a (Sa, Sa') are of type of Eq. (2·1·11). With these kernels the matrix 

element of the operator lJ by ?J!GCM and fl'GCM is given by <?fGCMitJifl'GCM) 

=L:a.s<fal®aplf.e>· When <j;(C~, Ri) has a form of Eq. (2·1·2) these kernels 

are rewritten as 

®a,$ (Sa, .Sp) = <9aat. 1 '" "9aa
2

, 1 " ··llJidet {9cll 1 >~' ··(/Jall 2 >~' .. }) (2·1· 24) 

because (1/../(/a) )Jla{</J (Cab (- N a2/ A)Sa)</J (Ca2, (N a1/ A) Sa)} is written as 

(1/ J A!) det {9ca
1

,
1
"'9ca

2
,

1
"'} as is shown in Eq. (2 ·1· 3). In the case of 

the common oscillator parameters V =Val= Va2• ®a,·s (Sa, S,e) = (1/ ../ (N~) (/
8
)) 

X <c..Aa{T(ra, Sa, Ta)¢(Cal)¢(Ca2)}ilJIJlp{T(rp, Sp, 7p)¢(Cm)¢(Cp2)}). The direct 

part of the. kernels . @a, 8 which are denoted by ®~, 8 are defined by Eq. (2 · 1 · 23) 

by dropping (1/ .J (N~)) Jla and (1/ .J (/P) )Jlp. Tl,le projection problem of the 

angular momentum 'can ~e treated in a similar way to before. 

When treating the interaction between clusters it is sometimes necessary 

to evaluate the GCM kernel of the interaction operator 

·. (2·1·25) 

which is not totally symp1etric. We define the GCM kernel @'~" corresponding 

to this operator as follows: 

@'~" (R0 , R; Ra', R') 

=<<PCCb R1)<f;(C2, R2) IYriJl{<jJ(Ci, R/)q,(C2, R/)} ). 

2.1.b. Complex GCM 

(2·1· 26) 

In the above the generator coordinates (GC) Ri or Si, Ra are assumed to 

be real numbers. As is well known, the GCM with real number GC (which 

we call real-GCM or R-GCM) has di:fficulties22
> such as the violent behaviour. 

of the weight function f of Eq. (2 ·1· 9) obtained by solving the Griffin-Hill­

Wheeler (GHW) equation of Eq. (2·1·10) ~ The extension of the GC to the 

complex number 16 l' 22 >~ 27 ' resolves these difficulties of R-GCM. For the sake of 

simplicity we consider the two-cluster system. The oscillator parameters are 

taken to be the same, V1 =V2 = v, in order to avoid the C.M. spurious problem. 

In the R -GCM, 
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Kernels of GCM, RGM and OCM and Their Ca(culational Methods 101 

p-R-GCM j lA) s dRf(R)Ji{T(r, R, r)¢(C,)¢(C,)}w,(X.), 

(N1 
(2·1·27) 

while in C-GCM we adopt the following form, 16
) 

(2r) 
3

/

4 

{ ( z ) 
2 

1 } Ar (r, z) == n exp - r r- v r + 2 z
2 

=exp{~z 2 }r(r, Jr,r), 

d,a (z) ==IT _!_ e-lzila d [Re (zi)] d[Im (zi)].- (2·1·29)-
i=l 7! 

The kernels in C-GCM are obtained simply by replacing the real GC R by 
complex GC z* /v'r. Ar (r, z) is the so-called coherent30

),31) state and can be. 
expressed as follows: 

W ( ) = (2r) 
314 

-rrz 
0 r - - e , 

7C 

p==-ilt~. 
or (2·1·30) 

Using the identity exp(z:at)exp(-z*·a) =exp(z~z*/2)exp(z·at-z*a), we .. 
obtain 

- {1 . } . Ar(r, z) =exp 
2

z.z* exp{z·at-z*·a} W 0 (r). (2·1·31) 

By expressing z as a sum of real and imaginary parts as follows, 

z= Jr(R+ 2 ~rp), 
. ,, 

Re(z) = vrR, Im(z) = 
1

1
_p, 

. . 21tv r (2·1·32) 

Ar(r, z) =exp{!z·z*}~exp{~ (P·r-R·p)}Wo(r) 
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102 H. Horiuchi 

· =. _1 exp ~r(r_:R) 2 +.!_p. (r-R) ·exp --+-z2 
, 

(
2) 3f4 { . • . } { p2 . 1 } 

. n · · ft , 4ft2r 2 

dp. (z) ~ ( _1__ re-z·z*dRdP. . (2•1· 33) 

, 2nft 

Noting the normalization of A 7 given by <Ar1A7 )== J dr A 7 (r, z) A/(r, z) 

= exp (z. z*)' we obtain 

<AriPIAr) 

<AriAr) 
P. 

Equations (2 ·1: 32) !"-/ (2 ·1· 34) show that the extension of the real GC to the 

complex GC means the extension of the wave packet at rest T (r, R, r) to 

the moving wave packet, Ar (r, z). 

2.2. Ca1culatio:O: of GCM kernels 

2.2.a. General prescription . 

We treat the calculation of the GCM kernel when <jJ (Ci, Ri) is expressed 

by Eq. (2 ·1· 2). When we use the fully antisymmetrized wave function, the 

GCM kernel is a matrix element of an operator () by two Slater determinants. 

The GCM kernel @ of Eq. (2 ·1·11) is written, by Eq. (2 ·1· 3), as 

@ (Ra, sb : .. ; Ra'' S/' ... ) = <<Pat,l'. •<f?a2,1' .. <Pa,,w,.l ()I det { <P~tol'. ·<f?~2,1'. ·<f?~,,N,}), 

(2. 2·1) 

where <Pai,J::EE;<Pai (xJ' :.__ Ri), <f?
1 
ai,J==<f?ai (xJ'- R/). The coupling kernels between 

rearranged channels have the similar form as above as is shown in Eq. 

(2·1· 21). 

The evaluation of the matrix element of an operator with the u~e of Slater 

determinants composed of the non-orthogonal single particle orbitals is a well 

investigated problem. 18
) For the sake of the discussion in this section, we 

first . remind the reader of the La place expansion oL a general ·determinant, 

or 

where '(k1, k2 , ···, kr) and CZ1. l2 , ·~·, lr) are any sets of r numbers chosen from 

. (1, 2, ···, n) satisfying k 1 <k~···<kr, Z~<Z 2 <···<Zn and A(f 1 1 ,t 2 :::::~~) is a minor 

d~terminant composed by adopting kt. k2, ···kr rows and lh l2, ···, lr columns 

from the original matrix aii> 
1 

. (2·2·3) 

while B (f 1 ~'f 2 :·::::~~) is a complementary minor determinant composed of remaining 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 103 · 

rows and columns of aii other than used in A. When r = 1, 

det . a = det { aij} = .L: akl ckl = .L: akl ckl ' 
k l 

and ckl satisfies 

(2·2· 4) 

(2·2·5) 

since)£ we use the notation det {aij} = det {a1 , a 2 , ···,a~} with ai =(ali, a2i, ···,ani), 
.L: a~czCkl' with l=fol' is just equal to det{ab ···,an} where az, is replaced by 

k 

az and therefore vanishes. Equation (2 · 2 · 5) means for det {aij} =FO 

C~cz= (det·a) (a,- 1
)z~c, 

. B (k). ·= (det ·a) (-) l+k (a- 1
) lk , 

J . 
(2· 2· 6) 

where (a-1) lk are components of t]J.e inverse matrix of the matrix {aij}. Gen­
erally we can express Ba 1 1 ,ta;::::~~) in terms of a- 1 as follows: 

which is known as the Jacobi formula ~nd is proved in Appendix A. 1. The 
Laplace expansion for r = 2, therefore, becomes 

det {aii} , .L: I a~c 1 z 1 aTc 1 lal C (k1k2, l/2), 

·. a kalr a kala 

CCk1k2, Z/2) = Cdet ·a) I Ca-'-
1
)z 1 ~c 1 (a-

1
)z 1 k21· 

. . ca-l) l2k1 ca-l) l.aka 

It 1s easy to see that Eq. (2 · 2 · 8) is rewritten as follows: 

det {aij} = 2 .L: a~c 1 z 1 a~c 2 z 2 C (k1k2, l/;J 
ll<la 

C2·2·8) 

(2·2·9) 

Let ([) and 7Jf be Slater determinants expressed by ([) = (1/ J A!) 

X det {91 Cx1) ···9ACxA)}, 7Jf = (1/ .J A!) det {¢1 (x1) •• ·</JA (xA)}, respectively. Then 
the overlap between then{ is . 

<([) /?Jf) = < 91 Cx1) · · · 9 A (xA) I det { <P1 Cx1) · · ·</JA.(xA)}) 

= ~ 8 (P) <91J</JP)<92J</JPa)-··<9AJ</JPA) 
p 
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104 H. Horiuchi 

(2·2·10) 

The matrix element of the one-body operator is 

A A 

<(]j I :E lJi I ?F)~ :E < Cf?1 Cx1) ···cpA (xA) I lJi ldet {</11 Cx1) .. ·</!A (xA)}) 
i=l i=l . 

A 

= :E <Cf?1 Cx1) .. · (l}itcpi (xi)) '"Cf?A (xA) ldet{</11 Cx1) '"</!A (xA)}) 
i=1 

, = t < 'P1l cA) ........ · < cp1l ¢A> 
i=l • • 

<'Pi l (j I ¢1) ...... <CJ?i i (j I ¢A) . . . . . . 
<CJ?AI¢1) ........ · <CJ?AI¢A) 

(2·2·11) 

where 

(2· 2·12) 

and use is made of Eqs. (2· 2· 4) and (2· 2· 6). In order to simplify the 

treatment of the two-body operator (1/2) :Eio;&jlJih we expand LJ12 as LJ12 

= :Em1n1m2n2<m1m2ILJ ln1n2)LJm1n1 Cx1) lJm2n2 (x2). where lJmn (x) = lm (x)) <n (x) 1. 

Now we get 

A 

= :E <m1m2ILJin1n2) :E <cp1 Cx1) ... (LJ~ 1 n 1 (xi) 'Pi (xi)) 
m1n1m2n2 i~j 

... (LJ~ 2 n 2 (xi) Cf?J (xi)) '"Cf?A (xA) ldet {</11 Cx1) .. ·.</!A (xA) }) 

= "' P'l A < Cf?1l ¢1) " " " " ' " ' < Cf?1l ¢A> 
~ <m1m2luln1n2) ~ . . 

. m1n1m2n2 i~j : : 

<CJ?ii,LJmlnll¢1) ...... <CJ?ii,LJmlnli¢A) 
. . . . 

<CJ?j j lJm2n2l¢1) """ <CJ?j J lJm2n2l ¢A) 
. . . . 

<CJ?AI¢1) ............ <CJ?AI¢A) 

. = <(]j I ?F) :E <'Pi'f?j I (j I<Pk<PL> { (B-1) ki (B-1) Lj- (B-1) kj (B-1) Li}' (2. 2 ·13) 
ijkL 

where Eqs. (2 · 2 · 8) and (2 · 2 · 9) are utilized. Equations (2 · 2 ·10) "'-' (2 · 2 ·13) 

are well known18
) and furnish the calculational procedure for the GCM kernels 

of the type of Eqs. (2·1·24) and Eq. (2·2·1). We can, of course, similarly 

treat· the three-body operator like as the Skyrme force as in the above way, 

where Eq. (2 · 2 · 7) gives the necessary coefficients B a 1 1 ~ 2
2 ~ 8 8 ). 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 105 

The calculation of the GCM kernel, of the type of CPf of Eq. (2·1· 26) 
1s evident from the derivation process of Eq. (2 · 2 ·13) and we get 

GY (R 6 , R; R 6 ', R') 

(2·2·14) 

where (/Jk is an element of the set {(j)c
1

, 1 , ···(j)c
2
,t, ···} and 9/ belongs to {9~ 1 ,h 

... 9~2.h ... } . 

Now we consider the calculation of the direct kernel. First we treat the 
two-cluster system as an illustrative case without rearrangement. The overlap 
1s evidently 

<<PCCt, R1)<f;(C2, R2) 1</J(Cb R/)<f;(C2, R/)) 

=<<PCCb R1) !C/J(Ct, R/))(<f;(C2, R2) I</JCC2, R/)), 

<¢ (C1, R1) 1¢ (91, Rt')) = det · BI = exp {- ~ N1V1 (R1 -R/) 2}, 

<1JCC2, R1) j¢(C2, Rz')) = det· Brr=exp { ~ ~ N 2V2 (R2-R/) 2}, 

(2·2·15) 

For the one-body operator, also evidently 

A 

<<PCCl, R1)<f;(C2, R2) I~ e>ii<f;(Cb R/)<f;(C2, R2')) 
i=l 

(2·2·16) 

For the two-body operator we get 
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·106 H. -Horiuchi 

(2· 2·17) 

This 1s because 

· N1~ . 

= (det · B 1) (det ·BIT) E E <V?a 1 ,iV'a 2 ,fJDIV?~~>k¥'~ 2 .~) (B1-
1
) ki (BIT-

1
) lJ. 

. ' ' i,k J.~ 

. (2· 2·18) 

We can easily see that all the expressions of Eqs. ·(2 · 2 ·15), (2 · 2 ·16) and · 

(2·2·11) are obtainable from Eqs. (2·2·10), (2·2·11) and (2·2·13), respec­

tively, simply by the following replacements: 

B- (BI B.IIT)~(BI 0) 
BITI BIT 0 BIT ' 

B -1_.._ ((B
1
.) -

1 
0 ) . therefore _____.. 

0 (BIT) -1 

(2·2·19) 

Next we consider the direct rearrangement kernel for the. process C1 + C2 

~C 3 +C 4 • We assume that N 1>Na (and therefore N2<N4) and, that Na nu­

cleons of C1 constitute C3 and thy remaining '(N1 - N 3) nucleons in C1 are 

absorbed together with N 2 nucleons of C2 into C4. The overlap kernel is 

<<PCCh R1)<f;(C2, R2) 1</J(Ca, Ra)f(C4; R4)) 

1 . 
- .JID=

1 
(N .J) < det {cpau1· · ·cpauN1} d~t {cpa2,1 .. ·C)?a2,N2} I 

det {C)?a3
,1" • ·(j?a3,N3} det {C)?a4 ,1" · ·(j?a4

,NJ) 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 107 

. j N2! (1···Nl) 
= Nl!Ns!N4! ~ 8 /rJ1···rJN 1 

X <qJ~ 1 J~1
3

) • • • • • • <qJ~lJqJirs) 
. . 

<qJ~Nal qJ1
3
) • • • • • • <qJ~N 

8
1 qJira) 

X <qJ~Na+llqJ14) ...... <qJ~Na-tllqJjy) (2·2•20) ' 
. . . ' . . . 

<qJ~N 1 1qJ 14 > ...... <qJ~NllqJt-) 
<qJ1

2
Ict:1

4
> .. · · · ·. · · <qJ1

2
1rt-) 

. . . . 
< qJiv 21 qJ14) ......... <<;oiv 21'qJjy.) 

where we used the abb"reviation (r}=cp0 i. By using the following relation, 

(2·2·21) 

where (PI.···PN1-N8) , are the numbers which are left after subtracting the 

·numbers (ki> ···, kNJ from (1, 2, ···, M) and satisfy P1<P2<···<PN1-N8, we 

obtain 

<¢(Cl, R1)¢(C2, R2) I¢(Cs, Rs)¢(C4, R4)) 

jN t N/' . (1···N 
= N2; N\(Nl-Ns)! :E e k k s 

1• 4• (k 1<Tc 2< .. <TcN
3
) 1··· N 8 

Ns+1··· N1 ) 

. P1 ···PN1-N8 

X <qJ1 1 1 qJ/) · · · · · · <qJt I qJira) . . 

< qJ1 . I qJ1 3) • • • • • • < Y?1 . I qJir > N 8 N 8 a 

. ,. 

<qJ~Nl-Na·lqJ 14 > ···•·· <qJ~Nl-Nslq;ir) 
(qJ12l qJ14> ......... (q;/ l q;jy) 

< qJiv 2°1 qJ14) . . . . . . . . . < Y?Iv 21 qJjy.) 

Since, as Is proved in Appendix A· 2, 

(2·2·23) 
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108 H. Horiuchi 

we know that Eq. (2·2·22) Is nothing but the Laplace expansion of the 

following overlap determinant: 

j N2! N3! ~ 
= N

1
! N 4 !(N 1 -N~)!· (det~B), 

jJ = ( cp/ l 1/?1 3) " ' " ' ( cp/ J If?~ sl ( cp/ l 1/?1 4l " · · " ( cp/ J lf?ir) (2·2·24) 
. . . 

< cp}v: I 1/?1
3> · · · · · · < cp}v: I ~P~ s> < cp}v: I 1/?1

4
> · · · · · · < cp}v: I cpt) 

< cp/ I 1/?1 4) .. .. .. < cp/ I ~Pt) . . 

< ~P~ 2.1 1/?1 4) .. .. .. < ~P~: I cpt) 
0 

For the one-body operator, we get 

A 

(¢(C1, R1)¢(C2, R2) I:E c:Jii¢(C3, R3)¢(C4,.R~.)) 
i=l 

j N2 . ·(1 .. ·N1) 
= N1! Ns!N4! ~ 8 

61·"fJN
1 

[
Ns (cp~1J 1/?13) • ....... • (cp~1l~P~) 

X t.i X (cp:N s:+)l/?14) ...... (cp~Ns+ll cpir) 

< ~P~ i j c:J I 1/?1
3
> · · · · · · (cp~i ( c:J I tp~ 3> (cp~21~1 4 > ......... (cp~21 cpt) 

(If?~; ll/?13
) ...... (cp~N·II/?~3) 

. 3 3 

+ (lf?~ 1 Jif?1
3
) ... ; .. (cp~1Jif?~s) 

. . 

. X L~+' (q>)N:'+>I\Z'.') ...... (q>)~,.,IIZ'lv) 

< cp! j c:J I 1/?14> · .... · < ~P! J c:J I ~Pt) . . . . 
(9~2·191 4 > ......... (9~:19t) 

+ ~ (9!N:3+1191
4
) · ..... (9!~s+lll/?t)}]. 

, (~Pl( c:J I 1/?14> ...... (9/j c:J l9t) . 

(2·2·25) 

. . 

By noting the relation 

a~tl •••••• a.li~n 

. . . . 
b 1 ...... b(j 
~i • tn . . . ) . 

alinl •••• :. alinn 
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Kernels of GCM, RGM and OCM and Their Calcu:fational Methods 109 

( 
1 ... n) n all . . . . . . a1n =e . 2:: . . ', 
(J1···6n i=l : : 

bi1 · · · · · · bin 

(2·2·26) 

. . . . . . 

and again with the aid of Eqs. (2 · 2 · 21) and (2 · 2 · 23), we get 

A 

<¢CC1, R1)¢(C2, R2) I~ l!ii¢(Cs, Rs)¢(C4, R4)) i=1 

{

Nt <9/ l913) • , .••••••••••••••.•.•.• • • • • • • • <9/ l9Jr) 
X t;i . . 

<9lil!l9/) ........................... <9lil!l9~) . . . . 
. . . . . . .. . . . . . . . . . . . . . . . . . • . . <9}v I 9ir > 

j ' 1 4 

< 9/ I 91
4
) · · · · · · · · · <9/ I 9ir) . . . . 0 

< 9Iv: I 914) · · · · · · · · · < 9Iv 2.1 9ir) 

+ ~ < 911l 913> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . < 911 l 9Jr) } 
i=l • • 

< 9}v 1 I 91 s> · · · · · · · · · · · · · · · · · · · · · · · · · · · < 9}v 1 I 9ir) 
< 912

1 914) ......... <912
1 9Jr) . . . . 

0 <9/ll!l91~ ...... <9lll!l9ir) . . . . . . 
< 9lv 21 91 4) ••••• ~ • • • < 9Iv 21 9~) 

j N IN I A A . 

= N:l N:l(N1-Ns)! ~- ~: <9ill!I9/)(B-
1

) 1i, (2·2·27) 

where {Y?i, (i=1"'-'A)} is {Y?c
1
,1' .. Y?c

2
,1' .. } and {Y?/, (j=l"'-'A)} is {Y?c

3
,1'.'' 

Y?c
4
,1· .. }, and 2::'1=1 means that Y?/ runs only 6n Y?c

4
,1 (j=1"'-'N4) when-Y?i 

belongs to {Y?c
2
,i i :;:=: l~N 2 }. Now we consider the direct rearrangement ker­

nel for the two-body operator. Below we show the calculation not for the 
full operator L;f1 lJiJ but for the case of theoperators of the type L:f,;1:L;f:,1 lJu 
or :L;[,!1:L;f,;,1 lJiJ which are- of interest for the calculation of the interaction 
kernels between rearranged channels in the frameworks without full antisym­
metrization. Of course the treatment of the two-body operators of the type 
:L;ij1 lJij is similar and is not difficult. Consider first L:f,;1:L;f!J.LJu. We ex­
press this operator as L:m

1
n

1
m

2
n

2 
<m1m2/LJ /n1n2) I:f,;1I:~!1 lJm

1
n

1 
(i) Om

2
n

2 
(j) and 

evaluate the matrix element for I:f,;.t2::~! 1 0 1 (i) 0 2 (j) (l!i = llmini) which is 
summed up as L:m

1
n

1
m

2
n2<m1m 2ll!ln1n2) to give the final result. The matrix 

element for such separable operator is 
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110 H. Horiuchi 

_j N2! ' :E 8 (1···N1) 
N1! N3! N4! tJ (J1···(JN

1 

{
Na (<f?~ 1 ~<f/ 1 3>' ......... N 2 (<f?~ l<f/14> ..... . 

· X tti j;;
1 

N a+l 

< <P~ i I C:\ I <P1 
3
) · · · · · · < <P /It\ I <P1 

4
) · · · · · · 

(<P~N I <P:t
3) . . . . . . . . . (<P121<P14) ........ . 

3 ' 

+ (<;o~ll <f/13
) •••••• 

(<;o~Nal<f/13)· •. • • .. 

(<P/IL\1 <f/1
4
) · · · ·,· · 

(<;o12.1<P14) ........ . 

X (<;o/[91
3
) · · · · · · · · · · · · · · · · · · · · · · ·· · · · · · · 

(<P/ I L\ I <P1
3
) · · · · · · · · · · · · · · · · · · · · · · · · · · · 

•. 

< <Pivl I <P1 
3
) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 

< ~1 2l <f/1 4> • : •, .... .. 

0 < <P/ i lJ 21 <f/14) ..... . 

< <P121 <P1 4) ' ........ . 

X { cJJ-1) k,i cJJ-1) Na+l,Na+i- ci3-1) k,N 2
+.1 ,eJJ-l) N 3

+l,i}' 

which gives the final formula, 

· ·jN I N 3 1 N 1 N2 A N 4 

= N:i N 4 j (N1 ~ N3)! tj ~ 1 ~ 1 t;i (<Pc 1i<Pcat iCJI<;o/ <f/e 4 z) 

(2·2'·28) 

, X { (iJ-1) k,i (B-1) N
3
+l,N

2
+i- (Jl-1) k,N

2
+J (B-1

) Ns+l,i} • (2' 2' 29) 

. The kernel for :Ef~ 1 ~f! 1 LJiJ is of course obtained by ( </; (C3, R 3) </; (C4 , R 4) 

l~f:!1I;f!1LJiji</J (Ct, R1) </; CC2, R2) )*. 

2.2.b. On the analytical· evaluation 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 111 

The analytical evaluation of the GCM kernels is often necessary and 

especially for the transformation of the GCM kernel to the RGM one it is 

highly desirable to have analytical form of the GCM kernel. The prescription 

given in § 2.2.a is straightforward and for lighter systems we can get the 

analytical form of the GCM kernel in a manual calculation. When we treat 

heavier systems like as a+ 4°Ca, 160+ 160,, however, the manual calculation 

becomes fairly tedious: So the techniques are developed'which give the analyt­

ical form of the GCM kernal by the comput'or evaluation following the pre­

scription of § 2.2.a.. The methods of these kinds of the analytical evaluation 

devised for the computor calculation are discussed ip detail in Chap. IV. 

What we discuss below is about a method which is suitable for a manual 

evaluation of the analytical form of the GCM kernel. 

In the prescription § 2.2.a, the evaluation of the inverse matrix. of the 

matrix B of Eq. (2 · 2 ·12) is a main tediousness in the manual treatment. 

When the system is composed of a heavy cluster and a lighter cluster (or lighter 

clusters), the form of the B matrix can be made into a simpler form by 

treating ~he lighter clusters as the valence clusters around the heavier core 

cluster.32
> 

For the sake of explanation we consider the two-cluster system and in­

vestigate some properties of the kernel @ (R0 , R; Re', R'). In the case of the 

common oscilator parameter we know. from Eq. (2 ·1·13) 

e (Ro, R; Ro', R') = e~p {- .~ Av (R0 *-"--- Ro') 2} e (R, R') 

(2·2·30) 

This means that if we know the GCM kernel @(R; R') =@(Ra=O, R; Ra' =0, 

R') th~ GCM kernel @ (Ra, R; Ra', R') with four GC is obtained easily. 

Namely the essential part of the GCM kernel @(Ra, R; Ra', R') which needs 

so much computational effort is determined not by the set of full four GC 

(Ra, R, Ra', R') but by a set of two GC R and R'. A set of values of th_e 

GC R 1 = 0, R 2 = S, R/ = 0, Rz' = S' which is equivalent to Ra = (N2/ A) S, 

R=S, Ra'=z(N2/A)S', R'=S' is important for our later discussion. Using 

the above Eq. (2· 2·30) we know that the GCM kernel @ with arbitrary 

complex values· of four GC (R0 , R, Ra', R') is related to the GCM kernel @ 

with the above type of set of GC, as follows, 

e (Ra, R; Ra', R') =exp[ ~- Av{( ~ 2 ) 
2 

(R*-R')
2

- (R0 * -R/) 2
}] 

x e(N2R R· N 2 R' R') 
· A ' 'A ' 

(2·2·31) 
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112 ' H. Horiuchi 

Almost the same results as the above case of V1 = V2 hold also for the 

case. with unequal oscillator parameters V1 =Fv2• We first note the following 

relations, 

p(A, B) =exp{ -aA2 -/3A·B-rB2
}, 

p(XG-RG, r-R) =p(R0 , R)exp{ -aXG2
- ({3r-E) ·XG} 

X exp{ -rr2 +F·r}, 

E=2aRG+{3R, F={3RG+2rR. 

The GCM kernel (GC are arbitrary complex vectors) 1s 

@ (RG, R; RG', R') 

=<f(Cb R1)fCC2, R2) /CJ/cJl{f(Cb R/)f(C2, R/)}) 

= q2 p ( RG *, R*) p ( Ro', R') 

(2· 2· 32) 

X < exp [-aXi- ({3r- E) · XG] exp [- rr2 + F · r] ¢ /CJ 

X /cJl{exp[ -aXG2
- ({3r-E') ·XG]exp[ -rr2 +F'·r]¢} ), (2·2·33) 

where E' = 2aRG' + {3R', F' = {3RG' + 2r R'. Now we express cJl as a sum of· 

the permutation operators Pe as cJl = LJe cePe and consider the matrix element 

@e which is obtained by replacing cJl by Pe in the above equation. By using 

the notation r' =Per, this @e is calculated as follows, , 

@cocq
2
([ S dX~ exp{ -2aXG2

- ({3r-E+/3r' ---:-E'*)'·XG} J 

X exp{ -rr 2
+F~r}¢/LJ/Pc[exp{ -rr2 +F' ·r}¢]) 

=q
2

(
2
:r12 

\exp{ 8 ~ cer-E+er'-E'*)
2
} 

X exp{- rr2 +F·r}¢/ 0/Pc [exp {- rr2 + F' ·r}¢]) 

= q
2 (_!!_) 312 

exp {_l__ (E* + E') 2} I exp {L (r + r') 2} 

· 2a . Sa \ Sa 

xexp {- rr2 + G · r} ¢/LJ/ Pe[exp{-'- rr2 + G' · r} ¢]) 

=q
2 exp {S~· (E* +E') 2

} (exp ( -aXG2
_,_ {3XG·r) exp (- rr2+ G· r)¢/LJ 

X /Pc[exp( -aXG2-{3XG·r)exp( -rr2 +G' ·r)¢]) 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 113 

= exp {__!_ eE* + E') 2} <exp ec · r) cjJ ec1, 0) ¢ ec2, 0) Jl? 
8a . -

x JPe[expeG<r)¢eC1, O)¢eC2, 0)]), 

G=F-LeE +E'*), 
4a · 

G' =F' - _!}____ eE* + E') . 
4a . 

e2·2·34) 

Here we _assumed that () does not contain differential operators and so corn­
mutes with r'. From this equation we get 

@eRa, R; Ro', R') = p* (Ra, R) p (Ro', R') exp {:a eE* + E') 
2
} 

\ X <exp (G. r) cjJ (Cl;O) cjJ ec2, 0) I() luZ {exp (G'. r) cjJ eel, 0) ¢ ec2, 0)} >' 
E=2aRa+f3R, E' = 2aRo' + (JR', 

G= (2r-L)R+ p___Ra~LR'* _ _§___Ro'*, 
4a 2 4a 2 

G' = (2r-L)R' + _§___Ro' _}!_R* _ _§___Ra*. 
4a 2 4a 2 

e2·2·35) 

This equation clearly shows that the essential part of the GCM kernel in the 
case of the l).nequal oscillator parameters is also determined by a set of two 

vectors G and G' not by the original set of full four vectors R 0 , R, R 0', R'. 
The GCM kernels @ with the GC (R0 , R, Ra' ,- R') which give the same G and 
G' vectorsare equated to each other by'the simple multiplicative factors which 

are independent of the operator(). Using this Eq. (2·2·35) we obtain a similar 
relation to Eq. (2 · 2 · 31) which expresses the general GCM kernel by the 

special GCM kernel of the type @(eN2/A)S,S; eN2/A)S',S'), as below, 

@ eR R. R I R') . 
G, ' G , 

p* (Ro, R) p (Ro', R') 

p*( ~ 2 S, s)p( ~ 2 S', s') 

exp {__!_ eE* + E') 2} 

x 8a e( N2 S S· N2S' s')' 
exp { eN2V2)

2 
(S* +S') 2} A ' ' A ' ' 

2a . 

S- a+Avl G+ V2-V1 G'* 
4N1N2V1V2 / 4N1vlv2 ' 

S' a+Avl G' + V2-V1 G*. 
4NlN2vlv2 4Nlvlv2 

(2·2·36) 

As seen above in Eqs. (2 · 2 · 31) and (2 · 2 · 36) the GCM kernel can be 
reduced to the. type, 
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114 H. Horiuchi 

e(N2 S S· N2S' S') 
· A ' ' A ' 

_ = <<P (Ch 0) </J CC2, S) I C/ 1<-iZ {</J (Ch 0) <jJ CC2, S')} ). C4· 2· 37) 

Since the position of the cluster C1 in bra and in ket is the same in this 

matrix element, the sub-matrix of the overlap matrix B which is formed only 

by the orbitals in C1 is unity. By choosing C1 larger than C2 (N1> N2) the 

matrix B is thus fairly simplified. 

T~e case when a lighter cluster C2 is a Os-shell cluster (like as n, d, t, 

a) the kernel @ ( (N2/ A) S, S; (N2/ A) S', S') is calculated as follows. 32
> By 

representing .</J CC2, S) as (1/ v' N 2!) det {cp08,1 (S) ···~os,N 2 (S)} we note the follow~ 

. mg relation, 

det { Cf?a1, 1 • • • Cj?a1N1Cf?os,1 (S) · · · Cf?os, N2 (S)} 

= det {cpat.1 .• ·Cf?a
1
,N/Pos,1 (S) · · ·fPos,N2 (S)} 

which g1ves us 

e(N2 S S· N 2S' S') 
A ' ' A ' 

= <CJ?a1,1···cpa1,N1fPos,1 (S) ···fPos,N2 (S) IC/ 

X I det { (/?.a
1
,t • • • Cf?al' N1

fPos, 1 (S') · · · fPo~, N
2 
(S')}) 

A 

{ en 
for CJ=~CJi, 

i=l ' 

= (II) 
A 

for CJ=t ~ C/ij' 
i~j 

Nt 

(II)= PN2 {i- ~ <CJ?a
1
,ief?a

1
,JIC/Icpa

1
,ief?a

1
,J)a 1 

i~j 

- ~ . . 

+ P- 2! ~ <fPos,i (S) fPos,J (S) IC/IfPos,i (S') fPos,J (S') )a 
i~j 

P=<fPos (S) lfPos (S')) = <<Pos (S) l$o8 (S')) = <fPos (S) ICJ?os (S') ), 

(2· 2· 38) 

(2· 2· 39) 

This is. because the B matrix is now diagonal and is given by BiJ = pi(JiJ ~here 

Pi= 1 if i E cl and Pi= p = < (fJos (S) I Cf?os-CS') > if i E c2. When CJ is a two-nucleon 
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Kernels of GCM, RGM atJd OCJtf and Their Calculation,al Methods 115 

interaction V, the term in· the above equation L:;f.!1l:~!1 <CfJa
1
,i{/Jos,J (S) I VICfJa

1
,i 

(/Jos,J(S') )a is expressed as L:;~! 1 (cp08 ,J (S)I UHFICfJos,J (S')) where the H~rtree-Fock 
potential UH.F produced by the core (C1) particles is· defined by 

(2·2·40) 

for arbitrary single particle states lm) and In). 
It is to be noted that the relations of Eqs. (2 · 2 · 31) and (2 · 2 · 36) are 

valid' when we treat the direct GCM kernel simply by replacing @by @D a.s 
is clear from the derivation of them; It is also easy to show that for lJ = Vr 
= L:;f,;lL:;~!l vij the corresponding kernel @T of Eq. (2 ·1· 23) ) is given by 

f?Y(N 2 S S· N 2 S' S') 
A_ ·' 'A ' 

(2·2·41) 

2.2.c. Decomposition of kernels according to the -nttmber of the nucleons 
exchanged 

Now we investigate the formulas o£ Eqs. (2 · 2 ·10) /"'-./ (2 · 2 ·13) by ex­
amining the number of exchanged nucleons between clusters. For this, we 
consider two-cluster system, the wave function of which is given by 

. -:-j l Jl {¢ (C,, R,) ¢ (C,, R,)} 

(~) ' 

(2·2·42) 

where p denotes the permutation of nuCleons between cl and c2 and c (P) IS 
the signature of P.' Equation (2 · 2 · 42) is, of course, just the Laplace expan­
si~n of the single Slater determinant into the sum of the products of two Slater 
determin;;mts. So following .. Eq. (2 · 2 · 2) · we can rewrite Eq. (2 · 2 · 42) in 
a :qiOre concrete form, 
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116 H. Horiuchi 

(2· 2· 43) 

where (p1, P2, · ··PN
2

) ·are the numbers which are· left after subtracting the set 

of numbers (kh k2 , • • • kN) from (1, 2, ···A) and satisfy P1 <P2 < · · · <PN
2

• By 

using Eq. (2·2·43) we re-calculate the kernels of Eqs. (2·2·10), (2·2·11) 

and (2· 2·13). 

First the overlap. is 

<£P1 (1). ''£f?N1 (N1) £f?N1+1 (N1 + 1) '"£f?A (A) I 

X det {qt/ (1) · "£1?~ 1 (M) £1?~ 1 +1 CM + 1) '"£f?A
1 (A)}) 

Nt 

= · I: (-) i?l(i+cri) (£Pcr1 (0'1) · "£P 11N (0' N) £P11N +1 (d N1 +1) "·cptJA (0' A) I 
11t<l12<-··<crN1 

1 1 .: 

X det {cp/ (0'1) '"£1?~ 1 (0' N)} det {C)?~ 1 +1 (0' N1+1) '"C)?/ (0' A)}> 

~1 (i+tJ,;) (cpqljcp/) ...... (cpqllcp~) 
I: (-) i=l : : 

CTt<cr2<··-<11N1 (cpq Jcp/) ...... (cpt1 Jcp~ > 
N1 N1 . 1 

(2·2·44) 
. . 

(cp11Aiq?~1+l> ......... (cpi1AicpA') 

where we denoted £f?c
2
,i by £f?N1H, C)?~ 2 ,i as C)?~ 1 +i and (kh ... kN

1
,Pb ... pN

2
) as 

(O'h·"O'N
1

, O'N
1
+1, ... ()A). This is just the Laplace expansion of the overlap de­

terminant det · B of Eq. (2 · 2 ·12), 

B
1 

BITI ((cplJcp/) ... (V?llcp~) ) 

det·B = B 1 • • 
= : : ' 

BTII BTI (cpNllcp/) ... (cpNllcp~) 

BTI ~ ((I"N,+l\1";,,+1> ... (I"NTII"D), 

. (cpAJcp~l+l> ...... (cpAJcpA') I 

· ((cplJcp~t+l> ... (cplJcpA') ) 

BITI= (cpN:llcp~l+l> ... (cp;llcpA') ' 

BTII=·(<q?Nt+l:lcp/) ... (cpNlrlcp~))· 

<cpAJcp/) ...... (cpAJcp~) 

(2·2·45) ' 

From the above procedure we can express the full overlap kernel (OV.K.) as 

the sum of the partial overlap kernel (OV.K.) n which is coming from the 

n-particle exchange part o£ the wave function as follows: 

(OV.K.) =I: (OV.K.) n , 

n=O 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 117 

X 
(9ll"N1+1~9~ 1 + 1 > ... ••• (9ll"N1+119A') . . . . (2·2·46) 

(90"A~9~1+1) ········ · (9lTAI9A') 

where 2: (n) means to SUm over those ( 6'1, · • ·, (J' N) in which the number of (J'i 

satisfying 6'i>N1 is just n. Therefore, it is clear that (OV.K.)n are obtained 
from the following relation,9

) 

det · B (A)= 2: A2
n (OV.K.) n , 

n=O · 

(2·2·47) *) 

The din:~ct overlap kernel is obtained by putting A~ 0. in Eq. (2 · 2 · 47) re­
sulting (OV.K.) direct= (OV.K.) n=o = det (B1

) det (BIT). Next, for the. one-body 
operator, by using l:i LJi = l:i LJO"i' we get 

A 

(91 (1) "'9A (A) 12: LJil det{91(1) .. '9A (A)}) 
i=1 . 

(90"1[9/) ............ (90"1[9~) . . 
= 2: (-)~ 11 (i+O"i){~ (9ll"JLJI9/)""""'<9ll"ill/l9~) 

(0"1<ll"2<··<ll"N1) i=l · · 

(90";119/) ......... (90";119~) 

(90"~ 1 + 1 19~1+1> ...... (9ll"~ 1 + 1 19A
1

) 
X . . 

(9ll"A/9~!+1) ......... (9ll"A/9/) 

(2·2·48) 

Thus by a similar argument to the above we can decompose the one-body 
operator kernel (OB.K.) as the sum of (OB.K.)n which are defined in. entirely 
the same manner as (OV.K.) n. as follows: 

(OB.K.) = 2: (OB.K.) n, 
n=O 

(OB.K.) (A) = 2: A2
n (OB.K.) n, 

n=O 

(OB.K.) (A) 

*) We note the relations 

I 
BI J..BI IT I = I BI Bl IT I = I BI A 

2 

BI IT I 
J..BITI BIT J.. 2BITI BIT BITI BIT • 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.6

2
.9

0
/1

8
4

4
9
7
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



118 

Nl 
- :E 

i=l 

H. Horiuchi 

.<<Pd<P1
1> ...... <<Pli<P~) A ( <P1I <P~ 1 + 1) ....•.. A<<P11<PA1

) 

. . 
<<Pill/ I <P/) .. · <<Pi [l/ I <P~) A<<Pi)l/1<1?~ 1 +1) ··· A<<Pi[01<PA') 

<<f'Ntl<f'i') ... <<f?Nll<f'~) A<<PNli'P~t+l> ... A<<PNJ<PA
1

) 

ABITI BIT 

. . 
A<<Pi[l/I<P/) ... A<<Pi[l/I<P~) <<Pi)l/I<P~l+1) ... <<Pill/I<PA') 

. . ; . 

<<PAI<f?~1+l) .. .. .. <<PAI9A
1

) 

(2·2·49) 

We can calculate (OB.K.) (A) by the following formula, 

for (1 <i<N1, N 1<j<A) or (N 1<i<A, 1 <j<N1) ~ 

for other (i, j). 

(2·2·50) 

Similarly for the tw<;>-body operator kernel (TB.K.), we get 

(TB.K.) = :E (TB.K.) n, 
n=O 

(TB.K.) (A) = :E A2
n (TB.K.) n , 

n=O · 

X { (B (A) - 1) ki (B (A) - 1) ~j- (B (A) - 1) kj (B (A) - 1) u}, 

F 
for (i, k)' (j, l) E N 1 

IT 

for/ (i, k) E NIIT, (j, l) $ N 1 
IT, 

;.,,. ' ll or 

for (i, k) $ N 1 
IT' (j, l) E N 1 

IT 

1 for (i' k) ' (j' l) $ N
1 

IT' 
(2~2-51) 

where (P, q) EN1
IT means (N1 <J:<A, 1<q<N1) or (1<p<N1, N 1<q<A). 

Both in Eqs. (2·2·49) and· (2·2·51), we obtain the direct kernels calculated 

in § 2.2.a. by putting A= 0. 

2.2.d. Range· of kernels 

We denote the Os single-particle H.O. wave function around Ri as <f?i,os 

= (2v£fn) 314exp{-vi(x-Ri) 2}. Op orbit wave functions are obtained hy the 
I 

' aifferentiation of (/Ji,Os by Ri; for example, (/Ji,Opz =vi -
112 (8 /8Ri:c) (/Ji,Os• If we have 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 119 

the matrix elements by only the Os orbits, the differentiations of them with 
respect to the GC (Ri) give the matrix elements by higher orbitals such as 

( 
I ' 

Op, 1s, Od and so on. We give below some formulas of the matrix elements 
by Os orbitals ;18

), 33), 
34

) 

< . 1 
(-h

2p2) 
1 

. )=B··j£___ vivJ {3- 2vivi(R -R )2} CfJt,OS 
2 

CfJ J ,!Js tJ
2 

. .. i J ' 
m , m vi+v1 vi+v1 . 

<CfJi,Os I Y kv (x) I CfJ J,os) = Biiy kv (AiJ), 

< I -P('Xt-002)21 > B B C3f2 - (1-C)D2 CfJi,osCfJj,Os e CfJk,OsCfJ~,Os = ik. J~ . e , 

1 . _ B B · · erf (I D I) ' · 
<CfJi,osCfJJ,osll , 1 1CfJk,osCfJ~,os)- ik J~J 2 ( . )IDI' x1- x2 . · . aik + a J~ 

I 

Ykv(x) -xkYkv(x). (2·2·52) 

For further details, see Refs. 11), 1~), 33), 34). 

We discuss the range of the GCM kernels. below by using Eq. (2 · 2 ·52) 
in the case of the equal oscillator widths v = V1 = V2 = ···. Usually, the. GCM 
kernels are the sum of terms each of which is tile product of the polynomial· 
part of GC's and the Gaussian part' of GC's. In the case of the Coulomb 
interaction kernel there appear the terms which are the product of the error 
function of GC's and the Gaussian function of GC's. The important factor to 
determine the range of the GCM kernel is the form o:f the Gaussian parts of 
the kernel. What we discuss here is how the Gaussian parts of the GCM 
kernels are. We will see in the fol~owing that the Gaussian parts of the 
GCM kernels are governed by the number of the exchanged nucleons between 
clusters. 

First w:e consider the overlap kernel. The Gaussian parts of the matrix 
elements of overlap matrix B are the same within the same submatrices B 1

, ' ' . 
B 1 

IT, BIT 1
, BII in Eq. (2· 2· 45). The Gaussian parts of the matrix elements 

of the submatrix B 1 are all of the form , e{Cp{- (v /2) (R1 - R/) 2}, ·and 
similarly for B 1 

IT, BIT 1
, BIT they are exp{- (v/2) (R1 -R/) 2

}, exp{- {v/2) 
X (R2 -. R/) 2}, e~p { ~ (v /2) (R2 - R/) 2}, respectively, where R 1 = (- N 2/A) R~ 

R2 = (N1/ A) R, R/ = (-N 2/ A) 11', ,R/ = (N1/ A) R'. From the argumelits 
leading to Eq. (2·2·47) it is clear that (OV.K.)n has a Gaussian part of the 
form8l:--l3l 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.6

2
.9

0
/1

8
4

4
9
7
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



120 H. Horiuchi 

X [ exp {- ~ { (R1 - R/) 2 + (R2 - R/}
2
}} J n 

=exp[- ~ {cN1-n)(~lr CR-R')
2 + CN2-n) (~ 2 r CR-R')

2 

I 

+~(N R+N R') 2 +~(N R+N R') 2
}] 

A2 2 t A2 1 2 . 

n) (R-R')
2

- ~ n(R+R')
2
} 

= exp {- N 1N 2 'V (R- R') 2 - nvR · R'} 
. 2A 

=exp { '- ~~ 2 v (R2 +R' 2
) + (N~N 2 

'- n) vR·R'}. (2·2·53) 

In the case of the kernels of the one-body operators like as the kinetic energy 

and the multipole operators, we see from Eq. (2 · 2 ·52) and from the argu­

ments leading to Eq. (2 · 2 ·50) that the Gaussian part of (OB.K.) n is the. same 

as that of the overlap kernel given in Eq. (2 · 2 ·53). Finally we consider the 

kernels of the two-body operators. As a representative exar;nple we study the 

kernel of the .single-range Gaussian interaction operator :Ei""'jexp {- ,u (xi- xjY}. 

From Eq. (2 · 2 ·52) we know that, in the present case of the equal oscillator 

widths, <V?i',os(/?j,os I exp{--:- ,U Cx1 -x2Y} IV?k.os(/?l,os) = BikBjL{vj (v + ,u) }
312 

exp{- Vp.(Ri 

- Rj + Rk- RL) 2} where Vp.=v,uj {4 (v + ,u)}. Then, from the argument lead­

ing to Eq. (2·2·51) we see that the Gaussian parts of .(TB.K.)n have five 

possible forms each of which is the product of the term of Eq. (2 · 2 ·53) 

with one of the following five terms: 1, exp{ -vp.R2
}, exp{ -v~~-R' 2

}, exp{ -))~~-· 

(R-R') 2
} and exp{ -v~~-(R+R')

2
}. 

§ 3. Calculation of RGM kernels 

-Transformation from GCM to RGM-

3.1. RGM wave function and kernel 

For the sake of notations, we here discuss the form of the wave function 

and kernel in the RGM framework. 3)' 36)' 37) The wave function in RGM has the 

. following form in the case of the system composed of two spin zero clusters, 

. nodl{x- (r) ¢o (C1) ¢o (C2}} = J dax (a)nodl {o (r~ a) ¢o (C1) ¢o CC2)}, 

n0=JN1!N2!jA!. (3·1·1) 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 121 

The matrix element of the operator () with these wave functions is 

(noc.A {xl (r) ¢o ( C1) ¢o CC2)} I u lnoc.A {x2 (r) ¢o ( C1) ¢o ( C2)}) 

= J da1da2X1 * (a1) X2 (a2) m (a1, a 2 ), 

m(ab a2)=<o(r-al)¢o(Cl)¢o(C2) lulc.A{o(r-:-a2)¢o(Cl)¢o(C2)}). (3·1·2) 

ni (a1, a 2 ) is called the RGM (integral) kernel of the operator LJ. 
For the multi-cluster system, the RGM wave function has the form 

c.A{x (~b ···, ~n-1) llf=l ¢o (Ct)} where ~tare the relative coordinates of n clusters. 
(such as Jacobi coordinates), and the RGM kernel ot the operator () is 

The RGM wave function of the system including rearrangement channels 
has the following form, 

(3·1·4) 

The RGM kernels necessary for this system are 

(3 ·1·5) 

When we treat the relative motion with definite angular momentum, X (r) 
1s XL (r) YLM(r) and the necessary kernel is 

(3 ·1· 6) 

Similarly for the multi-cluster system, X C~t. ... '~n-1) is ·xL. a C~t. ... '~n-1) YLM, a 

Cft. · · ·, f n-1) where the definition of YLM;"a is given in Eq. (2 ·1·15) and the . 
kernel is 

(3 ·1· 7) 

where the channel wave function hLM, a is defined in Eq. (2 ·1·15). 
The, channel coupling systems which involve the excitation of clusters are 

treated similarly. As an example, the two-cluster system where one cluster 
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122 H. Horiuchi 

C1 lS allowed to be excited, is . described by the Wave function 

Jl {XJ, i (r) h/M}, 

h/M- [YL
1 
(r) ¢h

2 
(Cl) ]JMcPo (C2), 

i = (L1", L2) . 

The RGM kernel for this system 1s 

(3 ·1·8) 

(3·1·9) 

The above, RGM kernels corresponding to the RGM wave functions with 

definite angular momentum are calculated by the angular momentum projection 

of the non-projected kernels m. For example, the kernel of Eq. (3 ·1· 7) 1s. 

obtained from the kernel of Eq. (3 ·1· 3) as follows: 

= fctrdai)_ (n:dbi)YI1M1,a1 (at, ... )YL2
M

2
,a2

(bl, ... )m(a1, ... ; bi, ... ). 

(3·1·10) 

The RyM wave functions are often expressed by the linear superposition 

of the suitable basis wave functions like as 

(3·1·11) 

Usual choices for {ui (r)} are the H.O. functions {RNt~ (r) Y~m (r)} or the 

Gaussian wave packetls with variable width parameters exp{ -rir 2 }r~Y~m (r); 

The kernels necessary for this kind of wave functions are 

m (i, j) = <ui(r) cPo (Cl) ¢o (C2) ILJ !Jl {uj (r) ¢o (Cl) cPo (C2)} ). 

3.2. Transformation of wave function 

3.2.a. Gaussian ·transformation 

(3 ·1·12) 

The t~ansformation of the kernels between GCM and RGM is based on 

that of the wave functions between two methods. We therefore first discuss 

the relation between. GCM and RGM wave fm;ctions for the -preparation to 

later investigations. (See also the discussion in, Chap. II.) The oscillator 

widths of all the cluster wave functions in the system are taken to be the 

same in the arguments of §§ 3.2 and 3.3. The more realistic case of unequal 

oscillator widths of clusters can be treated in almost similar ways and is 

discussed 1n § 3.4. 

For the case of the system of two H.O. clo~ed shell clusters, the GCM 

wave function is written as follows, as is discussed in § 2.1, 
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Kernels· of GCM, RGM and OCM and Their Calculational Methods 123. 

where 

= Jl {X (r) ¢o (C1) ¢o CC2)} Wo (Xa), 

X (r) = s dRT (r, R, r)f(R), (3·2·1) 

</J0 (Ci, R) =H.O. closed shell wave function centered around R 

= (2N-tV) 
314

e~Ntv(Xt-R)2¢o(C-t), 
n . 

(1) (X) = (2AV) 314 
-Avx0 s oa--.-e, . n 

r 

Xi, Xa = C.M. coordinates of the cluster Ci and the total system, 

respectively. (3·2·2) 

Here the following simple but important relation is utilized, 

(3·2·3) 

Equation (3 · 2 ·1) shows the RGM wave function is related to the GCM one 
by the Gaussian transformation. 6

l,
7
J,agJ Similarly, in the multi-cluster system, 

(3·2·4) 

where ~i are Jacobi coordinates (or any other suitably defined relative coordi­

nates) 0 btaihed by the linear combination of xi,' for example, ~1 = x2 "'- xh 

~2=X3-(N1XctN2X2)/(N 1 +N2), ···,and S-tare the corresponding Jacobi gener­
ator coordinates obtained by linearly combining Ri just as in the same manner as 

the definition of ~i by Xi, namely S1 = R2- Rh 82 = Ra- (N1R1 t N2R2)j(N;_ + N2), 
Here the condition R 1 + R 2 + · · · + Rn = 0 is assumed for Ri. 
The relative motion with definite angular momentum is tr~ated by the 

projection ·procedure applied to the above-mentioned relations. For the two­

cluster system with the relative angular momentum L, the GCM wave function 
IS 

lJf Loc too dR·R:fL(R) .pLMJl {¢o( C1, :
2 R)¢o( C2, ~ 1 R)} 

= ioodR·R:fL(R): s dRYLM(R)Jl{¢o(C1,. AN
2
R)¢o(C2 , ~ 1 R)} 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.6

2
.9

0
/1

8
4

4
9
7
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



124 H. Horiuchi 

= Jl {XL (r) Y LM (r) ¢o (C1) ¢o (C2)} Wo (Xa), 

XL (r) = 100 

dR·R
2
T L (r, R, r)fL (R)' 

where 

P LM . ( c~nstant) S dJJDi~ (JJ) R (JJ), 

r L (r, R, r) = (
2
;) 

314

47CiL (2rrR) e~r(r 2 +R 2 ). 

The relation between r and r L is 

r (r, R, r) = ~ rL(r, R, r) I: YtM(R) YLM(r). 
L=O M 

Equation (3 · 2 · 5) is just Eq. (3 · 2 ·1) with insertion, 

x (r) =XL (r) YLM (r), f(R) = fL (R) YLM (R). 

Similarly for the case of the multi-cluster system, 

lJ!Loc J[(asi.si
2
·fL,a(S1, ... ,sn-1) 

x Jgds\:· Y LM,a(S\, ... , S\~1)Jl{JI 1-'o(Ci, R£)} 

n 

=Jl{XL,a(~\, ... , ~n-1)YLM,a(g1, ... , gn-1) IT ¢o(Ci)}wo(Xa), 

* 

(3·2·5) 

(3·2·6) 

(3·2·7) 

(3. 2·8) 

'XL,a(~1, ···, ~n:_1) = J[(dSi·SlTLi(~i,Si, ri)fL,a(S1, ... , Sn-1), (3·2·9) 

where a stands for the set of quantum numbers (Li, L 12, L 123 ... ) as in § 3.1. 

Equation (3 · 2 · 9) is . just Eq. (3 · 2 · 4) with insertion of X (Eh · .. , En-1) 

= XL.a(~h "·, ~n-1)[ "' [YL1(g1)YL2(g2)]L12 ... ]Land f(S1, "·, Sn-1) =fL.a(Sh ... , Sn-1) 

X [ ... [YLl (S1) YL2 (S2) ]L12 ••• ]L. 

The cases when the system involves the non-closed-shell clusters with 

non-zero spins are also treated similarly. As an example, for the simplest case 

of the two-cluster system with one non-zero spin cluster cl, the corresponding 

transformation fOrmula is 

?]fLoc 100 

dR·R
2
fL,a(R) s dR 

X [YL 1 (R) ·Jl{¢L2 (ch : 2
R)¢o(C2, ~ 1 R)}]L 

= Jl {XL,a (r) [Y L
1 
(?) rPL

2 
(C1)] LrPo (C2)} Wo (Xa), 

XL,a (r) = 100 

dR·R
2
T L (r, R, r)fL,a (R)' (3·2·10) 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 125 

where a= (L1, L2). 

3.2.b. Inverse of Gaussian transformation 

The inverse transformation of the RGM wave function to the GCM one 
is done by finding the inverse kernel of r (r, R, r) (or r L (r, R, r)). Since 
T (r, R, r) is a function of only (r- R), the eigen functions of this integral 
kernel are plane waves; 

S ( 1 ) 3j2 [ (27l') 3j4 { p}] ( 1 ) 3j2 dRT(r, R, r) 
2

n exp{ikR},= r exp -
4

r 
2

n exp{ikr}. 

(_ (3·2·11) 

The spectral representations of r and r- 1 are thus 

S ( 1 ) s;2 [ ('2n) s;4 { k2 }· J ( 1 ) s;2 T(r,R,r)= dk
2

n exp{ikr} r exp-
4

r 
2

tc exp{-ikR}, 

S ( 1 ) 3j2 . . [ ( ) 3j4 { p} ] (- 1 ) 3j2 . . T-
1 
(R, r, r) = dk 

2
n exp {zkR} ;n exp 

4
r 

2
n exp {- zkr}. 

(3 ·2·12) 

Equation (3 · 2 ·12) shows r- 1 is a singular kerneP8
)'

40
) which is a well-known 

fact as a high frequency catastrophe of the real number GCM. This means 
that for some kind of relative wave functions X (r) (of Eq. (3 · 2·1)), there 
is no corresponding weight function f(R) which is non-singular. Denoting 
the Fourier component of X (r) as XF (k), f(R) is expressed by this XF (k) 
as follows, 

'x(r)= sdk(
2

17l'r/
2
exp{ikr}xF(k), 

f(R) = S dk( 2 ~f'exp{ikR} [ (;J14exp{;;} k(k). (3·2·13) 

In the case when the damping of XF (k) . at high frequency is overwhelmed by 
the growth of the factor exp (k2

/ 4r), f(R) becomes singular. As an example, 
when the width parameter rH of the Gaussian wave packet X (r) is equal to or 
larger than r of r, there is no corresponding regular f(R), while on the 
contrary for rH<r we can find the regular function f(R) as below 

rH exp{- rHr2} = dRT (r, R, r) 2 rHr 2 exp - rrH R2 . (
2 ) 3j4 . s ( 3 ) 3j4 { } 

n n Cr-rH) . r-rH 

(3 ·2·14) 

When rH is near r this f(R) is sharply peaked around the origin ~nd in the 
limit of rH~r it becomes the Dirac delta function iJ (R). More generally for 
rH<I, the H.O. wave function VNLM(r, rH) =RNL(r, rH) YLM(r) (N=2n+L 
=number of osCillator quanta) has its corresponding f(R) as follows :11

)'
41

) · 
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126 H. Horiuchi 

_ ( r) a;4( r + rn) <N+3f2)f2 { 
BNL (R, r, rn) - - . . exp 

. 27C, r-rn . 

, · [ .(2v) L+3f2 ( v'Z) N+LH( N- L)! ]
112 

_ . 2 L 2 (L+ 1/2) . 2 

RNL (r, v) = ..J- . r exp {- vr} LccN -L);z/2vr), 
. 7C(N+L+1)!! 

(3 ·2·15) 

where Ln <L+ 112
> (2vr2

) is the associate Laguerre polynomial and it should be 

noticed that the number of the H.O. quanta N is used instead of the number 

qf nodes n (N= 2n + L). This relation is equivalent to the following relation42
> 

for the one-dimensional H.O. wave function X~, 

where Hn is the Hermite polynomial. This transformation equation (3 · 2 ·16) 

is just equivalent to the formula about the Gaussian transformation of the 

Hermite polynomiaV2
> 

The equivalence of Eq. (3 · 2 ·17) to Eq. (3 · 2 · 16) is proved by putting 

x = ..J (r+ rH) /2rH(r_:_ rH) z, R:c = ..J Cr2
- rH

2
)/2r

2
rHY P = 2rH! Cr+ rH) in Eq. 

(3; 2 ·17). The functional form of f(R:c) = bn (R:c, r, rH) of Eq. (3 · 2 ·16) was 

obtained by Griffin and Wheeler19
> by solving directly the GHW equation for , 

the H.O. Hamiltonian in the translated Gaussian basis. (They reported the 
I 

form of bn (R:c, r, rH) for n = 0, 1 and the recursion relation for higher n instead 

of the explicit form.) BNLM and bn are sharply peaked around the· origin 

when rH js near r 'having the same numbers of the nod<jll points wifh the 

corresp<;mding H.O. functions, and they become singular in the region rH>r. 

The singular weight functions BNLM and bn in the case of rH>r can be ex­

pressed in the integral form as was discussed above in Eq. (3 · 2·13). The 

Fourier transforms of RNL(r,rH)YLM(r), and Xn(x,rH) necessary in Eq. 

(3·2·13) are again the H.O. functions of k= (k, k) and k:c, namely. RNL(k, 

1/ 4rH) YLM (k) add Xn (k:c, 1/ 4rH), respectively. These integral forms will be. 

used in later discussion. 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 127 

The aim of this section 3 is to transform things in GCM space to those 

m RGM space. As for tpe wave function, this transformation is done ,by the 

Gaussian transformation kernel r (or rL) but on the contrary for the integral 

kernels of operators the transformation is achieved by the inverse Gaussian 

kernel. r- 1
• 

For the treatment of the dynamics in the GCM fornialis:m', ~any works 

confine the use of the GCM within the. interaction region and for dealing with 

the scattering or reaction problems the connection is dohe between the inner 

waves treated by GCM and outer waves whose functional forms are known 
' ' -., I 

except the scattering matrix elements, with the use of the R-matrix theo­

ryn'43l~46l or variational methods. 45 l~ 47 l But there are also many works which treat 

every thing in 'the entire GCM space. 48 l~ 53 ) In the former we usually need 

not transform the quantities in RGM to GCM but in the latter the asymptotic 

boundary condition in the usual space (namely RGM space) must be trans­

formed into that of GCM. Thus in the latter the Coulomb wave functions in 

the outside region (in RGM) must be transformed into the ~orresponding 

weight functions fL (R) with the use of r L -l. . Since we do not discuss this 

approach later we here only quote the references. 

i 3.2.c. Expansion of T by the H.O. functions 

By using the generating function formula for the Hermite polynomials, 

(3 ·2·18) 

We can easily derive the expansion formula of the Gaussian transformation 

kernel r by the H.O. functions XN (r, r) as follows :14
) 

T (r, R, r) = (
2
;) 

314
exp {- r (r- R) 2} 

= exp{- ~ R
2
} ~[( JrR)N /VN!]XN(r, r), 

3 3 

RN== II R'{i, N!== II (N£!). (3·2·19) 
i=l i=l 

The angular momentum projection formula for x(Q,Q,N) (r, r)' 

AN== ( -) <N-:-Z)j2j . ' (2l + 1) . N!. 
z . · (N -l)!!(N +l+1)!!' 

(3·2·20) 
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128 H. Horiuchi 

gives us the expansion formular of r as in the following form,*) 

T(r R r) -exp{-LR2} D (rR2)Nf2j 4.n AN 
' ' 2 ~ v N! 2l + 1 L 

x Y1m (R) Rm (r, r) Yzm (r). (3·2·21) 

3.2.d. Complex generator coordinates 

The extension of the GC into complex numbers. can avoid the difficulties 

related to the singularity of the inverse Gaussian transformation r- 1 encoun­

tered in the real number GCM. And further, as will be seen in later appli­

cations, the complex GCM (C-GCM) has many nice properties in the investi­

gation of -RGM kernels. 

From the form of the C-GCM wave function in § 2.1 the relation of wave 

functions between C-GCM and RGM is written as follows, 

?floc Jdtt(z)f(z)e<z*) 2 1 2 cA{~o(C 1 , -A~ 2 ;*)~o(C 2 , ~~;)} 

. J dtt (z)f(z) cA {Ar * (r, z) ¢o (Ct) ¢o (C2)} (l)o (Xa) 

= cA {X (r) ¢o (Ct) ¢o (C2)} (l)o (Xa), 

X (r) = S dtt (z) A/ (r, z)f(z), 

where Ar (r, z) and dtt (z) are defined in Eq. (2·1· 29). 

(3·2·22) 

The space spanned by the entire analytic functions ·of z can be made 

into a Hilbert space (HE) by defining the inner product by the integral with 

this measure dtt (z) .29
> As an example of the complete orthonormal set of 

basis vectors of HE, we can choose the following, 

(3·2·23) 

The corresponding complete orthonormal set of .basis vectors in the usual con­

figuration space which is transformed by the kernel A/ (r, z) from {UN (z)} 

is just the H.O. wave functions {XN (r, r)} of Eq. (3 · 2~ ~9) as follows,~
9
> 

XN(r, r) = s dtt(z)A/(r,z)UN(z). ' (3· 2·24) 

Therefore Ar(r,z) can be expanded by these two sets {UN(z)}, {XN(r,r)}, 

as 

Ar (r, z) = .E XN (r, r) UN (z). (3· 2· 25) 
N 

*> A way' to derive Eq. (3 · 2.· 21) is as follows: First we. expand r (r., R, r) with r. = (0, 0, z) by 

X<o,o,N) using ,Eq. (3·2·19), and then use F(r-R)=exp(-i¢J.)exp(-i8Jy)T(r.;R,r) with 

?= (8, ¢). 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 129 

This equation is nothing but Eq. (3·2·19) .if we replaceR by z/v'r in Eq. 
(3·2·19). 

From Eq. (3·2·25) we obtain 

s d,u (z) Ar (r'' z) Ar* (r, z) = ~ XN(r'' r)XN(r, r) = 0 (r' -r)' 

S dr Ar (r, z') A/ (r, z) = ~ UN (z') UN* (z) = exp (z' ·z*). (3. 2·26) 

As is clear from the relation exp (z' ·z*) = ~N UN(z') UN* (z), the function 
exp (z' ·z*) behaves like the Dirac delta function in 'HE, 

J d,u (z) exp (z' · z*) {1) (z) = {1) (z') (3· 2·27) 

for an arbitrary element {1) (z) of HB. Therefore, m C-GCM, the inverse of 
the transformation relation x(r) =fdp(z)Ar*(r,z)f(z) causes no difficultly 
and can be written as 

f(z) = S drAr (r, z) X (r). (3·2· 28) 

As was discussed in §2.1, the transformation kernel Ar*(r,z) is the 
so-called coherent state and can be expressed as follows, *l 

W ( ) = (2r) 314 

-rr2 or--e, 
TC 

·By usmg Eq. (3· 2·27), we get 

x(r) = s d,u(z) ·exp(z*·at) W 0 (r)f(z) 

=/(at) Wo(r). 

{2 ·1· 30) 

(3· 2· 29) 

This direct relation between X (r) and f(z) was also noted by Ui and 
Biedenharn. 24

) 

3.3. Transformation of kernels 

3.3.a. RGM kernels in coordinate representation 

Throughout § 3.3 we assume that the GCM kernels are already calculated 
and we disc-qss how to transform these GCM kernels into RGM kernels. First 
we consider the RGM kernel of the operator lJ in the coordinate representation 

*l Equation (2·1·30) is related to.Eq. (3·2·25) as follows. By inserting the relation XN-(r,r) 
= (1/ v'N!) (at)NW0 (r) into Eq. (3·2·25), we obtain 

3 . 1 
Ar(r, z) =2J l1 N 

1 
(ziait)NiWo(r) 

N t=l i· 
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130 H. Horiuchi 

which in the illustrative case of the system of two close(l shell clusters takes 

the form, 

m (a1, az) =<o (r- a1) ¢o (C1) ¢o (Cz) ILJ l~{o (r- az) r/Jo CC1) ¢o (Cz) }> 
=mD (a1) o (a1- a 2) -,mE (ab a 2). 

(3-; 3 ·1) 

I 

Here mil (a) 1s the direct kernel given by 

(3. 3. 2) 

and mE(ab az) is the exchange kernel given by mE(ab a 2) =<o(r-a1)¢0 (C1) 

X ¢o ( C z) ILJ I ( JL ~ 1) { 0 ( r - az) r/Jo ( C 1) ¢o ( C z) } ) . , 

Because of V1 = V2, @(R, R') = Mr (R, R') and since. the GCM kernel Mr 
I / 

. 

can be written as 

Mr (Rh R2) = <r (r, Rb r) ¢o (C1) ¢o (C2) ILJiy}l{T (r, R2, r) ¢o (C1) ¢o (C2)}) 

= s da1da2T (ah Rb r) m (ab a2)T (a2, R2, r) 

=Tmr, (3· 3·3) 

· the RGM !ternel m is. obtained by the inverse transformation r~ 1 from ~ as 

m(a1, a2) =T-1MrT- 1 

= s dR1dR2r-~ (R1,, a1, r) Mr (R1, R2) r-1 (R2,a2, r) 

= ( 2 ~) s (Jn) 
3

t

2 S dk1dk2 exp {- ik1a1- ik2a2} 

X exp{_!_ (k12+ k/)} S dR1dR2 exp {ik1R1 +,ik2R2} Mr(R1, R2), 
4r , . 

(3. 3. 4) 

where we used the integral representation of r-l given 1n Eq. (3 · 2 ·12). 

Equation (3 · 3 · 4) shows that the RGM kernel can be obtained from the GCM 
\ 

. . 

kernel by two-fold Fourier transformations in bra and ket respectively, :first 

from GC R to linear mbmentum k and second from · the momentum k to the 

coordinate a, as shown in Ref. 7). This procedure is sometimes called "double 

Fourier transformation."13) 

A more straightforward transformation formula can be obtained by using 

the Fourier integral representation of the Dirac delta function 54 )~ 57 ) 

o(r-a) = (2~r sdk exp{ik(r-a)}. (3·3·5) 

From this equation we get, 

o(r-a) =o(r-a)exp{-r(r-a) 2
}

1 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 131 

= (2~r sdk exp{ik(r~a) -r(r-a)
2
} 

\ 

which when inserted into Eq. (3 · 3 ·1) gives us the, desired formula, 

. (3· 3·7) 

This procedure may be called "single Fourier transformation." Several au­
thors call this "complex generator coordinate techniquem>. 56>. 57> since we use 

complex generator coordinates aj + (i/2r)kj (j = 1, 2) in the GCM kernel 1\!l. 
But this "complex generator coordinate technique" described her.e is different 

from our complex GCM (C-GCM) discussed in §§ 2.1 and 3.2 which us~s the 
coherent state (or the Bargmann transformation kernel) Ar (r, z) and twice as 

many. integration coordinates Re (z) and Im (z). Thus to avoid the confusion 
we use the terminology "single Fourier transformation technique" for Eq. 

(3·3·7). 

The framework of c~GCM, of course, provides u:s the transformation 
formula from C-GCM kernels to ~GM kernels as follows, 

m (a1, a2) = S dfJ. (z1) dfJ. (z2) A/ (a1, z1) Ar(a2, z2) 

X <Ar* (r, zi) ¢o (C1) ¢o (C2) I lJ I~ {A1 * (r, z2) ¢o (C1) ¢o (C2)}) 

= S dfJ. (zl) ~fl. (z2) Ar * (a1, z1) Ar (a2, z2) 

(3·3·8) 

where use IS made of the relation of Eq. (3·2·27), o(r--:-a) =fdfJ.(z)Ar(a,z) 

*> Equation (3·3·6) can be slightly generalized as follows: 

(J(r-a) =(J(r-a)exp { -r(r- a).2 + d(r-a)} 

=( 2 ~ YJakexp{(ik+d)(r-a)-r(r-a) 2
} 

=( ;7r Y(;r r/4J dkexp{ (k~;d)2}r(r,a+ik2~d.r). 

Here' d is an arb~trary complex vector. 
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132 H. Horiuchi 

XA/ (r,z). 

· The above three transformation formulas (double Fourier, single Fourier 

transformations and C-GCM) are based on the different integral representations 

. of the Dirac delta function o(r-a) with the use of T(r,R,r), which are 

summarized as follows: 

o(r-a) = (
2

1nr(;nr14 

sdk exp{-ika+ :;} s dR exp{ikR} 

X T (r, R, r) (double Fourier) 

= (;nr (;) 314 J dk exp {- :;} r (r, a+ ;r k, r) (single Fourier), 

= J dfl.(z)Ar(a, z)exp{! (z
2
)*}r(r, :r' r) (C-GCM). 

(3· 3·9) 

The above procedures are all about the calculation of the entire kernel 

of RGM; These automatically give both direct and exchange kernels mD (a), 

mE (al> a 2) defined in Eqs. (3 · 3 ·1) and (3· 3 · 2). When we want to calculate 

only the direct kernel mD (a1) o (a1 - a 2), the calculational procedure of it is 

simply to replace the GCM full kernels Mr in Eqs. (3 · 3 · 4), (3 · 3 · 7) and 

(3 · 3 · 8) by the GCM direct kernel M/ in Eq. (2 ·1·14), 

M/ (Rl> R2) =<r (r, R1, r) ¢o (Cl) ¢o (C2) IOIT (r, R2, r) ¢o (Cl) ¢o (C2)} >. 
(2 ·1·14)' 

When the operator U does not contain the differential operation, the 

calculation of the direct kernel can be done in the following simplified way. 

Since ·the definition of mD (a) of Eq. (3 · 3 · 2) contains only one Dirac delta 

function, we need to express this Dirac delta function by the integral represen­

tation which contains two r (r, R, r)' in order to relate mD to MD. A simple; 

way is to use the relation o(r-:-a)= (n/2r) 314T(r, a, r)o(r-a) and to insert 

the integral representations of Eq. (3 · 3 · 9) into the right-hand-side o (r- a) of 

this relation, yielding 

mn(a)=( 
1 

)aJdkexp.{-ika+p} sdRexp{ikR}M/(a,R) 
2../Zn 4r · 

=- I-'- dkexp -- M/ a,a+-k - ( 1 ) 3 1 n ) 
3

/2 J { k
2

} ( i ) 

. 2n \2r 4r . 2r 

=(;r14

Jdfl.(z)ArCa,z)exp{! (z
2
)*}M/(a, ~~) .. (3·3·10) 

Here we used the commutability of the operator 0 with one r based on the 

condition that u does not contain the differential operators. We give here 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.6

2
.9

0
/1

8
4

4
9
7
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Kernels of GCM, RGM and OCM and Their Calculational/ Methods 133 

one more prescription, which utilizes the relation r (r, R, 2r) = (n/r) 314 

x T (r, R, r) r (r, R, r). First we replace the width parameter r in Eq. 
(3 · 3 · 9) by 2r and then insert the above mentioned relation into r (r, R, 2r). 
We thus obt;:lin for mn (a) the following formulas, 

mn(a) = ( 2 ~r sdk exp {- ika + :;} s dR exp{ikR}M/(R, R) 

= - - dkexp -- M/ a--k,a+-k ( 1 ) 
3 

( 7r ) 
3

/

2 s { k2} ( i i ) 
,2n 2r sr . 2r · 2r 

( n ) 
3

1
4 s { 1 2 

} D ( z z* ) = r d,a (z) A 2r(a, z) exp 2 (z) * ,Mr ;;
2
r' .J

2
r ·. 

(3·3·11) 

Here we also used the commutability of the operator () with one r. The 

double Fourier transformation formula for mD is e~pecially convenient since 
it uses only the diagonal ·elements of GCM direct kernel MD (R, R) which 

Is very easy to compute as is shown below ;11
) 

{
(I) for one-body operater (), 

= (II) for two-body operator (), 

(I)= (¢o( C1, AN
2

R) lj~l LJJI¢o(C2, ~ 1 R)) 

+ \¢o( C2, ~ 1 R) I j~ 2 LJjl¢o( C2, ~ 1 R)) , 
<¢o C C i, Ri) I :E LJ j I ¢o C C i, Ri) > 

jECi 
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134 H. Horiuchi 

I 

.Jm, n)a=Jmn)-lnm): (3· 3·12) 

Our explanation has been limited to the single channel two-cluster system. 

But 'it is evident tha:t the methods explained here can be used in other various . 

~ases since the essence is how to represent the Dirac delta function by the 

integral form containing one (or two) r (r, R, r). 

3.3.b. RGM kernels in H.O. and other ref:resentations 

I 
As discussed in § 3.1, when we express the RGM relative wave .function 

X (r) by· the linear superposition .of some 1 basis vyave functions {ui (r)} as in 

-Eq. (3·1·11), we need to calculate the kernel m(i,j) of Eq. (3·1·12). If we 

know: the kernel in c(;)Ordinate representation m (ab a 2), we can, of 'course, 

get m (i, j) as follows: 

m ( i, j) = S~a, da,u,* (a,) m (a, a,) Uj (a,). (3. 3 ·13) 

What we discuss here are the prescriptions to get m (i, j) directly from 

the GCM kernel M(Rh R 2) not b\Y the indirect method of Eq. (3 · 3 ·13). 

A general prescription is to find the·· functions Wi = r-1ui (ui (r) = fdR 

X T (r, R, r) Wi (R)). Then we get 

m (i,j) = s dR1dR2 Wi* (R1) Wj (R2) 

X s da1da2T (ab R1, r) m (a1, a2)T (a2, Ra, r) 

= s dR1dR2 wi_* (Rl) Wj (R2) Mr CR1, R2) ,' (3. 3 ·14) 

When we adopt for ·{ui}' the H.O. functions {RNiL (r, rH) Yzm (r)} or the Gauss­

ian wave packets with variable width.parameters {e-r~rzrLYLm (r) ocRN=L;L (r, ri) 

X Yzm (r)}, w~ know Wi (R) for these ui (r) as was given in Eq. (3 · 2 ·15), 

under the condition rH<r or ri<r. This prescription was discussed in detail 

in Ref 11). 

The complex GC technique provides a similar prescription to the above. • 

We calculate Wi(z) such that ui(r) =fd,u(z)Ar*(r,z)Wi(z)~ and then we get 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 135 

X S da1da2Ar (at, z1) m (a1, a2) Ar * (a2, z2) 

= J d,a (z1) d,a (z2) Wi*(z1) W J (z2) ' 

(3. 3 ·15) 

An interesting and important case is when {ui} are H.O. functions {XN, (r, r)}. 
Then wi (z) = UNi (z) as was discussed in § 3.2.d. If we define Mr by 

M (z z *) == exp - (z 2
) + - (z 2

) * M - 1
- -· 

2
--

'"'"' {1 1 } (z* z*) 
r l, 2 2 1 . 2 ' 2 r .Jr' .Jr-

= (Ar: (r, Zt) ¢o (C1) ¢o (C2) I 0 I r.Jl {Ar * (r, z2) ¢o (C1) ¢o(C2)}), 

(3. 3 ·16) 

iii (i, j) are obtained as the expansicm coefficients of the power series expansion 
of Mr(z1,z2*) by (z1)N1

, (z2*)N2
• Let the power series expansio:p_ of Mr be 

(3. 3 ·17) 

then from Eq. (3. 3 ·15) and from wi (z) = UNi (z) we obtain 

iii(~, Nj) ==(XN, (r, r) ¢o (C1) ¢o CC2) 10 lcA{XN, (r, r) ¢o (Cl)f/Jo CC2)}) · 

=CN,;NJ. (3·3·18) 

The result Eq. (3 · 3 ·18) can be derived in a different way. Consider 
Mr (Rb R 2) where Ri need not be complex· number vectors. We insert the 
expansion formula of r by H.O. functions which is given in Eq. (3 · 2 ·19), 
into the defining equation Eq. (3 · 3 ·16) of Mr> obtaining' 

Mr (Rt. R2) = 2:: UN
1 
(Rl) UN

2 
(R2) 

N1N2 

X (XNl (r, r)¢o (Cl) ¢o (C2) 10 IJz {XN2 (r, r) ¢o (Ci) ¢o (C2)} >. (3. 3 ·19) 

This gives a proof for the relation of Eq. (3 · 3 ·18). Therefore we call the 
above procedure to get iii(~, N;) <XN1 (r, r) ¢o (C1) ¢o.(C2}1C?IcA{XN2 (r, r) ¢o (C1) 
X ¢o (C2)} ), the generating function technique. 

If we insert the expansion formula of r by H. 0. functions with definite 
angular momenta which is given in Eq. (3 ·2 · 21) into Eq.- (3 · 3 ·16) defining 
M we obtain58

> r 

Mr(Rt, R2) :- _E (RN 1
/ .J N1!) (RN 2

/ / N 2!) .J 4
7C 

~:f:~: . . (2ll + 1) (2l2 + 1); 

X A~ 1 A~ 2 Yz 1 m 1 (Rt) Y~Jn 2 CR2) iii (Ntl1m1; N2l2m2), 

iii(Ntllml, N2l2m2) ==<RNlll (r, r) Yzlml (r) ¢o (C1) ¢o (C2) I 
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136 H. Horiuchi 

(3·3·20) 

Eq. (3. 3. 20) is used to calculate m (N1l1mb N2l2m2) from MrCRb R2); 

namely, we expand \Mr(Rt, R2) by R1N1 yt
1
m

1 
(Rl)R/2 Y/!'m

2
(R2) and then we 

obtain m (N1l1mb N2l2m2) as the expansion coefficients o£ Mr (Rt, R2). 

We finally study the case when the system includes the. non-zero spin 

clusters. The simplest system is that described by the wave function of Eq. 

(3 ·1· 8) where the SU3 shell model wave function is adopted forJ/Y£ (C1). By 

using Eq. (2 ·1· 21) we obtain the following relation: 15
l 

exp{~ (R/+R/)} \VJQ
1 (C1, A:;R1)1Jo(c2, A~ 1 rR1)1 

x C'Ji cA {~·· ( C, A:; R,)~, ( C ,, A~' r R,)}) 

= <Ar(r, Rr) ¢Q1 (Cl) ¢o(C2) I lJ JJl {Ar(r, R2) ¢Q2 (Ct) ¢o(C2) }) 

= 1::. Rf1Rf2/-JN
1
! N

2
! 1::. (4n)

2

A~ 1 A~»AfiAfj 
N1N2 J 1 M:~ 2 M 2 J(2li+1) (2li+1) (2Li+1) (2Li+1) 

X [Yz, (Rt) Y L,; (!21)] J 1
M 1 [YzJ (R2) Y LJ (!22)] J

2
M

2 

X <RN1zi(r, r) hf1
M

1 JLJJJl{RN
2
z/r, r)h~ 2 M 2 }). 

3.3.c. Range of kernels 

(3·3·21) 

Corresponding to § 2.2.d we discuss here the range of the RGM kernels. 

When the Gaussian form is assumed for the two-nucleon potential, both the 

norm kernel and the Hamiltonian kernel without Coulomb part in two-cluster 

system have in general the following form in GCM, 
. . ' 

1::. ciR2tiR'2mi (R · R') n, exp{- E1iR2- E2iR'2- EaiR · R'}, 
i 

(3. 3. 22) 

where Eki (k = 1"'-'3) are shown in '§ 2.2.d to be determined by the number 

of the exchanged nucleons between clusters. What we discuss is the range . 

of the RGM kernel transformed from GCM one of Eq. (3 · 3 · 22). By using 

the prescriptions of § 3.3.a, the transformed RGM kernel from the GCM one 

of Eq. (3 · 3 · 22) is 13
) 

( 1_) 3f2~ ci( _ )tt+m,;+n•(-a ) zi (-a ) mi ( ~) niC
0

_ 312 

2n t . 8Eli 8E2i 8E3i 

X exp {- E~ir
2 - E~ir'

2 - E~ir · r'} 

"""' , 2l·'- 12m'( ')n"' { E' 2 E' 12 E' '} 
= ~. c i r • r i. r · r • exp_ - 1ir - 2ir - 3ir · r , 

i 

Co=1_.:. (E1i+E2i)/r+Ftf(4r 2
), Fi . 4EliE2i-E~i, 

E~i= {Eli-Fi/ (4r)} /Co, E~i= {E2i-Ft/ (4r) }/Co, 
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Kernels of GCM,. RGM, and OCM and Their Calculational Methods 137 · 

. (3·3·23) 

In the case ·of the overlap and kinetic energy kernels, Eki (k = 1r-v3) are, 

from Eq. (2· 2· 53), 

(3. 3·24) 

where n is the number of nucleons exchanged. Then the range parameters 

E~i (k = 1r-v3) of the RGM kernels are calculated by Eq. (3 · 3 · 23) to be8
l 

E~i = E~i = _L { nv + 2r- nv}, 
, 2 2r-nv nv 

E ' { nv 3i=r.----

2r-nv 
2r- nv}. 

nv 
(3. 3. 25) 

We can similarly evaluate E~i (k = 1r-v3) of the RGM kernel of the Gaussian 

two-nucleon interaction although they are slightly more complicated compared 

with Eq. (3 · 3 · 25). 

3.4. System of clusters with unequal oscillator widths 

3.4.a. Transformation formulas 

As was discuss~d in § 2.1, when the clusters of the system are represented 

by the H.O. shell model wave functions with unequal oscillator width parame­

ters, the GCM wave functions contain the spurious component of the excitation 

of the center-of-mass motion. Nevertheless, the GCM kernels constructed 

with these GCM wave functions containing spurious components can be 

used 11 )' 54 )~ 57 )' 95 ) to evaluate the RGM kernels which have no problem of the spuri­

ousness since RGM wave functions do not contain the center-of-mass variable at 

all. 

First we give a prescription which uses the two-fold Fourier transforma­

tion. Using the relation of Eq. (2 ·1· 6), we obtain 

= (2~1vl. 2~zvzr;4 s dR exp {ikR} 

X exp{ -aX/-(]XG(r-R) -r(r-R) 2}¢o(C1)¢o(Cz) 

_ (4N1N 2v1v2)

3

1
4 (n) 3

;

2 

{ k2

} { ( f3
2)x z+i(]k X} - · - exp -- exp - a- - G - • G 

n
2 

· r 4r . 4r · 2r 

X exp {ikr} ¢o (C1) ¢o (Cz),. 

S dR1dRz exp {ik1R1 + ik2R 2} 
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138 . H. Horiuchi 

/' { ( {3
2
) . 2 i{3 } I { ( {3

2
) 2 i{3 } ) 

X \exp - ca-
4
r ,X0 -

2
r k1X 0 exp. - a~ 4 r Xo + 

2
r k2Xo ·. 

X (exp[- i~1r ]¢o (C1) ¢o (C2) I() IJL {exp[ik2r] ¢o (C1) ¢o (C2) }.) 

= (
2
;) 

312

y~P {- P (k/ + k22
) - qk1k2} 

X (exp [- ik1r] ¢o (C1)¢o (C2) I() IJL {exp [ik2r] ¢o (C1) ¢o (C2)}) , 

N + N {3 ~ 2N 1N 2 (u _ u ) _ N 1N 2 (.N u + N u ) . 

. a== 1V1 2V2 , "2 "1 r 2"1 1"2 
N 1 + N 2 ' ( N 1 + N 2) 

2 
. . ' 

(3·4·1) 

Thus the desired formula for m is 

. ( 1) a ( r) 3/
2 s . · , . ; 

m (a1, a2) =, 
2

1C 
2

1C dk1dk2 exp {- zk1a1- zk2a2} 

X exp{p(k/+ k2
2
) + qk1k2} sdR1dR2 

X exp{ik1R1+ ik2R2}€J(R1, R2). (3·4·2) 

Equ(;ltion (3 · 4 · 2) reduce,s to Eq. (3 · 3 · 4) when V1 = V2 ({3 = 0) and so it may 

· also be called the double Fourier transformat'ion formula. 

Secondly we give another formula 54
l"'

57
l which reduces to Eq. (3 · 3 · 7) 

when V1 = V2• We note the relation, 

a(r-a)exp{ -aX0
2} =a(r-'a)exp{ -aXi-f3Xa(r-a) -r(r-a) 2

} 

-:acr-a)exp{-N1v1(X1+ ~ 2 a)
2 

-N~v2(X2- ~ 1 ar}, 

' . (1) 3 J acr-a) = 21C dkexp{ik(r-q,)} 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 139 

( 1 ) 
6 
( n ) 

3
1
2 J . { 1 2 2 } m (at, a 2) = - -. dk1dk2 exp -- (k1 + k2 ) 

· · 2n 2f . 4f 

xe(i(Vt-V2) k, at+ i~k; i(Vt-V2)k, a
2
+ i~k), 

2Av1V2 2r 2Av1V2 2r 

y- N1N2VtV2 . (3·4·4) 
N1v1 + N2v2 

It is clear that Eq. (3 · 4 · 4) reduces to Eq. (3 · 3 · 7) when V1 = V2, and. therefore 

we may call this formula also th-e single Fou:der transformation formula. 

The trouble of the system of clusters with unequal oscillator widths lies 

in the non-separability of the center-of-mass motion. So the trouble vanishes 

away simply by effacingw the dependence of the GCM wave function on the 

center-of-mass coordinate. We note the following relation, 

s dRa¢o( C1, Ra- ~ 2 
R)¢o( C 2, Ra+ ~ 1 

R) 

. ( 4 N 1 ~ 2 v 1 v 2 r
14

[ s dRa exp{-a(Xa-Ra) 2-{3(Xa-Ra). Cr.~R)} J 
I 

X exp{ -r(r-R) 2}¢o(Ct)¢o(C2) 

= (4N
1
;

2
v

1
v

2r14
exp {- (r~ :~) (r-R) 2} ¢o (C1) ¢o (C2), 

s dR.(y~,( c,; R.- ~'R,)y~,( c., R.+ ~~ R,) ICJ 

X iJl{¢o(Ct, AN
2
R2)cf;o(c2, ~ 1 R 2 )}) 

= ( 4 N~ 2 v 1 v2r
12

(exp{- (r- :~) (r-Rt)
2
}¢o(Ct)¢o(C2) !L) 

X iJl {exp[ -aXa 2 :f3Xa(r~R2) J exp[- r(r-R2) 2]¢o (Ct) ¢~(C2)}) 
( 

*> Just as in the case of Eq. (3·3·6), Eq. (3·4·3) also can be generalized slightly by introducing 
. an arbitrary complex vector d as tJ(r-a)exp{-aXa2

} = o(r-a)exp{-aX 0 2 -p>X~(r-a) 

-r(r-a) 2 +d(r-a)}. This results in replacing k in' Eq. (3·4·3) by k-id, 
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140 H. Horiuchi 

= (4N1
:

2
v

1
v2r12 

\exp[- (r- f~) (r-R1)
2
]¢o(cl)¢o(C2) llJ 

X lui{exp[- (r- f~) (r-R2)
2
]¢o(C1)¢0 (C2)}). 

This last equality which can be rewritten as 

(
a )3;2 J . , · 

= 
2

7! dRa® (R1, RaR2), 

r====r-L N1N2v1v2 
· 4a ,N1v1+N2v2' 

(3·4·5) 

(3·4·6) 

gives the desired quantity Mf from which we .obtain rn (ab a 2) by using Eq. 

(3 · 3 · 4), Eq. (3 · 3 · 7) or Eq. (3 · 3 · 8). Of course, we can use this quantity 

M 7 for the evaluation of m (i,j) following the prescriptions described in § 3.3.b. 

The calculation of the direct kernel mn (a1) o (a1 - a 2) is done simply by 

replacing @ by @n in· Eqs. (3 · 4 · 2) and (3 · 4 · 4). When we use Eq. (3 · 3 · 2) 

for mn (a), we can utilize Eq. (3 · 3 ·10) or Eq. (3 · 3 ·11) by inserting for 

M/ in these equations the kernel Ml calculated by M 7n (R1, R 2) = (a/27!) 312 

XjdR 0 ®D(R0 , R1; R 2) = (a/2n) 312jdR0 ®n(R1; R 0 , R 2) following the same ar­

gument which. has lead to Eq. (3 · 4· 6). The' calculation of mn (a) of Eq. 

(3 · 3 · 2) without using M 7n is, of course, possible. We only give here some 

formulas which are analogous to Eqs. (3 · 3 ·10) and (3 · 3 ·11) and are easy 

to prove, 

( 
1 ) 

3 

( n) 
3

/

2 J { p} ( i (v v ) i ) mn(a) = - ---::::::, ' dk.exp ----::::::, en a; 1
-. 

2 k, a+ ---::::::,k 
. 2n 2r 4r 2Av1V2 2r 

= (
2

1
7!) 

3 

sdk exp {- ika + p' P} s dR exp {ikR} en (R, R), 

p' =__!_ + (32 • 
8

r 32r
2

( a-:;) 
(3 ·4·7) 

The diagonal element~ of the direct GCM kernel @n (R; R) (more generally 

@n (Ra, R; R 0 , R)) are very easy to compute just' like as M/ (R, R) for V1 = V2 

and we can calculate them entirely in the same way as in Eq. (3 · 3 · 12). 

3.4. b. Some ex tensions 

When the wave function of the system is expressed by 

(3. 4·8) 

.. 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 141 

we need to calculate the kernels of the type 

Kernels of this type also appear when the internal wave function of the 

cluster is expressed as 

(3·4·10) 

It is evident that the calculation of the kernel of Eq. (3 · 4 · 9) can be done 

entirely in the same manner as in Eqs. (3 · 4 ·1) and (3 · 4 · 3). 

The size parameters of the clust.ers may change depending on the inter­

cluster distance. One way to treat this effect is to use the wave function of 

·Eq. (3 · 4 · 8). As another prescription we may adopt the wave function of the 
type, 

JZ{x (r) ¢o (CI> V1 (r)) ¢o (C2, V2 (r))} 

= J dax(a)JZ{o(r-a)¢o(C1, vl(a))¢o(C2, v2(a))}, , (3·4·11) 

where we assume V1 (a) and V2 (a) are the width parameter function depending 

smoothly on the distance parameter of a= Ia!. The nec~ssary kernel for this 

type of wave function is of the type of· Eq. (3 · 4 · 9) and can be calculated 

in the same way. 

§ 4. RGM norm kernel 

4.1. Eigen-value problem 

4.1.a. Orthonormal basis functions of the system , 

In general, to solve the eigen-value problem of the norm kernel (or 

overlap kernel) of the system is equivalent to construct the orthonormal basis 
functions of the system. 

In our case of the systems composed of composite particles, the wave 

functions have the form, 

(4·1·1) 

where ¢j denote the channel wave functions which are product of internal 

cluster wave functions (and the spherical harmonics of the angle variables 

of relative coordinates) and ~i mean the set of relative coordinates in j-channel. 
Now we choose a suitable complete orthonormal set of function for each 

channel, which is denoted by xtj (nj = 1, 2, · ··). The set of functions {JZ/ 
X {x/J¢i}} coyers our functional space of the system. The orthonormal basis · 
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142 H. Horiuchi 

wave functions (/ja are obtained by constructing the Grain matrix by these 

functions JL/ {x/J¢1} and by solving the eigen-value problem of this Gram 

matrix, as follows: 

t1i . 1 ~ 'ca Jl. , { n ·A. } 
Wa= ;-k-J }nJ j 'XJ J'f'j • 

V !J.a }nJ . 
(4·1·2) 

Fr~m this Eq. (4·1·2) we obtain. 

~ <JL/ {(J (~i -ai) cPi} IJl/ {1'X,j1 (~J) cPJ} )C}n1 = tla· :E Cfni'X~i (ai), ( 4 ·1· 3) 
JnJ · ni 

because if we expand .the left-hand-sid~ quantity of Eq. ( 4 ·1· 3) which is a 

function of ai .by the complete. orthonormal set of functions 'Xti (ai) (ni = 1, 

2, ···.) as 

(4·1· 4) 

we easily get Pni = !J.aC'tni due to the orthonormal property· of {xti; nt = 1, 2, .. ·} 

and from Eq. (4·1· 2). If we define 

'Xi a (~i) = :E Cfni'Xti (~i)' (4·1· 5) 
ni 

we can rewrite Eq. ( 4 ·1· 3) as follows: 

:EJ. dbJ<Jlt' {(J (~i -ai) cPi} IJl/ {(J (~r 7 - bJ) cPt} )X/ (bJ) = !J.a'Xia (ai): (~ ·1· 6) ' 
J ' 

This ·is just the equation of the eigen-value problem ofthe RGM riorm kernel, 

and we see that the eigen-values !J.a obtained from Eq. (4·1· 2) are just the 

eigen-values of the RGM norm kernel and functions 'Xt defined by Eq. ( 4 ·1· 5) 

with the use of Cfni obtained from Eq. ( 4 ·1· 2) are eigen-functions of the RGM 

, norm kernel. We need to show that there are no other eigyn-functions of the 

'RGM norm kernel besides 'Xi a= :EniCfni'Xti obtained from Eq. (4 ·1· 2) ~ This is 
' I 

done by inverting our discussion from Eq. (4: 1· 2) to Eq. ( 4 ·1· 6). Let us 

consider any eigen-function 'Xia belonging to the eigen-value Pa of the RGM 

norm kernel which satisfies Eq. ( 4 ·1· 6). We expand this 'Xi a by the complete 

orthonormal 

cients Cfni· 

easily know 

set of functions 'Xti as in Eq. ( 4 ·1· 5), by the expansion coeffi­

By inserting this expanded form ·of 'Xi a in,to Eq. (4 ·1·6), we 

that tla and Cfni just satisfy, Eq. ( 4 ·1· 2). 

We can, of course, choose as a set of functions which covers our functional J. 

space of the syste~, {Jl/ {&(~ 1 -a1) ¢1}} instead of {Jl/ {x/J¢1}}. In this case 

the ·equation of the eigen-value :r;>roblem of the Gram matrix of these functions 

Jl/{rJ(~ 1 -a 1 )¢ 1 } is nothing but Eq. (4·1·6), and so we immediately know 

that the orthonormal basis wave functons ({)a o£ our functional space are given 

by 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 143 

(4·1·7) 

by the eigen-functions x/1! of the RGM norm kernel. 

The eigen-value · /f.a = 0" needs a special attention. Since /f.a = II .L;i Jl/ 
X {x/ (~i) ¢i} 11

2
, /f.a = 0 means ~iJl/ {x/ (~i) ¢i} -0.. This is the linear depend­

ence among the functions Jl/ {x/epi} which is caused by the Pauli principle. 
Needless to say, the basis functions of the system, (/j a are de :fined for !la-=1=-0 
by Eq. (4·1·2) or Eq .. (4·1·7). 

When the wave functions of the constituent clusters are described by the 
harmonic oscillator (H.O.) shell model wave functions with common oscillator 
parameters V1 = V2 = · · · = v, the. eigen-value problem of the RGM norm kernel 
can be solved analytically, The eigen'-functions X/ are the linear combinations 
of the finite number o£ H:O. functions. We prove this below following the 
argument from Eq. (4:1·2) to Eq. (4·1·6). We adopt as X/'(~i) the H.O. 
functions. Then Jl/ {X/' (~i) ¢i} are the eigenfunctions of the operator of the 
total H.O. quanta, N°P = .L;f=1 ait. ai- at (x 0 ) ·a (x0 ),, where ait ( ai) ·are the 
creation' (destruction) operator of the H.O. quanta of i-th nucleon and at (xa) 
(a (x0 )) that of ceriter-.of-mass coordinate. 'The Gram matrix by these func­
tions clearly decomposes into submatrices which are constructed by the func­
tions Jl/ {X/'¢i} having the same number of the total H.O. quanta. Thus the 
eigen~value equation of Eq. ( 4 ·1· 2) is reduced to the infinite sets of the eigen­
value problems of the submatrices which are of finite dimension. The diago­
rtalizaiion of the matrix of finite dimension }s treated easily by numerical 
evaluation but as we see below in many cases this diagonalization can be done 
analytically (or algebraicalJy). In this subsection we therefore investigate the 
eigen-value problem of the RGM norm k~rnel in the case of the equal oscil­
lator widths. The problem in the case of· the unequal oscillator . widths is 
discussed in § 4.3. · 

4.1.b. System of two SU3 scalar clusters 

The eigen-value problem of the two-cluster system IS especially·. simple 
when the internal wave functions ¢ (Ci) are both described by the SUa shell 
model wave functions belonging to the scalar (namely (11, -r) = (0, 0)) repre­
sentations-. So the systems composed of the clusters such as nucleon, deuteron, 
triton or 3He, a (4He), 160 and 4°Ca are the . subjects uncle~· consideration. 

The eigen-value equation is' 

(4·1·8) 

and the eigen functions xa (r) are the H.O. functions Vmm (r, r)=-==Rm (r, r) 
X Yzm (r)' r= (MNz/ CM +Nz) )v, as is shown in§ 4.1.a. The eigen-values /f.a 

are therefore 
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144 H. Horiuchi 

(When C1 and C2 are identical, it is usual to define the half of the value of 

Eq.- ( 4 ·1· 9) as the eigen-v~lue.) First we show that /f.mm depends only on 

N ( = 2n + Z) and not on l and m. This fact is due to the SUa scalar property 

of the antisymmetrization operator Jl that Jl commutes with all the SUa 

generators which are totally symmetric with respect to the permutations of 

nucleons. Equation ( 4 ·1· 9) shows that /f.mm is just the diagonal matrix ele­

ment of Jl by Vmm¢o (C1)¢0 (C2) which has the SUa symmetry (}.., fJ.)= (N, 0) 

since both ¢0 (C1) and ¢ 0 (C2) are SUa scalar. Due to the Wigner-Eckert the­

orell1 the matrix element of the SUa scalar operator depends only on the label 

of the irreducible representation (}.., fJ.) of the wave function and so in our case 

fJ.mm depends_ only on N. 14> We therefore- denote · /f.mm simply by fJ.N· The 

above argument also means that fJ.N canbeexpressedasfJ.N=<V<N,o>i(r)¢0 (C1) 

X ¢o(G2) IJl{V(N,O)i(r) ¢o (Cl) ¢o(C2)} >where v(N,O)i (r) is an arbitrary H.O. func­

tion of r belonging to (N, 0) representation. We thus obtain 

fJ.N=<XN(r, r)¢oJJl{XN(r, r)¢o} ), 

XN (r, r) =Xw,O,N) (r, r)' ¢o=¢o (Cl) ¢o (C2)' (4·1·10) 

where XN=X<N N N > denotes the H.O. function with M, N;. and N 3 oscillator 
1' 2, 3 ' " ' 

quanta in x, y. and z directions, respectively as w~s defined in § 3. Now we 

use the generating function technique explained in § 3.3.b. which gives the 

calculational procedure of the RGM kernel in the H.O. representation. From 

Eqs. (3 · 3 ·16) and (3 · 3: 19), we obtain14
> . 

N (R) =<Ar (r, Rz) ¢oJJl {Ar (r, Rz) ¢o}) 

= eR
2(r(r, ~z, r)¢oiJl{r(r, ~z, r)¢o}) 

. vr vr 

= ~ u Nl (Rz) u N2 (Rz) <XNl (r, r) ¢oiJl {XN2 (r., r) ¢o} > 
N1N2 

Rz= (0, 0, R), (4·1·11) 

where we used u<Nl,N2,Na> (Rz) = 0Nl.oiJN2,oUw,o,Na> (Rz) =Onl'oON2.oRNa;J Na! and the 

fact that <XN1 (r, r)¢o!Jl{XN2(r, r)¢o} )=iJNt>N2<XN1¢oiJl{XN1¢o}) due to the 

conservation of the number of the_ oscillator quanta in each direction. Thus 

the function N (R) which is essentially the GCM norm kernel is the generating 

function of the eigen values flN of the RGM norm kernel. 

We _here show some examples.w Let x be any Os-shell cluster like as 

p, n, d, t, 3He and a (4He) and N:c be the mass number of the cluster x. 

Then the generctting function N (R) and the eigen-values fJ.N for a+x system 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 145 

are 

i 

!J.N= . 1 ~ (N:r:) ( _) k(1- 4+N:r:k)N' 
1+8N:c,4 k=O k 4N:r: 

(4·1·12) 

where the factor 1/ (1 + aN:c,4) is inserted for !J.N because when N:r: = 4 we have 
the identicaL two-cluster system of a+ a and usual definition of !J.N is just the 
half of (XN¢o/vl{XN¢o}). Equation (4·1·12) for !J.N for a+a can be rewritten 
in a usual form, 59l,eol namely !J.N=O for N=odd and ttN=1-22-N +38N,o for N." 
=even. Similarly for 160 + x system, 

N (R) =eRa {1- (1 + q:r:R~) e-q:cRz(N :c , 

!J.N== ~ (N :r:) ( _) k t (k) q:r:r() (N _ r) N! (1- q:r:k)N-r, 
k=O k. r=P r . (N-r)! · 

(4·1·13) . 

where () (x) is defined by () (x) = 1 for x>O and () (x) = 0 for x<O. For 
4°Ca+x; 

N:c (N) . k (k)(.q 2)(k-r) r (r) !J.N= I:; :r: (-) k I:; _:r:_ I:; . q:r:P 
k=O k r=O r 2 p=O P 

x()(N~p-2k+2r) . NI ·. (l-q:r:k)<N·-p-2k+2r>, 
(N- p-2k+2r)! · 

_ 40+N:r: 
q{f) 40N:r: . (4~1·14) 

For 160 + 160, 

I
t (-1)k(4) N! ~ c-·)r(16-2k) (1-k+r)N-

2
k . 

k=O 64 k (N -2k)! r=O r 8 . -l 
0 

for N>24, 

for N<22. (4·1·15) 

Values of fiN for a+a, a+ 16
0, a+ 40Ga and 16

0+ 160 systems are given in 
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(a) a+a 

N -
f-!N 

N 

f-!N 

N 

f-!N 

.N 

/-lN 

N 

f.J.N 

. H. Horiuchi 

Table I. Eigen-values ttN of the norm kernel for ta) a+a and (b) 160+ 160 

systems. Superfices penote minus power of 10, for example, 3.1683 

=3. 168 x lo-s. 

4 6 8 10 12 ...... 

0,7500 0.9375 0.9844 0.9961 0.9990 ...... 

24 26 28 30 32 34 

3.1683 1. 5022 4.0392 8.1412 0.1371 0.2045 

36 38 40 42 44 46 

0.2792 0.3571 0.4345 0.5085 '0.5774 . 0.6399 

48 50 52 54 56 58 

0.6955 0.7443 0.7865 0.8227 0. 8533 ' 0.8792 

60 70 80 90 100 110 

0.9008 0.9644 0.9878 0.9960 0.9987 0.9996 

4.1.c. Two-cluster ,system including SUs .non-scalar cluster 

I 

. In order to understand the structure of the norm. kernel. of .the system 

which includes clusters, described by the shell model waye functions belonging 

to the su3 non-scalar representations (rJ, r)=/= (0, 0)' it is instructive to investi­

gate the norm ker:nel. of the enlarged· system where all the excited. states 

with the same (rJ, r) are included. 

Let C1 be an SU3 non-scalar cluster belonging to (rJ, r) =!= (0, 0) and C2 

be an SUs scalar cluster; The channel coupling wave function of this illustra­

tive two-cluster system where all the excited states of cl within (rJ, r). are 

included is ( cf. Eq. (3 ·1· 8)) 

(4·1·16) 

where j stands for the set of channel quantuni numbers (lb ~h Li) an4 ¢PL is 

the abbreviated notation for ¢ur,rlpL· The eigen-value equation of the norm 

kernel is 

. (4·1·17) 

To solve this, we follow the procedure from Eq. (4·1·2) to Eq. (4·1·6). 

We choose as the set of functions which cover our system space, the following 

(4·1·18) 
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Kernels of GCM,- RGM and .OCM and Their Calculational Methods 147 

where 

[V<N.o> (r, f) rP<tJ,r> (Cl)] <J.,p>u 

= "L:< (}{, 0) lh (rJ, r) PiLJI! (A, 11) tcJ)[VNz
1 (r, r) ¢p

1
L

1 (Cl) ]J, 
j • ; I • 

[VNz
1 
(r, r) ¢p

1
L/C1) ]J.=RNz/r, 7) h/. (4·1.·19). 

' -
Here < (N, 0) l, (rJ, r) pLjj (A, /1) tcJ) is the reduced Clebsch-Gordan (or Wigner) 
coefficient (abbreviated as C-G coefficient) of ~Us group for the coupling 
(N, 0) X (rJ / t) ~(A, 11). Due to the SUs scalar property of Jl, th~se antisyrn:. 

. metrized functions of Eq. ( 4 ·1·18) have the SUs quantum numbers (A, /1), 
· tc, J. Thus the Gram matrix constructed by these functions is already diago­
nal. The answer of Eq. ( 4 ·1·17) is therefore15

> 

X/.: (r) == < (N, 0) li, (rJ, r) p~L£/1 (X, 11) tcJ)Rm, (r, r), 

/1a = <g~,tt)tcJ I Jl {g~,p)tcJ} ), 

g~, tt)tcJ= [ V<N,o> (r, r) rP<tJ,r> (Cl)-J <J.,p>MrPo (C2), 

a= {N, (X, 11), tc, J}. (4·1· 20) 

From the SUs scalar property of 'Jl, we know that JJ.a. depends · only on N 
and (tl, /1) and it is independent of /C and J.15> We therefore denote /1a by 

N . 
/1 (J., tt) • ' . . . . 

The practical calculational procedure of the eigen-values fJ.~.P) is to evalu­
ate the matrix elements <RNz;,h/IJl {RNz,h/}) by the methods given in § 3.3.b 
and then io diagonalize the matrix. This procedure gives us not only fJ.~.P) but 
also .. the C-G coefficients; namely the solution of . 

(4·1·21) 

gives us 

/1a = /1~. p) ' 

(4·1· 22) 

There is a method of calculatirtg the eigen-values fJ.u .• ~ which avoids the 
numerical diagonalization procedure of Eq. ( 4 ·1· 21). In order to . interpret 
this method/5> we consider a simple case of (rJ, r) = (rJ, 0). Then,, (A, fJ.) re~ 
sult~ng from (N,O)X(rJ,O) are (N+rJ_;_2k,k) with k=0,1,· .. min(N,Q-). 
Here we are reminded of Elliott's rule for obtaining the representation of Rs 
(rotation group) contained in a representation of SU3• For a given (X, p), the 
possible J values (angular momenta) are 

J=K, K +1, ... , K +X 

=A, ).-2, ... , 1 or 0 

with the integer K taking the. values 

for K=/=0, 

for K=O (4·1· 23) 
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148 H. Horiuchi 

K = f-L, f-L- 2, · · ·, 1 or 0 . (4·1· 24) 

From this rule, we find that J=N+r5 is containedonly'in (A.,f-L)=(N+r5,0) 

with multipliCity·· one.. So with the use of the notatiOn 

a (J, i) =(Rm. (r, r) h/IJl{Rm. (r, r) h/} ), . . . (4·1·25) 

we get 

1-LfN +O",O) =a (J = N + (f, .i), (4·1· 26) 

~ where, of course, possible i is unique, namely i = (li = N, Li = r5). Similarly 

J = N + (J -1 is contained only in (A., f-L) = (N + (J- 2, 1) with multiplicity one. 

Thus we get 

.f-LfN+0"-2,1) =a (J =-= N + rJ.-1, i), (4·1· 27) 

where the unique channel number i is also i = (li = N, Li = r5) . For J = N 

+ (J- 2, there are three (A, f-L) ·which contain this J value. They are (A., f-L) 

= (N+rJ, 0), (N+0"-2,1) and (N+rJ-4, 2) each of which 13ontains J=N 

+ (J- 2 with multiplicity one. Three channel numbers which yield this J = N 

+rJ-2 are i= (li=N, Li=rJ), (li=N, Li=rJ-2) and (tt=N-2, Li=rJ). 

The essence of our· method lies in the ·use of the ·in variance of the trace in the 

diagonalization procedure of Eq. (4·1· 21). From this invariance of the trace 

we get 

(4·1· 28) 

Since we already know values of f-LfNH,O) and f-LfN+0"- 2, 1) by Eqs. ( 4 ·1· 26) and 

(4) · 27), we can calculate f-LfN+0"- 4 ,~) from the known quantities as 

1-LfN +0"-4, 2) = :E a ( J'= N + r5- 2, i) - 1-LfN +O", o) - 1-L~ +0"-2, 1) • 

i 

(4·1· 29) 

In this way similarly, we can .calculate all the eigen-values J1~,p.)· . Since the 

matrix elements a (J, i) are obtained analytically by the method in § 3.3.b, 

this calculational method of 1-L~,p.) gives us the analytical expressions for 

N . 

/}. (J.., fl.). 

Equation ( 4 ·1· 20) shows that the structure of the norm kernel is gov­

erned by the relatively small number of quantities f-L~. M which are independ­

ent of /C and J. (The eigen-functions are determined automatically with the 

use of the known quantities, the SU3 C-G coefficients.) · 

We express below by using 1-L~,p.) the quantities in the norm kernel 

problem of the narrower system where the excitation of the cluster cl is 

restricted. Let us consider the c~se where only one state of C1 with the wave 

function ¢pL (C1) is involved. The wave function' of this system Is 

and the eigen-value equation of the norm kernel is 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 149 

(4·1· 31) 

The answer to this equation_ is obtained by solving the following equation, 

which gives us /La and Xza 

The matrix elements in Eq. ( 4 ·1· 32) are expressed by 

<Rmh/IJL {Rm,hf,}) = 2: < (N, 0) l, (rJ, -r) pL II (A, JL) tCJ) 
(J., fl)IC 

x<(N, O)l', ((J, r)pLIJ (A,JL)tCJ)fl.~.fl), 

which is due to the relation 

Rm (r, r)h/= [Vm (r, r)¢pL(CI)]J¢o(Cz) 

= 2: < (N, O) l, ((J, t) pL II (A, JL) tCJ)g~,fl)tCJ. 
(J., /J,)IC 

(4·1· 32) 

(4·1·33) 

(4·1· 34) 

(4·1·35) 

It is easy to show that the answer to Eq. ( 4 ·1· 32) is also obtained by solving 
the following equation, 

W[ (A'' JL') IC' I (A, JL) IC J~..; JL~-. ll')fl.~. fl). 

X 2:< (N, 0) l, (CJ, f)p_lfiJ (A', JL')!C' J)< (N, 0) l, ((J, r)pLIJ (A, JL)tCJ), 
L 

(4·1· 36) 

which giVes us /La and Cz a; 

C{t= } IJ d~,fl)IC<(N, O)l, ((J, i-)pLif (A, JL)tCJ) 
V JLa (J., fl)tC . 

for fLa~O, (4·1·37) 

while Cza for JLa=O are obtained as the vectors which are orthogonal to Cza 
with JLa=/=0. 

As an example, let us consider 12C +a system, 15
) where 12C is described 

by the SU3 shell model wave function (Os) 4 (0P) 8 [4] which has ((J, -r) = (0, 4). 
fl.~.fl) with (A,fl.) = (N,O) X (0,4) =.l:!=o (N-k,4-k) are obtained by 

JLfN,4) =a (J=N +4, i), 

JLfzv-1,3) = 2: a (J = N + 2, i)- 2JLfN,4), 
i 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.6

2
.9

0
/1

8
4

4
9
7
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



/-

150 H. Horiuchi 

,afN-3,1) = .'2: a'(J = N- 2, i)- 3,afN,4)- 2,afN-1,3) '--- 2,afN-2,2), 
i 

N ·. "' c' J N· 4 .) . 3 . N 2 N 2 N . N 
/J.(N-4,0) =~a = - , l . - Ji.(N,4)- Ji.(N-1,3)- /:L(N-212) -J.!.(N-3,1) • 

i 

(4·1· 38) 

The matrix elements .a (J, i) are obtained by using the generating function. 

technique of § 3.3.b. The generating function for the general overlap matrix 

e~lements. <Rmih/IJL {RmJh/}) is 

F (R, R, ft.',, tJ, tJ') 

=eB'\¢"("c, 4 «~)¢.(a, 4
3
~)1cA{¢"'("c, 

4
f;)¢.{a, ::;)}) 

00 R2N ' (47C) 2ANANA4 A4 ' ----.. ' 
_ " '\1 . zi. z3 Li LJ . [Y (R) y . (SJ) ]. 
- ~ 0 N! ~.J (2li+1) (2lJ+l) (2Li+1) (2LJ+1) Zi Li JM 

X [Yz/R') YI,j(tJ') ]jM<RNz;,(r; r) h/iJL{RNz/r, r) h/} >' 
(4·1·39) 

where R and R' have the .common length· R. The calculated results for 

the gene·rating function F and the matrix elements (Rivlih/IJL {RmJh/}) 

are15),61> 

F (R, R, R', tJ, tJ') 

: = exp {- ! R·R'l [u·u' {exp(! R·R')'-1- ! R· R'l 

~i! (R·u) (R' ·u') r . 
<Rivz. (r, r) h/IJL {Rnz/r, r) h/} )' 

,- .J (2l~+l) (2Z1:12 (~Lit1) (2LJ+1) NJ .f: t ± 8(N +k-4-s). 
· A, A, AL AL 3 lc=O r=O 8=0 

. •i • j i j ' ' 

(
4) . r.(k) (T) (k-.r-1) N+lc-4-8[(4-k)/2] [(4-. k)/2] [k/2] [(N+k-4)/2] 

X (-) ' ~ ~ E ~ 
k r. S (N+k-4-s)! q=O q'=O 

1

p=0 P'=O 

X' [A4-k A4-k Ak AN+k-4 J 2 
4-k-2q 4--lc-2q' k-2.p N+k-4-2p' 

X WC.N +k-c-4-2P', k-2P, l;., Li, J, 4~k-2q) 

x W (N + k-c-4-2p', k~2P, lh L 1, J, 4_: k-2q') 

X CC4-'-k-2q, N +k-4.,.-2p', l;.)C(4-k-2q', .N +k-4-2p', lj)' 

x C (4-k- 2q, k-2p, Li) C (4-c-k-2q', k-2p, L 1), '(4·1·40) 

' where u and u' are unit vectors whose polar angles are Q and £2'' respectively, 

[x] denotes the integer I which satisfies 1 + 1>x> I, W is the R 3 Racah 
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coefficient, and C(s, t,v) is the R 3 Clebsch-Gordan coefficient (s,O,'t,Orv,O). 

The calculated values of ,u~,JL) for the above 
12C+a syst,em are given 

in Ref: 15) .' For reference we give, here the generating function of ~~. 11 > for 

the 20Ne+ a system where for 20Ne the SU3 shell model wave Junction' (sd)
4
[4] 

(A; fl.)= (8, 0) is adopted; 

F (R, R, R'' !2~ Q') 

=exp{R'} (~b"("Ne, 
6

};)1bo(a, 2!r )J 
X Jl {q;w (2oNe, ·- R')¢o ('a, f;>R' ).} ) 

· 6~ r 6-J r . , 

= exp(- ]:_R · R') [cu · u') 2 
{exp (~R · R') -1- ~R · R'} 

5 . . ' .10 . / 10 

~ ~ {130(R· u') (R'. u) }14, (4·1·41) 

where also R = IRI = IR'l and u and u' are unit vectors in the directions Q 

and !2', respectively. The overlap matrix elements <Rm,h/IJl{Rm"h/}) are 

extracted from this F (R, R, R', £2, !2') by the same expansion formula as Eq; 

( 4 ·1· 39) except the repla'cement of ALAi, by AtA'i.~ . 
. When we, treat .more complex. systems where both clusters C1 and C2 ' are 

SU3 non-scalar, we generally have an SU3 representation (l,, fl.) more than once. 

For the (}.,fl.) with the multiplicity more than one, we need to diagonalize 

the antisymmetrizer. <-)! by the states with the .same. quantum numbers N, 

(A, fl.), 10, J. Thus the SU3 classification is necessary but not sufficient for the 

complete determination. of the eigen-functions of the norm kernel for ·the ~en­

eral comple~ two-cluster systems. 

4.l;d. ""~ulti-cluster · system 

For the sake of the explanation, we consider the system of. three SUs 
scalar clusters. The eigen-value equation of the norm kernel 1s 

' ' ' 3 

<¢o IJl {xa (~1, ~2) ¢a})= flaXa (~h ~2), ¢o== IT tPo (Ci) · 
i=l 

' (4·1· 42) 

The eigen-functions xa "are classified by the number of the H.O. quanta Nand 

the SUs labels (A, fl.)' IC, J, and so we denote xa by XNO.,p.)ICJ,p' where p is the 

quantum number to distinguish the states with the same' N, (A, fl.), JC, J. 

The eigen-functions are obtained by the following diagonalization: 

L; <V~~~:"¢ol cA { V};~fi;tz~¢o}) A:,<&;;P =fl.~. /l),pA:,<&;:) , 
N 1'+N 2'=N 

v:~~~)"J C~1, E2) == [VcNl>o) C~1, r1) v<Nl!,o) C~h r2) Jo.,p)!i:J 

=L: < CN1, o)tl, CN2, o) Z2ll (A, JJ.) JCJ) v~~!'> CE1, ~2), 
Z1Zz 
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152 H. Horiuchi 

V~t;'l cg1, E2) == [V N1~1 CE1, r1) v N2t2 cg2, r2) J J 

which gives 

(4·1·43) 

(4·1·44) 

Here we shold note that the matrix elements < V§fi.r:)"J ¢0 lc.Jl {V§;~:zt;,"J ¢0} > do not 

depend · on K and J due to the SU3 scalar property. of Jl and this fact means 

that the coefficients A:,c;;:) which are eigen-vectors of this overlap matrix· also 

do not depend on K and J. The eigen-values tt~.tJ),p are of course independent 

of K and J just like as. in §§ 4.1.b and 4.1.c. We show in Table II the 

SUs-classification of the functional space spanned by VN1Llm1 CEb rl) VN2L2m2 CEz, r2) r 

with fixed N = Nr + N 2, by using the rule (Nb 0) X (N2 , 0) = :Ef~ln (N:r + N 2 - 2k, 

k) with Nmin=min(Nb N2). 

Nt 

N 

N-1 

N-2 

1 

0 

Table II. SU3 classification of the .three-body relative H. 0. wave functions 

with the total number of H. 0. quanta N. S± denote the quasi-spin 

operators defined by Eq. (5. 2.14) . 

. I 
N2 ()., p.) = (N-2 k, k) 

0 (N,O) 

1 (N,O) (N-2, 1) 

2 (N,O) (N-2, 1) (N-4, 2) 

N-1 (N,O) (N-2, 1) 

N (N,O) 

In order to solve Eq. ( 4·1· 43) we need to calculate the matrix elements 

< Y~l~ 2 CEh E2) ¢o lc.Jl { Vfaf~ 4 CE1, E2) ¢o} >, which is done by the generating function 

technique of §'3.3.b as follows: 

N (S1, 82; Ss, S4). ==<A11 CE1, St) Ar2 CE2, S2) ¢of Jl {Ar1 CE1, Ss) Ar2 CE2, S4) ¢o} > 

=exp { ~ ~Si 2 } (r(gl, J;/ r1)r(g2, J;/ r2)¢ol 

x cA {r (e,, J;,. r,) r (e,, J;,. r.) g~,f) 
= ~ (n f/' j 4n AZ•) [Yzl(St)Yl2(S2)]Jx[Yza(Ss)Yz

4
(S4)]1M 

Nili, i=l v N.l 2li+l 
JM t• . 

(4·1· 45) 

Kato and Bando62
> have proposed an interesting and powerful method to 

solve the eigen-value problem of the multi-cluster system. Their method is 

especially suited for the systems composed of a-nuclei (sel{conjugate 4n nuclei 

or clusters with [ 44 .. · J orbital symmetry). For such systems the generating 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 153 

function of Eq. ( 4 ·1· 45) has generally the form/ 8
> 

N (Sb Sz; Sa, S4) = {n (Sb Sz; Sa, S4) }
4

. (4·1·46) 

Here for the sake of interpretation, we consider the case when clusters are 
all SUa scalar (like as a, 160 or 4°Ca). To investigate the properties of n, 
we write N as follows, 

where 

R2-R1=S1j.ff;_, Ra- (N1R1+N2R2)j(N1+N2) =S2/v'r2, 

,!.(c. R·)-
1 

det{mc ···} (4·1·48) 
'f' t, t vcNi/4)! 't'il ' 

and J, is an antisymmetrizer of A/ 4 particles which have no spm-1sospin 
coordinates. Just like as the relation of Eq. (2 ·1· 4) we can express (/) (Ci, Ri) 
as 

(/J(Ci, Ri) = (Niv) 314

exp{- Niv(yi-Ri) 2}¢o(Ct), 
· 2n . 4 

1 ' 
' Yi= (Ni/4) Xj' (4·1·49) 

where (/;0 (Ci) are functions of only the relative coordinates xr-o-xk and are SUa 
scalar since ¢0 ( Ci) are assumed to be SUa scalar. n (Sh ·H) ~f Eq. ( 4 ·1· 46) 
is now written as 

_ {1 ~ s· 2} fr·( sl r1)r( S2 r2):t: 
1 - exp 8 ~ i \ 1']1, .j r / 4 '1]2, .j r 2' 4 Y' 0 
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H. Horiuchi 

We expand fi m power senes of 8!,' by using Eq. e3 · 2 ·19) or Eq. e3 · 2 ·25) 

as follows, 

4 ' 3 

Mo=TI ~ Mtx. (4·1·51) 
i=1. x=l 

Here we should note that r eMh · · ·) has a property 

e4·1·52) 

which means that the matrix reM1 , M2; M3 , M4 ) with row indices eMh M2) and 

column indices (M3 , M4) has a decomposed form into submatrices with finite 

dimension: By diagonalizing these submatrices of r as follows, 

~- r(Mb M2; Ms"M4)e;. eMs, M4) =(J;.e;.eMb M2), 
Ms+M,=M ' 

we ·obtain 

' -

PJ.·e8i, 81)= ~ . e;. eMi, ~) UMi e8i) UM1 e8i)'. -
I Mi+Mj=M ! ' 

By inserting this ~xpression ·into Eq. (4 ·1· 46), we get 

e4·1·53) 

e4·1·54) 

' 4 4 4 

N (8b 82; 8s, $4) = L: eii (J"i) err p,~i e8b 82)) err P"i ess, 84)). (4 ·1· 55) 
;.1~;., i=l i=l i=l 

On the other hand, by inserting the power series expansion of Ar or r given 

by Eq. (3·2·19) ,or Eq. (3·2·25) into Eq-. (4·1·45) we hav~ , 

'N (81) 82; 8s, S4) = L: <XNl eEl) rl) XN2 CE2, r2) ¢o!Jl 
. Ni 
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(4·1·56) 

Comparing Eq. ( 4 ·1· 56) with Eq. ( 4 ·1· 57) we obtain 

<XNl (~b rl) XN2 (~2, r2) ¢okA {XNa (~b rl) XN4 (~2, r2) ¢o} > 

4 4 

II (J (M i ;,,-i) c ;,,-i Mi) err M i') -112 .. X ;.ie;..,_ 1 ' 1u.2 e;.i 1r.L3 , 4 k • . , 
i=l k=l 

4 

:E =summation over Mk 1"'-'Mk4 under the condition :E Mki=Nk, 
Mkl~Mk4 i=l 

(4·1·57) 

.which is the formula of· the Kat~-Bando method to calculate the matrix ele­

ments of.the norm kernel in the Cartesian H.O. function .representation. 

The diag<:malization process of Eq. ( 4 ·1· 53) is equivalent to solving ·the 

foflowing equation: 

<io 1Jl {x;. ('~/1, '~/2) ffo}) = (J tX.t ('~/1, "h), (4·1·58) 

the eigen-functions X;. of which are given by 

Since Jl and ffo are both SU3 scalar, it is evident. that X;. are classified by the 

SU3 scheme,._ the labels of which are the Cartesian ones M, (tl, s), e, A, v, 

(4·1·60) 

where we used the notation M = (1\:fx, MY, Mz). 

Our explanation of the Kato-Bando method given above is in the C~rtesian 

coordinates. It goes without saying· that everything c~n be restated in the 

spherical (or angular momentum) coordinates. 

The powerful points of the Kato-Bando method are as follows. The 

small-generating-function ft (Sb ·· ·) is simpler than N (81,-···) and the· dimen­
sions of the matrices to be diagonalized are smaller than the case of treat­
ing N (81 , • • ·). Moreover what is important is that for low H.O. quanta 3 . . . 

M = :E Mx, most eigen-values (J;. of Eq. ( 4 ·1· 53) are zero usually which is 
X ~ 

due to the Paul~ principle expressed by the operator ell. Therefore when we 

need the solutions of the eigen-value problem ofEq. (4·1·42) with lowH.O. 

quanta, this meihod is especially convenient. · 

The Kato-Bando. met,hod acquires the mathematical transparency whe~ 
it is formulated in framework of comp,lex~GCM. 16 > The eigen-value equation 
of the RGM norm kernel which is expressed in Eq, ( 4 ·1· 42) is equivalent to 
the following eigen-value equation of the C-GCM norm kernel, 
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156 H. Horiuchi 

(4·1·61) 

where C-GCM norm kernel N has entirely the same forrn as the generating 

function N of Eq. ( 4 ·1· 45) except that now the generator coordinates ~re 

all complex number vectors; 

N (Sb S2; Ss*, S4*) =<A~ CE1, S1) A~ CE2, S2) ¢o/Jl {A~ CE1, Ss) A~ CE2, S4)¢o} ). 

(4·1· 62) 

The relation between~ xa and fa is 

(4·1· 63) 

The eigen-v~lue equation of the small-norm-kernel of C-GCM fi (Sb S2 ; S3*, S4*) 

defined by Eq. ( 4 · 1 · 46) is ' 

s dp (Sa) dp (S4) fi (Sb S2; Sa*, 84 *) P;. (Ss, S4) = t5;.P;. (St. S2), (4·1·64) 

which is equivalent to Eq. ( 4 ·1· 58). It is easy to see that rJ;. and P;. are 

given by Eqs. ( 4 ·1· 53) and ( 4 ·1· 54). By using the form of N given in 

Eq. (4·1·55), we obtain the solution of Eq. (4·1·61) as follows:· 

(4·1·65) 

where Cf~o ... ,.t
4 

and fla are obtained by solving the secular equation, 

- 4 4 ' 

where <II P;.i III Pv,> denotes the inner product with the use of the measure 

dp (S1) dp (S2) • For f1a = 0, the corresponding fa are obtained as the functions 

·which are orthogonal to fa with fla=/=0. . 

· As an exatnple, we consider an application to many-alpha system. Nand 

fi are given by 

-' 

ii(S/, ... ~~- 1 ; S 1*, ... Sj_I) = (g Av*(xi, ~/)ldet{JJ Av*(xi, ~i)}) 

exp {R/ · R 1* /4} .. ·exp {R/ · RA* /4} . . . . .. 
exp {RA' · R 1*/4} · · ·exp {RA' · RA* /4} 

A! {1 A } 

. ~ c: (P) exp 4 t;i R/ PRi* 
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A! . { 1 A-1 } 

= ~ e(P) exp 
4 

t;i S/ PSi* , . (4·1·67) 

. A 

where r=4v, ¢0 · L: ¢0 (Ci) and Pare permutation operators of R 1"-'RA. The 
i=l . 

definition of the Jacobi coordinates Ei is slightly changed from that of Eq. 
(2 ·1· 6) with respect to their lengths and it is 

j i 1 i 

Ei= .+
1 
(xi+l--. L: xj), 1<i<A-1, . z z j=l 

(4·1·68) 

·The relation between (S£, i = 1 "-/A) and (Ri, i = 1 "-/A) . is entirely the 
same as that between CEi, i = 1."-' A) and (Xi, .i = 1"-' A) and the restriction 
'A 

L: Ri = .J A SA= 0 is imposed. By using the delta function property of 
j=l 

exp (z ·z*) given by Eq. (3 · 2 · 27), we can write the eigen-value equation of 
fi as 

A! 

:E e(P)p;.(iPSb ···, !J;PSA-1) =G;.P;.(S1, ···,SA-l). (4·1· 69) 
p 

As IS seen in Eq. (4·1·54) p). is a homogeneou~ polynomial of sb ···, SA-h 

and so we ·obtain 

(4·1·70) 

where 1;. is the degree of the homogeneous polynomial P;.. From Eq. (4 ·1· 70), 
G;. = A!j 4h and P;. is an arbitrary totally antisymmetric function (with respe,ct 
to the permutations of R 1 "-' RA) of the polynomial degree l;.. Further and 
detailed discussion· of the 3a and 4a systems is giVen m Ref. 16). 

4.l.e. su4 symmetry 

. In previous subsections §§ 4.l.b"-'4.1.d, we have seen that the (Elliott) 
SU3 group plays a vital role in solving the eigen-value problem of the RGM 
norm kernel. This originates from the use of the H.O. shell model wave 
functions in representing the internal states ¢(C) of the constituent clusters. 
The SU3 classification is valid and necessary for any kind of systems (includ­
ing the rearrangement channels which are not treated explicitly in previous. 
subsections), but, needless to say, this group does not give the complete classi­
fication of the eigen-functions for complicated systems. 

Since the H.O. functions are used to describe the radial (or spatial) parts 
of the nucleon orbitals, the su3 group is concerned with the symmetry of the 
radial or spatial part of the cluster wave function. As for the spin-isospin 
degrees of freedom of nucleons, the su4 supermultiplet symmetry*> is valid 

*l The author is indebted to Professor A. Arima for his remark on this symmetry. 
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·+58 H. Horiuchi 

and necessary63
> as is shown below., 

As an illustrative example, we consider the systems of 3N + N, namely 

3
He + n and t + p configurations which are coupled to good total spin S and 

isos·pin T.93
l The eigen~value problem of the norm kernel of 3N+N system 

with definite S and T is 

r=XN-XaN, r=~V, 

· hrs=[¢(3N)f7(N)]rs= ·:E Hmt!m/ITMr) Cimsims'ISMs) 
mtmsmt'ms" 

(4·1·71) 

where '7mtms (N) is the isospin-spin function of a single nucleon (neutron (mt 

= 1/2), proton (mt = -1/2)), arid ¢mtm• (3N) is the internal wave function 

of 3N(t (mt = 1/2), 3He (mt = -1/2)). In Eq. ~ ( 4 ·1· 71), the eigenvalue fJ.¥s 

does not depend on the orbital angular momentum l due to the SUa symmetry 

discussed in § 4.1.b. By expressing !J.¥s as 
\ 

(4·1·72) 

and by noting the su4 scalar property of Jl (which means Jl .commutes with 

all the SU4 gent:rrators), we know that the dependence of /L¥s on T and S is­

unified· to the dependence on the label [/] of the irreducible representation 

of SU4 group to which . hrs' ·belongs. This can 'be said to, be due to the 

· Wigner-Eekart. theorem of the SU4 group. Since the spatial permutation sym­

metry [f] o'f Jl,{Rm (r, r) Y~ (r) hrs} is conjugate to' the above label [/] oj 

the SU4 symmetry, we use [f] instead .of [/]. Thus we can say that' within 

the s;;tme [f], fJ.¥s 'does not depend on T and S.63
l · In this sense we can 

use more· appropriate notation p.fn· With the use of the generating function 
I ' 

technique of'§ 4.1.b we get 

N (R) = (Ar(r, Rz) hrslJl{Ar(r, Rz)hrs}) 

Rz . (0, 0, R) . 

The calculated result of N (R) 1s 

N(R) =eR
2
{1+ (4or,oOs, 0 -1)e~w 3 lR

2

}~ 

from whiah we obtain 

~ fJ.¥=0,8=0 = /J.~]~ 1- ( , 1 ) N-l 
. 3 

(4·1·73) 

(4·1·74) 

fJ.¥.s= fJ.fs.b = 1 __:_ ( 
3

1
) N wh~re (T, S) ~ (0, 0). ( 4 ·1· 75) 
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4.2. Calculatio~ of kernels or physical quantities related to norm 

kernel 

What we, here aP.d about the calculation of the kernels or physical . quanti-

. ties is the use of the knowledge of the norm kernel by which we obtain 

simpler or more convenient procedure of calcylation than the general calcula­
tional procedures. given in §§ 2 and 3. In this subsedion · we assume all the 

oscillator parameters of clusters ar~ the same. 

4.2.a. Kinetic energy and Hamiltonian 

We divide the kinetic energy operator into the intrinsic and relative kinetic r , ._._ • 

energies as follows: 

A 

T=~ Ti-T a~ Ta 1 +Ta2 + Tr, Ta 1 =~ Ti-Ta
1

, 
i,l . iE.a1 

(4·2 ·1) 

Tl)e matrix elements of T in the H.O. representation can be calculated ip the 
following way; we assume· N<N'. First we get 

T (N, N', l) =< Vm (r, r) ¢o CC1) ¢o (C2) jTjell {VN'l (r, i) ¢o'(C1) ¢o CC2)}) 

= (Vm¢o (Cl) cPo (C2) jell{ (Tr VN'L) cPo (Cl) cPo (C2)}) 

+(Vm¢o(C1)¢o(C2) jell{VN'l(Ta 1 ¢o(C1))¢o(C~)}) 

+ ( Vm¢o (Ci) ¢o (C2) jell { VN'LcPo (Cl) (Ta
2

cPo (C2))} ). ( 4 · 2 · 2) 

Next we insert the following expansions into Eq. ( 4 · 2 · 2), 

Tr VN'l =<VN'ljTrjVN'L)Vwl +(VN'~2,ljTrjVN'l) VN'+2,l 

+(VN'-2,ljTrj VN,,l) VN'-2,l, 

Ta
1
cPo (Cl) =(¢o (Cl) jTa

1
j¢o (Cl)) · cPo (Cl) 

+ (higher H.O. qum:1tum states of C1), 

Ta
2
cPo (C2) = (¢o (C2) jTa

2
j¢o (C2)) · rPo (C2) 

+ (higher H.O. quantum states of C2 ). (4· 2· 3) 

By considering the conservation of the number of the H.O. quanta between 
bras and kets, we get . 

T(N, N'; l) =oN,N'{<VmiTrl Vm) + <¢o (C1) 1Ta
1

1¢o (Cl)) 

+ (¢o (C2) jTa2 j¢o (C2) )} ftN+ ON+2,N'< VmjTrj VN'L)ftN, (4·2·4) 
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160 H. Horiuchi · 

When N> N', we get a similar expression by operating T in this time to the 

ket state Vm¢0 (C1)¢0 (C2). The final result valid for arbitrary N and N' is, 

< Vm (r, r) ¢o (Cl) cPo (C2) ITIJZ.{V N'L (r, r) ¢o (Cl) ¢o (C2)} > 
-:==oN,N'"fJ.N·~ftw(N(Cl) +N(C2) +N.+3/2) 

+oN+2,N'"fJ.N·ihwV (N -l+2) (N +l+3) 

+oN,N'+2"fJ.N'·thwV(N'-l+2) (N'+l+3), (4·2-'5) 

where use is made of the following relations and definitions: 

<VNLITrl Vm) = ~ftw (~ + i), 

<V N-2,d Trl V N,z) =fhwv' (N -l) (N + l + 1), 

· N(Ci)=number of the total H.O. quanta of ¢0 (Ci). (4:2·6) 

Similarly for the case of the total Hamiltonian, by dividing it into the 

internal and relative parts, . 

A A 

lJ=~ Ti-Ta+t ~ Vij=Ha 1 +Ha2 +Tr+ Vr, 
. i=l i~j ' 

we get, by entirely the same procedure, 

<VNl (r, r) ¢o (Cl) ¢o (C2) IHIJZ{VN'L (r, r) ¢o (Cl) ¢o (C2)} > 
=oN,N'"fJ.N{E(Cl) +E(C2) +~ftw(N+i)} 

+oN+2,w"fJ.N·ih(J)V (N ,_.l+2) (N +l+3) 

+oN,N'+2"fl.N'·th(J)V (N' -l+2) (N' +l+3) 

+ < VNl (r, r) ¢o (Cl) ¢o (C2) I WI VN'L (r, r)¢o (Cl) ¢o (C2) ), 

E (Ci) =<¢o (Ci) 1Ha.l¢o (Ci) ), 

, ~VrJZ 
W= 

· JZVr 

for N>N', 

for N<N'. 
. (4·2·8) 

"This expression is useful when we measure the energies from the two-body 

threshold energy E (C1) + E (C2). 

4.2.b. Mitltipole operators 

Essentially the same technique as m § 4.2.a is applicable to the case 

of the multipole operators. What is necessary for us is to divide the multipole 

operators into the internal and relative parts and their coupling part. 

What we consider here is the multipole operator 

A 

T.w-2: Y.w(xi-Xa), Y;.p.(a) =a;.Y;.p.(a). (4·2·9) 
i=l 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 161 

In order to treat this operator, we introduce the operator 

(4·2·10) 

With slight modification we can use the results for these operators to the 

cases of the electric multipole transition operators in gamma decay and electron 

scattering. The relation of T;.0 with T;.0 (k) is 

T;,0 = (2). + 1) !! lim k-;.T;,0 (k). (4·2·11) 
k->0 

We first express T;,0 (k) as follows, 

T;,
0
(k) =-z- dk Y;,

0
(k) ~ eik·(x£-Xa). 

·-J. s A 

47C i=l 
(4·2·12) 

We introduce Jhe function k (i) which tells us that i-th nucleon is included in 

k (i)-th cluster Ck<i)· By using this function k (i) we get 

Since xk(i)- Xa is expressed by the Jacobi coordinates Ej as 

we get 

n-1 

Xk<i) -Xa= ~ at(i)Ej, 
j=1 

A A n-1 

~ eik•(Xi-Xa) = ~ II exp {iat(i)k. E j} . exp {ik. (xi- xk(i))} 
i=1 i=1 j=1 

(4· 2·13) 

(4·2·14) 

For simplicity, we consider the three-cluster system. Then we have 

T ;. 0 (k) = ( 47C)2 L; i.t 1 +.t 2 +.ta-J. :E e CA1A2J) e (J A3A) 
;,1~;,3 J 

A 2 

,x :E II j ;., (at(i)k~ j) j;,3 (k I xi- xk(i) I) 
i=1 j=1 

~ ~ ------
X [ [Y ;,1 (~ 1) y ).2 (~ 2) ]JY J.a (xi- xk(i)) ];,o ' 

( .. ")=( . 0 .
01 

.. 0)j(2j1+1) (2j2+1) 
e J11zJ3 - JI Jg Js 47C (2j3 + 1) . (4·2·16) 

By using Eq. ( 4 · 2 ·11) we obtain 

3 3 

T ;,o = ( 4rcY ~ [ (2). + 1) !!j:L;=? II (2Ai + 1) !!] e CA1, A2, A1 + A2) 
J.1 +.t2 +.l 3 =oJ. i=1 i=1 ' 
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162 H. Horiuchi 

(4·2·17) 

(The fonn of T;.0 (k) by Eq~ ( 4 · 2 ·16) is useful for the OCM calculation of 

electron scattering form factor.) 

- /,We reduce the form of T;.0 of Eq. ( 4 · 2 ·17) into more convenient form 
. ' 

by using the following relations,· 

(4·2"·18) 

For A= 2 ~e obtain 

A 

T20 = PlY2o CEl) + P2Y2o CE2) + Ps 2: Y2o (xi.:_ xk(i))' .(4·2·19) 
i=l 

where Pi are constants. Equation ( 4·. 2 ·19) is, of course,· directly pbtEI.inable 

from the invariance of the unit quadratic form agai'nst the es,sentially orthog-. 

' onal transformation {xi- Xa} 4 {Eh Xi- xk(i)}. For A= 3, 

A 

Tso = q1Yso CE1) + q2Yso CE2) + q"3 2: Yso (xi- Xkw) 
' i=l 

A. A , 

+ q6 2: [yl CEl) Y2 (xi- xk(i)) ]ao + q7 2: [yl CE2) Y2(xi- xk(i)) ]so' ( 4. 2. 20) 
i=l i=l 

where qi are constants. Let all C~ be closed shell clusters and the matrix 

element 1;. of T;.0 is 

l;.=<V~!~J/Pol T,~olcA {Vfs!~~¢o}), 

V~t~ 2 (Ei, E2) = [V N1L1 CE1, r1) v N2L2CE2, r2)J.1, (Eq. (4·1·43)) 

(4·2·21) 

By assuming' N 1 +N2<N3 +N4 without loss of generality,. and by using 

A 'A. 

~ Y2o (xi- xk(i)) <Po= <<Po I :E Y2o (xi- xk(i)) I <Po>. <Po 
i=l i=l 

+ 2: (2-hw excited states of ¢0), 

A 

<<Po 12: Y2o (xi- Xk{il) !'¢o) _:_o, 
' i=l ~ 

(4·2·22) 
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Kernels of GCM, RGM and OCM and Thr?ir Calculational Methods 163 

we obtain for ;?. = 2 

_, X (\~~~z';'J 1 ¢olut{V~l~l 1 ¢o}) · ( 4 ~ 2. 23) 

For ). = 3, again by assuming N;_ + .LV2 <.l{3 + N 4 and by using 

A. , 

:E Ys~ (xi- Xkw) ¢o = :E (1 or 3 hw excited states of ¢0), 
i=l . . 

A . , 

:E [S'l CEj) Y2 (xi- xk(i)) J so V~l:;.l¢o =:E. (higher H.O. quantum states-
i=l 

we obtain 

+ q5 [Yl CE1) Y~ CE2) ]so} I V~f~l 2 ) 

X <V~i~J~¢ofut {V~t~J 1 ¢o}) . 

(4·2· 24) 

(4· 2·25) 

The case of the system which incl-qdes open shell clusters is treated 

similarly. As· an example, we consider a two-cluster system composed of an 

SU3-non-scalar _cluster C 1 with, (0', r) symmetry and SUs scalar cluster C 2•
6n 

The forms of Txo are 

A 

T2o = P/ Y2o (r) + P/ :E Y2o (xi- Xk{i)) , 
i=l 

A 

Tso = q/Yso (r) + q/ :E Y3o (xi- Xk(i)) 
i=l' 

A 

+ q;/ :E [Yt (r) Y2 (xi- Xk(i))] so. (4·2· 26) 
i=l ' 

The matrix element Ix of T;.0 , 

lx=< [VNlJr, r) ¢Li (Ct) ]J
1
¢o CC2) /T.wlc.A { [VN'z1 (r, r) ¢L1 (Ct) ]J/Po (C2)}) 

(4·2· 27) 

ts calculated as follows by -assuming N<1V' without loss o£ generality. 

(When ]\l>N' we operate T 10 to the bra state [VNl
1
¢L

1
(t\)]J/Po(C2).) For 

).=2 

l2 = E < [VNl"¢Lk (Cl) ]J1 / {P/ Y~o (~) + P/ :E Yzo (xi- X1)} I [VN'l 1¢LJ (Cl) ]J2) 
k . iECt. 

x< [VNli¢Li (Ct) ]J
1
¢o CC2) \~.{[VNrk¢Lk (C1) ]J/Po CC2)} ), ( 4· 2· 28) 

where we used the fact that the operation of :EiEC
1 
Y2o (xi- X 1) to ¢<Ci,dpL (C1) can 

change the state within the same irreducible ,representation\ (0', r) in the Ohw-
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164 H. Horiuchi 

jump states, l)amely 

X ¢<ri.rWL' (C'1) + '2:: (2hw excited configurations). (4· 2· 29) 

For ). = 3, sim'ilar ly 

Is= I: ( [Vmk¢Lk (Cl)]J
1

1 {q/ Yso (r) + q/ '2:: [yl(r)y2 (xi- X1) ]so} 
. k . i.EC1 

I[VN,z 1
¢Li (Ct) ]J

2
)( [VNzt¢Lt (Cl) ]J

1
¢o CC2) leA { [ Vmk¢Lk ( C1) ]J1

¢o CC2)} ): 

(4· 2· 30) 

4.2.c. Reduced width amplitude of cluster· decay or transfer 

The calCulation of the reduced width amplitude (R.W.A.) of cluster decay 

or transfer has been discussed for a long time by many authors. What we 

discuss here is limited to the application of the delta function technique of § 3 

and that of the knowledge of the norm kernel. About the other approaches, 

see Refs. 64) ,..v71). 

The R.W.A. of the model wave function ?J! L with the angular momentum 

L is 

where we assume that the model wave function ?J! L is non-spurious about the 

C.M. motion and its dependence on Xa is separated from the internal wave 

function (fh as follows: 

1Tr (X ) {J]'o (Xe) -- (2~V) 3J4e-AvXa2 • 

':I: L = (j)O G ' (j) L., '" 
(4·2·32) 

For simplicity, the channel is considered above where the spins of clusters 

are zero. We can utilize the delta function technique of § 3.4 for the evalua­

tion of Eq. (4·2·31) with Eq. (4·2·32). From the prescription of Eq. 

(3. 4·1) 

X <e-ik·r¢o(Cl)¢o(C2) I(J)L), 

<IJ (r- a) ¢o (C1) ¢o (C2) I(/) L) = b1 J'dk e-ik·a · eb2
k

2 S dR eik·R 
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(4·2· 33) 

where bh b2 are constants involving v, V1 and V2 • From Eq. (3 · 4 · 3) we get 

another formula54
) 

where b3 is also a constant involving v, V1 and V2 • 

When (fh has a definite number ofthe total oscillator quanta 1V(f!jL) with 

respect to the oscillator parameter v, YL (a) of Eg. ( 4 · 2 · 31) can be expressed 

by the linear combination of the finite number of the H.O. functions RNL (a, rJ)) 

where Tv=N11V2v/ A; 

(4·2·35) 

To prove this we expand rPo (C1 ; vi) by the shell model wave functions with 

oscillator parameter v as follows: 

¢o (Ci, vi) =<¢o (Ci, v) l¢o (Ci, vi))· rPo (Ci, v) 

+ ~ (higher oscillator quantum states than. ¢0 ( Ci, v)). ( 4 · 2 · 36) 

By inserting this expansion into 

and by considering the conservation of the totEtl number of the H.O. quanta 

between br·a and ket, ~we obtain 

(4· 2· 38) 

where N(Ci) are the numbers of the H.O. quanta of the states ¢ (Ci, v). 
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166 H. Horiuchi 

When Jbi are of the type of the RGM (or GCM) wave function, we can 

calculate14
l'

15
l'

61
l,il8l,

94
l YL(~) by the knowledge of the norm kernel obtained in 

§ 4.1. Below we,assume that all the oscillator constants are the same. For 

the. case 

we get ' 

(4·2·40) 

where eN ate obtained from*) 

(4·2·41) 

In Eq. (4·2·40) we used the usual definition of /lN that when C1=C2, /lN is 

half of the v,alue of Eq. ( 4 ·1· 9). 

Similarly we can calculate the R.W.A. of dh which: are channel-coupling 
' . 

or multi-cluster RGM (or GCM) wave functions. As an example ·for the 

case of Eq. ( 4; 1 ~ 16), 

1 . . ~ 

(/)J=j(.A ~ <-i'Z{XJ(r) [Yl/r)¢cO",;;.)pjLj(Cl)]J¢o(C2)}, 

.. ·. NJ j . . .. 

(4·2·42) 

we get 

Y<J(a) = )(~J ( IJ (rr-'; a) [Y,, (1') ¢ (6, r) p,L, (C,) ]J¢o (C,) I !liJ) 

-" e. " c· _N(A#)tcJc· _N(J.P,)tcJ ,N R c· a y') 
- .L..i JN .L..i ~ · l f/'(J.p.) Nli , ' 

jN (J.p.)IC 

(4· 2·43) 

where ejN are obtained from 

(4·2·44) 

It should be noted that the SU3 shell model wave functions (J)J can be 

usually r~written in the form of the RGM wave function due to the Bayman­

Bohr theorem72
) (see also § 4.3) and so the calculational method like as Eqs. 

' ( 4 · 2 · 20) a_nd ( 4 · 2 · 43) is very useful also for those shell model wave func~ 

tions. 

4.3. Cluster model space 
\ ; . 

4.3:a. Projection operator of Feshbach 
' 

Any A-nucleon waye f';lnction @L can be broken u'p into two mut~ally 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 167 

orthogonal parts as follows: • 

QJL = cJl{XL (r) hL} +QJLR; hL=YLo (r) rPo (Cl) rPo (C2) · (4·3·1) 

' (4· 3 ~ 2) 

The. projection opera tor P L which projects out of QJ~ the component of ,two­

cluster wave function cA{xL(r)hL} as 

(4· 3· 3) 

has been obtained by Feshbach73
l as follows (see also Chap. II): 

Here 'XL a (r) and f-l.a are the eigen-functions and eigen-values of the RGM norm 

ke'rnel defined similarly to Eq. ( 4 · 1· 8) by 

·. (4·3·5) 

When the H.O. parameters of ¢o (C1 ) and ¢o (C2) are the same, we have the 

solutions of this eigen-value equation as was discussed in§ 4.2, and so we hav~ 

the explicit fonn of P ~. 

According to the discussion of :§ 4.1, we know that the orthonormal basis 

wave. functions (/)La of the functional space spanned by the two-cluster wave· 

· functions of the form cA {wL (r) hL} are given by 

(4. 3. 6) 

We can easily check that 

When @.L Is normalizable and is !mrmalized to unity <QfLIQJL) = 1, it is 

important t.o evaluate the following quantity: 

(4·3·8) 

which tells us how much the clustering component IS contained in QJL· By 

using Eq. ( 4 · 3 · 4) we obtain the formula to calculate (h2 as 

*l. To prove Eq. (4. 3 . .7) we need to use 

IJ(r-r1
) 

rr1 

This is safe at least when we are dealing the nonrtalizable states. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.6

2
.9

0
/1

8
4

4
9
7
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



168 H. Horiuchi 

(4· 3· 9) 

where Yi' is the R.W.A. of (jjL· 

The rh2 values for 'the deformed oscillator (anisotropic H.O.) model wave 

functions in 8Be and 20Ne are given in Ref. 14}. 

Here we introduce the notation KL b~ 

JLo- 1 JL. 
1 + (]0102 

(4·3·10) 

KL is usually called the exchange norm kernel, and is a bounded operator. 
. . . 

The .reason to introduce a factor [1/ (1 + (]0102 )] is to normalize the coefficient of 

the Dirac delta function operator 1 (an unbounded kernel) in Eq. (4·3·10) 

to unity. (1- KL) is the full norm kernel 

tJ(a-b) 

ab 

By usmg the solutions of Eq. (4·3·5) we have 

(1-KL) (a, b) =~JlaXLa(a)xLa*(b), 
a 

With the use of the following definition, 

we obtain 

(4·3·11) 

(4· 3 ·12) 

(4· 3 ·13) 

<(1-,KL)- 1
1

2(r, a) hLJJLo{(1-KL)- 1
1

2(r, b)hL}) = o(aa~b) . (4·3·14) 

This equ~tion means that the following functions, 74
), 

91
) 

.· (/jLa= : JL{(1-KL)- 112 (r, a)hL}, 
v q12 . . 

(4· 3·15) 

constitutes an orthonormal set 

. (4·3·16)*) 

*l When the forbidden states 'XLcr. with .Ucr.=O are existent, this relation is valid within the space 

. of the allowed functions 'XLcr.(a) or 'XL«(b) with .Ucr.~O. Similarly Eq. (4·3·27) is valid £or 

the allowed space. With use of the projection operatqr A of §5.1, the r.h.s. of Eqs .. (4·3·16) 

and (4·3·27) are) A(a, b) and AiJ(ai, b1), respectively. 
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Kernels of GCIVf, RGM and OCM and Their Calculational Methods 169 

The formal relation between (/jLa and (/jL a is 

(/j La= .L: XL a* (a) (/j L ,a • 
a 

With the use of the notation KL we have 

YL= (1-KL)XL' 

and if we define the following quantity, 

we get 

and 

(4· 3·18) 

(4·3·19) 

(4· 3. 21) 

(4· 3. 22) 

Since (]L
2 is the total probability, of the clustering component in @,L, QL (a) Is 

the probability amplitude that the clusters c1 and c2 are located at the relative 

distance a. Thus QL (a) can be said to be the relative wave function between 

clust~rs in the. sense that /S2L (a) /2 can be interpreted as to be the probability 

density. at the relative distance a. The importa'nce of this relative wave func­

tion ·QL has been emphasized by Saito and his coworkers 17
l and'by Fliessbach 

and his coworkers. 74
l (See Chap. II.) 

The projection operator of Feshbach can be similarly defined and calculat­

ed also for the complicated systems/5
l'

15
l'

91
l'

92
l For the system with-the wav~ 

functions of Eq. ( 4 ·1·1) . we have 

(4· 3 ·23) 

where fl.a and xi a are defined by Eq. (4·1· 6) and K is defined by 
. . 

<JL/ {o(~i-ai)¢i} leA/ {o(~j-bj)¢j} )= (l~K)ij(ai, bj). (4·3·24) 

We can also express P as 

P= .L: /@a)<(fja/ = ~ Sdai/(Jjiai)<([Jiai,/, 
a ~ 

where ([Ja is defined by Eq. ( 4 ·1· 7) and (Jjiai is defined by 

(Jjiai= I: JL/ { (1----' K) "kF2 (~k' ai) ¢k}. 
k 

{(Jjiai} constitutes an ortho'normal basis set; satisfying 

(4·3·25) 

(4· 3· 26) 
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170 H. Horiuchi · 

(4· 3·27) 

4.3.b. Norm kernel with· unequal oscillator widths and almost forbidden 

states 

Here we discuss some aspects of norm kernel of the· system of ~lust.ers, 

whose oscillator parameters are mutually different .. The· eigen-value problem 
. - i I 

of such system is no more solvable analytically in general, and we need to rely 

upon the numerical procedure. A characteristic difference· of the case of un­

equal oscillator par~meters from the case .of equal ones is the disappearance 

of the forbidden states (F.S.) which are defined as the eigen-states of the 

norm. ker:nel belonging to the zero eigen-value Jl,a =0. . 

When we use· the reasonable values of the oscillator width's for clusters, 

the situation is not so much different from the case of equal oscillator widths 

and'so we h~ve the. eigen-values Jl,a which are very near .zero and which approach 

to zero continuously if we continuously change the oscillator widths t6 the 

same limiting value v ~ V1 = V2 = · · ·. The eigen--fun~tions belonging to these· 

almost zero eigen-values are called the almost forbidden states (A.F.S.) .17) Jn · 

order to catch the feeling we show some calculated examples. For the p;resen-, . ' 

tation of the calculated results we consider the· dependence of ~he eigen-value 

,u;_ on the oscillator parameters. The eigen-value Jl,a is an overlap of the. two 

wave ·functions and should therefore be dimensionless. When the ssstem in­

volves only one oscillator par~rneter v. whose dimension is fm- 2
, !la cannot 

include v in )ts expression in order to be dimensionless. Thus we know for 

the 1Case where all the oscillator parap1eters of clusters are 6£ the same value. 

v, the eigen-~alues Jl,a do not depend on v at all, as was in fact the case with 

the examples in § 4.2. The direct proof of this result is easy, if we notice 

the v-dependence of the A-nucleon H.O. wave function (/)a (which involves. Xa) 

IS 

(f) (3!4)A(J) I (· ;- . ;- . ;- ) , 
a= V a V V X1, V J) X2, •. "V J) XA • (4· 3. 28) 

The change of the integration variables from xi to yi=vv xi in thei calculation 

of the overlap of two such A-nucleon w.ave functions gives the 'exp_ression of fJ.a 

which does no't include v at all. If the two oscillator parameters V1 and V2 are 

involved in the system, Jl,a can depend only on the dimensionless ratio (vr/v2). 

In Table III, we give the eigen-val~es*J !la of the systems, a+ 160 and a+ 4°Ca. 

The eigen-values /!LAFi of the A.F.S. XLAFi are seen to. be very small. 

We below consider an illustrative system of two closed-shell clusters. 

The ·F.S. XLFi satisfy 

(4· 3 ·29) 

But for the A.F.S. XLAJ!i, Jl {XLAFi (r) hL} no more vanish and so the corre-

*l These values are calculated by Dr. A. Tohsaki-Suzuki. 
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Kernels. of GCM, R(JM and OCM and Their Calculational Methods 171 

sponding normalized wave functions 

/fhAFi_ J u;)fhAF<Ji{XLAFi(r)hL}, (4· 3·30) 

are the members of the basis states of the cluster model space, as was discusse~ 
m § 4.1. Let us divide the eigen-functions into the A.F.S. 'XLAFi and other 

Table III.· Eigen-values of the norm kernels of the systems, (a) 160+a and 
(b) 4°Ca+a, in the two cases of the equal and unequal oscillator 
widths of clusters. Superfites denote minus power of 10, for ex­
ample, 0.132656 =0. 3e65 x I0-6• 

(a) 160+a 

Va/Vo=l. 47 L 
N Va=Vo 

0 I 
2 

I 
4 

I 
6 

I 
8 

0 o. 32656 

2 - 0.11174 0. 62025 

4 0. 66173 - 0.29973 0.17733 

6 '0.13451 0.12341 0. 99132 0.61972 

8 0.2292 0.2391 0.2384 0.2366 0.2339 0.2302 
10 0. 5103 . 0.5131 0.5127 0. 5119 0.5105 0.5088 
12 0.7185 0.7163 0. 7161 0.7159 0.7154 0.7147 
14 0.8459 0.8424 0.8423 0.8422. 0.8420 0.8418 
16 0.9178 0.9146 0. 9146 0.9146 0.9145 0.9144 
18 0.9568 0.9545 0.9545 0.9545 0;9545 0.9544 

'20 0. 9775 . 0.9760 0.9760 0.9760 0.9760 0.9760 
22 0.9884 0.9875 0.9875 0.9875 0.9875 0.9875 
24 0.9941 0.9935 0.9935 0.9935 0.9935 0.9935 
26 0.9970 0. 9966. 0.9966 0.9966 0.9966 0.9966 

Nl 1 3 5 7 9 

1 . 0.13415 

3 0.47804 0. 27844 

5 0.14312 0.11112 0.80708 

7 0. 27261 0. 25971 0.23701 0. 20411 
9 0.3438 0.3518 0.3513 0.3505 0.3494 0.3479 

11 0.6196 0.6179 0.6177 0.6174 . 0.6170 0.6164 
13 0.7900 0.7861 0.7860 0.7858 0.7856 0.7854 
15 0.8871 0.8834 0.8834 0 .. 8833 0.8832 0.8831 
17 0.9403 0.9375 0~9375 0.9375 0.,9374 0.93'(4 
19 0.9688 0.9669 0.9669 0.9669 0.9669 0.9669 
21 0.9839 0.9827 p.9826 '0. 9826 0.9826 0.9826 
23 0.9917 0.9910 0.9910 0. 9910 0.9910 0.9910 
25 0.9958 0.9953 0;9953 0. 99.53 0.9953 0.9953 
27 0~9979 0.9976 0.9976 0.9976 0.9976 

/ 

0. 9976 

/ 
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172 H. Horiuchi 

(b) 4°Ca+a 

Va/Vaa=2. 0 L 

N Va~Vaa 

I I I I 1 I 0 2 4 6 8 10 12 

0 0.15806 

2 0. 66855 0.93035 

4 0. 34334 0. 37174 0. 54434 

6 0. 28923 0. 30903 0. 41233 0.30213 

8 0. 27682 0.28362 0.29502 0. 27582 0.18502 

10 0.22021 0.21671 0.20811 0.19241 0.16621 0.12661 

12 0. 69141 0.1124 0.1117' . 0.1100 0.1073 0.1034 0. 98091 0. 91291 

14 0.2641 0.2896 0.2890 0.2877 0.2856 0.2826 0.2787 0.2739 

16 0.4751 0.4794 0.4790 0.4782 0.4768 0.4750 0.4726 0.4696 

18 0;6479 0.6395 0.6392 0.6387 0.6379 0.6368 0.6354 0.6337 

20 0.7728 0.7593 0.7592 0.7589 0.7585 0.7578 0.7570 0.7561 

22 0.8571 0.8433 0.8432 0.8431 0.8428 0.8425 0.8420 . 0.8415 

24 0. 9117 0.8998 0.8997 0.8996 0.8995 0.8993 0.8991 0.8988 

26 0.9462 0.9368 0.9367 0.9~67 0.9396 0.9365 0.9363 0.9362 

28 0.9676 0.9607 0.9605 0.9605 0.9~04 0.9604 0.9603 0.9602 

30 0.9806 0.9760 0.9757 0.9756 0.9755 0.9755 0.9755 0.9754 

N 1 I 3 5 7 9 11 13 

1 0.15475 

3 0.13094 0. 21794 

5 0.99504 0; 12193 0.11793 

7 0.81033. 0. 88383 0.92713 0. 69843 

9 0. 66112 0. 66342 0. 65202 0. 58972 0. 43712 

11 0.43311 0.42441 0. 40741 0. 38031 0. 34001 0. 28431 

13 0.1573 0.1924 0.1915 0.1896 0.1869 0.1832 0.1783 0.1722 

15 0.3723 0.3858 0.3851 0.3838 0.3818 0.3791 ,0.3758 0.3716 

17 0.5675 0.5641 0.5637 0.5628 0.5616 0.5600 0.5579 0.5555 

19 0.7161 0.7043 0.7040 0.7035 0.7028 0.7018 0.7007 0.6993 

21 0.8193 0.8052 0.8051 0.8048 '0.8044 0.8039 0.8032 0.8025 

23 0.8875 0.8744 0.8743 0.8742 0.8740 0.8737 0.8733 0.8729 

25 0.9310 0.9203 0.9202 0.9201 0.9200 0.9198 0.9196 0.9194 

27 0.9582 0.9500 0.9499 0.9499 0.9498 0.9497 0.9496 0.9495 

29 0.9749 0.9690 0.9689 0.9689 0.9688 0.9688 0.9687 0.9687 

31 0.9851 0.9813 0.9810 0.9809 0.9808 0.9808 0.9807 0;9807 

normal states X'LNi. In the limit of V1 ~v 2 , XLAFi~XLFi and XLNi ~xL:Ai, where 

XLAi are the allowed eigen-states belonging to the eigen-value /lAj=/=0 in the 

equal oscillator width limit. In this limiting process we also have { (;}) flLNi} -
112 

xc..A{XLNihL}~{(i}Jf1Ai}-
112 Ji{xLAihL}. But, as for the states XLAFi there ar~ 

no corresponding limit states since Ji{XLFihL} =0. The limit states of (fjLAFi 

are out of the cluster model space composed of. clusters with the common 

oscillatqr widths, since this space is spanned by the complete orthonormal 
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Kernels of GCM, RGM and OCM and Their Calc,ulational Methods 173 

basis states { (;) /1Ai} -
112 t.lZ {XL Aj hL}. This fact can . be checked also irt the 

folio/wing way76
): 

lim <h L I([) LAFi> (4·3·31) 
lll-"l/2 

(4· 3. 32) 

ciN satisfy 

(4· 3. 33) 

where NA is the lowest allowed number of the oscilla~or quanta in the equal 
osGillator width limit, namely for N<NA, flN= 0 and for N> NA, llN=/=0. 

Equation ( 4 · 3 · 33) is proved as follows: 

(4·3·34) 

By Eq. (4·3·32) we have 

/li AFi. " ·j (}NL ' 
IJIL =~CiN 

11
,AFi([jNL, 

N JJ-L 

(4·3·35) 

where (JNL Is defined by 

(4· 3. 36) 

by which II { (fi) aNL} -
112

JL{RNLhL} II= 1. The values of lim<v
1
_,v

2
)CiNVoNL/ /lLAFi 

cannot be singular since II ([jAFi II = II([) NL II = 1, namely, 

(4·3·37) 

¢o(Cl, V1) =.E (vl-v2Y''¢o<n)(Cl, v2), 
n 

¢o<n)(Cl, V2) =l..(a/8v2i¢o(Cl, V2). 
. . n! 

(4· 3·38) 

We notice the ¢0 <n> (Cb V2) has at most 2n-lt(J)2 higher quanta than ¢0 (Cb v2) 
(v2 = m(J)2/2h). Th'e reason is easily understood from the forni of the, H:O. 
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174 H. Horiuchi 

By inserting Eq. ( 4 · 3 · 37) into (J)NL, we have 

cJL{RNL(r, r)hL} = L:; (V1-V2)ncJL{RNL(r, 7)hL(n)(V2)}, 
h+N~NA . 

~ -(· )<NA-N). (NA.-N). ('higher power o£ · ) 
UN L - J) 1 ~ J) 2 QV NL . + L:; · , 
. · . · . 2 · (V1 - V2) than ((N A- N)/2) 

hL (n) (Vz) =Y Lo(r) ¢o(n) (C1, Vz) ¢o (Cz, Vz), 

OVNL(n) =<RNL(r, r)hL(n)(vz)lclL{RNL(r, r)hL(n)(vz)}). .(4. 3. 40) 

Thus we get 

lim!lluL= j . 1
. Jl{RNL(r,r)hL'"•l(v,)}, 

v
1
-.v

2 
' . (~J OVNL (no) . 

flo= (NA-N) /2. (4'· 3 ·41) 

If OVNL((NA-N)/2)=0 and OVNL((NA-N)/2+1)=;i=O, we only need to put 

no~ (NA-1\7)/2+1 in Eq. (4·3·41). From Eqs. (4·3·33), (4~3·37) and 

( 4 · 3 · 41), we know that the limit states lim<vc•v
2
J(J).l-AFi generally haye the same 

total , number of the oscillator quanta as the lowest basis state of the 

cluster ,model .space, { Ct)/1N)- 112clL{RNAL(r, r)¢o(Ch v2)¢o(C2, v2)}, if OVNL 

( (NA ~ N)/2) =FO for some l~l<NA for which Jim<vc-+v2) ciN (o NL! !lLAFi) 112 =;i=O. 

Namely, fo·r example, for a+ 160 system, the limit stat,es of(J)LAFi are exp<Kcted 

to be of the (sd) 4 configuration, under the above mentioned conditions. 

For more detalled discus~;>ion of A.F.S., especially in the dynamical prob-
1 

lems, Tela ted to· the Levinson theorem, the foundation of OCM and others, 

see Chap. II and also Refs. 17), 76). 

4.3.c; Relation of the cluster model states with the shell model' states 

The inter-relation between cluster model space and· shell model space 

has long been discussed by many authors~ Wildermuthsal .and Shelirie,m Bay­

man .and Bohr/2l and Horie78l have investigated the relation between the RGM 

wave functions· with the H.O. relative wave functions (which may b~ called the 

Wildermuth wave ftmction:s) and the shell model· wave fun~tions. When the 

number of the B.O. quanta· of the relative wave function is ·small, seemingly 

different wave functions of the cluster model ahd the SUs shell model we~e 

· found to be equivalent. This is due to the. Pauli principle. We are now able 

to construct the (orthonormal) basis ·~ave functions of the various cluster 

model spaces, which are ,classified by the H.O. quanta and SUs labels. The 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 175 

comparison of the two rnodd spaces have shown that many important shell 

model -configurations are contained in the cluster model space, as is displayed 

for example, in Ref. 15) and Table IV. In the 12C +a system in Ref. 15), the 

cluster model state with N = 4, (A, 11) = (0, 0) is. just the closed~shell state, 

the ones with N =5, (A, 11) = (2,1) are the 1p-1h (T= 0) stafes, the ones with 

N = 8, (A, 11) = (8, 4) are the most, deformed 4p- 4h states and so. on. In the 

case of the 12C + 2a system of Tabl-e IV, the states with N = 12, (A, 11) = (8, 0)., 

· (4, 2), (0, 4) are equivalent to the shell model states (sd) 4 [ 4] ,· (A,p) = (8, 0), 

( 4, 2), (0, 4), the ones with N = 13, (A, /1) = (8, 2) are the so-called Op-hole 

states with (8, 2) symmetry _and so on. 

On the other hand Perring and Skyri:ne/9
) and Brink18

l have discussed the 

connection of the shell model wave functions with the cluster model wave 

functions with. geometrical cluster arrangements. In the case of Brink model, 

the cluster model wave functions are the GCM ones discussed in § 2. The 

Brink wave functions or the generating wave functions of GCM. use the co­

herent states of the H.O. quanta for the relative _Jnotion (se!= § 2.1.b) in. 

contrast to the Wildermuth wave functions with definite number of H.O. 

quanta. Brink has showed how the normalized cluster intrinsic states with 

vanous geometrical configurations are connected with the intrinsic states of 

the SU3 shell model wave functions of the ground or many-particle many-hole ' 

states in ~the limit of vanishing GC, Sr-~0. To see the limits, the H.O; 

expansion of r CEi.' Si, rJ (or equivalently; power series expansion with respect 

to si of r CEi, Si, ri)) is useful. For details especially about the limiting 

process of the orthogonal single-particle orbitals in the cluster intrinsic states, 

see Ref. 18). (See also Refs. 80) and 81) .) 

§ 5. Calculation of OCM. op/erat-ors 

5.1. OCM operators 

The framework of the orthogonality condition model (OCM) of Saito60
) 

demands to calculate the projection operat~r onto the allowed states. and the 

effective potentials between clusters. 

For the system with the wave functions of Eq. (4·1·1) ~the OCM equation 

is (see Chap. II) 

../1-K(E-T- Veff)../1-K{xz} =0, (5·1·1) 

namely 

(5·1·2) 

where (E-T) is diagonal; (E-T)jk= (Ej-Tj) ·Ojk·. If we introduce {Qk} by 

(see Eq. (4· 3 · 20)), 
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176 H. Horiuchi 

{JJ~c} = J1- K {Xt}, 

w,e ~an rewrite Eq. (5 ·1·1) as 

where A Is the projection operator onto allowed states, 

(5 ·1· 3) 

(5 ·1· 4) 

(5 ·1·5) 

Equation (5 ·1·1) means to approximate the RGM kernel of the Hamiltbnian 

H as follows :17), 82), ss), 92) 

<JL/ {o(~i-ai)¢i} 1 (H-Eioij) /JL/ {o(~j-bj)¢j} > 
~{J1-K(T+ Veff) J1-Khj(ai, bj), 

Ei =internal binding energy 'of the i-channel. (5 ·1· 6) 

The knowledge of the solution of the eigen-value problem of the norm 

kernel is sufficient to construct the operators J1- K or A. But when we 

treat th~ complicated systems like as the channel coupling systems and the 

multi-cluster systems, the eigen-value problem .of the norm kernel becomes 

fairly tedious to solve. The purpose of this section is to give the methods63
) 

of the construction of· the operator A which avoid solving· the eigen-value 

problem of the norm kernel. The oscillator parameters of the clusters are 

assumed to be the same mutually. 

As for the effective interaction Veff, it is usually assumed and sometimes 

checked by comparing with the results of the RGM (or GCM) calculations 

that the RGM direct interaction kernel can give a good approximation to Veff 

if we intro-duce suitable modification if necessary. The evaluation methods of 

the RGM direct interaction kernel are discussed in § 3 arid so we do not enter 

this problem of the direct potential here. Recently Friedrich and Canto84
) have 

searched Veff in the two closed-shell cluster systems assuming the superposition 

of the several range Gaussian potentials for the form of Veff· The parameters 

of Veff are so determined as to make the approximation of Eq. · (5 • 1· 6) as 

good as possible. In actual calculation t'hey utiliz~ the GCM matrix elements 

of both the. sides of Eq. (5 ·1· 6). We here , study a little how good the 

approximation of Eq. (5 ·1· 6) is for the case of the kinetic energy operator 

'in the two closed-shell cluster systems. The exact kernel in the H.O. repre­

sentation is given in Eq. (4·2·5), while we have 

(5·1·7) 

Thus we know that for N = N' our approximation gives an· exact answer 

while fqr N = N' + 2 the errqr of the approximation is . 
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which is small if J1N changes slowly as a function of N. 

5.2. Construction of the allowed states 

5.2.a. Two-cluster system 

The allowed states of the single channel two-cluster system can be known 

usually with ea.se without explicitly solving the eigen-value problem of the 

norm kernel. Let us denote by N (A) the lowest possible total number of the 

H.O. quanta of the A-nucleon H.O. wave function. Since the total number of 

the H.O. quanta of Jl {Vmm (r, r) ¢o (C1) ¢o(C2)} is N + N(C1) + N(C2), N should 

be N>Nd, where Nd=N(A) -N(C1) -N(C2), for Vmm to be an allowed 

state. (N(Ci) is the total number of the H.O. quanta of ¢0 (C~) as was defined 

in Eq. (4·2·6)). Thus, the condition N>Nd is a necessary condition for 

V Nlm .to be allowed. Usually this condition N> Nd is also a sufficient one for 

the allowed states. We know some cases where this condition is insufficient, 

but even then with some more careful examination, we usually get a correct 

sufficient condition for the allowed states. For example, N d of 160 + 160 is 20, 

while the correct condition for Vmm to be allowed is N>24 .. The reason why 

N = 20, 22 are forbidden numbers is easily given by considering the conservation 

of the number of the H.O. quanta in each x, y and z direction. As another 

example, N d of 3N + N system with T = 0 is 0, but V mm with N = 1 is for­
bidden. The reason is that the 1-lz(J). excited states with T = 0 in 4He do not 

exist except the spurious state of the C.M. excitation. 

When we treat the channel coupling two-cluster system, we have no more 

simple metl:lod as above to determine what states are allowed. So we need to 

solve the eigen-value problem of the norm kernel in general. · In § 5.2.b, 

however, we will find that we have a method, for some kind of the channel 

coupling two-cluster systems, to construct the allowed states, which avoids 

calculating the norm kernel and solving it. 
I 

5.2.b. ·Multi-cluster system 

First we consider the case where all the constituent clusters are SU3 

s'calar. As a general property of the eigen-function of the norm kernel with 

non-zero eigen~value (Jla=foO), we notice that they are orthogonal to all the 

"two-cluster forbidden states" between any two constituent clusters. Let 

vlcF (tij) be any two-cluster forbidden state between clusters ci and Cj, satisfy­

Ing Jl{V~cF(tij)¢ 0 (Ci)¢ 0 (Ci)}=O, where tii=Xi-Xi. Since there follows 

(5·2·1) 

by combining this with 

(5. 2· 2) 

we get 
\ 

O=<V~cF (tij) ¢o (C1) · ··¢o(Cn) JJZ{,t¢o CC1) ···¢o (Cn)}) 
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178 H. Horiuchi 

(5· 2· 3} 

which means that for flci=/=0, <VkF (til) lxa) = 0. We introduce the notation 

NF (i,j) which expresses the set of an the forbidden numbers of the H.O. 

quanta between clusters ci and Cj; namely for NENF(i,j), Jl{Vmm(tij)¢o(Ci) 

X ¢o (Cj)} =0. , 

Now let us define a functional space Hn', which is spanned by the multi­

cluster relative wave functions that- are orthogonal to all the two-cluster for­

bidden states VkF (tij) between any tWO Constituent dusters. If We denote by 

Hn the space spanned by .all the allowed states (or eigen-functio~s with fla'#-0), 

the above argument shows that this space Hn is contained in Hn'; Hn C Hn'. 

_We here introduce a hypothesis63
) that Hn = Hn'. This hypothesis was shown 

to bE; true for 3ci and 160 + 2a systems by constructing Hn and Hn' ~xplicitly 
1 , 

, 
I • l 

and then by comparing them. What we discuss here is the construCtion meth­

od of Hn', which, according to this hypothesis, is equivalent to the co~struction 

of the allowed states. 

Ev:en if Hn=I=Hn', the space Hn' has its own significance. To solve the 

many-body Schrodinger equation within the space Hn' where the interaction 

operator, is given by the suin of pair interactions between clusters ~i>t V~i!.)(tij), · 

namely to solve 

(5. 2· 4) 

with A' denot'ing the projection operator onto Hn';; is just equivalent to solving 

the many-body Schrodinger equation, where the interaction: process between 

any two constituent clusters is described by the two-cluster OCM, Aij (E-Tij 

- V~ifi) (tij)) AijQij ~ 0. 63), 85), 86) 

Neudatchin and his 'coworkers87
) have· proposed a me!hod to treat Eq. 

(5 · 2 · 4) which do~s not construct A' explicitly;. They introduce pseudo- po­

tentials ).~kiVkF(tij)><V/(tij) I in addition to the original interaction v~u·) (tij) 

for· each pair (i,j) and solve the many-body Schroding~r equation without 'A'. 

The stable finite solutions in letting il.~oo are the desired answer whose wave 

functions are su~ely. orthogonal to all the two-cluster forbidden st~tes. *) 

Our construction rnethod63
). of· the basis states of· Hn' of n-cluster system 

is based on the concept of the "coefficient of fractional parentage" (cfp). We 

first construct the. ba~is states . of H 3

1 of thre~-cl~ster system on the .basis of 

the knowledge of'the two-cluster allowed states. Then we construct the basis 

states of H/ of four:.ciuster system using the knowledge of -H/, a'nd so on. 

We expand the state XJa (n) of· Hn' by the basis states XLP (n -1) of H~-1 

as. follows: 

*) • The same idea as that of Neudatchin et al. has also been proposed by Saito et al. · The point 

of this method is how to get the numerical stability of the practical calculation in letting ..l-7oo. 
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(5·2·5) 

where Xn and Xa (n -1) are the center-of-mass (C.M.) coordin~tes of the n-th 
cluster and (n -1) -cluster. system, respectively. Since . all the basis states 
Xu (n -1) of H~_ 1 are assumed .. to be already known,, our task is to calculate 
the. cfp c<n) (Ja jL(3N1l1). The cfp are determin~d by the ortho~onality condi­
tion of XJa (n) to all the two-cluster forbidden states between constituent two . 
clusters. In XL 8 (n -1), all the two-cluster forbidden states between any two 
clusters in the (n -1) -cluster system are already eliminated, and so what is 
remained to do is the elimination of the two-cluster forbidden states between 
the n-th ·cluster Cn and the cluster Ci (1 <i<n -1) in , the (n -I)-cluster 
system .. For this purpose we expand XL 8 (n-l) by the basis states XPr(n~2) 
of H~_ 2 of the (n- 2) -cluster system just as in Eq. (5 · 2 • 5) ·with the use of 

· the cfp C/n- 1
) (L/31 Pr N 2l2 ) which are assumed to be already known; XLP (n -1) 

= L:PrN
2
t

2 
C/n-1) (L/3jPrN2l2) [VN

2
zJsi) X~r (n- 2) ]L where si=Xi-Xai (n-2), 

1<i<n-1 with Xai(n-2) denoting the C.M. coordinate of the (n-2)-cluster 
. I system composed of th~ clusters C.J (1~<n -1) except Ci. Then XJa (n) can 

be written as follows: 

' 

X [VN
1
t

1 
(sn) [VN 2 t 2 (si)X~r(n-2)]L]J 

= : :E c<n) (JajL(3N1l1) C/n-1)(L/3jPrN2l2) :E v (2L + 1) (2Q+ 1) 
L8N1t1 ' Q PrN 2 t 2 

(5 ·2· 6) 

where V~!~ 2 is defined in Eq. ( 4 ·1· 43). By using the Talmi-Moshinsky­
Smirnov (TMS) coefficient we express V~t~ 2 (sn. si) of Sn. ~i coordinates by 
the linear combination of the H,O. functiond of the coordinates Sni= (MnXn 
+ MiXi)/ (Mn + Mi)- Xai (n- 2) · and tni=X~- Xi as V~t~ 2 (sn, si) = :EN3t

8
N

4
t

4 

x<NrllN2l2INalaNi4, O)ei · V~~~ 4 (sni• tni) where ei is the angle of the TMS 
transformation (sn. si) ~ (snh tni) which is· shown in Fig. 1. Then by putting 
zero every coefficient of [ V~r~~ (sni• tni) X~r (n- 2) ]J with N 4 E NF (n, i), in· order 
to guarant~e the orthogonality of XJa (n) to VN

4
t

4 
(tni) with N 4 E NF (n, i), 

we get 

X W(l1l2JP; QL) <Nrl1N2l2INalaN4l4, O)ei = 0, (5· 2·7) 
; 

where N4 E NF (n,i)' 1 <i<n ---:-1, and P, r. 0, Na, Za, l4 are arbitrary possible 
values. Equation (5 · 2 · 7) shows that the cfp c<n) (Jet jL(3Nrl1) of the n-cluster 
system are calculable successively from the knowledge of the cfp C/n- 1

) (L/3 
IPrN2l2) of the (n:__1)-cluster systems. The. solutions c<n)(JajL(3N1ll) of 
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180 H. Horiuchi 

(n-1)-sYstem 
x. 

~X 
~--~-=~~------------~ • /1 

~~ 

· Fig. 1. Internal coordinates. Xai (n-2) is the C.M. coordinate of (n-2) 

clusters excluding i-th and n-th clusters. X a (n -1) is the C.M. 

coordinate of (n-1) clusters except <n-th cluster. sn=Xn-X0 

(n-1), si::::::::Xi-Xai(n-2), are related to tni=Xn-Xi, Sni=CMnXn 

+MiXi)/(Mn+Mi) -Xai(n-2) by the TMS transformation of 

the angle 8i. 

Eq. (5: 2\ 7) are obtained as the eigen-vectors 'with the eigen-value qa = 0 of 

the following secular equation, 

E Q(n) (L' t3' N/ ll'\Lt3N/1) c<n) (Ja \Lt3Nlll) = qaC(n) (Ja \L' t3' N/ l/)' 
L8N1L1 

x.(J) (iPr0lal4N4\Lt3Nlll), 

{J)(iPrQlal4N4\Lt3Nlll)= vi (2L + 1) (2Q + 1) E ct~-1) (Lt3\PrN2l2) 
/ N2t2 

X W(l/2JP; QL)<NlllN2l2\NalaN4l4, Q)ei. (5·2·8) 

It is easy to show that the matrix elements Q<n) (L' t3' N/ l/ \ Lf3N/1) are just 

the matrix elements of the operator Q<n) defined. in Eq. (5 · 2 · 9) by the func­

tions [VN
1
t

1 
(sn) XLP (n-1) ]J with fixed J; 

(5·2·9) 

Clearly Q<n) preserves the number of the H.O. quanta. So if XLP (n -1) have 
' ! 

the definite m.:tmber of the H.O. quanta, XJa (n) also have the definite number 

of H.O. quanta. 

The fact that the TMS (Talmi-Moshinsky-Smirnov) transformation pre­

served the Elliott SU3 symmetry makes it possible to classify the elements 

of Hn'. space by SU3 group.63
),Sn>,so) Moreover what. is important is that the 

introdu~tion of SUa group greatly simplifies the construction process of the 

basis states of Hn' described above. We show this slightly in detail in the 

case of the three-cluster system. The cfp expansion · of the basis states 

XN<J..tJ.)M,p of Ha' is written as 

(5·2·10) 
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Kernels of GCM, RGM and OCM and Their Calculational Methods 181 

where the cfp A::,~:) (2) are to be identical with A:,~:) of ,Eq. (4·1· 44) if, 
H/ = Ha, and Sa=Xa- (MlXl + MX2) I (Ml + M2). v§;ir~)ICJ are defined in Eq. ' 
( 4 ·1· 43) and they transform under the TMS transformation as follows: 

V%;ir~)ICJ (ss, t12) = 2J <NsN41 N1N2, (A, tt))ei v§;ir:)ICJ(si, tjk)' (5. 2 ·11) 
, N 3 +N4 =N ' _ 

where (i,j, k) = (1, 2, 3) or (2, 3, 1) and ()i is the angl~ of TMS transformation 
(sa, t 12) ~ (si, t1k). The reduced TMJ' coefficients <NaN41N1N2, (A, tt) ) 8 i do not 
depend on /C and J due to the SU3 scalar property of TMS transformation. 
We substitute Eq. (5 · 2 ·11) into Eq. (5 · 2 ·10) and put zero every coefficient 
of V%;iv:)ICJ (si, t1k) with N 4 E NF (j, k). This gives us the orthogonality equation 
of XNCJ.,p)/CJ,p to the two-cluster forqidden states VN 4 ~ 4 m 4 (t1k) with N4 E NF (jk), 

(5·2·12) 

where N 4ENF (j, k), (i,j, k) = (1, 2, 3), (2, 3, 1). Equation (5 · 2·12) shows 
that A!~:) (2) do not depend Qn /C and J since <NaN4IN1N 2, (A, tt) ) 8 i do not 
depend on /C and J. To solve Eq. (5 · 2 ·12}~\is equivalent to obtaining the 
eigen-vectors with the zero eigenvalue qP = 0 of the following secular equation, 

" QN(J.,p.) (N IN 'INN) _AN(A,/l) (2) =q AN(J.,~) (2) .L...J 1 2 1 2 p, N 2 p p, N 2 ' 
N 2 EENF(1, 2) 

(5 ·2·13) 

W ~ can easily show that QN<J..p) (N/ N/ IN1N 2) are just the matrix elements 
of the operator Q<al of Eq. ,(5 · 2 · 9) with n = 3 by the functions V%;ir~)ICJ (sa, t 12 ) 
with N 2 $ NF(1, 2), N 1 + N2 = N. 

What are necessary for the practical treatment of the above procedure in 
SUa scheme are the simple and rapid evaluation of the SUa C-G coefficients 
<CNl O)l1 (N2 0) l21i (A, fl)!CJ) and the reduced TMS coefficients <MN4IMN2 , 

(A, tt) ) 8 • An answer to this problem is given by the quasi-spinS introduced 
by Bargmann and Moshinsky, 88

) 

(5·2·14) 

where at (v) is the creation operator of the H.O. quanta of the coordinate 
v; at(v)=v'r(v.-(1/2r)aj8v). By using the SUa-scalar property.of S, we can 
easily show the following relations, 89

) 

(5~2·15) 
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182 H. Horiuchi 

From this we obtain 

tv (A =F N1 ± N2) (A± N1 =F N2+ 2) < (N1 ± 1, 0) l1,, (N2 =F 1, 0) l2ll (A, fJ.)~J) 

,= L: <CNl, O)l/, (N~, O)l/11 (A, ,u)~J)<V~t;J·N 2 '~= 1 IS±I V~~~9J), 
ll'l2' ' ' . 

X <V N1+1,zJ at II VNl>ll'><V N2,l2'll at II V JV2-1,z2), 

· 1 v (N + l' + 3) (l' + 1) · l = l' + 1 , 

<v II atii;V -> = . ' 
N+l,l - N,l ·, vCN--:Z'+2)Z', z=z'-1, (5·2·16) 

which we can use as the recursion formula to calculate the _reduced C-G 

coefficients. The TMS coefficients are given simply by. the familiar rotation · 

matrix as89
: 

<NsN41NlN2, (A, fJ.) ) 0 = dfn.,.m (8) =<Jm' le-ieJyiJm), 

J='A/2, m' =·(Ns-N4)/2, m ~ (N1-N2) /2, 

which is due· to the following relat~on, 

(5 ·2·17) 

(5·2·18) 

where cos {}d2 = ---:- v MiMs/ (M1 + M2) (~ + M,c) and 

sin8d2=si-V~CM+M2+Ms)/(U+M2)(~+M,c) with cl=-1 and 

ci= + 1. For more d,etailed discussion and applications of the above mentioned 

procedure, see Ref. 63), 

Our method described above to construct the allowed states of the system 

composed of the many SUs-scalar clusters can be utilized to construct the 

allowed states of some kind of coupled channel systems including non-SUs­

scalar cl-qsters. , For the sake of explanation, we consider 20Ne +a system 

where the ground band states of 20Ne are described by the SU3 shell model 

configuration (sd) 4[ 4] (8, 0). The point of our method is to use the fact that 

'this shell model wave function ¢£ e0Ne) is equivalent to the two-cluster wave 

fundion 1/v eD.uscA{VsL(taa)¢oC60)¢o(a)} .. Frqm the discussion of § 4.1.c; 

the orthonormal basis. wave functionp of this 20Ne +a system should have 

definitcr SUs symmetry as 

. !/Jf,,,,= j e4) N. Jl{[V,N,o)(r,r)¢,,,,,("Ne)]q,,,.,¢,(a)} 

' 4 fJ. (J., It) ' 

= (canst) cA {V~;lgs(.l,tt)tcJ (r, toa) ¢o C60) ¢o (a) ¢o (a)}. (5 · 2 · ~9) 
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I For the allowed symmetry (J.., jJ.) ' cA { v~ V· (,\, J!)ICJ ¢o C60) ¢o (a) ¢o (a)} cannot 

vanish. This requires that V~:Ss,(-t,Jt)tcJ should have non-vanishing overlap with 

at least one allowed state of the three SU3-scalar cluster system of 160 +a+ a. 
This condition for V~,-lg 8 • (-t,Jt)tcJ is not only necessary· but also sufficient, for the 

symmetry (J.., Jl.) to be allo~ed in the 20Ne +a system. From the, form of 

XN<J..,Jt>M,p of Eq. (5 · 2 ·10), we see 'that if the. cfp A~1v 8 ;~8Jt) (2) is non-zero at 

least for one p the symmetry (J.., Jl.) is. an allowed quantum number in the 
20Ne+a system. Thus we can determine what (J.., Jl.) are allowed in so~e kind 
of the channel coupled systems without calculating the norm kernel and with­

out solving the eigen-value problem of it. 

Finally · we discuss _below ,the general construction pr~cedure 90 > of the 

allowed states of the multi-cluster system which includes non-SU 3 -scal~r clus-

: ters. We explain in the case of three-clust~r system in which the cluster 

C1 is described by a non-SU3-scalar wave function with SU3 symmetry (60 , !'0) 

while C 2 and C3 are SU3-scalar. From the investigation of § 4.1.c, we know 

that we have three sets 'NA (1, i)' NPF(1, i)_, NF (1, i) to which we classify 

the. number of the H.O. quanta of the relative wave function between clusters 

cl and ci (i=2,3). For Ne.NA(1,i), c.A{[V(N,O)(tli)¢uro,t"o)(Cl)]a,j!)/CJ¢cci)} 
with any (J.., Jl.) resulting from (N, O) X (60, !'0) are allowed (or non-vanishing), 

while for N E NF (1, i) all (A, Jl.) ate forbidden, and for N E NPF (1, i), (J.., Jl.) 
are divided 'into allowed and forbidden. In t}J_e case of 12C +a, NA C2C, a) 

I = {N; N>S}' NPF C2C, a) = {N; 7> N>4} and NF C2C, a) =·{N; N<3}. First 
we regard. NPF(1, i) ilS if it were contained in NA (1, i) and construct 

the quasi-allowed state XN<tJ,r)pP,p exactly following the prescription discussed 

above for the th~ee SU3-scalar cluster sys~em. The truely-allowed three­

cl:uster state ZN<-t,Jt>tcJ, r can be expanded 'by using these XN<tJ,r:>pP,p as fol­
lows: 

I 

where [x<tJ,r>¢<11o,ro>J <J..,Jt> denotes the SU3 vector coupling (rJ, r) X (110 , !'0) ~ (J.., Jl.). 
The coefficients H:',~;NP are determined by requiring the orthogonality of 

ZN(A,j!)/CJ, r to the two-cluster forbidden states [ v(N;,o> (tli) ¢<11o,t"o) (Cl) J (IJ',r') with 
N2 eNPF (1, i), (11', r') E WN

2 
(1, i) which are _regarded as if they were allowed 

in constructing· XN<tJ,r:)pP,p· By the notation WN
2 
(1, i), we mean the set com-

, posed of those (6', r') which gives the forbidden state [ V<N
2
,o>(tli) cP< 11 o,ro>(Ci) ]<11 ',r'> 

for N2ENPF(l,i), namely c.A{[V<N
2
,o>(tli)¢<11o,ro>(C1)]<111,r')p'P'¢o(CD}=0. The 

equ?-tion to determine Fi~~;~~ is therefore 

Xi ( (11, r), p, N2, (11', r')) 

=A:,cg;
2
r) (i) U( CN1, 0) (N2, 0) (J.., Jl.) (a:o, ro); (11, r) (11', r') ), 
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(5 ·2·21) 

where 1:.~ 2 :.) (i = 3) are the cfp of the expansion of "/..,N(IJ,:.)pP,p by v: 1 ~r1if~PP (s2 , t13) 

while A:,~2:.)(i=2) are by v:l~if~PP(s3,tl2) like as in Eq. (5·2'·10). U((Nr,O) 

X (Nz, 0) (it, fl.) (<Jo, -ro); (0', i-) (<J', -r')) are the SU3 recoupling ~oefficient de~ 

fined by 

'[[ (N1, 0) (Nz, 0)] (IJ,d (<Jo, 'ro)] o.. 11l 

= ~ U ( (N;, 0) (Nz, 0) (it, fl.) (O'o, 'ro) ; (0', -r) (0'', -r')) 
(rJ':.') 

(5 ·2· 22) 

(Here the multiplicity of (it, fl.) is assumed to be one for simplicity. This is 

true when (60 , 7:"0) is either (60 , 0) or (0, 7:"0) .) Equation (5 · 2· 21) is equiv­

alent to finding the eigen-vector Hf.&:NP with eigen-value qr = 0 of the following 

yquation, 

~ QNU.,"'>((iJ r)P-1 (<J r)p)HN<J.,/1) =q HN<J...t:_>_ 
"'-.J , · , r, (rJ,:.)p r r, (iJ,r)p, 
~~p . . . 

(5·2·23) 

We give in Table IV as an example of application, the allowed states of 

12C +a+ a s~stem where 12C is described by the su3 shell model wave function 

with \0, 4) symmetry and is allow'ed to be excited to the, ground band member 

states 2+ and 4+. 

N 

12 

13 

14 

15 

Table IV. SU3 classification of the allowed states (of Hs') of the 12C+2a system. 

(8, 0)(4, 2)(0, 4) 

(9, 0) (8, 2) (7, 1) (6, 3) (5, 2) 2 (4, 4) (3, 3)2 (2, 5) (1, 4) 

(11, 1) (10, 0)3 (9, 2)2 (8, 1)3 (8, 4) (7, 3)3 (6, 2)5 (6, 5) (5, 4)3 

(4, 3)3 (4, 6)2 (3, 5)2 (2, 4)3 (1, 6) (0, 8) 
\ 

(12, 1)2 (11, 0)5 (11, 3) (10, 2)4 (9, 1)6 (9, 4)2 (8, 3)5 (7, 2)7 (8, 6) (7, 5)3 (6, 4)5 

(5, 3)6 (6, 7) (5, 6)3 (4, 5)4 (3, 4)4 (4, 8) (3, 7)2 (2, 6)2 (1, 5)2 (2, 9) (1, 8) (0, 7) 
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Appendix 

A. I. Proof of Jacobi formula Eq. (2 · 2 · 7) 

We note the following relation,' 

c~lll • •••• ·, c~rll C P1l1 • • • • • • C Pn-r. l1 . . . . . . . . . . 

ck, ······'ck, 
.1"1 ' !"1 1 . . . . 

0 0 

0 
1 

(A·l) 

wh~re (P1, P2, · · ·, Pn-r) are the numbers which are left after subtracting the 

set of numbers (k1, k2, ···, kr) from (1, 2, · ··, n) and satisfy P1<P2< · .,.<_Pn-r• 
Next we consider the determinant 

a kill •••••• akllr aklql •••••• aklqn-r . . . . . . . . . . . . . . . . . . . . . . . . (A·2) 
a pill" .............. aplql •••••• aplqn-r· . . . . . . 

where (q1, q2, · ··, qn-r) are the numbers which are left after subtracting 

(l1, l2, · · ·, lr) from (1, 2, · · ·, n) and satisfy q1<q2< .. · <qn-r· Clearly this 

determinant is equal to e Ct:::t ~-~-.~:;~~) X e ct:::i~ ~t:~:~r) . det {aij}, e (P) denoting 
the signature of the permutation 1?. By multiplying the two determinants 

of Eqs. (A·1) and (A~2) and by using Eq. (2·2·5) we obtain 
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det·a 

det· a 0 

0 0 

det:a 

a l ................ a ..... · .... a 
1?t 1 J?-tql l?tqn-r 

. . . . . . 

= (det· a/ ·B.(kl"""kr) 
l1"""lr 

where we used the fact 

a ......... a 
P1q1 Ptqn-r . . ' . . . . 

(A·3) 

. (A·4) 

which .1s evident from the definition of B G/:::~~). By usmg the relations 
I 

· (A·5) 

I 

which are proved m Appendix A~ 2, we get from Eq. (A· 3) the desired 

formula 

(A·6) 

A.2. Sign of permutation Ct.::·k'r r-;; 1 ~::·;·~~r) 

The sign s (P) of the permuta,tion P= (~~·:::·;:) can be calculated 

by knowing the number of inversion I (Pi) for each n}lmber Pi which is 

defined. as the number of letters p1 which satisfies j>i and p1<Pi (namely 

which locates to the right of Pi and is smaller than Pi). . The relation · 
./ 

. S (P) = (-:-) i~ii(Pi) (A·7) 

can be proved as follows; Consider the process to put back the numbers 

(P1, P2, ... , Pn) to the original order (1, 2, .. ·, n). Let Pi
1 

be Pi
1 
= n. In 

prder to put back Pi
1 

to the original position, we need (n ~ i 1) -time trans­

positions and this. number (n- i 1) is just the number of inversion for Pi
1 
= n, 
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namely I (PiJ = n- i 1 since all the letters locating to the right of Pi
1 
= n 

are smaller ,than Pi
1 
= n. After putting back P£

1 
= n to the ori~inal position, · 

we recalculate the mimber of inversions for the remaining letters Pl=l= Pi
1 
= n. 

Quite clearly I(p1) (for p 1=f=Pi
1 

_:_ n) receive no change at all. Now. let 

Pia be Pia=~ -1, and we put it back to the original position by I (Pia) -time 

transpositions. After putting back Pi
1 

and Pia to their original positions we 

know again that· the numbers of inversion for the remaining p1 (P19= Pi
1

, 

. P1 9=Pia) receive no change at all also. Repeating the same process, the 

numbers (P1, P2, .. ·, Pn) are put back to thel.r or~ginal order (1, ?' .. ·, n) 

after C:Ef==1 I (Pi)) -time transpositions. Thus Eq, (A· 7) is proved .. 

Now consider the permutation 

P=-(1 ...... r r+1 .... ·~n .), 

k1 ..... ·k P1 .... .. p . r ,,. n-r 

(A·8) 

Clearly the numbers .of inversion for Pi (i = 1rv n- r) are all zero; I (Pi) = 0, 

i=1rvn-r. For each ki there are (ki-;-1) letters (namely 1,2, ... ·,ki-1) 

which are smaller than k,. Among these (ki -1) letters (i -1) letters are 

located to· the left of ki' (namely k1, k2, ... , ki~ 1 ), and so we obtain. I (ki) 

_(ki-1)-(i-1)=ki-i. From Eq. (A·7) we therefore obtain 

(A·9) 

. By using Eq. (A· 9) we can grove th~ Laplace expansiOn given in Eq. 

(2 · 2. · 2) . First we note 

all1 •••••• aur alql •••••• alqn-r . . . . . . 
. . . . . . (A·lO) 

Next we use the relation of Eq. (2 · 2 · 21), which g1ves us 

ale t .... ··ale ·t 
,1 1 ,1 r 

ap.lq1' ••••• .... a:J?1qn-r 

. . . . . - . . . 

(A·11) 

Thus by Eq. (A·9) we have proved Eq. (2·2·2) for the case of ~ 

= ~(le 1 <lea<··<ler). The proof of Eq. (2 · 2 · 2) in the case of ~ = ~(t 1 <ta<··<tr) 
is similar and evident. 
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