120 Supplement of the Progress of Theoretical Physics, Vol. 49, 1971
Chapter IV
Thermal Instability in the Expanding Universe
Masaaki KonDo, Yoshiaki SofuE* and Wasaburo UnNo**
Institute of Earth Science \& Astronomy, University of Tokyo, Tokyo

* Department of Physics, Nagoya University, Nagoya
** Department of Astronomy, University of Tokyo, Tokyo
(Received July 7, 1971)
In the expanding universe, the thermal instability, if it occurs, can develop much more
quickly than the gravitational instability and, therefore, may provide a possible mechanism
to initiate the formation of galaxies. The general characteristics of thermal instability
are discussed for non-equilibrium media with due regard to the ionization change and
the optical depth effect of fluctuations.
If the matter can be brought to a temperature high enough to ionize hydrogen after
107 years of the cosmic age, the energy loss from the matter becomes mainly due to the
bound-free processes rather than the Compton scattering and the thermal instability
will be set up. Such a high temperature ($\sim 10^{4}{ }^{\circ} \mathrm{K}$) is excluded in the thermal history
of the expanding universe even if the effect of hydrodynamic turbulence is taken into
account, since the inverse Compton loss it extremely large just after the epoch of the
recombination of hydrogen when the turbulence decays rather rapidly. There is, how-
ever, a possibility that the turbulent energy is stored in the magnetic field and in cosmic-
ray particles at the epoch of hydrogen recombination and released later ($\sim 10^{7}$ years)
when the inverse Compton loss becomes less efficient.

§1. Significance of thermal instability

 tuations for the case of gravitational instability in the flat-Friedmann universe is proportional to $t^{2 / 3}$ (t is the age of the universe) and is very slow. If Чц!
 sations within the cosmic age of 10^{10} years. ${ }^{3,4)}$
Two types of origins may be considered for these initial fluctuations; one is the primordial one and the other is due to the thermal instability
 cannot survive until the epoch of the recombination of hydrogen if the mass

Thermal Instability in the Expanding Universe 121
because the growth rate of the amplification is possibly large when the energy exchange between matter and radiation exists.
Now, we consider that the gravitational contraction proceeds at the time scale of free fall if disturbances of finite amplitude are triggered by the thermal instability in larger sizes than the Jeans wave length. On the other

 rate. ${ }^{7)}$ Therefore, we expect that clouds or grobules first formed by thermal instability may be much less massive than galaxies, and that statistical fluctu-

 10^{-3} at the cosmic age of 10^{5} years.
The above considerations lead us to conclude that

$N \leq 10^{6}$ tively.
 Thus, we have

$$
\begin{aligned}
& \qquad M_{\mathrm{gr}} \geq 10^{-6} M_{\mathrm{J}} \\
& \text { The value of } M_{\mathrm{J}} \text { is provided by the balance between the gravitational }
\end{aligned}
$$ energy and the turbulent kinetic energy of grobules so that

$$
\frac{G M_{\mathrm{J}}}{\left(M_{\mathrm{J}} / \frac{4 \pi}{3} \rho\right)^{1 / 3}}=\frac{1}{2} v_{\mathrm{gr}}^{2}
$$

where v_{gr} denotes the random turbulent velocity of grobule. ${ }^{8)}$ The value v_{gr} depends in general on the length scale concerned. Referring to the peculiar velocities of galaxies, we may take v_{gr} to be $10^{4} \mathrm{~km} / \mathrm{sec}$ at 10^{5} years. Then,

 (1-3), we have $M_{\mathrm{gr}} \geq 10^{6} M_{\odot}$.
 than $10^{6} M_{\odot}$ could be formed by the action of the thermal instability in the expanding universe.

M. Kondo, Y. Sofue and W. Unno

Thermal instability in the expanding universe

Radiative processes provide interactions between matter and radiation which consist the universe. If fluctuations of macroscopic thermodynamical
 phenomena are called thermal instability. The most important factor characterising thermal instability is the functional dependence of the energy loss or ${ }_{6}$: sә! However, the expansion of the universe gives rise to a number of effects in the problem to which we shall now turn to study.
To begin with, we consider the general equations which matter and

 degree of ionization.
T, U

$$
N_{\mathrm{A}} \frac{d x}{d t}=\mathcal{G}
$$

where $\rho, p, T, U, \boldsymbol{v}, \phi, \mathcal{L}, \mathscr{P}, K, x, \mathcal{I}$ and N_{A} are, respectively, density, pressure, matter temperature, internal energy per unit mass, velocity, gravitational potential, energy and momentum loss of matter per unit mass, thermal
 Avogadro number. Here, the internal energy U is composed of thermal energy and ionization energy:

$$
U=N_{\mathrm{A}}\left\{\frac{1+x}{r-1} k T+\alpha x\right\}=\frac{1}{r-1} \frac{p}{\rho}+N_{\mathrm{A}} \chi x,
$$

(2•6)
\qquad
where χ is the ionization potential of the atom.

of photon,

$$
\text { Thermal Instability in the Expanding Universe } 123
$$

$$
\begin{aligned}
& R \text { now should be an integral of energy loss of matter } \mathcal{R}_{\nu} \text { due to the } \\
& \text { adiative processes at the frequency of } \nu \text { over the whole range of frequency }
\end{aligned}
$$

$$
\begin{aligned}
& (6 \cdot 7) \\
& (8 \cdot \square)
\end{aligned}
$$

The momentum loss of \mathscr{P} is mainly due to radiative processes in the
expanding universe, so that \mathscr{P} is the integral of momentum exchange between $\int^{\infty}{ }^{\infty}$

$$
\begin{aligned}
& (I I \cdot \square) \\
& (O I \cdot \square)
\end{aligned}
$$

 cient, and c the light velocity.
And then, we consider the radiation field at the frequency of ν. The
 equations: ${ }^{10)}$

$$
123
$$

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t}+\frac{1}{a} \frac{d a}{d t}\right) J_{\nu}+\frac{1}{4} \boldsymbol{\nabla} \cdot \boldsymbol{F}_{\nu}=\rho \mathscr{R}_{\nu} \\
& \left.\frac{\partial}{\partial t}+\frac{1}{a} \frac{d a}{d t}\right) \boldsymbol{F}_{\nu}+4 \boldsymbol{\nabla} \cdot \mathbf{K}_{\nu}=-\rho\left(\kappa_{\nu}+\sigma_{\nu}\right) \boldsymbol{F}_{\nu}, \\
& \text { radiative stress tensor defined by } 1 / 4 \pi \cdot \int \boldsymbol{\mu} \boldsymbol{\mu} I_{\nu} d \Omega . \text { We now } \\
& \text { n approximation which is known to be very optional; }{ }^{11)} \\
& \mathbf{K}_{\nu}=\frac{1}{3} J_{\nu} \boldsymbol{I}
\end{aligned}
$$

nant stage, we have the relation that $\rho_{0} a^{3}=$ const., where a is a scale factor

$$
(6[\cdot 7)
$$

$$
(8 I \cdot \square)
$$

124
M. Kondo, Y. Sofue and W. Unno

$$
(L I \cdot Z) \quad{ }_{*}^{6} V+\left\{\left({ }_{* L} L \Delta * Y\right) \Delta+{ }_{*} V\right\} \frac{*^{d}}{*^{d}}-=\frac{\Lambda_{*}^{d}}{*^{d}} \mathrm{UI}\left[\left(\Delta \cdot *^{a}\right)+\frac{2 \varrho}{\varrho}\right] \frac{\mathrm{L}-\ell}{\mathrm{I}}
$$

$$
\frac{\partial \rho^{*}}{\partial}+\boldsymbol{\nabla} \cdot\left(\rho^{*} \boldsymbol{v}^{*}\right)=0
$$

$\frac{1}{c}\left[\frac{\partial}{\partial \tau}-(\gamma-1)\left(\sqrt{6}+\Lambda_{0}^{*}\right)\right] J_{\nu}^{*}+\frac{1}{4 v_{\mathrm{f}}} \boldsymbol{\nabla} \cdot \boldsymbol{F}_{\nu}^{*}=\rho^{*} \mathscr{R}_{\nu}^{*}$范
$\frac{1}{c}\left[\frac{\partial}{\partial \tau}-(\gamma-1)\left(\sqrt{6}+\Lambda_{0}^{*}\right)\right] \boldsymbol{F}_{\nu}^{*}+\frac{4}{\tau_{\varphi}} \boldsymbol{\nabla} J_{\nu}^{*}=-\rho^{*}\left(\kappa^{*}+\sigma^{*}\right) \boldsymbol{F}_{\nu}^{*},(2 \cdot 21)$
where
$(76 \cdot 7)$

$$
\mathcal{R}_{\nu}^{*}=-\kappa_{\nu}^{*} J_{\nu}^{*}+\varepsilon_{\nu}^{*}
$$

The differentiations with time and space are modified as follows: $d \tau=\frac{d t}{\tau_{\mathrm{f}}^{(0)}} \quad$ and $\quad \nabla=a\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
 quantities designated by the suffix 0 or to the free-fall velocity v_{f} and v_{f}^{2}; $\rho^{*}=\rho / \rho_{0}, \quad p^{*}=p / p_{0}, \quad T^{*}=T / T_{0}, \quad v^{*}=\left(\boldsymbol{v}-\boldsymbol{v}_{0}\right) / v_{\mathrm{f}}$, $\phi^{*}=\left(\phi-\phi_{0}\right) / v_{\mathrm{f}}^{2}, \quad \mu^{*}=\frac{1+x}{1+x_{0}}, \quad J_{\nu}^{*}=J_{\nu} / p_{0}$

荘
Thermal Instability in the Expanding Universe 12
In addition, the following functions with asterisk are defined,
In the momentum equation of (2-16), the term αv^{*} representing the

 $\alpha_{r}=\tau_{\mathrm{f}}^{(0)} / \tau_{\mathrm{Ts}}$, where τ_{Ts} is the mean-free time of the Thomson scattering

$$
(97 \cdot z) \quad \cdot_{*} V(\mathrm{I}-\ell)+(\varepsilon / \hbar-\ell) \underline{9} \mu=\frac{\pi}{6} \not \subset \mathrm{U} \frac{2 p}{p}
$$

The first term of R.H.S. is due to the expansion and the second to the nonadiabaticity of the unperturbed state.
шләł әЧุ Кโң!
 As A^{*} includes the ionizational energy loss of internal energy, (2•17) expresses the conservation of thermal energy of matter. ${ }^{15)}$ Denoting the time scales of energy loss due to radiative, mechanical and ionizational processes by $\tau_{\mathrm{R}}, \tau_{\mathrm{H}}$ and $\tau_{\mathrm{I}}, \mathscr{R}^{*}, \mathscr{I}^{*}$ and \mathscr{J}^{*} are rewritten as follows:

$$
(2 \cdot 27)
$$

[^0]$$
(2 \cdot 29)
$$

126
M. Kondo, Y. Sofue and W. Unno
 have the following linearized equations:

$\frac{d \rho_{1}}{d \tau}+u_{1}=0$,

$(I \varepsilon \cdot Z)$
$(0 \varepsilon \cdot \zeta)$
$\left[\frac{d}{d \tau}+(\gamma-1) \bar{\Lambda}_{T}^{*}\right] p_{1}-\gamma\left[\frac{d}{d \tau}+\frac{\gamma-1}{\gamma}\left(\bar{\Lambda}_{T}^{*}-\Lambda_{\rho}^{*}\right)\right] \rho_{1}+(\gamma-1)\left(\Lambda_{\mu}^{*}-\Lambda_{T}^{*}\right) \mu_{1}$ $(7 \varepsilon \cdot \square)$ $(\varepsilon \varepsilon \cdot \square)$ $(\neg \varepsilon \cdot \square)$
-
$(2 \cdot 35)$ $(2 \cdot 36)$ $\left[\frac{\chi}{k T_{0}} \frac{d}{d \tau}+\mathcal{J}_{0}^{*}\right] \mu_{1}=\left(\mathcal{G}_{\rho}^{*}-\mathcal{J}_{T}^{*}\right) \rho_{1}+\mathcal{I}_{T}^{*} p_{1}+\mathcal{I}_{\mu}^{*} \mu_{1}+\mathcal{I}_{J}^{*} J_{1}$, $\frac{1}{c}\left[\frac{d}{d \tau}-(r-1)\left(\sqrt{6}+\Lambda_{0}^{*}\right)\right] J_{1}+\frac{1}{4 v_{\mathrm{f}}} F_{1}$
$\frac{1}{c}\left[\frac{d}{d \tau}-(\gamma-1)\left(\sqrt{6}+\Lambda_{0}^{*}\right)\right] F_{1}-\frac{4 k^{2}}{v_{\mathrm{f}}} J_{1}=-\left(\kappa_{0}^{*}+\sigma_{0}^{*}\right) F_{1}$,
ت
-
where
$u_{1}=i \boldsymbol{k} \cdot \boldsymbol{v}_{1}, \quad J_{1}=\int_{0}^{\infty} \delta J_{\nu} d \nu \quad$ and $\quad F_{1}=i \boldsymbol{k} \cdot \int_{0}^{\infty} \delta \boldsymbol{F}_{\nu} d \nu$. $\Lambda_{\rho}^{*}=-\frac{\tau_{\mathrm{f}}^{(0)}}{\tau_{\mathrm{E}}^{(0)}}\left(\frac{\partial \ln \left|\tau_{\mathrm{E}}\right|}{\partial \ln \rho}\right)_{0}, \quad \Lambda_{T}^{*}=-\frac{\tau_{\mathrm{f}}^{(0)}}{\tau_{\mathrm{E}}^{(0)}}\left(\frac{\partial \ln \left|\tau_{\mathrm{E}}\right|}{\partial \ln T}\right)_{0}$,
$\bar{\Lambda}_{T}^{*}=\Lambda_{T}^{*}-\Lambda_{0}^{*}+k^{2} K_{0}^{*}$,
$\Lambda_{\mu}^{*}=-\frac{\tau_{f}^{(0)}}{\tau_{\mathrm{E}}^{(0)}}\left(\frac{\partial \ln \left|\tau_{\mathrm{E}}\right|}{\partial \ln \mu}\right)_{0}$,

$\mathcal{I}_{\rho}^{*}=-\frac{\tau_{\mathrm{f}}^{(0)}}{\tau_{\mathrm{I}}^{(0)}}\left(\frac{\partial \ln \left|\tau_{\mathrm{I}}\right|}{\partial \ln \rho}\right)_{0}, \mathcal{J}_{T}^{*}=-\frac{\tau_{\mathrm{f}}^{(0)}}{\tau_{\mathrm{I}}^{(0)}}\left(\frac{\partial \ln \left|\tau_{\mathrm{I}}\right|}{\partial \ln T}\right)_{0}$,
$0^{0}\left(\frac{r^{\prime} U_{T} \varrho}{1 I_{2} / U_{I} \varrho}\right)_{\frac{(0)^{2}}{(0)^{2}}}$

축
Thermal Instability in the Expanding Universe

$\underset{\sim}{\text { ® }}$	¢
$\dot{\text { ¢ }}$	$\dot{\text { ® }}$

$n^{2}+\alpha n-1$

 $\mathscr{P}_{T}, \mathfrak{R}_{\rho}$ and \mathfrak{R}_{T} are the third order algebraic function of n and defind as follows:

$(2 \cdot 43)$

$\dot{\mathscr{P}}_{\rho}=\frac{4\left(\kappa_{0}^{*}+\sigma_{0}^{*}\right)}{n+c\left(\bar{\kappa}_{0}^{*}+\sigma_{0}^{*}\right)} \frac{\eta}{1-\eta_{\mathcal{L}} \mathcal{G}_{J}^{*} \mathscr{R}_{\mu}^{\prime}}\left(\mathscr{R}_{\rho}^{*}+\zeta \mathcal{G}_{\rho}^{*} \mathscr{R}_{\mu}^{\prime}\right)$,

$\mathscr{P}_{T}=\frac{4\left(\kappa_{0}^{*}+\sigma_{0}^{*}\right)}{n+c\left(\kappa_{0}^{*}+\sigma_{0}^{*}\right)} \frac{\eta}{1-n \zeta \mathcal{I}_{J}^{*} \mathcal{R}_{\mu}^{\prime}}\left(\mathcal{R}_{T}^{*}+\zeta \mathcal{I}_{T}^{*} \mathcal{R}_{\mu}^{\prime}\right)$,

芸
where
\square $(2 \cdot 45)$

$$
(2 \cdot 46)
$$

$$
\begin{aligned}
& \eta=c \frac{n+c\left(\bar{\kappa}_{0}^{*}+\sigma_{0}^{*}\right)}{\left(n+c \bar{\kappa}_{0}^{*}\right)\left(n+c \bar{\kappa}_{0}^{*}+c \sigma_{0}^{*}\right)+\left(c k_{J} / v_{\mathrm{f}}\right)^{2} x^{2}} \\
& \zeta=\frac{1}{\theta n-\overline{\mathcal{J}}_{\mu}^{*}}, \quad \bar{\kappa}_{0}^{*}=\kappa_{0}^{*}-\frac{1}{c}(r-1)\left(\sqrt{6}+\Lambda_{0}^{*}\right) \\
& \overline{\mathcal{J}}_{\mu}^{*}=\mathcal{G}_{\mu}^{*}-\mathcal{G}_{0}^{*} \quad \text { and } \quad \mathcal{R}_{\mu}^{\prime}=\mathcal{R}_{\mu}^{*}-\mathcal{R}_{T}^{*}
\end{aligned}
$$

 $\quad \forall$ x!puədd V u! uən!̣̂o

 in different ways at various wave numbers.

$$
\begin{aligned}
& \text { are isolated from the others. } \\
& \text { The dispersion relation for the thermodynamical modes is given by }
\end{aligned}
$$

129
Thermal Instability in the Expanding Universe
Here L_{r} and L_{ρ} do not include ionization effect and represent the dependence

 Jeans instability; ${ }^{\text {; }}$)

where the term αn is the difference from the case of static medium.
The characteristic behaviors of the eigenvalues can be analyzed con-
veniently in terms of the eigenvalues at the limiting wave numbers. ${ }^{13)}$ For $x=0$, the three roots corresponds to the growth rates of free fall, ree expansion and thermal change:

(2•52)
$(\varepsilon \varsigma \cdot z)$
$n_{\mathrm{s}}=-\frac{1}{2 r}\left[(r-1) L_{T}+L_{\rho}\right]-\frac{\alpha}{2} \pm x i$.
 growth rate and the frequency of the sound mode.
In the case of the flat Friedmann universe, neglecting the radiation drag

$$
(2 \cdot 55)
$$

 characteristic time scale of τ, n_{f} and n_{e} are represented by $\tau_{\mathrm{f}}^{(0)} / \tau_{\mathrm{f}}$ and $\tau_{\mathrm{f}}^{(0)} / \tau_{\mathrm{e}}$, respectively. Therefore, $\tau_{f}=(\sqrt{6} / 2) \tau_{\mathrm{f}}^{(0)}=3 \tau_{\mathrm{ex}}$, that is, the free fall in the expanding universe takes treble of the expansion time.
The nature of the three modes may be observed from the ratio Γ of the relative amplitude of perturbation in pressure and density

[^1]

\%

The value of Γ at the limit of $x=0$ and $x=\infty$ are tabulated in Table I. In the case of $n=n_{T}$, density change does not occur, and so this case
corresponds to the thermal mode where temperature and pressure vary proportionally. The case of $n=n_{c}$ corresponds to the condensation mode because equilibrium of pressure is preserved. Further the case of $n=n_{\mathrm{s}}$ corresponds to the sound mode because $\Gamma=\gamma$ and the phase velocity of this mode agrees with the sound velocity which is expressed by k_{J}^{-1}.

Among the growth rates in the limits of large and small wave numbers, $n_{\mathrm{f}}, n_{\mathrm{e}}$ and n_{s} belong to the modes of mechanical nature, while n_{T} and n_{c} belong to the modes of thermal nature. At $x=0$, the eigenvalues n of the three modes are real (2 modes are gravitational and 1 mode thermal), while,

 wave number, therefore, one of the three modes has a real eigenvalue, and

 adiabatic case, the critical :wave length corresponds to the Jeans one. The behavior of the three eigenvalues with increasing wave number depends on
 illustrated in Fig. 1

Now, Γ of each mode varies with wave length. For example, Γ of the thermal mode which has a real n value over the whole wave lengths changes from $-\infty$ to 0 as the wave length increases from 0 to ∞ (Fig. 1(c)), reflecting the fact that the compression of matter propagates at the speed of
 becomes larger.
 shall consider the condition that $\mathcal{R}_{e} n>n_{\mathrm{f}}$. This condition means that the scale of growth time should be shorter than three times of the expansion time

Fig. 1. The dependence of
Fig. 1. The dependence of the growth rates on the wave number. The solid lines show
the values of real root n of the dispersion relation, and the dotted lines show the real
part of the complex root n. The case (a) is that of $L_{\rho}=L_{T}=0$, the case (b) $L_{\rho}=2$
$\times L_{T}>0$, and the case (c) $L_{\rho}=-2 L_{T}>0$.

$(2 \cdot 57)$
$(89 \cdot 6)$

 below;
from Eq. (2.57),
from Eq. $(2 \cdot 58), n_{\mathrm{e}}>n_{\mathrm{f}}$,
$n_{T}>n_{\mathrm{f}}$
and from the same equation,
$(19 \cdot 7)$
$(09 \cdot 6)$

[^2]
$\stackrel{\leftrightarrow}{9}$
 Wilson fits with the Planck curve of $2.89^{\circ} \mathrm{K} .{ }^{16)}$ This background radiation is attributed widely to the cosmic black-body radiation in the Big-Bang model of the Universe as was predicted by Gamow ${ }^{17,18}$) and as evidenced by the observed high isotropy, ${ }^{19,200}$ although other interpretations may not be ruled out. The thermal history of the expanding universe may be divided into two stages depending on the degree of ionization of hydrogen. In the

 combination of hydrogen is almost completed and the universe becomes transparent for significant frequency range of radiation. The circumstance of the hydrogen recombination and the later thermal history, however, may depend
 section, we shall briefly summarize possible thermal conditions with and with-- Кчч!
 begin to recombine as the radiation temperature decreases to about $4500^{\circ} \mathrm{K}$, and the Lyman photons fill the universe. The Ly- α photons strongly in-

and to the two-photon emission from the metastable $2 s$ state. The kinetic temperature of matter does not separate from the radiation temperature

 asymptotically to a value of 10^{-5} when the temperature considerably decreased. ${ }^{21,22)}$ Meanwhile, hydrogen molecules are formed by the reaction

 about $300^{\circ} \mathrm{K} .{ }^{25)}$
Throughout the thermal history discussed above (without turbulence),
 stage of hydrogen recombination, the two-photon emission takes away the

 cesses, the population of H_{2} molecules is too small.
The heat loss function (which is negative because the adiabatic cooling of the matter temperature is more rapid than that of the radiative temperature; $T<T_{r}$) is then given by ${ }^{26)}$
$$
\mathcal{L}_{\text {comp }}^{*}=\tau_{\mathrm{f}}^{(0)} \frac{\rho_{0}}{p_{0}} \frac{\sigma_{T} k a_{r} T_{r}^{4}}{m_{\mathrm{H}} m_{e} c} x_{e}\left(T-T_{r}\right.
$$

等
lengths as shown in Fig. 3, but the growth
rate is small. The thermal effect lengthens the critical wave length.
§4. Possible models of thermal instability in the expanding universe
In the ordinary thermal history, thermal instability cannot occur because of the Compton scattering. We shall consider the turbulent universe in which thermal instability may possibly occur. This state exists after the

 is possibly increased by the dissipation of the turbulent kinetic energy.
 steps: At the first step, the mechanical energy gain suppresses the energy

 ations sufficiently grow. After all, thermal instability may suitably occur at
 the condition that $\Lambda_{0}^{*}=0$.

䛼

 expansion.

of decreasing temperature. ${ }^{29)}$ As the photons of Ly- α are optically thick

 these processes have little contribution to energy-loss rate.

L

sectio

 helium is $9: 1$.

$n_{0}=\frac{\left(\bar{\kappa}_{0}^{*}+\sigma_{0}^{*}\right)\left(\bar{\kappa}_{0}^{*}-\kappa_{0}^{*}-\mathcal{J}_{J}^{*}\right)+\left(k_{J} / v_{\mathrm{f}} \cdot x\right)^{2}}{\bar{\kappa}_{0}^{*}\left(\bar{\kappa}_{0}^{*}+\sigma_{0}^{*}\right)+\left(k_{J} / v_{\mathrm{f}} \cdot x\right)^{2}}$

This is shown in (A.34) in Appendix A.

where

This is shown in $(\mathrm{A} \cdot 34)$ in Appendix A. Here, η_{0} means the reduction
factor due to the optical thickness of $\tau_{p}=\kappa_{0}^{*} /\left(k_{J} / v_{f} \cdot x\right)$: If $\tau_{p} \gg 1$ (the optically thick case), $n_{0} \sim\left(\bar{\kappa}_{0}^{*}-\kappa_{0}^{*}-\mathcal{J}_{J}\right) / \bar{\kappa}_{0}^{*}$, on the other hand, if $\tau_{p} \leqslant 1$ (the transparent case), $n_{0} \sim 1$. And \mathcal{I}_{J}^{*} exhibits the influence of photo-ionization whether the ionization is determined by collisional process or not.
4, whext, we show the curves of constant \mathscr{R}_{0}^{*} in the $\mathfrak{R}-T$ plane in Fig. 4, where \mathfrak{N} is the number density of nucleons. At higher temperatures, the
Compton scattering is most efficient, then free-bound and Ly- α of singly ionized helium, free-bound and Ly- α of hydrogen become efficient in order
Thermal Instability in the Expanding Universe

The wave number for a mass of M is given by $0.954 \times 10^{-18} \mathfrak{R}^{1 / 3}\left(M / M_{\odot}\right)^{-1 / 3}$, and so the range of matter temperature exists where free-bound photons are optically thin for fluctuations with larger masses than $10^{6} M_{\odot}$.

For the cases of disturbances with the scales corresponding to the masses of $10^{12} M_{\odot}, 10^{9} M_{\odot}$ and $10^{6} M_{\odot}$, we show curves of constant $\eta_{0} \mathscr{R}_{0}^{*}$ values and the growth rate of the condensation mode in the $\mathfrak{R}-T$ plane in Fig. 6. Thermal instability occurs in the two regions in the $\mathfrak{R}-T$ plane, one due to free-bound processes of singly ionized helium, and the other to that of hydrogen. For, at the state where the effect of ionizational change can be neglected, the free-bound process satisfies the following relation:

(a)
 plane for the cases of the fluctuations with the scales of $10^{12} M \odot, 10^{9} M \odot$ and 1 os The solid line is the equi-growth-rate curve and the dotted line the equi-energy loss.
The chain lines show the constant ratio of the wave number to the Jeans wave number The chain lines show
for the given masses.
Thermal Instability in the Expanding Universe

$$
L_{\rho}=-2 L_{T} .
$$

where

$$
(4 \cdot 4)
$$

Therefore, the unstable region is wider for fluctuations with smaller mass, as shown in Fig. 6.
 of the Compton scattering. This is satisfied after the epoch of $\mathfrak{R}=10$, which we denote t_{b} hereafter.
 that the ionizational change occurs quickly and the ionizational mode is isolated.
Now, we shall discuss the mass range where the fluctuations can be

 $(\delta \rho / \rho)_{G}$ is necessarily greater than 10^{-3}. The fluctuation, with the initial

 bility with the growth rate n,

$$
(\mathrm{g} \cdot \nabla) \quad \cdot\left[\frac{9 \mu}{\nabla z}-\left(\frac{d}{\partial g}\right) 80\left[\frac{9 \mu}{\varepsilon}-{ }^{0} 780 \mathrm{I} u\right] \frac{(9 \mu / \varepsilon)-u}{\mathrm{I}}={ }^{\circ} 7.80[\right.
$$

 un likely that the condensation with a mass of $10^{12} M_{\odot}$ originates directly from thermal instability. The reason is that although the state with the

 that of density, is very large.

gravitationally. As the unperturbed state cools down to the thermally stable state after the fluctuations are amplified by thermal instability, the fluctuations with smaller wave length undergo more strongly the adiabatic damping by the expansion of the universe. Therefore, only the fluctuations with larger masses than $10^{6} M_{\odot}$ can survive.
After all, the most probable mass of grobule fwhich originates in

 Before the recombination of hydrogen, the sound velocity c_{8}^{*} is given by pue suołoчd fo $К$ Ћң!

 is strong enough.
If the turbulent dissipation heats up the matter quickly before $t=t_{b}$, the
 is approximately equal to the sound velocity. Therefore

$$
(4 \cdot 6)
$$

where $P_{\mathrm{m}}, P_{\mathrm{t}}$ are the material and turbulent pressures and $U_{\mathrm{m}}, U_{\mathrm{t}}$ are the
 energy of matter and turbulence is diminished by the energy loss of the Compton scattering because the epoch is prior to t_{b}.

$$
(4 \cdot 7)
$$

where the suffix 0 denotes the initial value, and $X_{0}=\left(c_{0} T_{50}^{4} / 5 k\right) t_{0}=3.68 \times 10^{-21}$

 instability occurs, the turbulent energy is required to be transformed in

 until 10^{7} years.
At the early epoch when the turbulent energy dominates over the magәәиО 'әэлоғ јо sәu! э! the magnetic energy becomes superior to the turbulent one, the stretching of

 magnetic intensity at present. If H_{0} is $10^{-7}, M_{\Delta}=3.35 \times 10^{11} M_{\odot}$.
ภu!

 -ग!usoo pue э!

 -pәшiof әq II! ${ }^{\text {M }}$ sə

 Jeans volume containing $10^{12} M_{\odot}$.

$\oint 5$.

Conclusion

Through the ordinary history of the universe, the Compton scattering is

 occurs. However, if the universe is heated up to the ionized state after the recombination stage, there can be the state in which the free-bound photons

 for the flat model of the universe. This state is thermally unstable and the growth rate is so large that very small fluctuations can be excited to an

 the thermal instability is found to be $10^{6} M_{\odot}$.
The following process is probable to heat up the matter to a reionized

 factor of 5×10^{3} turns the primordial turbulence from subsonic to supersonic

 energy loss of the Compton scattering.
The grobules with $10^{6} M_{\odot}$ originated by thermal instability aggregates

 to 10^{-7} gauss. Thereupon, the Jeans mass is $10^{12} M_{\odot}$, provided that the

Appendix A

$n^{2}+\alpha n-1$

[^3]141

Thermal Instability in the Expanding Universe
where $\mathscr{P}_{\rho}, \mathscr{P}_{T}, \mathfrak{R}_{\rho}$ and \mathfrak{R}_{T} are given by Eqs. (2.43) $\sim(2 \cdot 46)$. We shall now ite a few instances for $\mathscr{P}_{\rho}, \mathscr{P}_{T}, \mathfrak{R}_{\rho}$ and \mathfrak{R}_{T}.
 $\mathscr{P}_{\rho}=\mathscr{P}_{T}=0$,
$(A \cdot 2)$
$(A \cdot 3)$
 $\mathscr{P}_{\rho, T}$ is increasing as optical depth becomes thicker, on the other hand,
$\mathcal{R}_{\rho, T}$ is decreasing. iii) Fluctuations being completely transparent for radiations and ionizational effect only working,
$\mathcal{P}_{\rho}=\mathscr{P}_{T}=0$,
$\stackrel{\infty}{\dot{\leftrightarrows}}$
$(6 \cdot \mathrm{~V})$

$\mathfrak{R}_{T}=\mathscr{R}_{T}^{*}+\left(1+\frac{\mathcal{R}_{\mu}^{\prime}+\mathcal{I}_{\mu}^{\prime}}{\theta n-\mathcal{J}_{\mu}^{*}}\right) \mathcal{G}_{T}^{*} . \quad$ (A•10)

 is rewritten as follows:
$n^{2}+\alpha n-1=-x^{2} \frac{Q(n, x)}{P(n, x)}$

иәл!® әле рие u јо suo! $P(n, x)=n^{4}+A_{1} n^{3}+A_{2} n^{2}+A_{3} n+A_{4}$
$Q(n, x)=n^{4}+B_{1} n^{3}+B_{2} n^{2}+B_{3} n+B_{4}$,
$A_{1}=c\left(2 \bar{\kappa}_{0}^{*}+\sigma_{0}^{*}\right)+\mathcal{L}_{T}^{*}-\frac{\mathcal{I}_{\mu}^{*}}{\theta}$,

144
$n_{\mathrm{s}}=\frac{1}{2}\left(\frac{\mathcal{L}_{T}^{*}-\mathcal{L}_{\rho}^{*}}{\gamma}-\mathcal{L}_{T}^{*}-\alpha\right) \pm x i$
$n_{\mathrm{r}}=-\left(\bar{\kappa}_{0}^{*}+\frac{1}{2} \sigma_{0}^{*}\right) \pm \frac{c k_{\mathrm{J}}}{v_{\mathrm{f}}} x i$

- ت
where n_{c} and n_{I} represent the condensation mode and the ionization mode, and then n_{s} and n_{r} indicate the growth rate and frequency of the sound mode and the radiative mode.
M. Kondo, Y. Sofue and W. Unno

$$
\begin{aligned}
& n_{\mathrm{s}}=\frac{1}{2}\left(\frac{\mathcal{L}_{T}^{*}-\mathcal{L}_{\rho}^{*}}{\gamma}-\mathcal{L}_{T}^{*}-\alpha\right) \pm x \\
& n_{\mathrm{r}}=-\left(\bar{\kappa}_{0}^{*}+\frac{1}{2} \sigma_{0}^{*}\right) \pm \frac{c k_{\mathrm{J}}}{v_{\mathrm{f}}} x i
\end{aligned}
$$

Then the eigenvalues of the thermodynamical modes are given by the
roots of the following equation:

$(A \cdot 34)$ $(A \cdot 35)$

(A-34) corresponds to the case of (4.1). Here, it must be noted that in this case the thermodynamical modes include the ionizational effect only through Appendix B
-Ionization process and the energy loss by free-bound process-
We assume that the matter of the universe is composed of hydrogen and We assume that the matter of the universe is composed of hydrogen and
helium in the ratio of $9: 1$ in numbers. The numbers of hydrogen and helium are related to the density as follows:

$$
n_{\mathrm{H}}=0.694\left(\frac{\rho}{m_{\mathrm{H}}}\right) \quad \text { and } \quad n_{\mathrm{He}}=0.086\left(\frac{\rho}{m_{\mathrm{H}}}\right) .
$$

$(I \cdot g)$

> $\stackrel{8}{\square}$
HeII．We denote the ionization degrees of H and Hell as x and y ，and the ionization potentials as χ_{H} and $\chi_{\text {HeII }}$ ，respectively．

a）Ionization process		
We shall give only ionization function \mathcal{I} ．For the case of H ，we have		
	$\mathcal{J}_{\mathrm{II}}=\frac{0.694}{m_{\mathrm{H}}}\left[(1-x)\left(\mathcal{R}_{1 p}+n_{\mathbf{e}} \mathcal{C}\right.\right.$	（B．2）
Here，		
	$\mathcal{R}_{1 p}=7.84 \times 10^{g} \int_{\theta_{r}}^{\infty} \frac{d \theta_{r}\left(e^{\theta_{r}}-1\right)}{}$,	（B．3）
	$\mathcal{R}_{p 1}=3.25 \times 10^{-6} e^{\theta} E_{1}(\theta) T^{-3 / 2}$,	（B．4）
	$\mathcal{C}_{1 p}=1.23 \times 10^{-5} \theta^{-1} e^{-\theta} T^{-1 / 2}$ ，	（B．5）
	$\mathcal{C}_{\text {p1 }}=3.20 \times 10^{-26} T^{-1}$,	（B．6）

where \mathcal{R} and \mathcal{C} mean the photoelectric process and the collisional one respec
tively，

$\theta_{r}=\chi_{\mathrm{H}} / k T_{r}, \quad \theta=\chi_{\mathrm{H}} / k T$ and $E_{1}(\theta)=\int_{\theta}^{\infty} z^{-1} e^{-z} d z$.

 electrons are supplied from fully－ionized hydrogens．The ionization function is given by
$\mathcal{J}_{\text {HeII }}=\frac{0.086}{m_{\mathrm{H}}}\left[(1-y)\left(\mathscr{R}_{1 \alpha}+n_{\mathrm{e}} \mathcal{C}_{1 \alpha}\right)-y n_{\mathrm{e}}\left(\mathcal{R}_{\alpha 1}+n_{\mathrm{e}} \mathcal{C}_{\alpha 1}\right)\right] . \quad$（B．7）
$\stackrel{\infty}{\dot{\oplus}}$
（6．g） $(I I \cdot G)$
$(0 I \cdot G)$

$\underset{\underset{\sim}{\oplus}}{\underset{\sim}{\oplus}}$

舟
 覀

要

[^4]

[^0]: (2.28)

 Moreover, denoting the time scale of energy loss by τ_{E}, we have

[^1]: (9s.z)

[^2]: $\mathcal{R}_{e} n_{\mathrm{B}}>n_{\mathrm{f}}$.
 $(79 \cdot 7)$

[^3]: $=-x^{2} \underline{\left\{1+(1-1 / r) \mathscr{P}_{r}+(1 / r) \mathscr{P}_{o}\right\} n+(1 / r)\left\{\left(1+\mathscr{P}_{\rho}\right) \mathscr{R}_{T}-\left(1+\mathscr{P}_{T}\right) \mathbb{Q}_{o}\right\}}$

[^4]: References

 6) H. Sato, Prog. Theor. Phys. 45 (1971), 370.
 G. B. Field, Astrophys. J. 142 (1965), 531.
 R. Weymann, Astrophys. J. 145 (1966),
 W. Unno and E. A. Spiegel, Publ. Astron. Soc. Japan 18 (1966), 85.
 W. Unno and E. A. Spiegel, Publ. Astron. Soc. Japan 18 (1966), 85. M. Kondo, Publ. Astron. Soc. Japan 22 (1970), 13.
 P. J. E. Peebles, Astrophys. J. 142 (1965), 1317.
 R. I. Defouw, Astrophys. J. 161 (1970), 55.
 .291 'uosic $M \cdot M$ 'Y pue seizuәd $\cdot \forall \cdot \forall$

