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Chapter VI 
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The contribution of two~pion exchange three-body force from the P-wave 77-N scat­
te~ing to the binding energy of nuclear matter is investigated. The three-body force 
(TBF) is derived as the effective two-body force under consideration ~f the correlations 
between all the pairs of nucleons concerned with TBF. The reaction-matrix equations 
are solved self-consistently with two- and three-(effective two-)body potential. The 
binding energy contribution from TBF is about 3.5 MeV attraction for the c~se of the 
Ramada-Johnston potential and 4.1 MeV for Tamagaki's OPEH potential. The 
characteristic effect of TBF is discussed in connection with the binding energy and the 
saturation density. In nuclear matter calculation with two-nucleon· potentials, there 
seems to be that the energy gain has generally been accompanied by increasing the 
saturation density, but our results show that TBF gives the energy gain, but does not 
increase the saturation density so much as two-body force does. 

§ 1. Introduction 

I tjs well-known that there is a large difference in binding effect on nuclear 

matter with realistic nucleon-nucleon potentials which reproduce two-nucleon 

scattering data equally well. A large number of works have been performed 

about the saturation problem of nuclear matter, but at the present time it seems' 

to be difficult to draw any definite conclusion whether we can really obtain 

the binding energy of nuclear matter with realistic two-nucleon potential. 

These circumstances ar'e attributed firstly to the fact that the two-nucleon 

potential is not uniquely determined · from the deuteron and two-nucleon 

scattering data, especially with respect to the repulsive core and to the central­

tensor ratio in the triplet even state, and secondly to the fact that the 

framework of the Brueckner theory, on which nuclear matter calculations are 

based, does not necessarily give the variational results. 

On the other hand, on light nuclei, the variational calculations2) with re-= 

*> Preliminary results of this work have been reported in Ref. 1). 
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alistic two-nucleon po'tentials give the 'binding energy nearly about the ex­

perimental value, even with potentials which give too small binding energy 
for nuclear matter; for example, with the Hamada-} ohnston (H-J) potential, 3) 

3H: -6.1 MeV, 4He: -20.6 MeV, nuclear matter: -7:8 MeV /particle. 
Hence, at the present time it seems to be difficult to explain the binding energy 
both for light nuclei and for nuclear matter from the same potential. How 

ca~ we understand these discrepancies on binding. energy? In order to 
answer the question, it is important to investigate the effects of the three-body 
force (TBF) quantitatively. 

The aim of this paper is to estimate to what extent is t~e contribution 
to the binding energy of nuclear matter from TBF. Up to present, several 
studies4)~7) of the effects of TBF in nuclear matter have been done and it is 

known generally that the contribution to the binding energy is about 2 MeV/ 
particle attraction. However, in order to discuss on the results quantitatively, 
it is important that the effects of TBF are taken into account as accurately as 
possible both in the method of the binding energy calculation. and in the 
derivation of TB F. 

It seems to be nah1ral to consider the correlations between all the pairs 
of nucleons concerned with TBF, since the repulsive core is known to exist in 
the two-body forces. Nogami et al. and others 5)' 6) have treated these cor­
relations by introducing the cutoff of short-range part of TBF, but we think 
it is not reasonable to do so, because their results strongly depend on the 
cutoff distance and at the present. time we have no means to determine it. 
And so far, in the estimations of the effects of TBF on nuclear matter there 
have been no calculations solving the reaction-matrix equation self-con­
sistently with the potential including TBF as well as two-body potential. 

In this paper, we derive TBF as the effective two-body potential under 
consideration of correlations between all the pairs of nucleons. When the 
effective two-body potential is added to the realistic two-body potential, we 
can solve the reaction-matrix equation self-consistently similarly to the case 

· with only two-body potential. The correlation functions are given by the 
nuclear matter wave functions solved self-consistently. 

In §2, we give the representation of TBF with correlations between all 
the pairs of nucleons as the effective two-body force. In §3, our method of 
nuclear matter calculation and computational procedure are presented. Re­
sults and discussion are given in §4. In §5, summary and conclusions are 
mentioned. 

§ 2. Three-body force with correlations between 
all the pairs of nucleons 

In this section, we represent TBF as the effective two-body potential 
under consideration of the correlations between all the pairs of nucleons. 
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98 T. Kasahara, Y. Akaishi and H. Tanaka 

As TBF, we consider the two-pion ~xchange three-body force shown in. Fig. l, 

whose S-matrix element is given by5) . 

(l) 

where 

<a, q1! S~~ 1(3, q2)=27T£o(O)J((qt)eiqlrs 

X [(ATaaTa,a +BTa,a·Taa)(aaq2)(aaql) 

· + (BTaaTa,a + AT3,aTaa)(a3q 1)(a3 q 2) +Doa,a]K(q~)e-iq2 r~ (2) 

·is the 7T-N scattering matrix for a zero-energy pion, and A and B are related 

to the P-wave scattering, D to .the S-wave one. Also f2(=0.08) is the 

7T-N coupling constant, K and K' are the vertex and the propagator form 

factors respectively. In this paper, we consider only the contribution from 

the P-wave scattering, so the. D-term. is heg~ected. In Eq. (l), we· put 

5= -2m~·o(O)W, then W represents TBF.s> 

We now introduce the correlations between all the pairs of nucleons shown 

in Fig. 2, where cp is the correlation function. The correlations between . 

N1 and N2 nucleons need not to be considered, because these are counted in 

solving the reaction-matr,ix equation in nuclear matter as the pair correlations. 

When we consider only the singl~ exchange term by taking the diagonal 

sum in Eq. (l) and integrate ·with respect to fa, we get .the effective two­

body potential as follows: 

U(r)=p~[draW(rl, r2, ra)c/>2(rl-ra)c/>2(ra-r2) 

47Tj2·p('t"l't"2) [ 2 . 2 
. (277)6~2 • dracp (rl- ra)c/> (ra- r2) 

X fdq dq (alql)(a2q2) e-iq)r1eiq2r2 
. 1 2 (qr + ~2)(q~ + ~2) 

X [2(A +B)( q 1q 2)]iq1rse-iq2r3, (3) 

where p=3/(47Tr8) 1s the density of nuclear matter. 

We put 

cp2(r)= J h(q)e-iqrdq (4) 

and substitute Eq. (4) into Eq. (3), then after integrating with respect to ra 

we have 
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Fig. 1. The diagram for TBF considered 
in this paper. 

Fig. 2. The diagram for TBF under considera• 
tion of the correlations between all the pairs 
of nucleons. 

(5) 

with r=r1-r2. To calculate Eq. (5), we introduce 

SN(p)··=f,dqh(p-q)qaqf1. ( {3 I I I) u.{j . qZ + P-2 a, = x , y , z / (6) 

, H'ere (x 1
, Y 1

, Z
1)-system have the Z

1 -axis along p direction. Going on with 
calculations, we can express Eq. (5) as follows: 

41Tj2·p·2(A +B) J . U(r)=- (27T)3p,2--- (T1T2) dqe-~qr 

X [ ( O"IO'z)S~,x,(q) + (a1q)( a 2q) {S~'z'(q) -;z S~'x'(q)} J. 
After all, we have the effective two-body force as follows:. 

with. 

op,~(q2)=F c(q2)op,'l;;rc(q2), 

op,}(q2) = F r(q2)op,'l;;rc(q2). (8) 
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[ 
1 q2+FL2 ]2 

Fc(q2)= 1- 3 -~ q2-- {1-4>2(0)} -S1(q) 

+2[- ~ q
2

~~'
2 

{l-</>2(0)} -So(q)+ -}s,(q) J, 
(9) 

So(q) and S 1(q) in Eq. (9) are given by 

(10) 

where 

(11) 

-
and Y(x)=e-'-x/x, Zr(x) '1+(3/x)+(3jx2), ZL(x)=1+(2/x)+(2jx2). More-

over, DfLJvcc(q2) 'in Eq. (8) means DfL2(q2) with no correlation, which is given by 

DfLJvrc(q2) = -2p(A + B)q2H2(q2), 

H(q2) = K2(q2)K' (q2). 

§ 3. The binding energy calculation of nu~lear matter 

(12) 

In this section, we mention our calculational method and computational 

procedure to get the contribution to the binding energy of nuclear matter. 

The binding 'energy of nuclear matter is given by solving the reaction­

matrix equation, which represents the nucleon-nucleon scattering in nuclear 

matter. Many calculations have been performed with two-body potentials. 

In our calculation, the effective two-body potential U(r) derived from TBF 

is added ~o the realistic two-body potential. Then, we can in~lude the esti­

mation of TBF in the whole self-consistent procedure. In the derivation · 

of the. effective two-body potential, the correlations between all the pairs of 

nucleons are under consideration. 
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3-1 Outline of calculational method 

The reaction matrix G in nuclear matter is given by. 

Q 
G=v+v-G 

e ' 

101 

(13) 

where v is the nucleon-nucleon potential which is expressed by two- plus 
three-body (effective two-body) potential in our case. Q is the Pauli operator, 
and the denominator e means the excitation energy of the two nucleons in 
the intermediate state. Equation (13) is solved in r-space so as to get the 
wave functions for soft core potentials as well as for hard core potentials. 
The formalism in r-space nuclear matter calculation has been given by 
Brueckner and Gammel9) in detail. In our case, we set the potential energy 
for particle states equal · to zero according to the hole-line-expansion 
method, 10) then Eq. (13) is solved only on the energy shell. 

The wave function is given by the following integral equation: 

u{f,(r)=krjz(kr)oll'+47T :Ejdr'Qz(r, r') V(,f,(r')u{f,,(r'), (14) 
l" 

where 

V (/(r)= J drCl.JlJlsv(r)Cl.Jlljz's. 
' 

(15) 

Q1(r, r') IS a Green's function 

r> ( ')- _L r 00 

dk' k' rjz(k' r )k' r'jz(k' r') Q( k'' P) 
;;tzr,r -27T2Jo e(k',P; I) ' (16) 

where P and k are the total and the relative momenta respectively, and }; 
denotes the single particle energy of two nucleons in Fermi sea. 

The diagonal reaction-matrix elements which give the contribution to 
binding energy are expressed as follows: 

:E (k, S, ms I Clk, S, ms) 

4 /+1 J 1+1 
= k; 7 l= 7-

1 
(2] + 1) dr' kr'jz( kr'~ l'I} _

1 
V (/ (r')u{ f,(r') .. (17) 

For a hard core potential, we rewrite the Eqs. (14) and (17) by replacing 
v(r)u(r)=A.o(r-r') for r<rc, where rc is a core radius and A is determined 
by the condition u(rc). 0. 

After all, the one-body potential V(mo) and the binding energy per 
nucleon are obtained as follows: 
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2T+1 , ' 
V(mo)= 22 22 22-

2
--22 (monolG(S, ms, T)lmono), 

n 0 T, s ms 
(18) 

(19) 

3-2 Computational procedure 

In this paper, we take into account states with l~2. It is known that 
the total contribution to binding energy from higher partial waves is small. 
But for the 3p2 state, we treat the coupled state 3P 2+ 3F 2, so as to estimate 
the contribution from the tensor part of interactions as accurately as possible. 
We adopt' H-J, OPEH (with a hard C<?re and the OPEP-tail) and OPEG 
(with a 2 BeV Gaussian soft core and the OPEP-tail)11> pot~ntials as typical 
realistic nucleon-nucleon ones which reproduce the two-nucleon scattering 
data equally well. SfL1vc is given by Eq. (12) from a33 experimental value, 
where 

(20) 

This value of Cp was re-calculated12) from the most recent experimental 
value of the total cross section of the 1r-N scattering in the J = J = $/2 state. 
In our calculation, we tre:;tt the case of no pionic form factor, or H-1, but the 
correlations between all the pairs of nucleons are introduced. As the cor­
relation functions .cfo, 15 o-state wave functions with the average momentum 
are used, which are given by solving the reaction-matrix equation with two­
plus three-( effective t"wo-)body potentials. 

§ 4. Results and discussion 

The binding energies of nuclear matter with two- plus three-( effective two-) 
body potentials and only with two-body potentials are shown in Table I and 
in Fig. 3. The contribution of TB~ to the binding energy is about 3.5 MeV 
for the case of H-J and 4.1 MeV for OPEH. These values are not so large 
as to supply the discrepancy of binding energy between the theoretical and 
experimental ones, but are about 10o/0 in total potential energy, which are 
meaningful to understand the saturation properties of nuclear matter. In 
Fig. 3, we notice the characteristic effect of ,TBF on the binding energy and 
saturation density. The results with two-body potentials show that the 
smaller (or the softer) the repulsive core is and also the weaker the tensor 
force is, the larger the binding energy is, They also show that the energy 
gain has a tendency to increase the saturation density, which may be to? 
high to reproduce the experimental value. Therefore there needs something 
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Fig. 3. Binding energy of nuclear matter for each potential: (A) H-J, (B) OPEH, (C) 
OPEG. The dashed lines denote for only the two-body potential and the solid lines 
for the potential including U(r)~ The dot-dashed curve for OPEG is obtained by 
using 3-range Gaussian parameters in Table III. 

Table I. Binding energy of nuclear matter for each potential. The row (a) is for 
,only the two-body potential and (b) is for the potential including U(r). 
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(in MeV unit) 

ro(frri) 
potential 

I I I I 
0.9 1.0 1.1 1.2 1.3 

H-J 
(a) I -5.72 -7.42 -7.81 -7.58 
(b) -10.94 -11.29 -10.77 -9.85 

OPEH 
(a) -9.42 

i 

-9.87 -9.47 

(b) -13.98 -13.29 -12.10 

(a) 

• 

-11.55 -12.47 I -11.88 

: 

.0PEG 

I 
(b) -16.22 -16.07 -14.62 

to get the energy gain without increasing the density so as to reproduce the 
experimental value of saturation density as well as the binding energy. . Our 
results suggest that TBF may be one of such candidates. In Fig. 4, we show 
the effective two-body potential U(r). As seen irt this figure, the central part 
is repulsive as far as a rather large distance (r::S1 fm) and the tensor part 
is attractive. This is very interesting to understand the, feature of TBF. 
We can say that the tensor part and the central part of TBF have a different 
role. respectively, that is, the former brings mainly the energy gain and the 
later has an effect to 1 prevent increasing the density. 

It is well-known that the tensor force plays an important role for the satu­
ration problem of nuclear matter. In nuclear matter, the effect of tensor force 
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Fig. 4. Effective two-body potential U(r) for the case of H-J at ro=l.l fm. Uc is the 
central part for the singlet even and the triplet even states, and Uris the tensor 
part for the triplet even state. · 

is suppressed compared with in free scattering, and the contributions from the 
15 and the as states are nearly equal. TBF contributes to make the pion mass 
effectively small, then the tensor force in the inner region of nuclear force is 
enhanced. Therefore, by considering TBF, the effect of tensor force which 
is suppressed in nuclear matter is recovered. We give the contributions to 
the potential energy for each partial wave in Table II and in Fig. 5, where 
also we can see that the binding energy is brought mainly from the as state. 

In our calculations, the correlation functions were introduced between 
N1 and Na, N2 and Na nucleons. They are given by solving. the reaction­
matrix equations self-consistently. These correlation effects are expressed as 
F(q2) in Eq. (9), corresponding to the pionic form factors H(q2) as seen in 
Eq. (12). . Most recently, Blatt and McKellar7) calculated the contribution of 
TBF to the binding energy of nuclear matter using correlation functions derived 
from the Reid soft core potential. They showed that the total contribution 
from the two-pion exchange TBF was 5.7 MeV attraction, in their calculation 
the pionic form factor was contained.· If we adopt the same form factor as 
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Fig. 5. Potential energy contribution for each partial wave in the case of H-J. 
The dashed lines are for only the two-body potential and the solid lines for 
the potential including U(r). 

lOS 

used by them adding to F(q2) in our calculation, it must be found to give less 
binding, even for the soft core potential. The large discrepancy between our 
results and theirs is attribute to the double counting of N1 and N2 correlation 
in their calculation. Th~refore, in their calculation the short range repulsive 
part of effective central force is cut, so that the contribution from the second 
order term gives too much binding. When this is treated correctly, their 
results would come near ours. The value Cp 0.45 MeV12> used in our 
calculations should be compared with Cp=0.6l MeV calculated by Nogami 
et al. In spite of the smaller C P value used, our calculated contributions of 
TBF are larger than that estimated by them. Therefore our resultant values 
with Cp=0.45 MeV show that the effect of TBF is rather large. 

It is useful to express the effective two-body force as the superposition of 
3-range Gaussian type functions, for instance, to study the effect of TBF on 
finite nuclei; U(r)='.Eaie-b;r2

• Our fit parameters for the case of H-J 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.56.96/1849710 by guest on 21 August 2022



106 T. Kasahara, Y. Akaishi and H. Tanaka 

Table II. The contribution to the potential energy for each partial wave at 

ro=1.1 fm. The column (a) is for only the two-body potential and (b) 

is for the potential including U(r). 
(in MeV unit) 

H-J OPEH OPEG 

(a) 
I 

(b) (a) 
I 

(b) (a) 
I 

(b) 

lSo -14.89 -14.53 -15.07 -14.70 -16.39 -15.80 

asl -15.19 -20.80 -17.72 -22.65 -18.54 -22.69 

lpl 3.67 4.57 4.41 5.23 4.54 5.29 
:>, apo -3.47 -3.47 -3.88 -3.90 -3.78 -4.21 bJ:i 
l-< v apl 10.94 11.36 11.61 12.05 11.36 12.40 1=1 .v 

t;i 3p2 -7.10 -7.00 -7.32 -7.26 -7.29 -7.47 
·_o. 

1=1 1D2 -2.91 -2.96 -3.22 -3.29 -3.13 -3.30 v 
""" 0 3Dl 1. 52 1. 20 1. 65 1. 32 1. 63 1. 67 ~ 

3D2 -4.19 -3.72 -4.47 ~4.00 -4.42 -4.61 

a.qa 0.43 0.20 0.28 0.04 0.27 0.24 

total -31.28 -35.15 -33.73 -37.14 -35.73 -38.48 

Kinetic energy 23.86 23.86 23.86 23.86 23.86 23.86 

Total energy -7.42 -11.29 -9.87 -13.29 -11.88 -'--14. 62 

Table III. 3-range Gaussian parameters for the central and tensor part of effective 

two-body potential U(r) in the case of H-J at ro=l.1 fm. 

a a ba 

1£. and 3£. -90.4 ' 194.6 9.70 1. 08 1. 70 14.4 
central parts 

3£-tensor part -199.6 198.1 1. 50 1. 31 1. 56 25.2 
.I 

at r 0 ·1.1 fm are given in Table III. The results for OPEG (with a. 2 BeV 

Gaussian· soft core )11) calculated by using these parameters are also plotted 

in Fig. 1, where p-dependence of TBF is introduced .only through Eq. (12), 

and the contribution of TBF is about 3.8 MeV attraction with little increase 

in the density. 

§ 5. Sll:mmary and conclusions 

The effect of two-pipn ex,change three-body force in nuclear matter ~has 

been. investigated under consideration of correlations between all the pairs 

of nucleons. · TBF with correlations has been derived as the effective two­

body potential. The reaction-matrix equation has been solved self-con­

sistently with two- plus three-(effective two-) body potential. We found 

·that the total energy of .nuclear matter with H-J (OPEH) including TBF 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.56.96/1849710 by guest on 21 August 2022



Effects of Three-Body Force z'n Nuclear Matter 107 

Is -11.3 ( -14.0) MeV at the saturation density ro= 1.10 (0.99) fm, though 
it is far from the empirical value -15.8 MeV at ro= 1.07 fm. The contri­
bution of TBF is about 3.5(4.1) MeV attraction to binding energy. It has 
been shown that the energy contribution of TBF is mainly due· to the tensor 
force. We have discussed the characteristics of TBF in nuclear matter. 
TBF gives the energy gain, but does not increase the saturation density so 
much as two-body force does. Therefore, we conclude that TBF gives a 
meaningful contribution to binding energy and will be expected to make an 
irnportant role to understand the saturation properties of nuclear matter. 
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