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Many-Boby Theoretical Description 283

§1. Introduction

According to the investigations in the previous chapters, it has been
clear that the alpha-cluster structure is considerably well-founded in light
nuclei. Nevertheless, we cannot ignore the successes of the shell model in
describing the structure of p shell and sd shell nuclei. In the shell model,
it is assumed that the nucleons move rather independently in the self-consistent
average field and only a few nucleons in the open shell participate to the
nuclear low excitations. In the extreme alpha-cluster model, two protons and
two neutrons are assumed to be coupled with each other so strongly that
they become a subunit of nuclear constituent and the concept of the average
field for single nucleon disappears. Although the shell-model aspect and the
alpha-cluster aspect, as mentioned above, present a striking contrast to each
other, it is natural to consider that both the aspects coexist in the light
nuclei.

As seen in the previous chapters,® a typical example of the nucleus in
which both the aspects coexist is considered to be *Ne. Shell-model calcula-
tions for low-excited states in *Ne and its neighboring nuclei have made
many successes in reproducing level structures and y-transition probabilities,?
but the use of rather large effective charge suggests the presence of other
correlations which are not included in the shell model. Among the low-
excited states in *O~*Ne nuclei, there also exist some levels which can
hardly be reproduced by the conventional shell-model calculation. (The first
excited 0" state in °O is one of the typical examples.) These facts imply
that there exist some correlations which cannot be covered by the simple
shell-model treatment. It can be considered that these light nuclei have a
dual character, i.e., that some of their phenomena are described by the shell
model but others by the alpha-cluster model and, besides, there exist some
phenomena which can be described by both of them. Then, it is desirable
to construct a unified microscopic picture for the light nuclei, in which both
the aspects, the shell-model and the alpha-cluster aspects, are combined. For
this purpose, we adopt the following picture: Although there exist very
strong correlations which are against the stability of the shell-model-Hartree-
Fock field, the Hartree-Fock field is still barely stable in the neighborhood
of the ground state to realize the shell structure.

Along this line, one of the present authors (T. M.) and Suzuki® have,
for the first time, proposed a theory of microscopic description of the alpha-
like four-body mode. They have asserted that the four-body correlations are
so strong in the light nuclei that the corresponding ground-state correlations
should be taken into account properly and these ground-state correlations
play an essential role for the alpha-like four-body mode to be well established.

*) See Chapters III and IV.
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It should be noticed that these modes are “dressed” four-body modes in the
new Tamm-Dancoff sense and are quite different from the ‘“bare” modes
treated by the conventional shell model. In addition, they have discussed the
relation between the “dressed” four-body mode and the alpha cluster from
the viewpoint of “phase transition”. FEichler and two of the authors (T. M.
and K. T.)® have shown an -evidence of importance of the ground-state
correlations through calculation of the interaction between the four-body mode
and the single-hole mode in connection with the weak coupling model by
Arima, Horiuchi and Sebe.” It has been suggested by Fukushima and two
of the authors (M. K. and K. T.)® that the alpha-like four-body correlations
are characterized not only by the ground-state correaltions but also by some
other kinds of correlations. Two of the present authors (M. K. and K. T.)
and Matsuse” have investigated in detail the structure of another important

correlations, the spatial correlations (the higher-shell-mixing effects), in the

case of *Ne.

In this chapter, on the basis of the series of the above works, a unified
microscopic theoryfin which both the aspects, the shell-model and the alpha-
cluster aspects, are combined is formulated and, within this framework, the

structure of the strong four-body correlations is investigated. In §2, the

formulation describing the -alpha-like four-body mode is developed on the con-
dition that the shell-model-Hartree-Fock field is stable. In §§3 and 4, we in-
vestigate the detailed properties of the four-body correlations, decomposing them
into two parts, the spatial correlations and the ground-state correlations. The
former is discussed in §3 and the latter in §4. The mutual “phase transition”
between the shell-model “phase” and the alpha- cluster “phase” is also dis-
cussed in §4.

§2. Alpha-like four-body modes and the Hartree-Fock
approximation

In this section, a formalism treating the alpha-like four-body mode on
the basis of the Hartree-Fock approximation is presented. We obtain the
fundamental equation of motion of the mode in the presence of the ‘“core”
including the ground-state correlations.

2.1 Basic assumptions

In the framework of the second quantization, the Hamiltonian under
consideration is given by

A= (a2 o)

NI)—A m

deidm‘f(xo¢*<x2>v<x1x2>¢<x2>¢<xl> (2-1)
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Many-Body Theoretical Description « 285

where x stands for a complete labeling of one-particle variables, x=(r, s, 7)
and v(zx,) (=v(x.r:)) means the two-body interaction potential. The nu-
cleon field operator ¢'(x) satisfies the anti-commutation relations

{¢T(-Tl) ¢ (x2)}+=08(xy, 22),

(2-2)
{p(x1), p(x2)} = {¢'(x1), ¢'(x2)} 1=

where
6(5231, xz) :6(7'1—“?'2)6(0'10'2)5(1'172)- ’ (2'3)

Now, let us define the ground state of the ‘“core” (consisting of A,
nucleons) with energy eigenvalue W(A,; 0)by

H] Ay; 0= W(A; 0) | 4y; 0 (2w

and consider only a special class of the eigenstates of (A,+4) partlcle system

which is written down as
| Ao+ 4;n)

74:8 ( H dx;) v, (xlle'al\;) ¢T <x1> ¢T (xz) ¢T <x3> ¢T (-734) I Ag; 5 0> (2 5)

where n means a set of quantum numbers characterizing the state in the

special class. Then, Z,(x:x2xs2,) can be understood as the wave function

describing the four particles added to the “core”. If we write Eq. (2-5) as

| Ag+4; ny=X,"| Ao; O, | | (2-6)

the operator X,' is a four-body mode. Hence, the special class of eigenstates -

under consideration is constructed by operating the four-body mode X,' to the
ground state of the “core” and seems to be essentially different from the
states described by the Bloch-Brink type wave function.

Let W(A,+4; n) be the energy eigenvalue of the state ]Ao+4 n.
From the relation

(W(Ay+4; 1) — W(Ag; 0)} | Aot-4; my= [H, X1 [ A0;0p,  (2:7)

we have the following equation;

S(l‘[dx,)[{W(AoJrzl )
W0} (s 16 e ) (o) 6 () | Aus O
={(1ae) tHOw, @)1 6 (26 @06 @D () | Aus 0)

{1z (v S e e
X ¢ (x1) 9" (x2) 8" () 8" (x0) 6" () 6 (¥) | Ao; O, (2-8)
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where

H<°)=§4](— L Vf) +%Ev(x,~x,-). (2-9)

in 2m ixi

In the simplest case where the “core” is absent, i.e., A,=0, the second term
on the right-hand side of Eq. (2-8) vanishes because of ¢(y) | 4,=0; 0> =0.
Thus the eigenvalue equation for #,(xyr.xsxs) simply becomes

W(Ao=4; n)¥, " (xsx:7037s) = HOW, (xx1252571) (2-10)

with the normalization Xl?lf,,“”(xlxgxwg |*(Ili-dx:;) =1. Equation (2-10) with
the Hamiltonian H defined by Eq. (2-9) is nothing but the Schrédinger
equation for the four-particle system of which the lowest bound state is the
a-particle.

Now, it is clear that Eq. (2:-8) describes the alpha-like four-body mode
in the presence of “core” and all complications due to the existence of the
“core” come from the second term on the right-hand side of Eq. (2:8). In
order to evaluate this term, we must know the structure of the ground state
of the “core”, |A,; 0), which is determined in principle by Eq\'. (2-4). It
is, however, impossible to solve Eq. (2:4), so that we must assume an
approximation for the “core”, which should be consistent with the picture
discussed in the last section. Then, the basic assumption in evaluating the
second term is that |A,; 0) is well-described by the Hartree-Fock type approx-
imation. This means that the following antisymmetric factorization process
(with respect to |Ay; 0)) is possible:

o' (x1) ' () 8" (x3) 8" (20) 6" (V)3 (¥) [ As; 0)
=4 (21) 9" (22) ¢' (25) ¢ (0) | Ao 000* (3, )
+ ' (22) o' (@) ¢ () 6" () | Ao; 0Dp* (1, )
—¢' (1) 9" () 8" (x) 6" () [ Ao; 0Dp* () -
+ ' (x) ¢ (x2) ¢ (x) 9" (3) | Ao; 0p0* (s, ¥)
—¢' (206" (28" (x) ' () | Aos 0D0* (20, ), (2-11)

where p(x,y) is the density matrix of the ground state of the “core” and it
is defined by ‘

oz, 3) = An; 016 ()9 1 Av; 0> (=% (3, 2)). (@12

It will later be shown that the antisymmetric factorization process corresponds
to the Hartree-Fock approximation for the “core” |A,; 0).
2.2 The alpha-like four-body mode in the presence of the ‘“core”

With the basic assumption represented by Eq. (2-11), we have the
eigenvalue equation for ¥,(xwr.xsxs) from Eq. (2-8):
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{W(A+4; m) — W(As; 0.} (z1zamazs)
T~ 4 2
:'-Z<‘2R—Vi >+ > (JC, JJQ[/ (x1r2$3234)
m

25

+ b‘(xi,y) dzv(x12)p(2, 2)“‘U<x1y)0(x1,y) v, (yxzxsf&.t)

+{aviaan ) \dzoa2ote,  —v(ap)o@, 1w, @
+\ay| b‘(:ts,y)gdzv(xaz)p(z, 2) —v(xay) o(xs, y) 1@, (xszsy20)

dy [v(2125) + v (xsxs) + v(2276) | 0 (25, )V (Y2270T4)
dy v(xlxz) —+ 'U(l'zxs) + U(JCZI4>] P(xz’ y>¢ (xlyanCD

)
)
)
+H{dy 13, ) [dev(@@o(z 2 — oot 1. (22)
)
)

—{ay @ +v@e) +o@ad VoG )P (2izyad)

- gdy [v(zaxs) +v(@exs) +v(xsxs) ] 0(2s, Y VW (Xrxzsy). (2413)

" From Eq. (2-13), we can write the corresponding Hamiltonian H to Eq.
(2-9), which describes the alpha-like four-body mode in the presence of the
“core” as follows:

H-_ZP,Z+ZU +Hl(nlc)+Hi{nHt)a (2'14)

where the operator U; is the conventional Hartree-Fock field acting on the
i-th particle (=1, 2, 3,4) due to the existence of the “core”. The matrix
element of U, is defined by

(i) Uslyey =<l U iy ™
3z, 30\ dzv (2202, ©) — v @y o, 3. (2-15)

The operator H{’ represents the internal interactions of the alpha-like four-
body mode which correspond to the second term of the right-hand side of
Eq. (2-9). The operator H{’ mainly describes the complex ‘“blocking
effects” due to the presence of the “core”: If the effects of the Pauli prin-
ciple are neglected, H{)’ vanishes and the effects of the presence of the
“core” are just reduced to the average field acting on the each particle
composing the alpha-like four-body mode. The matrix elements of Hi' and
H{ are defined by
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i

, 4
(a1 252054 | HiY| y1yzy3y4> = l:%gv (xixj)} [_Ea(xi ) y.-) 1, @- 16)

{stattares | HE | 315255500
= — [v(z:2s) +v(@2s) +v(@1a) ] 0(X1, Y1) 8 (X3, ¥2) (3, ¥5) 3 (4, V)

—[v (-Tixz) + 'U(xzxs) + ‘U(xzxfs) J P_(xza yz) 5(331, yl) 5(553, ys) 3(-1‘4., y4>

— [v(@wrs) +v(axs) +v(aszs) | o(xs; ¥5) 0 (1, Y1) 8(2s, ¥2)8(xs, Vo)

— [v(xss) +v(@azs) +v(@szs) [p(2s, y0) 8 (X1, Y1) (22, 2) 8 (s, ¥3).

(2-17)

Here, it should be noticed that the operator H{ is not Hermitian in the
usual sense:

asaeses | HE | y1y:y35y1y 3 1 yeysya | HRE | ixazsza) *. (2-18)

This non-Hermiticity which is caused by the presence of the “core” makes
the alpha-like four-body mode much complicated.

2.3 Shell-model representation of the fundamental eigenvalue equa-
tion for the alpha-like four-body mode

In the last subsection, we have obtained the effective Hamiltonian (2-14)
which the alpha-like four-body mode satisfies. In order to study the prop-
erties of the Hamiltonian, it is necessary at first to investigate the formal
properties of Eq. (2:13). For this purpose, the conventional shell-model
representation seems to be convenient. ‘

The shell-model representation is determined as follows: Let |A,—1;hA)
be a set of “one-hole” states of the (A,—1)-particle system defined by the
requirement that they have the largest matrix element of the type

(Ao—1; hlg(x) | Ao; 0>=pu(2). (2-19)
Similarly we define
(Ao+1; plo' () | Ass 0)=0,"(2), (2-20)

where |A,+1; py represents a set of “one-particle” states of the (Ay+1)-
particle system. From the equation of motion

— [, 6] =~ P9(@) +{dyo(and' (D)o@, (22D

we then have

cun () = =2y (@) + | dyo(as)CAe—15 hl# (D8 (N 8(2) | Ao 0,
(2+22a)
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Many-Body Theoretical Description 289

c0(2) = =1 P0,() +{dyo (@) CAut 1s p18! @6 (06(3) | Av; 0,
(2-22b)
where
a= W(Ay; 0)— W(A;—1;h), &= W(A,+1;p)— W(Ap; 0).
(2-23)
By performing the antisymmetric factorization similar to Eq. (2-11) for the

second terms on the right-hand side of Eqs. (2:-22a) and (2:22b), these
equations are reduced to

(1) = =3 Pou@) + {dya Ulden(s), (2-242)
s (1) = =2, (2) + \dy <] Ul Do (), (2-24b)

where {x|U|y) is defined by Eq. (2-15). Equations (2-24a) and (2-24b)
are nothing but the self-consistent Hartree-Fock ‘equations for the single-
particle states and can be unified in an equation

cape (@) = =22 () + \dy < | UL 3ea (). (2:25)

m

Needless to say, the single-particle wave functions ¢«(x) must satisfy the
orthogonality relation

S%*cxm(x} At =0, (2-26)

Now, let us consider the Hartree-Fock approximation for the ground
state of the “core”, |A,; 0. In this approximation, the state |A,; 0) is
generally obtained by choosing the lowest possible A, eigenstates of Eq.
(2-25) and the density matrix can then be simply written as

o(z,y) =<{As; 018" ()¢ (x) | Ao; 0)
=20 (D)™ () = ;’% (@) e*(y), (2-27)

where the symbol >, means the summation over all occupied states. The
Hartree-Fock field U is determined by Eq. (2-15) with the use of the density
matrix (2-27) and the single-particle wave functions are determined by Eq.
(2-25) with U thus obtained. Substituting these single-particle wave func-
tions into Eq. (2-27), we have a new density matrix and then repeat the
above process: This is the self-consistency problem of the Hartree-Fock
approximation. '

The true ground state of the “core” is determined in principle by Eq.
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(2+4) but it is impossible to solve it. Instead, the Hartree-Fock ground-
state wave function is often used as an approximation for |A,; 0). However,
if the true |A,; 0) much differs from for Hartree-Fock ground-state wave
function, for example, if |A,; 0> involves the ground-state correlations due
to the four-body correlations in the sense of the new Tamm-Dancoff (NTD)
approximation, the density matrix o(x,y) of the “core” becomes different from
the expression (2-27) and includes the particle-state components as well as the
hole-state ones. In this case, the both processes of determining the Hartree-
Fock field U and getting the alpha-like four-body mode X,' are coupled
with each other and become more complicated. Since it is quite difficult
to treat such complicated problem exactly, we usually neglect the coupling
and replace the density matrix p(x,y) with Eq. (2:27). Therefore, Eq.
(2:27) is regarded as an approximated expression for the true p(x,y) when
the ground-state correlations in the NTD sense are included in |A,; 0.
One of the present authors (K. T.) has estimated the possibility of such
approximation with an simplified model.”

In the shell-model representation, the fundamental eigenvalue equation
(2-13) is written as ‘

{W(A,+4; n)— W(As; 0)}%,(aprd)
= > <0£B7’5|H|a1317131>wn(a1317‘131)

®1B81Y181

= Z {ea +eptey + 88) 6aa163!3137716661

«1B1¥181
+<{aBrd ‘ HyY I a131T151> + {aprd l HE l 0_51517”131»77:(051317”151), (2 : 28)
where
<aﬁ7‘5 l Hi‘nlt) ] a1317151>
={aB|v| 11 Oyy, 01 + {ar | 0] axr1) eei0ss:
+ {ad| v | a181)8ag, 0y, + {Br | V| Brr1) O, Bs,
+ <88 0| B181) BocsByrs + (10| ¥ | 7101) Baca B, » (2-29)
aBro| Hi | enBursdn
= —{aB|v|asBs) (o, +08,) 8yy0ss, — Lar| V] axre) (Ba, +0y,) Oaa,Oss,
—ad|v|aid:) (fo; + 0§1>5Bf315771 —<Br |v ] Bir1) (081 +0y,) Oaci 055
— B8] 0| B161) (B, + 05,) BaarByrs — {rd | 0| 1101 (Ovs +05,) OO -
(2-30)
In Eq. (2-28) with Egs. (2:29) and (2-30), we have used the following
notations:

7. (aprd) = S (ililldx,.)%* (@) @a™ (x2) oy ™ (3) 05 ™ (X)) ¥ (x1x2230),  (2-31)

{aB|v|aipy= deldxzfpa* (1) 6™ (x2)v (351332> Py <x1> 0a (22), (2-32)
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_ { 1 for levels occupied in the Hartree-Fock ground state,
“ 10 for levels unoccupied in the Hartree-Fock ground state.
(2-33)

Equation (2-28) is nothing but the fundamental equation for describing the
four-body correlations proposed by one of the authors (T. M.) and K. Suzuki.”
Now, it should be noticed that the definition of 6. represented by Eq. (2-33)
is correct only for the case in which the density matrix of the “core” could
be approximated by Eq. (2:27) and, in the case where the ground state
includes the ground-state correlations (in the NTD sense), Eq. (2-33) is
considered as an approximation.

2.4 Properties of the fundamental eigenvalue equation

Let us decompose the wave function #,(aByd) as

. (ard) =30, (abrd), (2-34)
where
¥,V (aprd) =Qu (aprd) ¥, (aprd),
7, (aBrd) =Qsp-u(aBrd) ¥, (aBrd),
7, (aBrd) = Q121 (aBrd) ¥, (afyd),
7,9 (aprd) = Q101 (aBrd) ¥, (afyd),
7, (aBrd) = Qu (aBrd) ¥ (aBrd), (2-35)

and the projection operators Qu, @s,1s etc. are defined respectively by

Q4p(a'57‘3) - (1 _0a> (1 —08) (1 *07) (1 406>,
Qap-m (aﬁﬁ) = 0a<1 “0B> <1 —0y) (1 _06) + (1 “‘aa)ﬁﬁ(l _07) (1 _08>
+ (1—0x) (1—08)05(1—05) + (1—02) (1—04) (1 —6y)85,
Q2p~2h (0[[:?73) _ (1—0a> (1’“ﬂ6)0708+ (1 _0cx>03<1—07>08
+ (1—00) 080y (1—05) + 0. (1 —60s) (1 —65)05
+02(1—0g) 0y (1—85) +0u0s(1—6y) (1—05),
Q1,51 (afrd) = (1—04)0p0,05+ 00 (1 —0p) 0405+ 0.85(1 — 6y) 05+ 0ubs0y (1 —85),

Qui (apyd) = 0u0a0,0s. (2-36)

By definition, for example, Q. o(aByd) picks up only the components where
two among the states (a, 8, 7,0) are in unoccupied levels and the other two
in occupied levels. Then, by using these definitions, Eq. (2:28) can be
written in the form of five-component equation as
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{ W<A0 +4; n) - W<Ao§ 0) }an (CYBT3)
5
= Z { Z Ho(cggé,oclﬁl*h&wn(j) (0-’1317‘151)} s (Z = 19 Za Tt 5) (2 ‘ 37)

7=1 o1B1v181

where the matrix elements H5swpms (¢ 7=1,2,--+,5) are defined, for ex-
ample, as follows: '

H s ,a00m6: =y (ar8) {aByd | H | ctsBi710:)Qus (:Pa7101) ,

Ho(cg%/)ﬁ,OClBl’YlSl Esz-zh (aﬁTﬁ) <CYBT3 l HI a1817161>Q31:-1h (a1317’151> ’

HE 0s00m6:=Qu (aBr0) {afrod | H| asBir18:)Qup n (uBir i), etc.,
(2-38)

the matrix elements {afyd|H|aiBir:d:) being defined by Eq. (2-28).
From the properties of the matrix elements of H!' and HS! given by

Egs. (2-29) and (2-30), we can find the following properties of Hygs,cpims :

(ii) — @) % .

HOCEYS.OHBWISI - HUC;!BL'YlBhaBYS s (Z = 13 2’ ) 5) (2 * 393)
31) . (13) % (42) _ (24) %

HocB)’B,OuBl'hSl — T Llgyp,v,8;,0B8Y8 Hasys,mbm - _“Halslylal,oc(&ya ’

L  _ ITGD% (2-39b)
aBYS,a1B1y181 — a1817181,0BY8 »

D — [ = [J5) — FJ(28) — FJUD — 6D — FJ6D — []65 — (), (2-39¢)

Consequently the Hamiltonian can be written in the form of (5X5)-matrix
as

H™ 0 H® 0 0

H(Zl) H(22) H(23) H(24) 0

(H(ii)) — _H(i-‘i)’f H(32) H(33) H(34) H(35) . (2 . 40)
0 — H(24)T H(43) H*w HE
0 0 —H™' 0 H

Since the norm of the five-component wave function ¥, (aByd) cannot
be defined because of a lack of symmetry property in the Hamiltonian
(2-40), the concept of the alpha-like four-body mode does not seem to be
established without assuming any approximation for the Hamiltonian. There-
fore, we make an approximation that the contributions of the matrix elements
{aB|v|aiBiy, in which one among (a, B, as, B1) is a particle- (or hole-)state
and the other three are hole- (or particle-)states, to our four-body correlations
are not so important compared with those of the other matrix elements and
may be neglected at the first step. The matrix elements neglected in' our
approximation are graphically shown in Fig. 1. Hereafter we will call them
Y-type interaction. The Y-type interaction is, in essence, what should be
renormalized into the single-particle field and then not the interaction con-
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YATA

Fig. 1. Graphical representation of the matrix elements of the Y-type
interaction.

structing the modes. Therefore, the above approximation in which the
Y-type interaction is neglected at the first step is consistent with our basic
assumption under which the concept of the four-body mode is considered to
be well-established and only the special class of the eigenstates formed by
operating the modes X, to the ground state of the “core” is taken into
account.

Under the approximation to neglect the Y-type interaction, the properties

D — [ — [32) — [J3H — FTA43) — [T#5) — () (2- 41)

can be found and the Hamiltonian (2-40) is simply reduced to

H® 0 H® 0 0
0 He 0 He 0
(H) = | —H' H® 0 H|, (2-42)
0 —H®' 0 H 0
0 0 —H®™ 0 He

Then the eigenvalue equation (2-37) is devided into two equations

G
{W(Ao+4; n) — W(A,; 00} | 7. (ahrd)
7, (apro)
Hglsmpms  —Hogsmmms 0
:m%ﬁ; _Hogg)l;jsba375 "“Hofg?«s,auamsl Ho%%.w&h&
0 Hoslgg)x;ﬁx.aﬁvs Hofg;f)s,alesx
1 0 0 7, (asfi7r1041)
X110 —1 0] Z%(apirsd) |, (2-43a)

0 0 1 v, (CY1B1T161)

{W(A0+4;.n)'_ W(Aqy: 0)) (?I",,@)(aﬁra) )

7. (apyd)
o2 24
_ (HGBYS,OHBWI& HOSBQ&.“IBI'YIBI > (W:x(2)<a1317‘161> ) (2 43b)
24) sk 44 ’ 4 * :
aBma\— HED N5 ovs Higis.apms: 7, (asBir104)

220z ysnbny 9| uo ysenb Aq 961/681/282'25 SdLd/Ev L L 0L /10p/a|oHe/sdid/wod dno-olwepede//:sdiy woly papeojumo(



204 ~ M. Kamimura, T. Marumori and K. Takada

The special class of the eigenstates with eigenvalue o= W(A,+4; n)

— W(A,; 0), which is suitable for our picture (i.e., the alpha-like four-body
mode in the presence of the “core”), must have the largest four-particle
amplitude #,(aByd). Therefore, the special class of the eigenstates under con-
sideration are completely determined by Eq. (2-43a). For such physical solu-
tions, Eq. (2-43b) only shows that the amplitudes #,*(aByd) and 7. (apyd)
vanish because the determinant of the coefficients of the simultaneous linear
equation (2-43b) does, in general, not vanish for those w,, i.e.,
Hé1232)')8,a181’>’151*wn6m1638167‘713881 Hé?;?a,m&w& :\:0 (2 44)
_ Hg‘iﬁ)&kﬁl,aﬁ‘/s HOEE?S,OQ Bi1vid1 wnaaalaﬁﬁlaywaﬁ& '
Thus, all informations on the physical eigenmodes suitable for our picture
“must be given by Eq. (2-43a). ‘
From the eigenvalue equation (2-43a), we have the following orthonor-
mality condition for the amplitudes %, (aByd) :

QBZW(%‘”* (aprd), Tu®* (aBrd) , Tn* (aBrd))
1 0 0\ /Z.aBrd)

X (0 -1 0 || Z.®(apyrd) | =N,0m, (2-45)
\0 0 1/ \#,®(aprd)

where N, is the normalization constant. This condition is described in
another form '

a%gfm* (CYBTB> {Q4p <0f3T5) - Q21>~2h (QBT(S) +Qu (aﬁfa) } v, (aBTa) = N,bnn.
(2-46)

2.5 Summary on the fundamental eigenvalue equation and the phys-
ical meaning of the alpha-like four-body eigenmodes \

In the present subsection, we will give a compact expression of the
fundamental eigenvalue equation for describing the alpha-like four-body mode,
which has been reduced to the three-component equation (2-43a) in the last
subsection, and will also discuss the physical meaning of eigenmodes.

In order to simplify the expression, we define a three-component vector
¥, and an operator P as follows:

gp-”(l)
T= ||, (2-47)
QI/”(5)
/Q4p O 0
P: 0 “‘szg;, O N (2'48)

0 0 Qu
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where the shell-model representations of #,, ¥,®, ¥, are the amplitudes
appeared in Eq. (2-43a) and the matrix elements of the operators Qus, Q2p-21,
Q@ are defined by Eq. (2-36). By using the relation

Qs 0 0
p*= 0 sz-zh 0 s (2 ' 49)
0 0  Qu \

the eigenvalue equation (2-43a) is formally written as
0,P¥,=PHP¥Y,, (2-50)

where the eigenvalue w, means W(A,+4; n) — W(A,; 0) and H is the
effective Hamiltonian defined by Eq. (2-14). Now, we write the Hamiltonian
in the form

H=H,+ Hyp, (2-51a)
4 4

H=-1 S\p2+S1U, (2-51b)
2m i=1 4

Hy = HY + HP. (2-51¢)

'Here, it should be noticed that Hi is not Hermitian but PHP?® appeared
on the right-hand side of Eq. (2-50) is Hermitian. We introduce new nota-
tions defined by ‘

H=PHP*=H,+ H, (2-52a)
HOEPH()PZ, (2'52b)
HimE PE{imPZ- . (2’52C)

Since both H, and P are diagonal in the shell.model representation, they
are commutable with each other. Then we obtain

H():H()P:PH(). (2'53)
The orthonormality condition is simply written in the form
@, ¥,)=0,"P¥,=N,i.. (2-54)

For the sake of later convenience, we will write the coordinate represen-
tation of the above expressions. The fundamental eigenvalue equation (2-50)
is expressed in the representation as

S [<x1:t:2x3x4 I H l .1'1’1‘2,13/.1'4,> _—wn<x1x2x3x4l PI xlllexs’x4/>]

4
X W,, <x1,x2,x3,x4,) (];gdx,) =0. (2 . 55)
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By using Egs. (2:51b), (2-52) and (2-53), Eq. (2-55) is rewritten in the
form

S [{xrzszss| Pl oy s x5’ x4y {a),, - é(— —g;—ZV U () )}

i=1

. . 4
— 12020374 | Hine | 0 20 205’2 D1 ¥ (i 20 2 ) (I_Ildx/) =0, (2-56)

where we have assumed that the average field is local. Here the matrix
elements of P are

<x1x2x3x4 ’ P‘ xllxg'xa’xg,')

{x1220574 | Quy | 4 2 25 ) 0 0
= 0 — L1 Z07324 | Qpon | 21 x5 x5 2 0
: 0 0 (X120 | Qun | 21" 25 25 204"
and (2-57)

4
(X322 23204 | Qup | 11 205 205’ 2 1) =y (x;, 2/),
-

{2120 234 l Qspoon| i’ 2 25 )

(2-58)
4 (”% P(x, s Is )p(xj9 X )v(xkr Iy )ﬂ(xl’ Xy )
<x1$2$3$4’Q4h I $1’-232’$3,$4,> = 1:[10 (xi » xi/),
where
p(x:, ) =08z, ) —p(2:, 2) 2- 59)

and the symbol >3y means the summation over all permutations of (1,2, 3,4).
The interaction Hamiltonian Hi, is a (3 3)-component operator and it is
expressed in the following form:

1
HY HY 0

13 33,
Hinc: Hgmﬁ H;n) HSE)T . (2 * 60)
0 HS  HE

The coordinate representations of these components are
(ijkl)

' 1
{xrxoxszcs | HSP | i ) 5’ 2y = T >y yp(x, ) p(x;, i)

X dek”dx/’n (@, 2D (s, 2/ Do (@, 2Dy, 2w/, x/),
(2-61a)
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1

{asxaxsrd | HLSD | i s’y = — Z(%v (i, 2 )9z, x])

ij
X dek”dx/’v (e, )y (s, 2o (@2 p(x, 2 o (2, 2),
' (2~61b)

1

asaarses | HED | 2y 2 22y = Z(,ZM) o(x:, /) o(x;, xi)

. £

>< dek//dx[,,ﬂ (xk , xk’/) _)7 (1‘] , x[//) el (xk//x//) 77 (xk//, xkl> 77 (x]”, xl/)
/i (xi ’ x:‘/)v (xi ’ x/)
X dek”dxz”p (e, 2N o, 2N v’ o (i, 2 ) o (2, 2/)1,

(2-61c¢)

1
<x1x2x3x4 l HSS) l x1,x2/$3,x4,> —_ Z(%) 0(515: s xi,) p<x1 ) x/)
17

X dek”dx/’p (@e, o, D)o ) 9, 2 )y (2, 2/,
(2-61d)

1 .
E A HEP ’xi,$2,$3,x4/> = ’Z(Zﬂ)p(xi ’ x;’)p(l‘i ’ xi/)
ij

X dek”dx/'p (xk s xk”) 0 (x; y x/’) v (;C,,”:C,") 0(33k”, xk') P(xlﬂa $1’> .
(2-61e)
The alpha-like four-body eigenmodes in (A,+4)-particle system are

obtained by solving the eigenvalue equation (2:56). The modes X,' thus
obtained can be written as

4
X nT = S ( I1 dxidxi,> [<x1xzx3$4 ‘ Q4p ] x1/$2,$3,x4/>¢n(1) <x1/x2\/$3,$4,)
=1

1
vV 4!

+ <x1.2321‘3334 I QZp-2h l $1,$2/x3/x4/>¢n(3) (x1,.1‘2/x3/x4l>

-+ <$1x 234 l Q4h lx1/x 2,$C3,£C4,>§Vn(5>(l'lllel'sl-ret’)]

X (x1) ¢" (22) 8" (5) 6" (0)

4
= 72?8 (I_—Ildx,dx/) <x1$2$3x4| P? lx1/x2’x3,x4,>wn (xl’xg’xs’x{)
X ¢ (1) ¢' (22) ¢ () ' (). O (262)

These modes X, are classified according to the magnitudes of the amplitudes
r,O w,® w® a5 follows:

Xl =a,,
X.'= < Xl=r., (2-63)
X =3,.
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Here, the operator «,' is the creation of the alpha-like four-body modes which

creates four particles with the large amplitudes ¥} (x1x2752.) and annihilates
four holes with the small amplitudes #{)(xxs252,) being accompanied by
the two-particle creation and two-hole annihilation amplitudes & (xix.xszs).
In the same way, the operator 8,' is the creation operator of the correlated
four-hole mode which creates four holes with large amplitudes #® (z,x:25x4)
and annihilates four particles with small amplitudes #® (xi22052,) being
accompanied by the two-hole creation and two-particle annihilation amplitudes
7 (xixazsxs). It should be noticed that, in the absence of the ground-state
correlations «,' and B,' become the operators which create an exact four-
particle eigenstate and an exact four-hole eigenstate in the sense of the
Tamm-Dancoff (TD) approximation. The appearance of an ‘“unphysical”
eigenmode r,' whose largest amplitudes are #% (xsx.x57,) is essentially due
to the fact that the original interaction of our system is not a four-body
interaction but the two-body interaction. It should be noticed that, in the
absence of the ground-state correlations, the “unphysical” eigenmode 7,' does
not appear.

The structure of the ground state |A4,; 0) of the “core” (including the
ground-state correlations in the NTD sense) is determined within the frame-
work of the NTD approximation by the equations

a, ] Ao; 00 =0, B.|A0;00=0, 7.'A,; 0)=7.]A4,; 0>=0. (2-64)

Clearly, the ground state |A,; 0) incorporates the collective correlations
responsible for the four-body modes and is a superposition of 0p-Oh, 2p-2h,
4p-4h, --- excitations in the sense of the TD method.

- The orthonormality condition of the eigenstates of the (A,-4)-particle
system is represented by

{Aop; Olana,'| As; 00 =N,0, }

2-65
(Ao; 0188, Ao 05 =N, (2-65)

As discussed in detail by one of the authors (T. M.) and Suzuki,® it can

be shown that Eq. (2:65) is equivalent with the orthonormality condition
(2-45) or (2-46).

§3. Structure of four-body correlations (I)

—Spatial correlations—

In the present and the next sections, we will study the structure of the
four-body correlations in light nuclei on the basis of the formulation obtained
in the last section. For this aim, we devide the four-body correlations into
two classes, i.e., the spatial correlations, which clusterize (or localize) four
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particles (two neutrons and two protons) in light nuclei, and the ground-state
correlations, which is one of the important ingredients bringing about the
four-body scattering correlations. These two kinds of correlations must be
strongly related with each other. However, in order to investigate the
structure of each kind of correlation, we dare to separate them.

In this section, introducing a model space i.e., the wvertically truncated
subspace, which has been shown to be just suitable for investigation of the
spatial correlations,” we solve the alpha-like four-body modes in **Ne and
study the properties of the correlations. The first half of the description in
this section is based on the work of Ref. 6).

3.1 Physical essence of the spatial correlations

As discussed in the previous chapters, the alpha-cluster aspect in light
nuclei is characterized by the fact that two neutrons and two protons in
nuclei show strong internal binding and weak relative interaction, so that
they can be seen to be an unit of the nuclear constituents. From a view-
point of our picture which has already been discussed in §1, we could under-
stand this as follows: Two neutrons and two protons in the nuclear Hartree-
Fock field correlate strongly so as to make spatial localization in some extent.
In other words, the amplitude of the alpha-like four-body mode has large
mixing of many higher-shell components when it is expanded by the Hartree-
Fock single-particle wave functions. Such higher-shell mixing property is
extremely different from that taken into ‘account in the conventional shell
model, in which only one or two major shells in the neighborhood of the
Fermi surface are considered. Thus the concept of the alpha-cluster is very
different from one in the shell model.

In order to see how the spatial localization (or higher-shell mixing) of
two neutrons and two protons is realized, we investigate the case of *Ne
in the framwork of the formulation represented in the last section. Here,
we regard the so-called rotational ground band in *Ne as the excitations of
the alpha-like four-body modes in the presence of the **O-“core”. Since the
aim of the present section is to investigate the higher-shell mixing in the
modes, it may be reasonable to adopt the Tamm-Dancoff approximation. In
this approximation, the ground state of the “core” is assumed to be the
Hartree-Fock ground state and, in the present case, it is the doubly closed
shell of *O. Therefore, the two components in the amplitude vector of
the four-body eigenmode vanish, i.e.,

v D=7,5=0, (3-1)

Then the fundamental eigenvalue equation (2-55) becomes one-component
equation
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S [<$1x2$3$4 ] Q4pHQ4p l $1/$2/$ 3/-T4,> Wy <l’1x 23Ty | Q4p ] x1’-732’$3,x4’>]
4
Xy (xl’xz'xs’x,{) ( II dx;,) =0. (3 . 2)
i=1

In the operator H which has been given by Egs. (2-51), the part H{P
does not contribute in the Tamm-Dancoff approximation. We can then
write

Q4pHQ4p = Q4p (Hb + H&D Q4p
4 4 4
:Q4p<”2i_2pi2+2 (]i+Z.‘vij)Q4p' (3-3)
N i=1 i=1 i<j

It is natural to consider that the correlation amplitudes ¥, (xixszsts)
of the alpha-like four-boby modes under consideration have the [4] symmetry
which is one of the most important properties in the usual shell model. of
light nuclei as well as in the alpha-cluster model. The spin and isospin part
of the correlation amplitude may, therefore, be expressed by the Slater
determinant coupled to both spin and isospin zero, ¥s-or-0(1234) as

Wn(l) (1'12323331'4) EWP}:M (r1r2r3r4) Xs=0,1=0 (1234) ’ (3 . 4)

where L and M mean the total angular momentum and its projection of
the four particles, respectively.

3.2 Subspace for describing the spatial correlations and generator-
coordinate representation

Since it is almost impossible to solve the eigenvalue equation (3:2),
we make an approximation for the correlation amplitude Y u(rirorsrs), by
which a new type of truncation of the Hilbert space is defined. The eigen-
state X,'| Ag; 0) under the approximation should be able to involve not only
the most important part of the usual shell model at one limit but also the
localized alpha-cluster-like character at another limit.

According to the above consideration, we adopt the following type of
function as the correlation amplitude yroy(rirarsry) ;

Yrom (Fararsry) =exXp { - “cg*é_‘il r.—S) 2} (S| m‘LM>
= exp(—%étﬁ) (S| O, (3:-5a)

(810> =0,(S) Yiu(2s), (3-5b)

where 8§ is the centre-of-mass coordinate of the outer four particles and ¢,
t, and t; are their internal coordinates in the sense that

220z ysnbny 9| uo ysenb Aq 9G1/681/282°25 SdLd/Ev L L 0L /10p/a|oHe/sdid/wod dno-olwepede//:sdiy woly papeojumo(



Many-Body Theoretical Description 301

S:*i—‘(r1+r2+r3+r4>,

t1=%<r1—ra, t2=1/17<r3~r4>, za=_;<r1+r2~r3—r4>. (3-6)

p

The set of the state vector |@.up, whose coordinate representation Is
Yoo (rarorsry) defined by Egs. (3:5), forms a subspace Hy in the Hilbert
space 4 describing the four-particle states.

The correlation amplitude (3-5a) is equivalently expressed in the form

Do (rararars) = Sexp { _ %z r—R) } (R|0u5dR, (3-72)
<R l @LM> =0, (R) Yin (AQR> ’ (3 . 7b)

and the relation between <S|@L,Q> and <{R|O.u)

(S| D> = Sexp{—2a2(R— $)2 (R|0u)>dR (3-8)

is easily found.

Expression (3:7a) means that (R|®.;) is the representation of the
state vector |@.)> in the subspace o by means of the generator coordinate
R. This generator coordinate is connected with the actual centre-of-mass
coordinate of the four particles, S, through Eq. (3-8). However, it should
be emphasized that the coordinate R is nothing but a parameter coordinate.
The use of the coordinate R displays great advantages in solving the eigen-
value equation (3-2) in the subspace . Hence it is convenient to carry
out the actual calculation with the R-coordinate and to discuss the physical
situations after transforming into S-coordinate. ’

Substituting the correlation amplitude (3-4) with Eqs. (3:7) into the

eigenvalue equation (3-2), we obtain the integral equation in the R-coordinate

(., ®) —0uNu(R, RY 0. (RORAR =0 (3-9)
with the overlap kernel and the energy kernel

<x1x2x3x4!Q4plx1'x2'x3'x4'> ) { a’ < ’ / 2}
X expi——>,(ri — R
(<$1xzxsx4|Q4pHQ4plx1/$2,x3/x4l> P 2 t;l( )

4
X YLM (.QR,> Xs- 0,T=0 (1,2,3,4/) d.QRdQR’ (ll:lldx;dfl'g/> . (3 . 10)

From relations (2-46) or (2-54), the normalization condition of @.(R)
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SmL* (R)N,(R, R)0,(R)R*R*dRAR =1 (3-11)

is obtained.
In the present case, since we consider the **O-core as a doubly closed
shell, the density matrix of the core is expressed in the form

o(x, ) =p(r,v")6(s,d)o(r, ). (3-12)
Then the projection operator Q. is written as

1202324 | Qup | 2t 20 2 24

= (rararsrs Qup | TP v Z.1':116 (65, 67)0 (7, ) (3-13)

with
(rararsry | Qo rir/rir/) = .'1341 OGa—r/)—o(r,r))], (3-14)
o(r, 1) =3 0un(r)eiin(r), | (3-15)

where ¢,..(r) is the space-coordinate part of the single-particle wave function.
Using Eq. (3-13), we can write the overlap kernel and the energy
kernel as follows:

RN o 550 vt

1
<<r17’27'37‘4 ] Q4p ' r1”'2”'3"’4'>

_at& o 2} - ,
<r17'27'37'4 ] Q4pHQ4p ! 7'1,?'2,1'3/7'4/>>exp{ ,;1 (r' R ) L (QR )
4
X dAQRdAQR/ ( H dr,'dr,',) 5 (3 * 16)
i=1

where

v<r17’21‘3r4 ' Q4PHQ4P l T1/7'2/" 3/T4I> = 8<T ELEY o1 l Q4p ’ 7‘1//7’2”1'3”1'4”>
4 hz 4
<= p )+ UG + R )
(i=1 2m i=1 i<i

4

X <r1//r2”r3”r4// ‘ Q4p ] rl/r2/r3,r4,> (H dr,‘,/) . (3 . 17)
i=1

Here we have assumed that the residual two-body force in Eq. (3-3), which

is the internal interaction acting among the outer four particles, is a central
force and

o(r;, "j) :—;‘ [v1s(rs, r,-) +vs (5, 7’;‘)] , (3- 18)

where vi; and wvs are the potentials for the states of 7=0, S=1 and T=1,
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S=0, respectively.

3.3 Vertically truncated subspace and its basis vectors

Now, it is very convenient to choose a suitable set of the basis vectors
of the subspace H,. For this purpose, we assume the harmonic oscillator
potential and a Gaussian interaction for the single-particle potential U(r)
and the residual interaction o(r;,r;) as follows:

U(r)E—é—ma)ozrz, (3-19)

Wi )= VIV )exp(— 7).
| (ri;=ri—r;]), (3-20)

where ®V and *'V are the interaction strengths in the states of 7=0, S=1
and T=1, S=0, respectively. It should be noticed that even if we add a
spin-orbit interaction to the single-particle potential (3:19), it has no con-
tribution to the energy kernel H, (R, R’) because of the [4] symmetry
property of the subspace .

As is well-known, the harmonic oscillator wave function and the corre-
sponding energy eigenvalue are

@uim(1) =R (1) Yiu (8,), (3-21)
2043 nti42 /2
R, (7‘) :i: B - (27132[—;11{) - :‘1 rle—«sz/2)rzL”(1+1/2><Bzr2) (3,22)
7 Hl

and
em = (2n+1+3/2) hw,, (3-23)

where =1 mw,/h stands for the size parameter of the core nucleus and
L, (g*) is the associate Laguerre polynomial. Substituting this single-
particle wave function into Eq. (3:15), we obtain the following density
matrix of the '*O-core; ’
o(r, 1) = (T/@:“) L2 r)) (3-24)
iy

It is straightforward to get the explicit expressions of the kernels, N, (R, R)
and H;(R, R'), from Eq. (3-16) by using this density matrix. However,
as they are rather complicated, we do not write them here.

Now, let N, (R, R’) and H,°(R, R") be the normalization kernel and

the energy kernel when we suppose p=0 (which means neglect of the effect

of the Pauli principle from the “core”). These kernels are obtained by
putting &, =1 in Eq. (3:16) and written down in the following forms:
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NO(R, R = 27 exp{—a*(R*+ R} 4,(2a*RR), (3-252)

a12
227"
HL([)) (R, R/) = “(;i—z'ha)o exp { - 052 (RZ + R,2>}

NECE R ED STy

+ LB RR g et RR) [+ 25 507 ()
¢ a a’+2u
xexp{—a*(R+ R} 4.(2°RR), (3-25b)

where the function 4.(2) stands for the modified Bessel function with order
of half integer ‘ ‘

8:) = E L) (3-26)

and 4. (z) its derivative.

Simpler eigenvalue equation
S [H(R, R)) — o, "N,(R, R)] 0, (R)R*dR' =0 (3-27)

with the kernels defined by Eqgs. (3-25) describes the motion of the four
particles under an extreme approximation of neglecting the Pauli principle

due to the “core”, but the analytic property of the solution @, (R) is very

similar to that of the solution of Eq. (3-9). It is easily found that the
solutions of Eq. (3-27) are

N+L+2 | 1/2 L+9 L+3/2 2 2\ N
(Dﬁ?i(R):[ 2 N! ] »a4 ( Zaﬁz) (a -}—B‘)

@CN+2L+1)!! nt \o*—p ot —B?
. 412
><exp<—» 22“2822 R2>RLLN““’ ”(—%L a R2>, (a=>8) (3-28a)
a"—f a*—p ‘
© __ | 9 (0‘2_"32)2 } < a? )3/2 13 31
oNL hmo{2N+L+6+ A +3 R BV+HV).
(3-28b)
The eigenfunctions satisfy the following orthonormality condition:

\o @ N (R, Y00 (R) RR*ARAR = (3-29)

Form of the function @§.(R) is quite similar to the three-dimensional
harmonic oscillator wave function except for the difference in arguments of
the exponential function and the Laguerre polynomial. Because of this
difference, the nodal points of the function locate much nearer to the origin
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‘than those of the harmonic oscillator wave function. At the limit of o*= g%
it shows singular property and, for example, if o*=g® for N=L=0, it is
easily seen that 0%, (R)e<d(R)/R: This is not surprising, since the correla-
tion amplitude becomes (0s)*-type configuration as

2 4
Yrim <r1r27'37'4) o< exp< - hgmgr"z) ‘ (3 . 30)

after integration over R with ‘the above 0{.;_((R)o 6(R)/R* and expression
(3-7a). This means that a very simple shell-model configuration of the
four particles corresponds to a rather singular function in the R-coordinate.
In addition, it should especially be noticed that the function @F.(R) shows
considerably singular behavior even for wide range of the parameter g*<<o®
<<2#% in which we take physical interest. Such properties are also proved
for the solution ®,(R) of the eigenvalue equation (3-9), in which the effect
of the Pauli principle due to the “core” is exactly taken into account.

Considering the above discussion on the analytic property of the solution
0.(R), we choose a usefull set of basis vectors of the subspace Ho. Let
{100>} be such set of basis vectors. It is convenient to put for the basis
vectors

(R|Oy =00 (R) Yiu(2%), (3-31)

where 0{1(R) is defined by Eq. (3-28a). These basis vectors are represented
in the S-coordinate by the relation (3:8) as

(S 108> =D0(S) Yiu(25) = Sexp (=22 (R—8)% 0Q.(R) Yiu(2:) dR.
(3-32)

The function 0(S) is a harmonic oscillator exgenfunctlon satisfying the
following equation :

[—%(%)sz 1 (4mo) SZ]<S |00 |
=(2N+L+3/2)<S[ﬂ)§\?},m . (3:33)

From Eq. (3-5a), we get the space-coordinate representation of the basis
vector

Ui (rararsry) ~exp<—72t > O0.(S) Yo (2s). (3-34)

These basic functions satisfy the orthonormality relation

S NLM (7'17'27'37'4) *[J’N/UMI (r1r2r3r4) (H dr.) ONN’OrzOmn’ (3 : 35)
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It is seen from Eq. (3-34) that the basis vectors stand for the states in
which the internal distribution of the four particles is of Gaussian type with
the size parameter o«® and their centre-of-mass motion is a harmonic oscillator
eigenstate. .

It is interesting to see how the basis vectors involve the higher single-
particle states. The basic function {1y (rir.rsr,) is expanded as

4
'\lf'l(»(')%M (7'11‘21‘37'4) = Z C(O)(mlm’h s ﬂzlzmz ’ n3lam3 ’ 7’l4l4m4> [_Hl(ﬁml,-m.- (ri>] s
ie

nilim;
(3-36)
where

C(O)(nlllml , Mol sy, nslamy, nulomy)

— g[’é Scofmmi (r;)exp { — —;i (ri—R) 2} dr,-](l)z(é’i (R) Yiu(2:)dR.
(3-37)

The integration in the right-hand side of Eq. (3-37) is easily carried out
and it is seen that any basic function iy (rir.rsrs) with o*>>g* involves all
single-particle states keeping [4] symmetry. In this sense, we may refer
to our subspace Ho as wvertically itruncated subspace in contrast with the
usual one-major-shell-model subspace which we may call horizontally truncated
subspace.

Now, let us rewrite the eigenvalue equation (3-9) using the set of basis
vectors {|0§!>}. The solution @,(R) is expanded by the set of basic func-
tions {ONI(R)} as

0, (R> = %CNL@I(\% <R> . (3- 38)

The corresponding expanéion in the S-coordinate is
O, (S) = %CNLQNL (S), (3 . 39)

where the coefficients Cy; in this expansion are just the same as those in
the expansion (3-38). It will later be shown that the expansion for the
physical solution of Eq. (3-9) is very good and such a @;(R) is well approx-
imated by several terms. Using expansion (3-38), we can write the
eigenvalue equation (3-9) in the following form:

%} (L%II\}N/ — (01,3211\71\1/) CN’L = 0, | (3 . 40)

where the matrix elements iy, and Jlyy, are defined by

i =\o"* (NL(R’ Rl)) © /k 2 pr2 ’
(ge) =Yo7 0 (i .y o CRORR dRAR.  (3-41)
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Now, the eigenvalue equation (3:40) does not possess any difficult numerical
property and is, in practice, solved in a usual manner of matrix eigenvalue
problem. Using the solution ,(S) thus calculated, we can obtain the wave
function of the outer four particles as

) 2 3
ZIILM(rlrgmrQ = S<r1r2r3r4 l Q‘H’ ] r1/r2,r3/r4,>exp< — %—th_,z)
j—-

X0, Yuu(00) (T1dlr/) (3-42)

which is very similar to the form of the wave function in the resonating
group method often used in the investigation of the structure of light nuclei.

3.4 Tamm-Dancoff calculations for low-lying states of **Ne

The low-lying even-parity states of **Ne are studied in this subsection
by using the model proposed in the previous subsections. Since the 'O
nucleus is treated as the inert core with (0s)*(0p)** configuration, the density
matrix o(r,r’) appearing in the projection operator @, is composed of the
Os and Op single-particle wave function as Eq. (3:24). The size parameter
# of the **O-core and the range parameter z* of the residual interaction
(3:-20) are assumed to have the same values as used in the sd shell model
of Ref. la): B*=muw,/=0.362 fm™® corresponding to 7%w,=15.0 MeV and
B/(1v/ 2 u)=0.7. The strength of the interaction

VO————-%(”VjL 2878 (3-43)

is left as an adjustable parameter in order to reproduce the relative energy
spectrum and the binding energy of the outer four particles. The single-
particle Hamiltonian H, has been given by Eq. (3:19), in which the spin-
orbit force is not written since it never affects our eigenenergy.

Hereafter, we measure the energy of the eigenstate of **Ne, w,, subtract-
ing the total single-particle energy of the (0d),*(0d),? configuration from it
as done in Ref. 1a). The observed binding energy .of the ground state of
*Ne is then 31.38 MeV in this definition. The calculated energy correspond-
ing to the above definition, W,, is derived from w, as W,=w,—4ew, where
eos is given by Eq. (3:23). In the single-particle potential U(r) of Eq.
(3-19), we dropped an additional constant energy, because it is canceled out
in W,.

Eigenenergies are then obtained by solving the secular equation (3-40)
for each angular momentum L and each variational size parameter «®. The
dimension N, of the secular matrix can be truncated very well under the
condition 2N,+L=14 (c.f., §4.1 of Ref. 6)). |

Calculated energies are shown in Fig. 2 and an energy spectrum con-

220z ysnbny 9| uo ysenb Aq 951/681/28¢ 25 Sd Ld/EY L L 0L /10p/ao1ue/sdid/wod dno-olwepese//:sdiy woly papeojumo(



308 ‘ M. Kamimura, T. Marumori and K. Takada
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Fig. 2. Level structure of 2*Ne. Calculated eigenenergies W, are plotted against
the variational size parameter a? divided by g2 The energy spectrum con-
sisting of the lowest value for each curve is shown on the right together
with the experimental data® Here the strength of the residual interaction
Vo=—35MeV and no correction in the single-particle energy €. The figure
is from Ref. 6).

sisting of the lowest value for each curve is put on the right of the curves.
The states which have the same spin but different size parameter o’ in the
spectrum are not strictly orthogonal, but they are almost orthogonal (c.f.,
§4.1 of Ref. 6)).

The binding energy and the level structure of the ground band are
reproduced very well with the strength V,=—35MeV. The strength of
the residual interaction is much weaker than that used in the sd shell
model of Ref. 1a): Vy=—525 or —48.7 MeV in the case of *Ne. This
fact represents evidently the large effect of the higher shells upon the
four-body correlation energy. It is interesting to see how the four-body wave
functions involve the single-particle states higher than 1s-0d shell. The
detailed values of such probabilities are listed in Table I of Ref. 6), but here
we stress the following points. In the ground band, the lower the state
comes from 8' to 0", the more higher-shells mix into the four-body wave
function. This feature might correspond to the ‘“anti-stretching” property
of the ground-band states.” The remaining states other than the ground-
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band states shown in Fig. 2 consist almost of (sd)* configuration and are
not the state having excitation in ‘“relative motion”.

Since the four-body wave function involves so many higher single-particle
states in the present model, a centre-of-mass motion must be excited. How-
ever, the spurious components in the low-lying states shown in Fig. 2 are
less than ~7% (c.f., §4.3 of Ref. 6)) and the fact does not seem to have
so much influence on our physical conclusions. ‘

The size parameter o* which gives minimum energy of the ground state
in Fig. 2 takes almost the same value as that of free a-particle, a*=0.58
fm™2. However it should be noticed that this correspondence would not mean
a free a-particle-like localization of the outer four particles because of the
Pauli principle effect Q., Actually, concerning a root mean square of the
intrinsic coordinate of the particles, with the use of the definition

{(r—8)H= SKVLM (rirorsrs) Lé (ri—S) . (rirorsry) (Iilldri) , (3:44)

we get

V<a—8)% /v {(r—8)%. =0.87,

while

VAT =8t [V {(r—8)%. =052,

where {(r—8)%,; and {(r—8)*)rwc denote the values (3-44) for the outer
four particles of the sd shell model and for the free a-particle, respectively.

In order to visualize the behavior of the relative motion between the
outer four particles and the '*O-core, we construct the following “relative
amplitude” #,(S) in a similar way to the procedure used in the resonating-
groups method:

w (S) = S(T/q?) 9lzexp { — gié (ri—S) 2} Y2 Q)W (rarersry) [,édr"] s \‘
(3-45)

with S= (ri+r.+rs+r.) /4, where the coordinate S denotes the ‘“relative”
coordinate between the centre-of-mass of the four particles and the centre
of the single-particle potential due to the *O-core. In the definition (3-45),
the integrations are carried out over all intrinsic variables and angle part of
S, and the size parameter o® takes the same value as in . (rirersry). The
functions #,(S) for our low-lying states are shown in Fig. 3, being compared
with that of the (sd)*[4](80)L configuration which is the main part of the
(sd)* shell model. For the states in the ground band, the “relative” motion
grows up more than the (sd)*(80) case as seen in the reduction of the inner
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Many-Body Theoretical Description o 311

oscillation and enhancement of outer part.*> This effect must give the
enhancement of a-width of the 6% and 8" states.’ The remaining states shown
in Fig. 3 have very small component of “relative” motion, because they are
almost composed of (sd)* configuration but with very small (80) amplitude.

Now, we treat the size parameter a® as an another generator coordinate
in the following way. We extend the variational function (3:7) to the
following form with the linear combination with respect to the size param-
eter a,”:

Yo (Pirerary) = Z SeXP { - 032 {%‘—\1 (ri—R) 2} 0.(a®, R) Yin(2z)dR

=515 1C ) Sexp{ — S R>2} 09.(a?, R) You(2:)dR.

(3-46)

Here, the second equality corresponds Jis
to the before-mentioned expansion of the ]
variational function, (3-38), and basic a &
functions O} (a’, R) are defined with gfzf g:
Eq. (3-28a) by replacing of by o ]
Since size parameter o in the above | =S
expression is not continuum value but 10 s
discrete one, the variable «;® are not a 6t e ] -
generator coordinate in the exact sense. o' ° i E‘

In actual calculation, a;® takes sev- . . %,’
eral values between §* and 1.78%, which 1 s
are chosen based on a*-dependence of 45 5
the curves in Fig. 2. Eigenvalue equa- s a §
tion similar to Eq. (3-40) but with 1 °
larger dimension is solved and resulting X —t i
energy spectrum are shown in Fig. 4. ? |
Relative level structure of the ground o s Jdo

band and the‘ binding energy are almost BE~3004 BE.<2958
reproduced with the use of the strength Vp=-340  V=-350

3.5 Relation between the vertically- (a) (b)
truncated-subspace model and  Fig 4 (a) Energy spectrum obtained

the sd shell model by an extension of thf: .degree .of
freedom of the variational size

parameter a?. (b) Energy spec-
trum obtained before in Fig. 2,
where the size parameter «? has
the 16O-COI‘e, 1.e., aZZBZ, our basic con- fixed value for each state.

When the size parameter of the
outer four particles is equal to that of

#) This tendency was also obtained by Nemoto and Bando!»> based on other model. (See also
Chapter IV.)
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figurations
: 4
S Grarorsrd| Qo | ri/r v v )W (v /v ) (T dr)) (3-47)
i-1

with 2N+ L<8 vanish through the Q., operation, because at least one
particle in 4{ly lies in the Os or 0p shell. On the other hand, in the case
of a*=g* and 2N+ L>>8, the basic configurations (3-47) always involve the
single-particle components higher than the 1s-0d shell. Thus, only when
a* =g and 2N+ L =8, the basic configurations (3-47) are composed of pure
(sd)* components and are proved to be exactly (sd)*[4] (80) configurations
with L=0,2,4,6 and 8 in the SU; scheme. '
We discuss another relation. Here we define a new projection operator
P instead of ., with the same expression as the first one in Eq. (2-36)
but with

¢4

A{O if the level a is in the 1s-0d shell,

1 otherwise.

Through the Qf)” operation, all four particles are put in the sd shell. Using
the coordinate representation for the Qf” and the vertically truncated bases
vix, we introduce the following type of basic four-particle configurations

with [4] symmetry:

‘ i 4
%‘éi?w (7172?'3r4) = g<r17'27'37'4 l Qi}d) l T1,7'2,T3,r4,> \b‘t(\‘f)%M (7‘1,7'2/7'3’1‘4,) (Hl dr,-’) .
i
(3-48)

When o*=§?, only configurations with 2N+ L=8 can be alive after the Q{
operation and they are again proved to be [4] (80) configurations with
L=0,2,4,6 and 8 In the case of «a*>>p% the Q{” operation makes ¥§fy
with 2N+ L<(8 be alive. The number of linearly independent states among
(s o*>F and 2N+ L<8} can be counted with the rank of the overlap
matrix defined by the matrix elements {Z§i|?7§72y)>. The numbers are
4,4,3,2 and 1 for L.=0,2,4,6 and 8, respectively, while in the SU; scheme
the numbers of linearly independent states with [4] symmetry are 4,5, 4,2
and 1 for L=0,2,4,6 and 8, respectively. Thus, our approach with Q§”
and o®>f is equivalent to the SU; scheme with [4] symmetry for L=0, 6
and 8 and resulting eigenenergies are independent on the size parameter o’
Even for L=2 and 4, the lowest two states of each L solved with [4] SU,
scheme are very closely reproduced by the #§’ scheme, and energy eigen-
values are proved to be independent of the parameter o?.

~ Now we introduce other types of operator, Q§"*” and QL"?**?: The
former restricts every one of the four particles within the sd or pf shell

-(two-major-shell truncation) and the latter within the sd, pf or sdg shell
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(three-major-shell truncation). The operators are defined in the same

manner as the case of the Qf” but with proper 6., for each truncation.
By using the Q%"?” and Q$*?**”, we can compose new basic configura-

tions Z§5” and #§i ' in the same way as Eq. (3-48). In these cases

all configurations with

2N+ L<12 for (sd, pf)-truncation,
2N+L<16 for (sd, pf, sdg)-truncation

are linearly independent and resulting eigenenergies are proved to depend
upon the value of the variational size-parameter «®. Thus, three types of
eigenvalue equations with the same form as the expression (3:40) are intro-
duced, but different truncation operators Q%°, Q" and Q5% *? are used
in defining of the matrix elements Jliy, and Hgw..

Energy spectra in the three cases are shown in Fig. 5 together with
the result given before by using @s,. One can clearly see how the trunca-
tions affect the eigenenergies and what states are benefited by the higher-shell
mixing. However, if a suitable strength of the interaction is taken for each
of the three truncations, almost same level structures can be obtained. This
seems to suggest that to extend the size of truncation of the single-particle
shell model states unoccupied in the “core” may be renormalized almost in
the reduction of strength of residual interaction. As mentioned in the last
subsection, this fact has already been found for the case in which the size
parameter o® is treated not as a fixed parameter, but as a generator coordi-
nate. The situation would be the same in the use of the effective charge
for the electromagnetic transitions.

Therefore, if one wants to get some definite evidence coming from
higher-shell-mixing (or spatial-correlation) effect for the low-lying and non-
“core”-excited states, it does not seem to be good way to see energy spectra
or electromagnetic transitions. For that purpose, one had better investigate
a-reduced width or a-transfer strength. The study of the “relative amplitude”
shown in the last subsection would give proper informations for the aim.

3.6 Spatial correlations of the outer four particles in the finite-well
single-particle potential

So far a harmonic oscillator potential has been assumed as a Hartree-
Fock field due to the **O-core. It is desirable to adopt more realistic single-
particle potential of finite well for the purpose of studying the spatial
correlations of the extra four particles. In this subsection, calculations with
an approximated finite-well potential are presented and resulting. effects on
the localization especially on the “relative” motion are discussed.

Woods-Saxon potential would be suitable for our aim, but the type of
potential is simulated extremely well by the following function in this paper
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for the sake of simplicity in calculation:

Uy(r) =Uy[14ci(ar)*+c,(ar)*] e,
Uy= —484 MeV, c¢;=1.11, ¢,=0.291, (3-49)
a=0.48 fm™.

The overlap between the Os (or 0p) single-particle wave function obtained
with this potential and the 0s (or 0p) wave function of harmonic oscillator
potential is 99.9% (or 99.6%). Eigenenergies of the 0d and 1s states are
—2.23MeV and —3.20 MeV, respectively, reproducing well the experimental
values in "O: —2.11MeV for 0d and —3.26 MeV for 1s state. Further,

Coulomb potential between outer proton and the **O-core is simply simulated by

U =Ule™,
} (3-50)

b=0.15fm™, U, =4.0 MeV.

Fast dumping of the tail part affects hardly the bound states of **Ne. Energy
shifts of single-particle states caused by U,.(r) are 3.4 MeV for both of 0d
and 1s states and they almost reproduce experimental values.

Now we adopt

U= Un(r) + 222 U,Gr) (351)
as the single-particle potential U; in Eq. (3-3) instead of harmonic oscillator
potential (3:19). In Fig. 6, our approximated potential for a proton is
illustrated together with the harmonic oscillator potential used in the previous

201 Utn) /

. single poarticle potential

Fig. 6. The approximated finite-well potential for a proton (3:51) is shown
by the solid line and the harmonic oscillator potential by the dashed line.
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subsections. .

Since the 0s and 0p wave functions of the present potential are almost
the same as those of the harmonic oscillator potential, the new density
matrix of the *O-core, which is used in constructing the operator @, is
approximated with high accuracy by old one (3-24) made from the Os and
0p wave function of the harmonic oscillator potential. After the calculation
of H;(R, R") in Eq. (3-10) with the new single-particle potential Ui is carried
out analytically, all procedures to get final solutions are the same as before.
Here it should be noticed that we need not prepare the 0d, 1s and higher
single-particle wave functions of the finite-well potential in the calculation of
H,(R,R’). This is a great advantage of our model. -

For the states of **Ne above a-threshold 4.73 MeV, for instance 6% and

8" states, a bound-state approximation is lis
assumed in the present calculation for 401 . ]
simplicity.  Further, the expansion (1.15) g*

(3-38) or (3:39) of the solution @,(R) (.55) + ) ’

or ©,(S) is restricted to N=0 to 15 for ’ N
each L, which is sufficient for describing _ Tevers 1 =
the states under consideration. The (g0 o ‘ " —-IOE
parameters of the residual - interaction (130) 6" a4 T
(3-20) is slightly changed from the one g: 1 &
used before on account of the broader & s
feature of the 0d, 1s and higher con- Of 1
tinuum orbits, namely an account of 155
new character of the truncated subspace. - (1.45) a4 . & | 8
We take 1=8/(1v/2 n) =0.75 instead of ] ©
2=0.7 and keep V,=—35.0 MeV.

Eigenvalues o, of Eq. (3:40) should (1551 4 - >
correspond to binding energies of *'Ne ]
relative to the ground state of 'O (160 o* o -0
nucleus. The experimental value o, of iz BE:3233  BE=3303
the ground state of *Ne is 33.03 MeV. B CAL EXP
Note that the definition of the binding  Fig. 7. The energy spectrum calculated
energy in this subsection differs from with the finite-well single-particle
that in $3.4. ‘ potential is shown together with the

< <h experimental one. The values in
Calculated energy spectrum is shown parentheses are the ratios a?/g*

in Fig. 7. Binding energy and level which give the minimum energy for
structure of the ground band are well each state. See text about the de-
reproduced. It is interesting to see in finition of the binding energy.

Fig. 8 how their “relative amplitudes” defined by Eq. (3-45) differ from those
-of the solutions with harmonic-oscillator-single-particle potential. Stronger
localization can be seen in the case of the finite-well potential, namely,
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outermost peak of “relative amplitude” is further pushed out and enhanced.
This effect would give some enhancement of the strength of a-transfer reac-
tion and a-width of 6" and 8" states. According to Arima and Yoshida,'®
and Yazaki,'” shell-model wave functions of 6" and 8" states with usual
oscillator parameter give a-width several times as small as experimental
values. Our wave functions with finite-well potential might give better
agreement for the quantities.

Here it should be noted again that our “relative” coordinate S denotes
the distance between the centre-of-mass of the extra four particles and the
centre of the single-particle potential of the "®O-core (not the centre-of-mass
of 0). Then, our “relative amplitude” cannot be used directly for the
estimation of the a-width. Appropriate treatment of the centre-of-mass

i [

Fig. 8. The amplitudes of the “relative motion”
defined by the expression (3-45), a) for
the states calculated with the finite-well
potential, b) for the states obtained with
the infinite-well potential in §3.4 and ¢) for

L the SU3(80) configurations. The ordinates

show #z(S) X.S on an arbitrary scale.

a) finite well
——-— D) infinite well

—————————— c) SU; (80!
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a) finite well

—=—= b) SU; (80)
-------- ¢) Arima ond Yoshida

0 1 '
2/ ¥ & 5 %
\ N7 5 (m)
A}
\ /'
VN
\\ \(\ III
2N ”
\\,/ N

L1

Fig. 9. The “relative amplitudes” of the 6* and 8* states calculated a) with
a finite-well potential and b) with the SU3(80) configuration. c¢) Relative
wave functions of the 6% and 8" states calculated with the state-dependent
optical potentials given by Arima and Yoshida. All curves are normalized
to unity at the peaks.

problem can be carried out by taking the position of the **O nucleus as a
generator coordinate as well as the position of the outer four particles. This
approach is in calculation. However, we could give the following qualitative
discussion on a mechanism of the a-clusterization even at this stage.
Recently Arima and Yoshida'” showed that a-decay widths of 6" and 8"
states can be explained based on harmonic-oscillator-shell-model wave func-
tions, if the relative wave functions are replaced by the improved relative
wave functions derived from angular-momentum-dependent optical potential
between O and a-particle. However, the latter wave functions are quite
different in the interaction region from those derived from shell-model wave
functions with usual oscillator size parameter. Large part of the difference
must come from the effect of configuration mixing of higher excitation or
a-clusterization as pointed out by them. It is very interesting to see in Fig.
9 that our “relative” amplitudes of 6% and 8" states calculated with a finite-
well single-particle potential are very like the relative wave functions of 6°
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and 8" states calculated with the above-mentioned L-dependent optical poten-
tials given by Arima and Yoshida. This seems to suggest that the enhance-
ment of a-widths which is one of the essential characteristics of a-clusterization
would be explained based on the spatial correlations of the outer four particles
moving in a jfinite-well single-particle potential.

As a concluding remark of this section 3, we might say the following.
When the outer four particles correlate spatially into an alpha-like mode
or cluster, a very essential role may. be played by the situation that the
particles can occupy the higher orbits than sd ones, especially continuum-
energy orbits having decaying character. The nucleus consisting of a
closed shell core and outer four particles may have the predisposition to
bring about an alpha-cluster through the composition of the finite-well Hartree-
Fock potential.

§4. Structure of four-body correlations (II)

—Ground state correlations—

In this section, we investigate the structure of the ground-state correla-
tions which play a quite important role for the four-body correlations. The
importance of the ground-state correlations is for the first time pointed out
in connection with the structure of the so-called mysterious 0" state in 'O
and *Ca by one of the present authors (T. M.) and Suzuki.” In the first
half of the present section, on the basis of their discussions, we will give
general expressions about the ground-state correlations within the framework
of the formulation developed in §2 and, in the remaining part, we apply the
NTD method to the case of **Ne in the vertically truncated subspace intro-
duced in the last section. Finally, the future problems are also discussed.

4.1 Physical essence of the ground-state correlations

We have considered the special class of eigenstates of (A,+4)-particle
system, which is described by expression (2-6). In the TD approximation,
—the usual shell-model calculation is a kind of the TD approximation and
the discussions developed in the last section are also done in the same
approximation—the ground state of the A,-particle system, [A,; 0), is assumed
to be the Hartree-Fock ground state (for example, as the doubly closed shell
configuration). The inconsistency of such a model is evident; while assum-
ing a strong “alpha-like” correlations of the outer four particles we make
the “core” contain no correlations at all. Thus the correlations are asym-
metrically ascribed only to the outer four particles, but not to the “core”.
Alternatively, the consistency of the model requires to incorporate the
collective correlations for the alpha-like modes also in the A,-particle “core”.
In that case the four-body correlations are symmetrically ascribed to the
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“core” as the ground-state correlations and to the outer four particles. It
is known that the correct ground state of the A,-particle ‘“core” has a
collective predisposition for collective modes. The corresponding modes then
are “dressed” four-particle modes in the NTD sense in contrast to the quite
different “bare” modes described by the TD treatment. Proper treatment of
the three-component eigenvalue equation(2+50) just means the above-mentioned
"NTD treatment.

Now, let us discuss on the structure of the ground state |A,; 0) deter-
mined within the framework of the NTD method developed in §2. The state
| Ay; 0> must be determined from Eq. (2:64). For a while, we use the
shell-model representation for simplifying the description. Let c¢.' and ¢« be
the creation and annihilation operators of a nucleon in the shell-model state
a. We can define the particle and hole creation and annihilation operator
(ad', a) and (b, ba), respectively, as

Co;,T: (1—‘0a)CqT+ﬁaCo;T:aaT+ba, }

ca=(1—0s)Cat OuCa=aa+ba', (-1
where
(1 for states occupied in the Hartree-Fock ground state of
the A,-particle system,
O =

0 for states unoccupied in the Hartree-Fock ground state of
the A,-particle system.
| (4-2)

A4 LA

HPP

Fig. 10. Graphical representation of the matrix elements of the
effective ‘two-body force, Hpp, Hnn, Hy and Hon.

We can easily see that the matrix elements of the effective two-body force
contributing to the effective four-body interaction Hi,, defined by Eq. (2-52¢)
are H,, H, and H, given in Fig. 10. It is noteworthy that the matrix
element H,, in Fig. 10 does not contribute to the four-body modes at all.
Needless to say, the ground state |A,; 0) is a mixture of 0p-Oh, 2p-2h,
4p-4h, -+ excitations in the TD sense and is generally written as

| A5 0> =Col o) + 3 Ci(ecB; 18) aolas' by Bt | o
+ 37 S ColaBrd; auBuridn) adtas'ay'as'balbelbyibst | o)+ -+, (4-3)

aBYd a1B1Y181
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where |[¢,) is the free ground state (the Hartree-Fock ground state) of the
Ay-particle system. After solving the fundamental eigenvalue equation (2-50),
we can determine the coefficients C,, Cy, Cs, -+ from Eq. (2:64) in the fol-
lowing way: Let us first rewrite the eigenmodes X,' as

1/12 P Wﬂ(‘)(aﬁrﬁ): Ca*CBTCYTCsT-

4 agvs i=13,5

X

I

I

L {9, (aBrd) adlaglay as’ +6 >, (aB; 18) ad'as'bybs
4! agvs «BYS
+ %ﬁ% (aBrd) bubebybs} (4-4)

where 7,V (aByd), ¥,® (aByd) and ¥, (aprd) are the shell-model representa-
tions of the three components of the correlation-amplitude vector ¥, and

&.(aB; 10) = (1 —0u) (1 —0p) 05057, (aBrd) . (4:5)

Here the symbol: :denotes the normal product with respect to particles and

‘holes. From Eq. (2-64), we have a set of recurrence relations connecting
C,i1, C, and C,_4, the first of which are

Co<0n+<6¥37’5) —2 Z/ {25n+(a131; aB)Cl(alﬁl, 7‘5)}

Pleven] By
+4! algmalwpﬁ (a1Bur181) Co(siribs; aBrd) =0,
(from a,|A,; 0)=0) (4-6a)
Coyra-(aBrd) —2 Z’n {Eén_(aﬁ, a:B) C1 (705 asB) }
Al 2 on(asBirid) C(abrd; asfirsdy) =0,
(from  B,|Av; 0)=0) : (4-6b)

Coqono(aﬁrb‘) —2 2/ {Eéno(m&; aB)C1(a1B1; 7‘5>}

Pleven] oyfB;

+4! no(6¥1312‘131)C2(6¥1317‘151, aﬁ?‘5> 0,

a131‘/1 1

Co‘l"no(aﬁﬂ?) 2 2 {Zéno(aﬁ, af131)C1(7‘3 a181)}

eveu 1L

+4! Pno (631317”151) Cz(aBTBQ a151T131) =0,

0‘1317151

(from 7,/ Ao; 0> =7.]A4o; 0)=0) (4-6¢)

where the symbol >peven; means a restricted summation of even permutations
of (a,B,7,0) such as

Pﬁzvelnlf(aﬁﬁ) = f(apyrd) +f(ardB) +f(adfy)
+ F(Brad) + f (vdaB) + f(Bora), (4-7)
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Sf(aBrd) being the arbitrary function of (a, 8,7,8). After determining the
coefficients C; and C, in terms of C, from Egs. (4-6), we can proceed to
the next relations connecting C; to C; and C, in order to determine C; and
so on. If the ground state is “normal” (i.e., non-“bound” alpha-clustering),
the following inequality relation should be fulfilled;

|Col >1C1l, |Cel, o (4-8)

Here we should discuss the quasi-boson character of the physical four-
body eigenmodes «,' and B,!. It is shown by one of the authors and Suzuki?®
that the various eigenstates a,'|A,; 0> and 8,7 Ao; 0) satisfy the orthonor-
mality relations (2:65) and, under a reasonable approximation, these relations
are equivalent to Eq. (2-54) which is the orthonormality condition of the
correlation amplitudes obtained from the fundamental eigenvalue equation
(2-50). On the other hand, the ground state of the A,-particle “core” is,
as mentioned above, determined from Eq. (2:64). Therefore we have the
following relations:

(Ao; O] [etm, @] | Ao; 03 =N, B,

<A0, O’ [Bm’ BnT] IAO; O>:Nn6mn’ <4.9)

which imply .that the physical four-body eigenmodes «," and B! possess a
quasi-boson character. It will later be shown that we can put N,=1. (See
Eq. (4:26).)

4.2 A schematic model

In order to study the properties of the solution of the three-component
eigenvalue equation (2:50) and the ground state of the A,-particle ‘“core”,
we use a schematic model in which the explicit solution of the eigenvalue
equation can be obtained. For simplicity, we consider a model consisting of
two levels with equal angular momenta j,=j,=;.* '

The alpha-like elgenmode X, defined by Eq. (4-4) (with #=0) is now
Wntten as

Xo'= 1/_}"_, ZZ<JJM MI|00YTTZ—Z|00)

X o (JT) Abrt, 224AY w72+ 66 (JT) Abus, 72Br w7z
+ @0 (JT) B]M, TZB]—M, T—Z} > (4 . 10)

where

* Detailed discussions of the physical situation with the use of such schematic models have
been given in Refs. 2), 3), 5) and 7).
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A—]M TZ = 2 <]]mocm¢xl l JM>< roﬂ'al l YZ>aa da/

Moo/
TaTal

B]M TZ = Z <]]m3m3, l JM><——-—’L'32'3, ] FZ>bBbB/

mgmgy
TRTR!

(4-11)

We write the matrix element of the effective two-body force in the form
1 .. 11
(aBlvlrd) = = 533G (abed; TT)jejimems| IMY 5 eutal TZ )
X Cjarmmal IMY 5 +eres| TZ) . (4-12)

Considering the idea of Danos and Jillet’s “stretch coupling scheme”,”® in
this model we assume the following simplified approximation:

G(aaaa; JT)=Gbbbb; JT) =6,;,00G,
} (4-13)

G(aabb, JT) =5]],,,BTOGI,
where J, means Juax(=27). |
With the assumption (4-13), we have the eigenvalue equation
{(Do - 4€a} \l"o (Jmo) = (2 - 4a],,,fmt00) {G‘l"o (Jmo) - G’So (Jm0> } ’
{w0—2(eat )} (J,0) = — G4y (J,,0) + G0 (J,0), (4-14a)
{600 - 46&} Po (JmO) = (2 - 4611,,,1,}00) {Glfo (Jmo) _G% (Jm()) } ’

corresponding to Eq. (2:50) together with the following linear equations for
the amplitudes Yo (JT), &(JT) and ¢o(JT) with J%J, and T=0:

o — 484} '\l/’o (JT) = 4a]]mtm {G’\IJ’O (JMO) - G,So (Jm0> } ,
&(JT) =0, (4-14b)
{wo—4er} oo (JT) =4a;;,tr,{G'&(J,0) =Gy (J,0)},

where

ar=v QJ+1)@J +1) WGIT5; 1),

4-15)
tor =V CTIDCT 1) W( TT'i %%) (

After solving Eq. (4-14a), we can determine the amplitudes with J3J, and
Tx0 from Eq. (4-14b) as follows:

VoI T) = =250, (J,0), 6(TT) =0, go(JT)=—22104,(7,0)

for JxJ, and T=0, ' (4-16)
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where o : , ,
, K:2_4a]m]mtoo. (4'17)

With the aid of the relations (4-16), the alpha-like eigenmode X' can
be written down as ‘

T 1/‘%! S M =M1 00) (A oAl
"1‘ WOA},,,M‘,OOB],,ﬁM,OO + (DoBme,oijm—M,oo} ’ (4 ‘ 18)
where |
Vo= (1,0, 7=V Ku(Ju0), 0o=00(J,0). (4-19)

The eigenvalue equation (4-14a) can be written in the following matrix
form:

Vo 4e,—B,  —Gy 0 1 0 0\ /v
wo| M | = —Gy  —2(e,te) Gy 0 -1 0 7 |,
el |0 Gy 4o+ B ) N0 0 1/ \g
where ‘ (4-20)
B,=KG and G,=v KG'. (4-21)

The quantity B, is the binding energy of four particles (or holes) in the
TD sense and the quantity Gy is just the interaction bringing about the
~ground-state correlations.

From Eq. (4-20), we obtain three solutions for s;

w0 =2(eate) +V {2(ea—e) — By *—2GV*,
000 =2(eate), | (4-22)
wo_:2<€a+€b> - 'l/ {2(5,,451,) ‘—B4}2_2GV2 N

where wo. and w,. are the solutions corresponding to the creation operator
- for the alpha-like four-body mode @' and to the annihilation operator for the
“correlated four holes” f,, respectively. Here wy, is the solution correspond-
ing to the unphysical eigenmode 7,’. Explicit expressions of the correlation
amplitudes yro, 7 and ¢, are given, respectively, by

_ s A2(e—e) =B} +V {2(.—e) — Bi} ' —2G,
Y=V N B B30 ,
No+ — V_ﬁ —2GV

21/{2(54——61,)—34}2—2(;‘/2’ (4:23)

e 20e—e) — B~V 2(ea—2) — Ba —2G
'¢0+ -‘/N 21/{2<€a—€b) _B4}2""2GV2 ’
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for the “alpha-like” four-body mode a,',

"zl”o—‘= (00+ ’
No—=""o+» (4 * 24)
Do — q1b'0+ ’

for the “correlated four holes” B,

‘,l"oo = %o+
YN 2eme) =B ,
Too 21/{2 o) — B — 26 (4 ’25)
@oo = Yo+

for the unphysical eigenmode ',

where the normalization constant N is given by N=K/6. They satisfy the
normalization conditions

|W0+‘2_|770+12+|<0o+|2:N, )
Fro- |2 = 90~ |*+ {@o-|*=N, (4-26)
!‘l"ooiz_ ’7700‘2"{‘ I&UOOIZZ —N,

in accordance with Eq. (2-45) or (2-46).

Here, it should be noticed that, if the strength of the effective two-body
interaction responsible for the four-body correlations, especially Gy, increases
and passes through a critical value which leads wo., @ and w,_ to have the
same value 2(e,+s), the eigenvalues of Eq. (4-20) become complex and the
corresponding eigenmodes have no physical meaning. Moreover, we should
notice that, as seen from Eq. (4:26), the norm corresponding to the physical
eigenmode a,' or B, is positive but that of the unphysical mode 7, is negative.
This fact seems to be a general character of the four-body eigenmode under
consideration. Then we can safely put for the normalization constant N,
appeared in Eq. (2-45) or (2-65) (and also in Eq. (4:9))

1 for the physical eigenmodes «," and 8,

N, = { (4-27)

—1  for the unphysical eigenmode 7.

As discussed in the last subsection, the ground state of the “core”
| Ag; 0>=|0,), which satisfies

a0 =0, Bo|@oy =0, 7o'|@o) =700y =0, (4-28)

has the structure
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|00 =Cal 80> +32C:(J T) SIIM~M|00)< TTZ~Z|00)

X Aw,rz (=) T 2B ez | g0y
+INSNVCL(J T, T THS S JTIM— M| 00){ TTZ—Z 100

JT J'17 Mz M2t
X T T M =M 005 T T'Z' — Z' 100
_ X A}M.TZA}—M,T—ZB}/M',T/ZIB;/_M/,T/_zr [ ¢o>
A veeees . (4-29)

Conditions (4-28) determine the coefficients C. For exémple, the equation
corresponding to Eqgs. (4-5) lead us to

vV 2Gy
{2 (sa - 5!7) - B4} + 1/ {2 (Sa - Sb) — B4} 2 2(;‘;2
‘ X 077,070, (4-30a)

/2
T =C 2L ) o

1 {2(e.—e&) —Bi} =V {2(e.—&) — Bi}* —2G*
4’ {2(5,;—61;) —B4} +1/{2<€a—€b>_B4}2—2GV2
/ X 6]],”6]/]",67‘067/0 . (4 ¢ 30b>

C,(JT, J T =C,

Here it should be emphasized that condition 7o' | @) =74|®,» =0 is indispensable -

for determining the structure of the ground state | @), in spite of “unphysical
property” of 7, in the sense of the eigenmode.

4.3 Stability of the “normal” Hartree-Fock ground state and bound
alpha-like cluster

So far we have assumed that the Hartree-Fock field forthe “core” under
consideration is still stable, i.e., that the free ground state of the “core” |@¢,) is
normal and well described by the normal shell-model ground state. However,
in order to investigate the structure of the four-body correlations in detail, we
should see what happens when the strength of the effective two-body interac-
tion responsible for the four-body correlations increases and - passes through
a critical value. In this situation it may happen that the ground-state wave
function changes suddenly and cannot any longer be obtained by the ordinary
perturbation theory. Hereafter we call this a “phase transition”, which means
an instability of the normal shell-model ground state |¢,». Typical examples
of such a “phase transition” in the theory of nuclear structure are the transi-
tion of the ground state from the spherical shape to the deformed shape and
the transition from the normal state to the superconducting state. As is
well known, in the former case the eigenvalue of the 1p-1h collective exci-
tation mode with J=2 becomes zero and in the latter case that of the two-

body scattering eigenmode with J=0 does.

14)

Following the original general theory proposed by Sawada and Fukuda,
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we can formulate a theorem concerning our new “phase transition” due to the
four-body correlations. Let a,' be the creation operator of the alpha-like four-
body mode with the lowest eigenvalue w,. (defined by Eq. (2:63)). The
operator «,' satisfies the following equation of motion:

[aoTs H-I = _w0+a0T+ZOs (4’31)
where
H=escalca+ % ,323<a3 01381 colcaescy: (4-32)
a afy

and the “interaction” Z, is composed of the terms with sixth-order normal
product with respect to a'(a) and b'().
Now, we consider a family of variational functions defined by

120> =explin(a +a)} |60, (00> =[go,  (4-33)

where # is a variational parameter and |¢,) is the normal Hartree-Fock
(shell-model) ground state. Then the variational energy is given by

E() =< (1) |H|¥ (1£)> = | e7HF0 Het el | g, (4-34)

which is, of course, equal to the Hartree-Fock energy for x=0. With the
aid of Eq. (4:31), we can easily see

DE) o= (=) g o' a0, H] ) =0, (4-35)

Equation (4-35) tells us that the normal shell-model ground state |¢,) is
not only the ordinary variational one with respect to the single-particle modes
but also a variational one with respect to the family of variational functions
(4-33).

In order to check whether the normal Hartree-Fock ground state |¢,) is
really stable, we have to see the sign of the second derivative of E(x) at
#=0, which is given by

T B o= (— o] Lo +au, [ +au, H]) |
= <w0++0’5k+‘> (ol [ao, ao'] | 0. ' (4-36)

Now, let w, be the eigenvalue at the critical point where the eigenvalue wo.
changes from real to complex one. Without loss of generality, we can
choose the single-particle energies e« as the critical eigenvalue w, becomes
zero. Then, for the physical eigenmode «,', the eigenvalue w,, is real and
positive and

{gol [ao, a"] | By = 25 (. (abrd) — i (abrd) }=0. - (4-37)
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We obtain therefore

%E(u) L0 for =0, ©(4-38)
Thus the Hartree-Fock ground state |g¢,) satisfies the minimum condition
with respect to the family of variational functions. - This is consistent with
our original assumption that the ground state of the “core” is normal for
the four-body correlations. However, if the strength of the effective interac-
tion increases and passes through a critical value which leads w,, to become
zero, then we have

2
66—/ﬁE () | u=0=0 for we;=1imaginary. (4-39)

In this case, the minimum condition is usually violated and there appears a
new phase transition. Sawada and Fukuda'® have shown that there exists
in this case another ground state with lower energy which is to be obtained
by the variational principle by making use of trial functions similar to Eq.

(4-33):
|7(0)) =exp{i(a'(0) +a(6))} |40, (4-40)

where the operator «(#) has the same structure as a,' with respect to
operators a'(a) and b'(b) but the coefficients contain some variational para-
meters. '

In order to investigate the structure of the new ground state |Z(6)),
we now use the schematic model developed in the last section. In this model,
the alpha-like mode is written as Eq. (4-18). Therefore, the new ground
state after the phase transition is considered to be

|7 (0)) =exp{iS(0)} |$o) = U(6) | o), ‘ (4-41)
Ui =U"@®, (4-42)
where /
S(0) =33 ud M — M1 00) {4(6) Clmt,00CT —m,00 + 90 (6) Cy,h-30,00C rns, 00}
with (4-43)
Clurz=Alyuzrz+ Biwrz. (4-44)
The pair operator A" and B have been defined by Eq. (4-11). Now, we

define new operators with the unitary transformations of the annihilation
operators a. and b, as

Ae= U@ auU™(0), Bo=U(0)bU(0). (4.45)

These new operators are expanded as follows:
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Aq —aa+z[S au) +tor [S LS, @] ] -+
(4-46)
B b(x+l[S ba] + [S \:S ba]] +

If we adopt an approximation in which only the lowest order terms with
respect to the original operators a'(a) and &'(s) in each commutators
appearing in the right-hand side of Eq. (4:46) are taken into account, we
can write the operators A« and B. as

Au==cos 0 az— S« sin 0 (@'C") _q, }

447
Be=c0s 0 by— sz sin 0 (b'C) _q, ( )

where so= (—1)/™"«"?7% and

@Ch_| 1 .
(B'C) _q 1/K2<]J I — M — | ] — ma>< Ta0!~2—”“ra>
, aly . Ch om0
X =T~ Jm—mo—m, )
{ e Crmaem,00 (4-48)
with K defined by Eq. (4-17). Here we have assumed
0:\/ it | (4-49)

27+1
From Eq. (4-47), we can define a new quasi-particle operator aq as
a(x:A(x—i—B;:uaCa - Sa'Z),, (CTCT> —xy (4'50)

which just corresponds to the Bogoliubov transformation in the theory of
superconductor. From a different standpoint, Flowers and Vujicic have
already introduced a transformation similar to Eq. (4-50)." This operator
ax satisfies the following anticommutation relation:

{a«, ag'} + = 0wz [higher order terms with respect to a'(a) and 6'()].
(4-51)

If we neglect the higher order terms in the right-hand side of Eqg. (4-51),
we can consider the new quasi-particle operator as a fermion operator.
From definition, the new ground state |#(6)) is determined by

Au|7(0)) = Be|#(6)) =0. (4-52)

By considering the pseudo-fermion property of A. and Bs, the ground state
is, therefore, written as

220z ysnbny 9| uo ysenb Aq 9G1/681/282°25 SdLd/Ev L L 0L /10p/a|oHe/sdid/wod dno-olwepede//:sdiy woly papeojumo(



330 M. Kamimura, T. Marumori and K. Takada

|7 (6)>= E . {tts 5000’ (@'CT) _a} {1ty + se0:b6' (B'C) _g} | oy

2i+1 V, N
j(\/ Jg gﬂ %<(]meM_MlOO>C}mM,00C}m_M,00> /4‘O>, (4.53)

where [0) is the vacuum defined by ¢,]0> =0 and
3 T N 1 R
’ V(x N 0a 1—0a ‘Ua

- (1 for states occupied in |¢o),

with

(4-55)

a

0 for states unoccupied in |g¢op.

The right-hand side of Eq. (4:53) shows that the new ground state after
phase transition is of the bound alpha-like cluster with J=0 and 7=0, which
has been discussed by Baranger'® and by Flowers and Vujici¢" and many
authors in connection with the four-body correlations in light nuclei. '

4.4 New Tamm-Dancoff calculations for **Ne within the vertically
truncated subspace

In the previous section, we solved the eigenvalue equation for the four-
body modes in *Ne within the framework of the TD approximation so as to
investigate the structure of the spatial correlations. We have then introduced
the vertically truncated subspace Jl, which is suitable for that aim. In the

present subsection, in order to take account of the ground-state correlations

together with the spatial correlations, we will treat the four-body modes in
*Ne under the NTD approximation within the vertically truncated subspace.
The eigenvalue equation determining the four-body modes in the NTD
approximation is a three-component equation (2-50). Since it seems to be
reasonable that each component of the three-component eigenvector @,
appearing in Eq. (2-50) has the [4] symmetry property, we assume

v, (x1x2x3x4) =vru (T17'27'37'4> Xs=0,1=0 (1234> ’ (4 56)
where ‘
7, b .
.= 7.2, =¥ |. (457
7. 2

The correlation amplitude 4r;u is assumed to be a vector in the vertically
truncated subspace o, so that it is written in the similar form as Egs.

(3:7):

* Hereafter, Gothic Greek letters such as ¥, ¢, @, etc. denotes three-component vectors.
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Y (rirarsry) = SeXp { — fj 241 (ri— R)z} (R|D.u)dR, (4-58a)

R|Ouy=0.(R) Y1 (20). (4-58b)

Substituting the correlation function (4-56) with Egs. (4-58) into the
eigenvalue equation (2:50), we obtain the following integral equation in
R-coordinate :

S [H,(R, R) —0.N,(R, R) ] 0,(R)R*dR =0, (4-59)
where both of the overlap kernel N, and the energy kernel H, are (3X3)-

component matrix and are defined by

(NL(R, R
H.(R,R)

/ / /7 12 2 4
X <<x1x2x3x4 | Pl e/ 2y 24 >)exp { — %—vz r/—R) 2} Yiu(2x)

<x1x2$3$4 ’ H I xl/lexg/x4,> =

)=lep{— & S0 R Y@t 01230

X Xs—o,r=0 <1/2/3/4/) dgzadg}g/ ( II dx,-dx,-') . (4 . 60)
i=1

- The matrices P and H are given by Egs. (2:48) and (2-52) respectively.
From relation (2-54), the normalization condition of @,(R) becomes

Sm; (R) N.(R, R")®,(R") R*R*dRAR’

1  for physical eigenmodes,

- - e (4-61)
—1  for unphysical eigenmodes.

Similarly to the case of the TD calculation represented in the previous
section, we assume the harmonic oscillator potential and a Gaussian interac-
tion for the single-particle potential and the residual interaction, respectively,
whose form are given by Egs. (3-19) and (3-20). Then the explicit forms
of the overlap kernel N.(R, R’) and the energy kernel H,(R, R") could be
written in terms of well-known functions but, as they are very complicated,
we do not write them here.

Now, we expand the eigenvector @,(R) by the orthonormal set of the
basic functions defined by Eq. (3-28a):

Q, <R> - ;CNL@J(\?}. (R> s (4 . 62)
where the coefficients Cy, are three-component vectors
@

CNL = 1(5'1), . (4 . 63)

)
NL
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With the use of expansion (4-62), the eigenvalue equation (4:59) can be
rewritten in the form

NZI(I?;;NI—G)LNI\LTN/>CNIL:O, ‘ ‘ (4'64)

where the matrix elements Hiy and Niy are defined by

NEy, N.(R, R)
Y (oo (R ( )@w) ROR*RARAR. 4-65
(H) SN_L< M o 1) 2GR (4-65)

The low-lying even-parity states in *Ne are studied by solving Eq.
(4-64) for each angular momentum L. g,
The size parameter 3 of the **O-core is W L=0", o2
assumed to be [=mw,/l=0.410 fm™
which corresponds to #w,=17.0 MeV.
The strength of the interaction defined
by Eq. (3:43) and the range parameter
A=B8/(1/2 u) are treated as adjustable
parameters in order to reproduce the
energy spectrum and the binding energy
of ®Ne. As an example, in Fig. 11,
calculated eigenvalues w, of the eigen-
value equation (4:64) with L=0" are
shown in unit of #iw, for the case of the
“size” parameter «®/f*=1.2 and the in-
teraction-range parameter A=p8/(1/ 2 p)
=0.79 for various values of the interac-
tion strength. In this figure, the solid
line with the least energy corresponds
to ‘the most strongly correlated alpha-
like eigenmode in **Ne and then to the
ground state of *'Ne. Here, it should

. . ’L 1 L L
be n9t1ced t}.lat, if the absolute value of 0 6 20 =%
the interaction strength, |V,|, becomes Fig. 11. Calculated eigenvalues wn of
greater than the critical value for which the eigenvalue equation (4-64)
the eigenvalue of the ground state of with L=0" are shown in unit of

20Ne (represented by the solid line men- 23;111720::2‘}{): ,:;E ;%eﬂ)cisg;;f

tioned above) is equal to the eigenvalue The eigenvalues of the alpha-like
of the unphysical modes (represented four-body modes are given by solid
by the dashed lines in Fig. 11), the lines and those of the correlated
eigenvalue of the alpha-like four-body fourhole modes by dotted-dashed

. 1 lines. Dashed lines represent the
mode becomes complex and, as discusse cigenvalues of the unphysical

in § 4.3, an instability of the Hartree- modes.
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Fock field appears.

, Similarly to §3.4, we hereafter measure the energy of the ground and
excited states of *Ne, subtracting the total single-particle energy of (sd)*

configuration. The energies W, thus defined are

Wn=w”f4<%hwo>, (4-66)
where o, are obtained by solving the eigenvalue equation (4-64). In order
that we bring the calculated value W, for L=0" close to the observed bind-
ing energy 31.38 MeV of the ground state of **Ne with appropriate choice
of the parameters V, and 4, we must assume a larger value of fiw, than
15.0 MeV chosen in the TD calculation in § 3.4; otherwise the calculated
value W, becomes complex beforce gaining the satisfactory binding energy.
This is the reason why we assumed #w,=17.0 MeV in the present NTD
calculation.

Calculated energies for various values of size parameter o® are shown in

A=B/\2u=079
Vo= -25MeV

—_—— e gt
_t T 6

_______ _ 4*'
—at

........ 2*
—_— T o
— O+

a¥,e
i - . L 1 1 /B NTD TD
10 1L 1.2 1.3 14 1.5

Fig. 12. Level structure of 2°Ne calculated in the NTD approximation (solid
lines). Eigenenergies Wy are plotted against the “size” parameter a?/g2.
The energy spectrum consisting of the lowest value for each curve is
shown on the right. Dashed lines represent the TD calculations for the
same interaction parameters as those of the NTD calculations.
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Fig. 12 assuming 2=0.79 and V,=—25MeV. An energy spectrum consist-
ing of the lowest value of each curve is put on the right of the curves
together with that of the TD calculation. Comparing these two spectra
with each other, we can see that the NTD calculation gives about 3 MeV
greater binding energy than the TD calculation for the same interaction
parameters. It can also be seen in Fig. 12 that, the lower the state comes
from 8" to 0%, the more ground-state correlations are involved in it. The
states 6% and 8" are hardly affected by the ground-state correlations, but the
0%, 2% and 4% states are considerably influenced. Therefore, it is supposed
that there is a wide difference in property of the state vectors between these
two groups of states. In addition, we can find the following characteristic
feature in Fig. 12: The values of the size parameter «® at the lowest point
of each energy curve are greater for the NTD calculation than for the TD
calculation. This fact implies that the ground-state correlations enhances
the spatial correlations.

excitation energy (MeV)
g ~ g
8{-
10}
&t e .
6
8+
5 -
4t a* 4% 6
+
+ 2 4
vy 2
2+
Or o' o' o' o*
exp iIb) NTD NTD
=070 A=Q79 X=1.20

Vo=-35MeV  Vo=-25MeV Vo=-14.5MeV
BE:296MeVB.E=26.7MeV BE.=27.3MeV

Fig. 13. Energy spectra obtained by the TD and the NTD calculatlons are
compared with the experimental one.

In Fig. 13, energy spectra for different values of the interaction-range
parameter are shown together with the observed spectrum of the ground
band in **Ne. We obtained a better fit of spectrum with 2=0.79 for the
NTD calculation.

It is more interesting to investigate how the ground state correlations
affect the other physical values than the energy spectrum or the binding
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energy; the other physical values mean, for example, the E2-transition prob-
ability and the effective charge. It is considered that, in such physical value
as B(E2), the difference in the property of the state vectors between the
group of the 0", 2" and 4" states and the group of the 6" and 8" states
appears explicitly. This is just a direct reflection of the ground-state correla-
tions due to the alpha-like four-body correlations.

4.5 First excited 0" states in 0O and *Ca and discussion on the
mode-mode coupling

As is well-known, one of the puzzling properties of light closed-shell

nuclei such as **O and *“’Ca is that they display particularly low-lying first .

excited 0" states; their excitation energies are 6.05 MeV for **O and 3.35 MeV
for ®Ca. According to the standpoint of our picture, the appearance of
these mysterious 0* states may be understood as follows: Let us assume
that the ground state of the "closed-shell nucleus under consideration is
“normal”, but suppose that the alpha-like four-body correlations force the
normal state to be very near to a corresponding ‘“phase transition”, (to the
bound alpha-like cluster), discussed in §4.3. Then we may expect a corre-
- sponding collective mode of the closed-shell nucleus to have very low excita-
tion energy.

The corresponding collective excited state of the closed-shell nucleus may,
as the first-order approximation, be considered to be of the form

ai'Bo' @0y (the correlated 4p-4h state), (4-67)

where a,'

is the creation operator of the alpha-like four-body mode with the
lowest eigenvalue wy, and B} is the creation operator of the correlated four-
hole mode with the highest eigenvalue w,_. Here the state |@,) is the true
ground state of the closed-shell nucleus under consideration, i.e., |@,)>=|A4,
=16; 0> for O or |[0,)=]A,=40;0) for *Ca. From Eq. (2-64), the

following relations must be satisfied;

ao| 00 = Fo| By =0. (4-68)

In the first-order approximation, the excitation energy of the state (4-67)

is given by
Wg = Wo4 — Wo—, (4 ‘69)

which becomes very small in the neighbourhood of the corresponding “phase
transition”. We can estimate the value W, from the empirical binding
energies of neighbouring nuclei of closed-shell one in the following way. For
the 4p-4h states of O and *’Ca, we have
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Wo = Woq T Wo— ‘
{ZB (*0) — {B(**Ne) + B(®*C)} =2.431 MeV  for *O,

_ 4-70
2B(*Ca) — {B(*Ti) + B(**Ar)} =1.806 MeV for *Ca, ( )

where, forjinstance, B(**0) means the binding energy of **O. Similarly, we
can estimate the excitation energies of the other np-nh states of *O and
“Ca. From the special smallness of the excitation energy of the 4p-4h state,
one of the authors (T. M.) and Suzuki® concluded that the four-body correla-
tions is of essential characteristic for the light, closed-shell nuclei and the
“phase transition” from the normal ground state to the bound alpha-like
cluster is going to come into existence.

In order to investigate the detailed structure of the myster1ous 0" state
or the other 4p-4h states, we should take account of the particle- hole interac-
tion H, which has been neglected in process of construction of the four-body
modes «,! and B,!. This is done by diagonalizing the particle-hole interaction
H,, with the use of the linearized relation

[H’ amTBnT] = % (anklakTﬁlT + NmnlzlakBl) . (4 M 71)

Here, matrices M and N mean the couplings between the four-body eigen-
modes and are determined by taking the appropriate matrix elements of Eq.
(4-71) with respect to .the ground state |@,) and 4p-4h states a,'B,' @0y, It
seems to be not so easy to evaluate the matrices M and N, because it is
rather difficult to determine the true ground state |®,). A thinkable way
to determine the matrices without using the detailed structure of |®,) is to
expand the Hamiltonian H by means of the four-body modes a,'(a,) and
8.,1(B,) assuming them as boson-operators on the basis of their quasi-boson
character (4-9). Then we can define the creation operators of eigenmodes

' (i.e., phonons composed of correlated 4p-4h) for positive-parity excited
states in O and *Ca as solutions of the equation ’

[H, Y)\'| = W)Y, (4-72)
where
Y/\T - 2 {5/\ (mﬂ) amTBnT + K72\ (mn) amBn} ' (4 . 73)

with a={L, IM, TT;}. Here 2 denotes the set of quantum numbers composed
of the angular momentum I and its projection M, the isospin 7" and its
projection Tz and a set of additional quantum numbers L. The new ground
state |#,» of O or *Ca defined by Y.|%,)=0 contain the ground-state
correlations not only due to the four-body correlations (coming from H,,,
H,, and H, in Fig. 10) but also due to the particle-hole interaction H,.
Thus the first excited 0" (correlated 4p-4h) states in **O and *°Ca are
given by ,
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YITO,I:O,T:O'WO>3 (4’74)

which clearly has an intrinsic deformation produced by the four-body correla-
tions and the particle-hole interaction. The correlated 4p-4h states

Ygg,l,T:O 7o), I™=0% 2%, 4%, --- ’ (4-75)

form a “rotational” band built on the first excited 0" state (4:74).

In the scheme mentioned above, we have employed the two-step method;
the first step is the construction of the alpha-like four-body eigenmodes and
the second step is the diagonalization of the mode-mode coupling due to the
particle-hole interaction within the subspace defined by the eigenmodes. The
philosophy of this two-step method is very similar to the weak coupling
model proposed by Arima, Horiuchi and Sebe.” Along our scheme, we are
now in process of obtaining and diagonalizing the mode-mode coupling matrices

M and N in Eq. (4-71).

§5. Concluding remarks

In this chapter, we aimed at construction of a unified microscopic theory
in which the shell-model aspect and the alpha-cluster aspect in the light
nuclei are combined. For this purpose, we adopted the picture: Although
there exist very strong alpha-like four-body correlations which are against
the stability of the Hartree-Fock field, the field is still stable in the neigh-
bourhood of the ground states to realize the shell structure. In addition, we
discussed that, if the strength of the four-body correlations increases and
passes through a critical value, the ground-state wave function changes
suddenly and there happens a “phase transition” from the shell-model “phase”
to the alpha-cluster “phase”. '

According to the various investigations developed in the present chapter,

it has become clear that our picture stated above is considerably reasonable
and plausible. However, our work on such microscopic description based on
the picture has just been started and there are many open problems being
left:

(1) Importance of the alpha-like spatial correlations and the ground-state
correlations has been clarified through the analyses in §$3 and 4. Relation
between these two kinds of correlations is discussed a little in §4, but not
enough. This is an important future problem.

(2) In §4.3, we discussed a new “phase transition” from the shell-model
“phase” to the alpha-cluster “phase” and studied the property of the new
ground-state wave function after the “phase transition”. On the other hand,
the Bloch-Brink type of model wave function is often used in phenomenolog-
ical analyses. Then it seems to be very important to investigate the relation
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between the two types of wave functions.

(3) Qualitative discussion on the first excited 0" states in **O and *Ca,
which has been a motive of our picture, was developed in §4.5, but quanti-
tative analysis has not yet been done. Particularly serious problem in this
analysis exists in the interaction between the various alpha-like four-body
modes. As stated in §4.5, we adopted the two-step method. The serious
problem mentioned above is in the second step; that is, the problem is how
we express the residual interaction (the particle-hole and the Y-type interac-
tions) not included in construction of the alpha-like eigenmodes in the form
of mode-mode coupling.

(4) Our theory in the present chapter has been developed only for the
ground and low-excited states. However, as discussed in the previous chap-
ters, new “phases” in atomic nucleus, (for example the molecular-structure
“phase”), appear in the higher-excited states. Therefore, we must generalize
our microscopic theory to be applicable to such states. One of the typical
example of such generalization is the scattering problem of a-particle by
doubly closed-shell nucleus. Our theory of the alpha-like four-body mode
seems to be applicable to this problem as it is. An example is the calcula-
tion of the 6% and 8" resonance states in **Ne represented in §3.6. However,
in order to generalize our theory to such problems strictly, we should solve
the so-called problem of centre-of-mass motion.

We have benefited from many fruitful discussions with our colleagues.
In particular, we would like to thank Mr. T. Matsuse and Mr. S. Tazaki
for their intimate collaboration.
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