
IJDAR (2011) 14:173–187
DOI 10.1007/s10032-010-0133-5

ORIGINAL PAPER

Character confusion versus focus word-based correction
of spelling and OCR variants in corpora

Martin W. C. Reynaert

Received: 16 December 2009 / Revised: 6 August 2010 / Accepted: 12 October 2010 / Published online: 3 November 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We present a new approach based on anagram
hashing to handle globally the lexical variation in large and
noisy text collections. Lexical variation addressed by spell-
ing correction systems is primarily typographical variation.
This is typically handled in a local fashion: given one partic-
ular text string some system of retrieving near-neighbors is
applied, where near-neighbors are other text strings that dif-
fer from the particular string by a given number of characters.
The difference in characters between the original string and
one of its retrieved near-neighbors constitutes a particular
character confusion. We present a global way of performing
this action: for all possible particular character confusions
given a particular edit distance, we sequentially identify all
the pairs of text strings in the text collection that display a
particular confusion. We work on large digitized corpora,
which contain lexical variation due to both the OCR pro-
cess and typographical or typesetting error and show that all
these types of variation can be handled equally well in the
framework we present. The character confusion-based proto-
type of Text-Induced Corpus Clean-up (ticcl) is compared
to its focus word-based counterpart and evaluated on 6 years’
worth of digitized Dutch Parliamentary documents. The char-
acter confusion approach is shown to gain an order of magni-
tude in speed on its word-based counterpart on large corpora.
Insights gained about the useful contribution of global corpus
variation statistics are shown to also benefit the more tradi-
tional word-based approach to spelling correction. Final tests
on a held-out set comprising the 1918 edition of the Dutch
daily newspaper ‘Het Volk’ show that the system is not sen-
sitive to domain variation.

M. W. C. Reynaert (B)
Tilburg Centre for Cognition and Communication,
Tilburg University, Kamer D 342, P.O. Box 90153,
5000 LE, Tilburg, Netherlands
e-mail: reynaert@uvt.nl

1 Introduction

We present an approach to spelling variation identification
and correction on the scale of very large corpora.

This work is situated in the context of the large digitization
programmes underway at the Koninklijke Bibliotheek (kb),
the Dutch National Library. The results of our work should
be applicable to the etexts produced by a broad range of large
digitization efforts comprising at least those involving lan-
guages written in alphabetic scripts.

The main objective of this work can be illustrated by refer-
ence to the difference one would find in the perceived correct
version, i.e. the gold standard, produced for e.g. a printed book
for the purposes of evaluating the electronic version obtained
by means of Optical Character Recognition (ocr) versus the
gold standard produced for evaluating a post-ocr correction
system. Theocr-gold standard should faithfully represent the
text as printed, i.e. would have end-of-the-line hyphenated
and split words at the end of one and at the beginning of the
next line. Itwouldalsomirroranytypographicalor typesetting
errors thathappentooccur.Theocrpost-correctiongoldstan-
dardwouldhaveneither: splitwordswouldhavebeen restored
and unnecessary hyphens removed, typographical or typeset-
ting errors would have been duly corrected. Seen from this
point of view, however perfect the ocr-process may eventu-
ally become, post-correction will have real world use.

In this paper, we investigate a new approach to the iden-
tification and correction of lexical variation implemented in
the Text-Induced Corpus Clean-up tool ticcl. In principle,
ticcl looks for any kind of lexical variation, whatever was
its cause, be it historical spelling changes, typographical or
typesetting errors, ocr misrecognition, transmission noise or
morphological variation.

Approximate matches are strings that are similar but not
identical to the string one looks for. An in-depth overview

123

174 M. W. C. Reynaert

of the state of the art in approximate string matching can
be found in [1]. While many algorithms for finding approx-
imate matches between word strings have been developed,
so far no algorithm seems to have been put forward that,
per character confusion, identifies all those word pairs that
differ in exactly the same particular set or bag of charac-
ters, regardless of the actual character sequences. This paper
proposes this approach. The approach takes a different tack
from the usual local focus on one particular text string. We
present a simple, efficient technique that allows for identi-
fication of all the pairs of strings in a corpus that differ in
the same particular set of characters. We call this a global,
character confusion-based operation, in contrast to the local,
word-based variant retrieval procedures employed by most
spelling correction systems.

In Sect. 2, we first discuss related work, with the focus
on the two mainstream approaches to spelling correction
today. We conclude the section by discussing what we see as
the main drawbacks of both approaches in light of work on
large-scale digitized corpora. In Sect. 3, we outline anagram
hashing and both the focus word-based and character confu-
sion-based approaches to spelling checking. In Sect. 4, we
then proceed to explain which information sources and filter-
ing techniques the implementation of our correction systems
was equipped with in order to be able to achieve high and
well-balanced recall and precision. In Sect. 5, we sketch the
context in which we develop our systems, describe the cor-
pora we work on and provide some statistics about the errors
they contain. We evaluate extensively on a gold standard for
a corpus of 327,798 pages of ocr-ed Dutch parliamentary
text and on a held-out set comprising one year’s edition of a
Dutch newspaper. We conclude in Sect. 6.

2 Related work

A very comprehensive, but now dated, survey of the field
of spelling error detection and correction prior to 1992 is
provided by [2]. Since then, tremendous amounts of work
have been done, not only for English, but for many other lan-
guages. The range and scope of the work has broadened enor-
mously. An admirably concise yet very informative overview
of the overall evolution in the field of lexical error correction
is provided in [3]. Whereas spelling correction initially relied
exclusively on a dictionary which delineated what is a real
word and what is not, i.e. is a non-word, due to changes in the
circumstances in which spelling correction has found appli-
cation, reliance on the dictionary has lessened. Their last and
most comprehensive reformulation of the spelling correction
problem is the first to no longer make explicit use of a vali-
dated lexicon of the language. In the work we report on here,
this is also the case, as we shall show later.

Work on the post-correction of ocr-ed documents is by
no means new. We note the study by [4] in which output from
various ocr engines is set to vote on the most likely character
sequence.

Our work is situated mainly in non-word spelling correc-
tion, to which we see two mainstream approaches, although
both have also been applied to context sensitive spelling cor-
rection, i.e. the identification and correction of confused real
words. On the one hand, there is the noisy channel-based
approach going back to [5], in which the work of Cucerzan
is rooted. On the other hand, there are large bodies of work
based on Finite State technology, which gained considerable
influence at least in part due to the work of [6] on agglutina-
tive languages.

A very recent concise overview of the work in the source
channel paradigm up to date is provided in [7]. The main
application of this approach in recent years is in the context
of the spelling checking of search queries. This is a diffi-
cult task, as is evident from the rather low scores reported,
i.e. 0.573 recall, 0.781 precision. We note that apart from
accuracy, recall and precision are now being provided which
implies that the importance of precision is gradually being
recognized. The task of query spelling correction is very dif-
ferent from corpus clean-up because the online medium pro-
vides the training material necessary for applying the source
channel paradigm. Fruitful use can be made of the recorded
actions of the users who correct their own spelling errors in
their own queries. There is unfortunately no equivalent for
this in corpus clean-up. If the source channel approach is to
be applied to corpus clean-up, costly hand-crafted training
material will have to be created or error corpora will have
to be fabricated. One possible solution might lie in digiti-
zation programmes where manual correction is performed.
This would require the alertness of the programmes’ man-
agers to the need of preserving the uncorrected OCR-ed text
and of providing these with the corrected versions for train-
ing and testing purposes to the document analysis, recog-
nition and post-correction community. Benchmark sets for
almost all languages are sorely lacking and this perhaps
helps explain why the source channel approach is not today
commonly deployed in corpus clean-up. Early work on ocr
post-correction in the noisy channel paradigm is by [8]. This
escaped the notice of [9] who mistakingly claimed a first
and further have had to report that the system developed by
[10] outperforms theirs on their own test data. Both papers
only report accuracy on error lists. The lack of re-usable
benchmarks, consensus on the metrics and best practices for
evaluation and the fact that many researchers de facto work
on different languages make fruitful comparison of achieve-
ments and progress a goal to be reached in the future.

Likely in the absence of sufficiently large corpora and
lack of training materials, statistical approaches developed
on the morphologically less rich English language were

123

Character confusion versus focus word-based correction 175

found wanting and researchers such as Oflazer working on
the highly agglutinative Turkish language turned to Finite
State techniques. These techniques also allow for model-
ing subtle exceptions in a language which are less likely to
be discerned by statistical approaches. This has found wide
acceptance and has been successfully applied to corpus clean-
up. Working in this mainstream Finite State Automata (fsa)
paradigm, mainly on German corpora, the group around
professor Schultz at the University of Munich work on large-
scale corpus clean-up. In [11], the focus is on post-correc-
tion of ocr-ed corpora, while in [12], on the cleaning of
web-derived corpora. The paper describes in detail how the
typical error types that are observed in collections of typo-
graphical, spelling and ocr-errors are modeled. Further how
and why the ranges of errors are limited in order to build error
dictionaries in which these patterns are applied to validated
dictionary words and the fabricated erroneous word forms
incorporated in an fsa.

We shall see that the approach presented here does not
require prior error modeling, so no prior assumptions about
which error types may or may not be encountered are made.
Neither need we fabricate and represent the possible errone-
ous word forms, as is necessary in the fsa paradigm. Within
the limits of a particular Levenshtein distance (ld) [13] we
set it to search in, our approach exhaustively surveys the full
corpus and retrieves all the variation present in it. Perhaps
most importantly, the vocabulary of the corpus under consid-
eration is dynamically incorporated and use is made of the
observed token frequencies to help guide the correction pro-
cess. This alleviates the well-known domain and genre effects
that seem to be currently primarily attracting this group’s
attention, cf. [14]. We are not sure whether incorporating the
corpus vocabulary at correction time is possible in the fsa
paradigm.

The two mainstream approaches to spelling correction,
the noisy channel and fsa approaches, both have drawbacks.
Noisy channel approaches, although there have been attempts
to reduce the effects of this dependency, need costly train-
ing material. fsa approaches do not necessarily need this, but
underlying the fsas that are built need necessarily be particu-
lar assumptions concerning the data to be handled, mainly to
reduce the cost of the fsa itself, i.e. for reasons of scalability.
These assumptions necessarily limit the capabilities of any
fsa which is built, e.g. if it is assumed that the first character
of a word is hardly ever substituted for another character,
the system will not be able to handle this phenomenon if it
nevertheless does occur.

The system we describe in this paper does not require
training material, it derives the statistics about e.g. character
confusions that occur from the corpus to be cleaned itself.
This entails that no prior assumptions regarding the prev-
alence of particular phenomena within the material to be
cleaned need to be made. In fact, within the limits of the

ld the system is set to work, it will exhaustively gather all
the variation present and employ the statistics gathered about
them to the full.

One major obstacle in this work is the huge diversity in
corpora. Corpora may have been born digital or be the result
of digitization efforts. They can be in any language. There
is a huge diversity in text types and domains. Increasingly,
diachronic spelling is revived by the digitization of older text
collections. There are tremendous amounts of work to be
done. We would argue that a system which does not require
prior modeling or specific training data is worth investigat-
ing. In the next Section, we describe such a system.

3 Anagram key spelling correction

In this section, we first describe the basic algorithm underly-
ing both the focus word-based and character confusion-based
approaches to large-scale spelling correction.

3.1 Anagram key search

3.1.1 Introduction to anagram hashing

Anagram hashing is the core spelling variation identification
algorithm we first described in [15] and in more depth in [16].
Anagram hashing uses a simple hashing function to assign
a large natural number to all word strings in the corpus at
hand. The natural number assigned is the same for all word
strings that consist of the same set of characters. For each
word type in a ticcl lexicon or in a corpus to be processed
by it, anagram hashing obtains a numerical value, which will
serve as an index or hash key to the actual word strings. The
formula represents the mathematical function devised to do
this, where f is a particular numerical value assigned to each
character in the alphabet and c1 to c|w| the actual characters
in the input string w.

K ey(w) =
|w|∑

i=1

f (ci)
n

Informally: the numerical value for a word string is obtained
by summing the code value, e.g. ISO Latin-1, of each charac-
ter in the string raised to a power n, where n was empirically
set at: 5.

By application of this formula to the list of word strings
obtained from a corpus, in effect, all anagrams, loosely
defined as words consisting of a particular set of charac-
ters and present in the list, will be identified through their
common numerical value. In the limit, associated with a par-
ticular key would be the n! permutations given n distinct
characters, if these were realized within the corpus. Given
the set of characters a, b, c, there could be 3 x 2 x 1 = 6 per-
mutations, but only two, i.e. ‘abc’ and ‘cab’, are likely to be

123

176 M. W. C. Reynaert

encountered in e.g. an English dictionary. As the collisions
produced by this function identify anagrams, we refer to this
as an anagram hash and to the numerical values obtained
as the anagram values (avs) and anagram keys, when we
discuss these in relation to the hash. Based on a word form’s
anagram key, it thus becomes possible to systematically and
sequentially query the list for any variants of a particular
word string present, be they morphological, historical, typo-
graphical, orthographical or due to ocr-misrecognition or
other transmission noise. This querying is done on the basis
of the avs which represent the alphabet which is used.

ticcl in fact performs a bounded exhaustive search over
the possible permutations given a particular set of characters
that happen to have been realized in the particular corpus it is
set to work on. This is less expensive than it may seem in that
in practice within a language only a limited number of all the
possible word forms given a particular set of characters are
realized as valid words.

3.1.2 Alphabet

Instead of matching on actual characters, we perform sim-
ple mathematical operations with the avs derivable from
the alphabet A used. The actual amount of avs is defined
by the ld or edit distance the system is allowed to cover
and the size a of A. The ld then defines the k character dif-
ferences or possibly ‘errors’ that the system will search for.
In this work, k = 2. Given the characters in A in combina-
tion with k = 2, the av-alphabet contains the avs for single
characters and for all possible two-character combinations
derivable from this alphabet.

3.1.3 Lexicon

The lexicon contains the vocabulary of the validated dictio-
nary (if any) as well as the vocabulary from the corpus to be
cleaned. The lexicon is a regular hash built up at run-time
having the avs as keys and chained anagrams as values.

3.2 The sequential focus word-based approach

In the focus word-based approach, each word string is
examined in a sequential fashion, making the word string
under consideration temporarily the ‘focus word’ (fw). Most
approximate matching and therefore spelling correction sys-
tems work in this fashion.

The fw is not likely to contain all the characters in
A. The subset of values from the av-alphabet derivable from
the characters actually present in fw forms the fw-alphabet.
If k = 2, the fw-alphabet has all the avs for the character
unigram and all possible bigrams derivable from the fw.
Given the av for a particular fw and by systematically

querying the lexicon hash on the basis of all the values in
the av-alphabet and in the fw-alphabet, all possible variants
that fall within k are retrieved. The actual number of hash
look-ups required is defined by the number of unique values
in the av-alphabet and by the number of unique values for
all the character combinations in the fw up to k.

The av for the focus word and the fw-alphabet and
av-alphabet are used to query the lexicon hash for variants
of the focus word. These variants can all be seen as varia-
tions and combinations of the usual error type taxonomy due
to [17]. In the implementation, all four edit operations are
handled as substitutions. For substitutions, a value from the
fw-alphabet is subtracted and a value from the av-alphabet
added. A single query on the av for ‘yesterday’ minus the
av for an ‘s’, plus the av for an ‘a’ may thus retrieve the
typo: *yeaterday. Insertions are substitutions where a value
from the fw-alphabet is subtracted and zero added. Deletions
are substitutions where zero is subtracted and a value from
the av-alphabet added. To find transposition errors, nothing
needs to be added or subtracted, but the chained anagrams
for the particular focus word av need to be examined. If only
a single word string is associated with the fwav, no trans-
positions can be present. If anagrams are associated with the
fwav, then a pair of these may be found to contain transposi-
tions. The transposed characters need not be adjacent. To give
an example: given that a corpus contains the words ‘steenm-
olen’ (E: stone mill) and ‘molensteen’ (E: mill stone), but
also the non-word: ‘melonsteen’. The three anagrams will
be chained to the same av. The first two have an ld of 5 and
are ruled out as containing a transposition error. The last two
have an ld of two and can thereby be identified as containing
a transposition error.

3.2.1 Pseudo-code for the sequential word-based approach

Set LDlimit to k
Set WordLengthLimit to l
Foreach FocuswordAnagramValue

Get WordLength of FocusWord
If WordLength > WordLengthLimit

Foreach AlphabetValue in Alphabet
Foreach FocuswordAlphabetValue
in FocuswordAlphabet

NewValue = FocuswordAnagramValue
− FocuswordAlphabetValue + AlphabetValue

If NewValue defined in LexiconHash
VARIANTS = list of anagrams (string variants)
associated with NewValue

For each variant in VARIANTS
Calculate ld between focus and variant

If LD <= LDlimit

123

Character confusion versus focus word-based correction 177

Return variant
Endif

Endfor
Endif

Endif
Endfor

3.3 The sequential character confusion-based approach

Given a particular k and a particular alphabet A, we first form
all the possible combinations of all the characters in A and
calculate their avs. We then perform all the additions, dele-
tions and substitutions on the basis of all their avs. Given that
k = 2 and alphabet size a is 31, this gives 123,752 unique
values. These values represent all the possible minimal con-
fusions given A and k. Minimal confusions are the result of
the fact that equal characters on both sides of the equation
cancel each other out. Calculating the av for the character
combinations ‘ab’ minus ‘a’ or for ‘bc’ minus ‘c’, we obtain
the same minimal confusion: the av for ‘b’.

Given this list of character confusion avs, one can now
query the list of lexicon/corpus anagram keys for all the
word/anagram pairs which display these particular numer-
ical differences. This we do sequentially for all the character
confusion avs by efficient iteration over both numerical lists.

3.3.1 Pseudo-code for the sequential character
confusion-based approach

Foreach CharacterConfusionValue in CharacterConfusion
List
Foreach AnagramValueKey in CorpusAnagramHash
NewValue = AnagramValueKey + CharacterConfusion
Value

If NewValue defined in CorpusAnagramHash
Return and store AnagramValueKey
as a chained hash value for key
CharacterConfusionValue

Endif
Endfor

Endfor

3.4 Necessity of output filtering

The word pairs identified per character confusion and
retrieved from the anagram hash constitute the members of
the confusion set. Be advised that a particular confusion in
fact describes a minimal confusion. The actual surface forms
of a member pair may be very divergent: all we know a priori
about them is that they differ by the set of characters implied
by the confusion’s anagram value and that one of the pair
will show the extra (or in anagram value terms: numerically
greater) character(s). The actual sequence of the characters in

the pair may be very different. This is where the ld comes in:
only for the pairs retrieved need we measure their ld. If this
measured ld exceeds the ld implied by the confusion’s ana-
gram value, the pair has been spuriously linked and should
be discarded.

4 Text-Induced corpus clean-up or TICCL

The ticcl prototype presented in [18] was turned into a pro-
duction version for the kb according to their specifications.
The production version at first performed only fw variant
lookup. The move to the cc variant look-up in the current
form is new. Also, new is that in the fw mode retrieved vari-
ant pairs are no longer evaluated in isolation, but as members
of the cc sets they belong to, i.e. on the basis of the sizes of
these sets: the statistics obtained over the whole corpus about
the variation within k actually present.

Faced with the tremendous rates at which very large
collections of digitized text grow and are becoming avail-
able online, we have been searching for alternative, simpler
solutions to the lexical variation problem. In [19], we have
presented our first attempt at approaching the problem not
from a word type-centered perspective, but from the charac-
ter confusion perspective. We there described a solution for
finding all the word pairs in a corpus that exhibit the same
character confusion in a single parallel operation. The solu-
tion proposed was a Boolean AND operation on very large
and sparse bit vectors built from the anagram hash for a partic-
ular corpus. This was later found to be unnecessarily costly,
the vectors being very sparse, and the idea was shelved. We
here propose a faster and in fact simpler solution.

ticcl is implemented in Perl. For the character confu-
sion iterations, we have had a fast C++ module built which
efficiently performs all the necessary iterations over the ana-
gram keys for the corpus-derived anagram hash on the basis
of numerically ordered lists.

4.1 TICCL: Step 1: normalization for search space
reduction

ticcl first effects a thorough normalization of the corpus it
works on. Primary aim of this normalization is to drastically
reduce the search space ticcl has to work in by a reduction
in the actual number of different characters present in the
corpus. In this paper, we reduced this number to the size a
of A, where a = 31. In our experience, the ocr process may
very well produce all the characters in the full code page,
even non-printing characters. This search space needs to be
reduced to manageable proportions.

The alphabet A we work with here is the range of the
lowercased characters ‘a’ to ‘z’. ticcl basically ignores
numbers, internally these are all converted into ‘3’. This

123

178 M. W. C. Reynaert

frees up the other digits. We translate all punctuation marks
except for the apostrophe and the hyphen into the digit ‘2’.
The word-internal punctuation marks apostrophe and hyphen
retain their own identity. All characters bearing diacritics are
translated into the digit ‘4’ when lowercase and ‘5’ when
uppercase.

In Step 1 of processing, ticcl traverses the range of direc-
tories it was directed to and normalizes the word forms it
encounters in the files to be processed, building frequency
lists and, optionally, bigram word list on the way. Full word
form normalization is postponed until all the word forms have
been seen. Because we do not work on preprocessed input,
i.e. no prior sentence splitting or tokenization is required
or assumed, we iterate over the frequency list containing
the corpus vocabulary and conflate all the word forms that
contain normalized punctuation with the matching higher
frequency word forms that do not contain normalized punc-
tuation. At this point, the punctuated form’s frequency is
tallied to the unpunctuated word form’s frequency and reset
to zero. The observed surface forms, i.e. the non-normalized
conflated word forms’ character strings as observed in the
corpus, are stored in a separate hash. These forms are thus
withheld from further cluttering the search space during var-
iation look-up. At the end of total processing, they are linked
to the canonical form reported for the normalized, unpunctu-
ated word form. In this same manner, words having diacritics
or names requiring capitalization are output in their canonical
form.

4.2 TICCL: Step 2: Character confusion word pair
identification

This second step is the only one in which the all-Perl fw
mode and the combined Perl/C++ cc mode implementa-
tions differ.

The fw-based version in essence processes part of the
corpus vocabulary word list by descending order of the
word forms’ frequencies. A number of parameters may be
set to restrict this process, i.e. frequency thresholds may be
imposed or word length restrictions invoked. The settings for
the tests we report on later were: process everything between
the highest frequency observed and above frequency 1 having
word length longer than 5 and shorter than 100 characters.
The motivation for this limit on word length is this: for some
words, there simply are no other words resembling them to
the extent that these would fall within the ld of 1, 2 and
even more edits. As such, words with a higher neighborhood
density [20], especially short words and words derived from
a stem and highly common pre- and/or affixes, are far more
likely to incur more False Positives. Short words not even
being indexed by search engines we therefore disregard.

The sequential cc-based version works on the lexicon hash
obtained from the normalized corpus. For efficiency, this may

already have been reduced in size, i.e. when building this hash
one may want to opt to not include word forms shorter than a
particular threshold. This we did not do in the tests described
further. The C++ routine works strictly numerically on the
anagram keys of the lexicon hash and the character confu-
sion avs. The module’s output is lists of corpus anagram key
values each linked to a particular character confusion av.

Working in cc mode has introduced the need to rethink
handling the variation retrieved by the system. The fw mode
returns a set of actual variants displaying a range of charac-
ter confusions per particular focus word. This set has already
undergone some filtering on the basis of the actual word pairs
retrieved from the lexicon hash. Words shorter than the length
limit set have not been retained, pairs displaying a larger
ld than k have also not been returned. Word pairs where
both members do not actually occur in the corpus, i.e. that
have an undefined corpus frequency, are also discarded. The
cc mode returns a possibly very large set of references to
word type pairs, all displaying the same character confusion,
somewhere in the bags of characters that these word types
represent. For a first filtering, we now need to retrieve the
character confusion word pairs from the lexicon hash and
apply the ld and word length filtering. We also perform a
single pass over the lexicon hash and retrieve the word pairs
displaying character transpositions in the way described in
Subsect. 3.2.

When this filtering has been performed, we now have sets
of likely word pairs. We can now also determine the size of
these sets, thereby gathering useful statistics about the actual
variation present in the corpus.

4.3 TICCL: Step 3: filtering the output

In Step 3 in processing the corpus, all the character confu-
sions are handled sequentially in descending order of the size
of their character confusion set membership. This is equiva-
lent to assigning a higher probability to one particular con-
fusion than to another.

We next perform additional filtering of the word pairs. For
this, additional sources of information are used.

4.3.1 Additional language information sources

– Validated lexicon: The validated lexicon consists of the
concatenation of the official word lists for Dutch pub-
lished in 1995 and 20051 and their 1914 predecessor2

for all the tests performed in this paper. These are further
complemented with the freely available ‘Open Taal’3 and

1 Freely available for research from the Dutch-Flemish HLT Agency.
http://www.inl.nl/nl/corpora/.
2 http://www.gutenberg.org/files/22722/.
3 http://www.opentaal.org/.

123

http://www.inl.nl/nl/corpora/
http://www.gutenberg.org/files/22722/
http://www.opentaal.org/

Character confusion versus focus word-based correction 179

Ispell4 dictionaries. Also incorporated were the list of
all the names of members of both Dutch Houses of Par-
liament5 since their beginning in the early nineteenth
century as well as a comprehensive list of Dutch place
names.6

– Validated lexicon confusables: Within k, we build a full
mapping of all the confusions between words in the val-
idated lexicon for the language. This then constitutes a
full mapping of all the confusables—here defined as any
words in the validated lexicon within a particular edit
distance from any other words in the validated lexicon –
in the language. We build this matrix from the anagram
hash key list derived from the validated lexicon. This
process is equivalent to Step 2: the C++ module is run
over the anagram key values using the same list of cc
avs as in the corpus variation retrieval step.

– Ispell morphological rules: To identify morphologically
related words we re-use the morphological information
for Dutch available in the open source spelling correction
system Ispell. We derive the rules for the language pro-
vided in the Ispell affix file in conjunction with the Ispell
word list. We extrapolate from this necessarily limited
Ispell word list to the full vocabulary as derived from
the corpus. We convert the Ispell rules into anagram val-
ues and apply them to the corpus vocabulary. For each
character confusion av handled when retrieving the con-
fusion pairs from the corpus anagram hash, when the
character confusion anagram value corresponds to (often
a set of) Ispell affix rules, we check for each pair whether
perhaps one of the rules applies. If this is the case, we
conclude that by analogy to what we learned from Ispell,
the two word forms are morphologically related and filter
out the word pair. There is some danger of overgeneral-
ization here because we do not know the words’ gram-
matical classes.

4.3.2 Contribution of additional language information
sources

In applying the information sources described above to the
corpus vocabulary, we are able to:

– correctly link morphologically related word forms
– to avoid linking the semantically unrelated but typo-

graphically close word forms, i.e. the confusables
– and finally to retain primarily those word pairs that are

the result of some kind of error and to link those to their
(more) canonical, contemporary counterparts.

4 Available, with affix files, for at least fifty languages from: http://
www.lasr.cs.ucla.edu/geoff/ispell-dictionaries.html.
5 http://www.parlement.com/.
6 http://nl.wikipedia.org/wiki/Lijst_van_Nederlandse_plaatsen.

4.3.3 Filtering loops implemented in ticcl

We next examine all the remaining word pairs per character
confusion av with the latter in descending order of member-
ship sizes.

The character avs either correspond to the set of avs
derived from the minimal confusions of the Ispell rules or
not. If corresponding, for each word pair retrieved, we check
if any of the expanded Ispell rule patterns apply. If a pat-
tern applies, the pair is identified as being morphologically
related word forms. If no pattern applies, the pair is linked as
being error variants. This linking is done on the basis of the
observed corpus frequency of both word forms, the lesser fre-
quent form being linked to the higher one. The assumption in
this is that the more canonical word form is likely to be more
frequent than an erroneous variant, given Zipf’s law [21].

For those character confusion avs that do not correspond
to an av derived from the minimal confusions of the Ispell
rules, we first check for each word pair retrieved whether it
occurs in the validated lexicon’s matrix of confusables. If it
does not, the words are linked according to their frequencies
in the same manner as above.

We perform no further filtering in the current ticcl,
although further refinements are due to be added. We here
report the evaluation results obtained with this simple filter-
ing only.

4.3.4 Ranking

The word pairs finally retained are output after they have
undergone sorting, i.e. a final ranking of the correction can-
didates. We sort them according to the observed order of
having been filtered according to the sizes of their cc mem-
bership set, then according to the ld between canonical form
and lexical variant, finally according to the frequency of the
canonical form. We have tried different sorting sequences,
but obtained the best results with this one. All results reported
in the next Section were obtained by sorting according to this
sequence, except those where no ranking was performed.

At time of output, we can invoke a stopping criterium: with
best-first ranking only a single pair is output, with 2-best or
rank 2, the two first ordered pairs, etc.

5 Evaluating TICCL

5.1 Preliminaries to the evaluation of ticcl

This work was undertaken with a specific user in mind, i.e. the
kb. At least to some extent, it was undertaken in accordance
with the user’s requirements and according to his specifica-
tions. The user undertakes huge digitization programmes in
order to make available online large parts of his immense text

123

http://www.lasr.cs.ucla.edu/geoff/ispell-dictionaries.html
http://www.lasr.cs.ucla.edu/geoff/ispell-dictionaries.html
http://www.parlement.com/
http://nl.wikipedia.org/wiki/Lijst_van_Nederlandse_plaatsen

180 M. W. C. Reynaert

collections. These programmes are not undertaken in uniform
ways, although all adhere to specific international standards.
As such, the user requires flexibility and independence from
our tool and our solutions. We were not asked to deliver a
tool that would correct the kb’s digitized texts. Rather, we
were asked to deliver a tool that would allow them to enrich
the digitized texts with canonical forms for the word vari-
ants present in these texts. The canonical forms added to the
texts should allow for better recall on users’ queries through
a search engine built on top of the particular text collection.

The above considerations help to define what the target of
our tool is and thereby how we should evaluate it. The target
should be those word forms that enhance the recall of a user’s
query. The kb would like its users to be able to query histor-
ical documents in the contemporary spelling, given that the
user may well not be familiar with historical spelling and/or
the fact that historical spelling varied a great deal through-
out time and space. This we do not deal with nor measure in
the current paper. What we do measure here is how well our
two approaches manage to deal with lexical variation due to
typographical/typesetting or ocr misrecognition error.

5.2 The corpora

On invitation by the kb we have worked on contemporary
and historical text collections. We developed on the con-
temporary collection, which comprises the published Acts
of Parliament (1989–1995) of The Netherlands, referred to
as ‘Staten-Generaal Digitaal’ (henceforth: sgd).7 From the
historical newspaper collection, the ‘Database Digital Daily
Newspapers’8 (ddd) we have chosen the 1918 edition of
‘Het Volk’ (E: The People). We list statistics on the corpora
in Table 1.

We list statistics obtained from the ocr-ed corpora we here
work with: error statistics on 5,047 mainly ocr-errors from
the sgd in Table 2 and 3,799 from the ddd in Table 3. For the
sgd, we focused on the word ‘belasting’ (E: tax), a common
topic in parliamentary debate, and strove to identify all vari-
ants in all morphological and compound forms of the word.
In all, we identified 1,577 variants for the various guises of
the noun ‘belasting’. For the ddd, we opted to identify all the
variants for the lemma ‘regeering’, i.e. ‘government’. This
lemma yielded 1,468 variants in a single newspaper in the
ddd, the 1918 edition of ‘Het Volk’ alone. A multiple error
cannot be described by reference to just one of the 4 cate-
gories of errors, i.e. either to insertion, deletion, transposition
or substitution alone. A multiple contiguous error (multi-C)
would be the ocr-error ‘regeermg’ for ‘regeering’, i.e. the
multiple error consisting of deletion of an ‘i’ and substitu-
tion of the ‘n’ by ‘m’ is situated in one location within the

7 http://www.statengeneraaldigitaal.nl/.
8 http://kranten.kb.nl/.

word. A multiple noncontiguous error (multi-NC) would be
the ocr-error ‘rcgecring’ for ‘regeering’.

5.2.1 Gold standards

We measure the extent to which ticcl manages to achieve
acceptable recall and precision on our gold standards. These
gold standards, while quite large, are necessarily limited and
may well not be adequate to show the systems’ full, real
performance. The system might actually fail regarding phe-
nomena that occur in the corpus but for which there happen
to be no instances in the gold standard.

We evaluate on a subset of the paired lists of variants and
focus word for which we presented error distribution statis-
tics. The subsets involved all the variants for the 20 sgd focus
words in Table 4, 890 in all, and all the variants for the 17
focus words for ‘Het Volk’, 3,102 in all. Listed next to the
focus words are the numbers of variants found. Sampling the
typographical variation present within the corpora involves
exhaustively gathering all the typographical variants for the
focus words. There is some overlap in the common words
between the sgd and ‘Het Volk’. Names, especially names
of historical figures, being more tied to their era, provide less
opportunity for such overlap.

We built a gold standard for the years 1989–1995
(sgd8995). We here re-use this for evaluation on the devel-
opment set and for running ablation tests with the aim of
demonstrating the contribution of the various language infor-
mation sources to full system performance. We eventually
also test on the held-out gold standard derived from ‘Het
Volk’ 1918-articles (hetvolk1918). For the purposes of the
present work, we ignore the fact that Dutch spelling was offi-
cially changed, repeatedly, since then and test the system on
its ability to link word variants to their canonical form at the
time. So we do not require that e.g. the 1,468 variants for
the current spelling ‘regering’ (E: government) are linked to
this current canonical spelling, but measure whether they are
linked to the then canonical spelling ‘regeering’.

5.2.2 Test settings

The tests were limited to unigram correction only, we here
did not perform variant retrieval for word bigrams. The gold
standard did not contain any instances involving spaces. k is
2. We use real world dictionaries, which do not necessarily
contain all the correct word forms for all the variants pres-
ent. We evaluate on the n-first or ‘best’ ranked correction
candidates returned by the systems, and we measure how
well the system is able to detect errors and to suggest the
appropriate correction candidate within the n candidates it
maximally reports without making use of any local context.
This is measured in terms of the impact on word types, but
for the held-out test set, also in terms of the impact on the

123

http://www.statengeneraaldigitaal.nl/
http://kranten.kb.nl/

Character confusion versus focus word-based correction 181

Table 1 Corpora Statistics: Corpus, language (cd: Contemporary Dutch, hd: Historical Dutch), number of OCR-ed text pages, number of word
tokens, number of word types

Corpus Lang. Pages Tokens Types

sgd cd 327,798 125,209,007 1,156,998

ddd hd 8,664 7,950,950 1,535,529

Table 2 sgd 1989–1995: overview and statistics per ld of error types in a sample of 5,047 non-word variants

Category ld 1 ld 2 ld 3 ld 4 ld 5 ld 6 ld 7 Total (%)

Deletion 221 10 3 1 235 4.66

Insertion 1,980 27 6 11 2,024 40.10

Substitution 1,065 49 37 3 1 1,155 22.89

Transposition 26 26 0.52

Multi-C 722 30 10 1 1 779 15.46

Multi-NC 303 271 101 22 5 2 710 14.09

Total 3,380 1,138 347 126 23 7 2 5,047

(%) 66.98 22.55 6.88 2.50 0.46 0.14 0.04 100.00

Table 3 ddd ‘Het Volk’ 1918: overview and statistics per ld of error types in a sample of 3,799 non-word variants

Category ld 1 ld 2 ld 3 ld 4 ld 5 ld 6 Total (%)

Deletion 31 27 1 12 71 1.87

Insertion 133 25 3 4 165 4.34

Substitution 575 276 109 2 962 25.32

Transposition 3 3 0.08

Multi-C 203 193 9 2 1 412 10.85

Multi-NC 810 1,277 77 15 3 2,182 57.44

Total 743 1,344 1,583 104 17 4 3,799

(%) 19.56 35.38 41.67 2.74 0.45 0.11 100.0

word tokens, i.e. in terms of how often a word type appears
in the corpus and may thus influence the overall quality of
the text.

5.2.3 Metrics used

We evaluate in terms of recall and precision, resulting in
the combined F-score [22]. These metrics are derived from
the numbers of True Positives (tps), False Positives (fps) and
False Negatives (fns) returned by the system. True Positives
are defined by what constitutes the target of our exercise.
The target is the primarily non-word variants present in the
corpus-derived list to be processed. False Positives are non-
word variants or real words, that are erroneously reported to
be variants for a particular focus word. False Negatives are
those items in the list of known, annotated variants for the
particular focus word that are absent from the list of variants
returned for this focus word, i.e. that the system was not able
to retrieve or ‘correct’. The formulae used are as follows:

Recall = r = T P

T P + F N
Precision = p = T P

T P + F P

Since we deem recall and precision to be equally important,
the harmonic mean of r and p, the simplified F measure, f,
is given by:

F-score = f = 2 × R × P

R + P

5.3 Evaluation of ticcl

All performance scores reported here are accumulated ld 2
scores. We did not set k higher, so we do not measure higher
ld scores. Scores are on n-best first ranking, in contrast to
previously reported results on these corpora. Scores reported
in [18] were ‘overall’: however many correction candidates
were retrieved, given that the correct one was among them,
the system was there given credit for it. Good first or sec-
ond best and well-balanced scores are a prerequisite for a

123

182 M. W. C. Reynaert

Table 4 Overview of the
sgd8995 and hetvolk1918
focus words and their observed
numbers of variants which
constitute the evaluation sets

Capitalized words are proper
names

Focus sgd8995 # Focus ‘Het Volk 1918’ #

Achttienribbe-Buijs 23 Amsterdam 307

Amsterdam 43 Annexionisten 20

Bolkestein 18 België (Belgium) 104

Jorritsma-Lebbink 33 Bismarck 10

Nieuwenhoven 22 Compiègne 3

Rotterdam 47 Hindenburg 32

Wolffensperger 25 Nederlandsche (Dutch) 572

belasting (tax) 36 Posthuma 264

belastingen (taxes) 56 Richthofen 7

belastingplichtige (taxable person) 41 Trotzky 45

belastingplichtigen (taxable persons) 37 Wilhelmina 42

doelstelling (aim) 82 Zeeuwsch-Vlaanderen 19

doelstellingen (aims) 58 belasting (tax) 102

evaluatie (evaluation) 44 belastingen (taxes) 34

faciliteiten (facilities) 27 distribueeren (to distribute) 52

goedkeuring (approval) 36 eenheidsworst (unity sausage) 21

inkomstenbelasting (income tax) 81 regeering (government) 1468

motorrijtuigenbelasting (motor vehicle tax) 70

studiefinanciering (study financing) 93

vennootschapsbelasting (corporate tax) 52

Table 5 sgd 1989–1995: Performance results on word types for the full system run in both fw and cc modes

Mode rank Focus word Character confusion

R P F Minutes R P F Minutes

1 0.923 0.955 0.939 1347.8 0.923 0.956 0.939 122.0 + 72

2 0.963 0.948 0.955 1344.0 0.963 0.949 0.956 119.6 + 72

3 0.963 0.946 0.954 1354.7 0.963 0.947 0.955 125.0 + 72

5 0.963 0.946 0.954 1304.8 0.963 0.947 0.955 120.9 + 72

10 0.963 0.946 0.954 1293.1 0.963 0.947 0.955 119.1 + 72

Averages Perl processing time 1328.9 Perl and C++ processing time 121.3 + 72

N-best ranking scores are on ranks 1, 2, 3, 5 and 10-best. Note that the fw approach requires an order of magnitude more time to achieve similar
results as the cc approach

spelling and ocr correction system to be set to work fully
automatically on a corpus.

5.3.1 Comparison of fw and cc modes on sgd8995

We have now evaluated and timed both approaches. Table 5
shows performance of ticcl in scores and time in min-
utes required when run in fw versus cc modes. The only
difference in the implementations and running of the two
approaches lies in the identification of the variants present.
For steps 1, 3 and 4 of the whole process, the Perl code is
shared. The C++ cc-based code replaces that for step 3 of
the fw approach.

The differences in performance scores are negligible. We
have hereby shown that a sequential word-based system may
also collect the global information about the various charac-
ter confusions seen within a corpus and apply this knowledge
in the same way as the cc approach does, i.e. by handling
all the sets of character confusions in the order of decreasing
size of their membership sets.

Processing times differ by an order of magnitude: average
run times over the five runs here are over 22 h for the fw
mode and just over 3 h for the cc mode. While ostensibly
feasible, building all possible character bigrams for every
word type to be examined by the fw approach is costly. It
is this cost which is translated into the far longer processing
times required. This provides conclusive evidence that the

123

Character confusion versus focus word-based correction 183

cc approach allows faster identification of spelling variation
with less work, given a large corpus. Given a relatively small
corpus e.g. a single ocr-ed book would however not call for
an exhaustive look-up over all possible ccs, indicating the
use of the fw approach.

5.3.2 Ablation tests on cc mode on sgd8995

Further evaluations are performed in cc mode only. We run
ablation tests in which information sources are not available
to the system and test the effect of ranking the correction
candidates.

Table 6 shows performance of ticcl when information
sources are left out in comparison with the full system.

Measurements beyond rank 3 on ranks 4, 5 and 10 show
no further fluctuations in the scores when ranking is done.
Not using a validated lexicon has the greatest effect on pre-
cision. The validated lexicon and the lexicon confusables
information actually have an adverse effect on recall, but
greatly contribute to the level of precision attained by the
full system. While their impact is slight, the Ispell dic-
tionary and affix information do contribute about 1% to
overall performance of the full system. This should be
due to the effect of the morphological information being

Table 6 sgd 1989–1995:
Performance results on types for
the full system, compared with
test runs with information
sources withheld

Rank R P F

Full system

1 0.923 0.956 0.939

2 0.963 0.949 0.956

3/4/5/10 0.963 0.947 0.955

Without lexicon

1 0.926 0.894 0.910

2 0.984 0.893 0.936

3/4/5/10 0.984 0.890 0.935

Without lexicon confusables

1 0.926 0.901 0.913

2 0.984 0.898 0.939

3/4/5/10 0.984 0.895 0.938

Without Ispell lexicon and affix files

1 0.920 0.940 0.930

2 0.960 0.935 0.947

3/4/5/10 0.960 0.933 0.946

Without any external information sources

1 0.924 0.893 0.909

2 0.990 0.892 0.939

3/4/5/10 0.990 0.889 0.937

Without any ranking

1 0.494 0.955 0.651

2 0.661 0.956 0.782

3 0.768 0.958 0.853

4 0.818 0.958 0.882

5 0.862 0.955 0.906

10 0.950 0.947 0.948

Without any ranking or external information sources

1 0.509 0.878 0.644

2 0.705 0.893 0.788

3 0.804 0.896 0.847

4 0.849 0.895 0.872

5 0.888 0.894 0.891

10 0.978 0.889 0.932

123

184 M. W. C. Reynaert

applied by analogy to unknown words. Dutch is highly
compounding, and compounds are not listed in dictionar-
ies when their meaning is inferable from the compounding
parts.

The results of the ablation study are highly informative
concerning the contribution to the excellent performance of
the full system. We discuss their impact on first-best rank-
ing results. Both validated lexicon and confusables list cause
some loss of recall in the full system, but this cost is offset
by the gain in precision, respectively, 6.2% for the validated
lexicon and 5.5% for the confusables list. The morphologi-
cal information derived from Ispell, in combination with its
lexicon, helps both recall (0.3%) and precision (1.6%). The
combination of the three information sources in the full sys-
tem causes a negligible loss of recall (0.1%) which may well
be due to rounding effects, for a total gain (6.3%) in preci-
sion which may well be fully due to the validated lexicon.
All language information resources omission tests showed
no further divergence in scores beyond rank 3. What we
do see is that from rank 2 onwards recall climbs to 99.0%.
Divergence in scores on ranks higher than 3 we do observe
when we omit the ranking. When the information sources
are in place, we see that precision remains strong and sta-
ble, showing 0.7% gain on rank 2. Recall, however, plum-
mets to just below 50% on rank 1 to almost fully recover to
95% on rank 10. Note that with no ranking at all in place,
the system in effect randomly outputs retrieved word pairs
due to the random nature of Perl hashes. When the informa-
tion sources are then also left out, recall drops to 50.9% to
recover better to 97.8%. Precision remains below 90% on all
ranks.

We have now discussed our performance results, obtained
on the development set sgd8995. We now continue with
results on the held-out test set hetvolk1918, for the full
system only.

5.3.3 Evaluation of cc mode on held-out hetvolk1918

We list the results obtained per rank on hetvolk1918 in
Table 7. We list the results on word types and on word tokens.

The performance scores on word types obtained on the
held-out test set hetvolk1918 are fully in line with those

obtained on the qualitatively very different sgd8995. They
represent very different text types and domains.

We claim to have developed an unsupervised, flexible,
viable and competitive approach to large-scale spelling and
OCR-error correction which requires no training data, adapts
to the lexical variation actually present within a corpus and
travels well across domains.

We developed on the sgd8995 gold standard and per-
formed final evaluation runs on the held-out hetvolk1918
gold standard. These are qualitatively very different corpora,
the first representing state-of-the-art high accuracy ocr-ed
text, the second very low-quality ocr-ed text obtained from
low quality, non-ocr oriented microfilms made from low-
quality paper and print. On the basis of the performance
scores on the sgd and hetvolk1918 gold standards, we
conclude that given the extra information available to ticcl,
i.e. the affix rules borrowed from Ispell, their application by
analogy to the full corpus vocabulary and the availability of
full knowledge concerning the possible confusables present
in the validated lexicon within k, all combine to deliver a
highly efficient system for the post-correction of large cor-
pora, whatever the form or origin of the lexical variation
within them. The scores show that ticcl handles typograph-
ical and ocr misrecognition errors equally well. Given its
exhaustive look-up, there is no need to model for arguably
different types of error.

5.4 Discussion of ticcl

5.4.1 Variation in character confusion in different corpora

We have so far worked under the assumption that just about
anything can happen to the character strings when a cor-
pus is digitized, depending on circumstances such as the
ocr-software used, mode of scanning, quality of the input
whether paper or microfilm, etc. Since our approach does
not require prior error modeling, we do not risk having made
incorrect or incomplete assumptions about the actual varia-
tion present in a particular corpus. If we look at the top 20
character confusions observed in our test runs on sgd8995
and hetvolk1918, shown in Table 8, we see that at least
with respect to these major character confusion classes our

Table 7 hetvolk1918:
Performance results on n-best
first ranking on types and tokens
for the cc approach

Level rank Types Tokens

R P F R P F

1 0.937 0.929 0.933 0.877 0.960 0.917

2 0.957 0.928 0.942 0.881 0.959 0.919

3 0.961 0.924 0.942 0.882 0.959 0.919

4 0.963 0.923 0.942 0.883 0.958 0.919

5/10 0.963 0.923 0.942 0.883 0.958 0.919

123

Character confusion versus focus word-based correction 185

Table 8 sgd8995 and hetvolk1918: Observed divergence in the top 20 character confusions

sgd8995 hetvolk 1918

Char. conf. av Min. confus. # Memb. Char. conf. av Min. confus. # Memb.

26615200501 ne/en 24087 1000200002 e �→ c 25050

20113571875 s 20318 6340481050 e �→ o 16662

10510100501 e 14543 7340681052 o �→ c 12559

1930465143 i �→ l 10911 5819380357 n �→ u 12278

16105100000 n 9615 10510100501 e 10769

13481676076 ni �→ m/in �→ m 7625 7517759743 n �→ a 8949

19254145824 r 5410 16105100000 n 8378

21003416576 t 5334 8240600951 i �→ t 7621

1922760244 e �→ a 4938 1930465143 i �→ l 7429

10000000000 d 4814 2000400004 cc �→ ee 7249

12762815625 i 4657 11414379856 e �→ u 6997

20510100501 ed/de 4623 26615200501 ne/en 6994

184528125 – 4488 8744045323 e �→ r 6946

29764246325 re/er 4265 6310135808 l �→ t 6945

15911861449 ri �→ n/ir �→ n 3995 1922760244 e �→ a 6858

14693280768 l 3978 5594999499 e �→ n 6788

12344620132 i �→ 5 3868 5073898806 o �→ u 6726

13845455867 ig �→ e/gi �→ e 3627 9603471374 e �→ s 6569

6310135808 l �→ t 3616 20113571875 s 6386

4515616808 k �→ c 2984 13337140100 u �→ a 6240

Note that in anagram hashing actual adjacency of character combinations is not required. Single characters that do not map to other characters
denote insertions or deletions. Characters mapping to other characters denote substitutions, but directionality is not implied: the earlier transposition
example ‘melonsteen’ might be produced by minimal confusion ‘e’ to ‘o’ occurring twice within the same word

assumption is confirmed that the actual variation present in
the text tokens may widely diverge between different text col-
lections. The top two confusions in sgd8995 in fact reflect
morphological variation in Dutch, these two being singu-
lar/plural character confusions. The top two confusions in
hetvolk1918 show the main ocr-induced confusions on
the most frequent character in Dutch, i.e. ‘e’.

5.4.2 Language independence

The algorithm we have presented is not language-dependent
in se. In [16], we worked on both English and Dutch and
built a trilingual spelling correction system by further add-
ing French to a mixed English-Dutch system. ticcl retains
this feature.

5.4.3 Distributability for parallelization

An attractive feature of character confusion-based spelling
variant retrieval is the fact that the search for particular con-
fusions can easily be distributed over as many processors or
computers one has at hand. So the character confusion look-
up enables easy parallelization of the full task. This should

enable the method to scale to the largest corpus sizes. ticcl
could easily be run-on x processors for this work by simply
dividing the list of the anagram keys for the n confusions to
be examined in x equal parts. This would fully ensure there is
no overlap between the systems running independently and
that no double work is done. All tests reported on here were
run-on single Intel Xeon 3Ghz. processors.

5.4.4 Further steps

We have shown that anagram hashing provides a powerful
framework for tackling lexical variation in corpora. We have
shown that it allows for easy integration of external infor-
mation sources regarding the language. Validated word lists
and lists of named entities contribute heavily to the per-
formance. The full mapping of confusables within the vali-
dated lexicon likewise. Morphological information, too, can
easily be accommodated and contributes. The framework
explored here provides a solid basis for further extension
and refinement. No doubt even better best-first ranking can
be achieved, by means of more refined ranking mechanisms
as explored in related work. We have here limited ourselves
to addressing the variation given k = 2. Moving beyond that

123

186 M. W. C. Reynaert

is straightforward but requires more processing. Extending
the alphabet with a space, given word bigrams in the lexicon,
allows for addressing the problem of split and run-on words,
as was shown in [16].

5.4.5 Availability

To conclude, a final remark about ticcl’s availability: ticcl
and the kb gold standards are to be made available under
open source licenses. The corpora we have worked on here
are freely available online at the kb.

6 Conclusions

In this paper, we have presented a global approach to tackling
spelling variation in corpora.

We have proposed a character confusion-based look-up
algorithm for identifying all the pairs of words that happen to
be confused in particular characters. We have demonstrated
that we can exhaustively examine and further process the
word type list of a large Dutch corpus for all the character
confusions up to ld 2 in a couple of hours.

We have conducted formal evaluations on a contemporary
corpus and on a historical corpus both of which have been
digitized by the kb, the National Library of The Netherlands.
In these tests, conducted with both a development gold stan-
dard for the contemporary corpus and a held-out gold stan-
dard for the historical corpus, we have compared the focus
word-based working mode of ticcl with the character confu-
sion-based mode. Preliminary work had given us useful new
insights into how the more traditional, sequential word-based
approach can also be made to gather global statistics about
the variation in a corpus. This should also be applicable to
any other focus word-based spelling correction approach.

Our contribution is that we have proposed an unsupervised
viable alternative based on anagram hashing for spelling cor-
rection purposes of large ocr-ed corpora to the mainstream
source model and Finite State approaches, both of which
need costly training materials. We have shown that by focus-
ing not on each word string individually but rather on the
character confusions that sets of word pairs have in com-
mon, useful statistics are gained which enhance the ranking
of correction candidates and help to provide not only great
recall, but also sufficiently high precision for the process to
be run automatically, in an unsupervised fashion.

We have in this paper demonstrated that the framework
of anagram hashing allows for easy incorporation of useful
sources of information helpful to the process of fully auto-
matic, unsupervised clean-up of large ocr-ed corpora. We
have shown that morphological information may be applied
by analogy to unknown words, which helps in highly com-
pounding languages such as Dutch.

The cc approach has been demonstrated to be fast on large
corpora. The fw approach remains viable, and indicated, for
smaller clean-up tasks such as a single ocr-ed book.

Faced with the huge scale of the current digitization pro-
grammes, the inherent distributability of the cc approach is
a valuable asset. The numerical work to be performed on just
two lists of numbers can very straightforwardly be distributed
over as many processors as one has at one’s disposal. Given
the right hardware, i.e. sufficient numbers of processors at
hand, the gigantic task of cleaning-up say one hundred years’
worth of sgd ocr-ed text might well soon be performed in a
single day.

Acknowledgements We are grateful to our anonymous reviewers
for their rightful criticisms of our first draft. We like to thank our
contacts at the kb for their support and patience: Paul Doorenbosch,
Astrid Verheusen, Tineke Koster en Evelien Ket. Heartfelt thanks
to scientific programmer Ko van der Sloot at ILK, whose reimple-
mentation of our basic ideas demonstrated to us their essence. Early
ticcl prototypes were developed within a Netherlands Organization
for Scientific Research (NWO) Exact Sciences Hefboom project. The
production version of ticcl was commissioned by the Koninklijke Bib-
liotheek - Den Haag. Development continues under the Stevin project
SoNaR (STE07014). ticcl was turned into the online processing sys-
tem ticclops with funding from CLARIN-NL (CLARIN-NL-09-011).

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Navarro, G.: A guided tour to approximate string matching. ACM
Comput. Surv. 33(1), 31–88 (2001)

2. Kukich, K.: Techniques for automatically correcting words in
text. ACM Comput. Surv. 24(4), 377–439 (1992)

3. Cucerzan, S., Brill, E.: Spelling correction as an iterative process
that exploits the collective knowledge of web users. In: Lin, D.,
Wu, D. (eds.) Proceedings of EMNLP 2004, pp. 293–300. Associ-
ation for Computational Linguistics, Barcelona (2004)

4. Lopresti, D., Zhou, J.: Using consensus sequence voting to correct
OCR errors. Comput. Vis. Image Underst. 67(1), 39–47 (1997)

5. Kernighan, M.D., Church, K.W., Gale, W.A.: A spelling correction
program based on a noisy channel model. In: COLING-90, vol. II,
pp. 205–211. Helsinki (1990)

6. Oflazer, K., Güzey, C.: Spelling correction in agglutinative
languages. In: ANLP, pp. 194–195. (1994)

7. Sun, X., Gao, J., Micol, D., Quirk, C.: Learning phrase-based spell-
ing error models from clickthrough data. In: Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics
(ACL’10) (2010)

8. Teahan, W.J., Inglis, S., Cleary, J.G., Holmes, G.: Correcting Eng-
lish text using PPM models. In: Storer, J.A., Reif, J.H. Proc Data
Compression Conference, pp. 289–298. IEEE Computer Society
Press, Society Press, Los Alamitos, CA (1998)

9. Kolak, O., Resnik, P.: OCR error correction using a noisy chan-
nel model. In: Proceedings of the second international conference
on Human Language Technology Research, pp. 257–262. Morgan
Kaufmann Publishers Inc., San Francisco, CA, (2002)

123

Character confusion versus focus word-based correction 187

10. Brill, E., Moore, R.C.: An improved error model for noisy channel
spelling correction. In: Proceedings of the 38th Annual Meeting of
the ACL, pp. 286–293. (2000)

11. Strohmaier, C.M., Ringlstetter, C., Schulz, K.U., Mihov, S.:
Lexical postcorrection of OCR-results: the web as a dynamic
secondary dictionary? In: International Conference on Document
Analysis and Recognition 2:1133 (2003)

12. Ringlstetter, C., Schulz, K.U., Mihov, S.: Orthographic errors in
web pages: toward cleaner web corpora. Comput. Linguist. 32(3),
295–340 (2006)

13. Levenshtein, V.: Binary codes capable of correcting deletions,
insertions, and reversals. In: Cybernetics and Control Theory,
vol. 10(8), pp. 707–710 (1965), original in: Doklady Nauk SSSR
163(4):845–848 (1965)

14. Gotscharek, A., Neumann, A., Reffle, U., Ringlstetter, C.,
Schulz, K.U.: Enabling information retrieval on historical docu-
ment collections: the role of matching procedures and special lex-
ica. In: AND ’09: Proceedings of The Third Workshop on Analytics
for Noisy Unstructured Text Data, pp. 69–76. ACM, New York, NY
(2009)

15. Reynaert, M.: Text induced spelling correction. In: Proceedings
COLING 2004, Geneva (2004)

16. Reynaert, M.: Text-induced spelling correction. PhD thesis, Tilburg
University (2005)

17. Damerau, F.J.: A technique for computer detection and correction
of spelling errors. Commun. ACM 7(3), 171–176 (1964)

18. Reynaert, M.: Non-interactive OCR post-correction for giga-scale
digitization projects. In: Proceedings of CICLing 2008. Lecture
Notes in Computer Science vol. 4919/2008, pp. 617–630. Springer,
Berlin (2008)

19. Reynaert, M.: Parallel identification of the spelling variants in
corpora. In: Proceedings of The Third Workshop on Analytics
for Noisy Unstructured Text Data 2009 (AND-2009), pp. 77–84.
Barcelona, Spain (2009)

20. Frauenfelder, U., Baayen, R., Hellwig, F., Schreuder, R.:
Neighbourhood density and frequency across languages and
modalities. J. Mem. Lang. 32, 781–804 (1993)

21. Zipf, G.K.: The psycho-biology of language: an introduction to
dynamic philology, 2nd edn. The M.I.T. Press, Cambridge, MA
(1935)

22. van Rijsbergen, C.J.: Information Retrieval. Butterworths, London
(1975)

123

	Character confusion versus focus word-based correction of spelling and OCR variants in corpora
	Abstract
	1 Introduction
	2 Related work
	3 Anagram key spelling correction
	3.1 Anagram key search
	3.1.1 Introduction to anagram hashing
	3.1.2 Alphabet
	3.1.3 Lexicon

	3.2 The sequential focus word-based approach
	3.2.1 Pseudo-code for the sequential word-based approach

	3.3 The sequential character confusion-based approach
	3.3.1 Pseudo-code for the sequential character confusion-based approach

	3.4 Necessity of output filtering

	4 Text-Induced corpus clean-up or TICCL
	4.1 TICCL: Step 1: normalization for search space reduction
	4.2 TICCL: Step 2: Character confusion word pair identification
	4.3 TICCL: Step 3: filtering the output
	4.3.1 Additional language information sources
	4.3.2 Contribution of additional language information sources
	4.3.3 Filtering loops implemented in ticcl
	4.3.4 Ranking

	5 Evaluating TICCL
	5.1 Preliminaries to the evaluation of ticcl
	5.2 The corpora
	5.2.1 Gold standards
	5.2.2 Test settings
	5.2.3 Metrics used

	5.3 Evaluation of ticcl
	5.3.1 Comparison of fw and cc modes on sgd8995
	5.3.2 Ablation tests on cc mode on sgd8995
	5.3.3 Evaluation of cc mode on held-out hetvolk1918

	5.4 Discussion of ticcl
	5.4.1 Variation in character confusion in different corpora
	5.4.2 Language independence
	5.4.3 Distributability for parallelization
	5.4.4 Further steps
	5.4.5 Availability

	6 Conclusions
	Acknowledgements
	References

