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Abstract

Denote by S the projective special linear group PSL2(q) over the field of q elements. We
determine, for all values of q > 3, the degrees of the irreducible complex characters of every group
H such that S 6 H 6 Aut(S). We also determine the character degrees of certain extensions of
the special linear group SL2(q). Explicit knowledge of the character tables of SL2(q), GL2(q),
PSL2(q), and PGL2(q) is used along with standard Clifford theory to obtain the degrees.

1 Introduction

In a series of recent articles, M. L. Lewis and the author have studied various properties of the set
of degrees of irreducible complex characters of nonsolvable groups. This always requires detailed
information on the character degrees of finite simple groups and, in order to extend results to
general nonsolvable groups, often requires information on the degrees of almost simple groups; that
is, groups H such that S 6 H 6 Aut(S) for some simple group S. The most interesting cases
tend to be groups involving the smaller simple groups with few character degrees, in particular the
2-dimensional projective special linear groups PSL2(q), which we will denote by L2(q) in Atlas [2]
notation.

Several of these studies required increasingly detailed information about the character degrees
of groups H with L2(q) 6 H 6 Aut(L2(q)) (see [5, 6, 7, 8]). Of course, the character table of
L2(q) is well-known, as is the automorphism group, and so the character degrees of H are known
in principle. Since L2(q) is a normal subgroup of such a group H, each character degree of H will
be χ(1) · j for some irreducible character χ of L2(q) and some divisor j of |H : L2(q)|. Determining
the values of j for which χ(1) · j is a character degree of H for a specific group H and character χ
of L2(q) is not theoretically difficult. However, given the more detailed information required in
recent work and the number of different possibilities for H, χ, and q, it has become much more
convenient to have a complete answer covering all cases than to derive the necessary information
on a case-by-case basis. For more recent work, it has also become useful to have information about
the degrees of extensions of the quasisimple groups SL2(q) when q is odd. In Theorem A, we give
the list of character degrees of H, where L2(q) 6 H 6 Aut(L2(q)), in all cases. In Theorem B and
Corollary C, we give the character degrees of all extensions of SL2(q) of a certain type.

Let q = pf for some prime p. The outer automorphism group of L2(q) is generated by a field
automorphism ϕ of order f and, if p is odd, a diagonal automorphism δ̄ of order 2. If p = 2, then δ̄
is an inner automorphism. The diagonal automorphism δ̄ is induced by conjugation on SL2(q) by a
diagonal matrix δ ∈ GL2(q) of order q − 1. We have L2(q)〈δ̄〉 = PGL2(q) and SL2(q)〈δ〉 = GL2(q).
The character tables of PGL2(q) and GL2(q) are also known. In §3, we describe explicitly the
actions of the automorphisms on the conjugacy classes of SL2(q), GL2(q), L2(q), and PGL2(q), and
in §4, we describe the actions of the automorphisms on the irreducible characters.
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If q = pf > 5 is odd, the character degree set of L2(q) is

cd(L2(q)) = {1, q, (q + ε)/2, q − 1, q + 1},

where ε = (−1)(q−1)/2, and the character degree set of L2(q) for even q or PGL2(q) for odd q is

cd(L2(q)) = {1, q, q − 1, q + 1}.

The characters of degrees 1 and q are invariant in Aut(L2(q)) and in fact extend to irreducible
characters of H for any L2(q) 6 H 6 Aut(L2(q)). The two characters of degree (q + ε)/2 are
invariant under ϕ and are interchanged by δ̄, so are easily handled. The characters of degrees q− 1
and q + 1 belong to parametrized families and are invariant under δ̄, but their stabilizers in 〈ϕ〉
depend on the parameters. In §5, we determine the subgroups of Aut(L2(q)) that are stabilizers of
characters of degree q − 1 or q + 1 of L2(q) or PGL2(q). We also determine the subgroups of 〈ϕ〉
that are stabilizers of characters of SL2(q) of degree q − 1 or q + 1, and show that for each such
subgroup there is a character of SL2(q) and an extension of the character to GL2(q) with the same
stabilizer.

In §6, we show that for odd q, if H is any subgroup of Aut(L2(q)) containing L2(q) but not
containing PGL2(q), then H/L2(q) is cyclic. Hence, in any case, if L2(q) 6 H 6 Aut(L2(q)), then
either H/L2(q) is cyclic or H/PGL2(q) is cyclic. A character of PGL2(q) or, if PGL2(q) 66 H, of
L2(q), will therefore extend to its stabilizer in H and then the extensions will induce irreducibly
to H by Clifford’s Theorem. We are then able to determine the character degrees of H using our
knowledge of which subgroups of H appear as stabilizers.

In §7, we consider subgroups of A = (SL2(q) ⋊ 〈δ〉) ⋊ 〈ϕ〉 = GL2(q) ⋊ 〈ϕ〉 of the form H =
(SL2(q) ⋊ 〈δα〉) ⋊ 〈ϕβ〉. We determine the characters of H0 = SL2(q) ⋊ 〈δα〉 lying over characters
of SL2(q) of each degree. We then find their stabilizers in 〈ϕβ〉 in order to determine the degrees
of the characters of H.

2 Notation and Main Theorems

If G is any finite group, Irr(G) will denote the set of irreducible complex characters of G. We
denote by cd(G) = {χ(1) | χ ∈ Irr(G)} the set of character degrees of G.

We set q = pf , where p is prime and f is a positive integer. We will always assume pf > 3
because the character degrees of the automorphism groups of the non-simple groups L2(2) ∼= S3

and L2(3) ∼= A4 are well-known and the general results we prove do not always apply in these cases.
It will be most convenient to work with the conjugacy classes and characters of SL2(q) and

GL2(q), which are described in [3] and [9], respectively. We will use the notation of those sources
for the classes and characters.

The outer automorphism group of L2(q) is of order (q − 1, 2) · f , and is generated by a field
automorphism ϕ of order f and, if p is odd, a diagonal automorphism δ̄ of order 2 (see [1] or [2]).
Observe that PGL2(q) = L2(q)〈δ̄〉. If p = 2, then δ̄ is an inner automorphism and the center of
SL2(q) is trivial, so that L2(q) ∼= PGL2(q) ∼= SL2(q).

We will denote by H a subgroup of Aut(L2(q)) satisfying L2(q) 6 H 6 Aut(L2(q)). The
following theorem describes the set of character degrees of H for any such subgroup of Aut(L2(q))
for any q. Theorem A follows directly from Corollary 6.3 and Theorems 6.4, 6.5, 6.6, and 6.7.

Theorem A. Let S = L2(q), where q = pf > 3 for a prime p, A = Aut(S), and let S 6 H 6 A.
Set G = PGL2(q) if δ̄ ∈ H and G = S if δ̄ 6∈ H, and let |H : G| = d = 2am, m odd. If p is odd, let
ε = (−1)(q−1)/2. The set of irreducible character degrees of H is

cd(H) = {1, q, (q + ε)/2} ∪ {(q − 1)2ai : i | m} ∪ {(q + 1)j : j | d},

with the following exceptions:
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i. If p is odd with H 66 S〈ϕ〉 or if p = 2, then (q + ε)/2 is not a degree of H.

ii. If f is odd, p = 3, and H = S〈ϕ〉, then i 6= 1.

iii. If f is odd, p = 3, and H = A, then j 6= 1.

iv. If f is odd, p = 2, 3, or 5, and H = S〈ϕ〉, then j 6= 1.

v. If f ≡ 2(mod 4), p = 2 or 3, and H = S〈ϕ〉 or H = S〈δ̄ϕ〉, then j 6= 2.

If q is odd, the diagonal automorphism δ̄ of L2(q) is induced by conjugation on SL2(q) by a
diagonal matrix δ in GL2(q) of order q − 1, and GL2(q) = SL2(q) ⋊ 〈δ〉. Conjugation of SL2(q)
by δ2 is an inner automorphism. The field automorphism ϕ of L2(q) of order f also acts as an outer
automorphism of order f on SL2(q) and GL2(q).

We determine the character degrees of certain subgroups of A = (L2(q)⋊ 〈δ〉)⋊ 〈ϕ〉 = GL2(q)⋊
〈ϕ〉 containing SL2(q). However, in this case A/SL2(q) ∼= F∗

q ⋊ Gal(Fq/Fp), where Fq is the field
of q elements and F∗

q its multiplicative group. The structure of this group is too complicated to
allow us to determine the degrees for every subgroup, and so we restrict our attention to subgroups
of the form H = (S ⋊ 〈δα〉) ⋊ 〈ϕβ〉, where α | q − 1 and β | f . The next theorem is the general
result for such a subgroup H. Theorem B follows directly from Theorems 7.3, 7.6, and 7.7. For
coprime integers x and y, we denote by Oy(x) the order of x modulo y.

Theorem B. Let A = (SL2(q) ⋊ 〈δ〉) ⋊ 〈ϕ〉 = GL2(q) ⋊ 〈ϕ〉, where q = pf > 3 for an odd prime p,
and let H = (SL2(q) ⋊ 〈δα〉) ⋊ 〈ϕβ〉, where α | q − 1 and β | f . Set f/β = d = 2am with m odd,
α′ = α/(2, α), and ℓ = (q − 1)/(2α′).

The set of irreducible character degrees of H is

cd(H) = {k : k | d and k = Ov(p
β) for some v | (q − 1)/α} ∪

{qk : k | d and k = Ov(p
β) for some v | (q − 1)/α} ∪

{

1

(α, 2)
(q − 1)k : k | d and k = O2v(p

β) for some v | ℓ with ℓ/v odd

}

∪

{

1

(α, 2)
(q + 1)k : k | d and k = Ov(p

β) for some v | ℓ

}

∪

{(q − 1)2ai : i | m} ∪

{(q + 1)j : j | d},

with the exception that if p = 3, β = 1, and f is odd, then j 6= 1.

Finally, we consider the special cases where H = A or H is a particular subgroup of A of index 2.
Corollary C follows from Theorem B. Observe that the characters of A of degree q + 1 lie over the
two characters of SL2(q) of degree (q + 1)/2 when p = 3 and f is odd. There is no character of A
of degree q + 1 lying over a character of SL2(q) of degree q + 1 in this case.

Corollary C. Let A = (SL2(q) ⋊ 〈δ〉) ⋊ 〈ϕ〉, where q = pf > 3 for an odd prime p, and A0 =
(SL2(q) ⋊ 〈δ2〉) ⋊ 〈ϕ〉. Let f = 2am with m odd.

The set of irreducible character degrees of A is

cd(A) = {k, qk, (q − 1)2ai, (q + 1)k : k | f, i | m}.

The set of irreducible character degrees of A0 is

cd(A0) = {k, qk, 1
2(q − 1)2ai, (q − 1)2ai, 1

2(q + 1)k, (q + 1)k : k | f, i | m},

with the exception that if p = 3 and f is odd, there is no irreducible character of A0 of degree q+1.
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3 Conjugacy Classes and Automorphisms

Let q = pf , where p is a prime. We are considering characters of extensions of L2(q) and PGL2(q),
as well as of SL2(q) and GL2(q). The conjugacy classes, characters, and automorphisms are more
easily described for SL2(q) and GL2(q). For SL2(q), we will use the notation and character tables
of [3, §38], and for GL2(q) we will use the character table of [9].

Let ν be a generator of F∗
q , the multiplicative group of the field Fq of q elements, τ a generator

of F∗
q2 , and γ = τ q−1. We denote

1 =

[

1 0
0 1

]

, z =

[

−1 0
0 −1

]

, c =

[

1 0
1 1

]

, d =

[

1 0
ν 1

]

, a =

[

ν 0
0 ν−1

]

, b =

[

γ 0
0 γ−1

]

.

If q is odd, then every element of SL2(q) is conjugate to one of 1, z, c, cz, d, dz, al for 1 6 l 6

(q − 3)/2, or bm for 1 6 m 6 (q − 1)/2. If q is even, then every element of SL2(q) = L2(q) is
conjugate to one of 1, c, al for 1 6 l 6 (q − 2)/2, or bm for 1 6 m 6 q/2. Observe that in either
case, 1 6 l 6 [(q − 2)/2] and 1 6 m 6 [q/2], where [x] denotes the greatest integer less than or
equal to x.

We need to consider GL2(q) and PGL2(q) only when q is odd. We denote

A1(l) =

[

νl 0
0 νl

]

, A2(l) =

[

νl 0
1 νl

]

, A3(l1, l2) =

[

νl1 0
0 νl2

]

, B1(l) =

[

τ l 0
0 τ ql

]

.

Every element of GL2(q) is conjugate to one of A1(l) or A2(l) for 1 6 l 6 q − 1, A3(l1, l2) for
1 6 l1 6 q − 1, 1 6 l1 6 q − 1, and l1 6= l2, or B1(l) for 1 6 l 6 q2 − 1 and (q + 1) ∤ l.

The outer automorphism group of L2(q), q = pf , is of order df , where d = (2, q − 1). It is
generated by a diagonal automorphism δ̄ and a field automorphism ϕ. The diagonal automorphism
is induced by conjugation on SL2(q) by the matrix

δ =

[

ν 0
0 1

]

and these automorphisms act on elements of SL2(q) by

[

a b
c d

]δ

=

[

a ν−1b
νc d

]

and

[

a b
c d

]ϕ

=

[

ap bp

cp dp

]

.

We have GL2(q) = SL2(q) ⋊ 〈δ〉, and the field automorphism acts on GL2(q) in the same way.
Moreover, δ2 acts as an inner automorphism on SL2(q). Observe that 〈δ〉 ∼= F∗

q and the action of ϕ
on 〈δ〉 is induced by the action of the generator of the Galois group of Fq over Fp. Hence

(GL2(q) ⋊ 〈ϕ〉)/SL2(q) ∼= 〈δ〉 ⋊ 〈ϕ〉 ∼= F∗
q ⋊ Gal(Fq/Fp).

As the center Z of SL2(q) is invariant under both δ and ϕ, these maps induce automorphisms δ̄
and ϕ̄ on L2(q) = SL2(q)/Z by (gZ)δ̄ = gδZ and (gZ)ϕ̄ = gϕZ, as usual. Denoting the induced
automorphism ϕ̄ on L2(q) by ϕ as well, we have L2(q)〈δ̄〉 ∼= PGL2(q) and Aut(L2(q)) = L2(q)〈δ̄, ϕ〉 ∼=
PGL2(q)〈ϕ〉. Similarly, the center of GL2(q) is invariant under ϕ and ϕ induces an automorphism ϕ̄
on PGL2(q), which we will also denote by ϕ.

If q is even, then δ̄ is an inner automorphism and Aut(L2(q)) = L2(q)〈ϕ〉, and if q is odd,
then δ̄ is an outer automorphism but δ̄2 is inner. Hence δ̄ is of order d = (2, q − 1) modulo inner
automorphisms. Since entries in elements of SL2(q) are from the field of q = pf elements, ϕ is
of order f . Moreover, if q is odd, then δ̄ and ϕ commute modulo inner automorphisms, so that
Aut(L2(q))/L2(q) ∼= 〈δ̄〉×〈ϕ〉, hence their actions on conjugacy classes or characters will commute.

We now describe the actions of δ and ϕ on conjugacy classes. These lemmas follow from
straightforward calculations.
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Lemma 3.1. Let q be odd and assume notation as above. In SL2(q), the diagonal automorphism δ
interchanges the conjugacy classes of c and d, interchanges the conjugacy classes of cz and dz, and
fixes all other conjugacy classes.

Lemma 3.2. Assume notation as above and let 1 6 k < f . In SL2(q), the automorphism ϕk sends

i. the conjugacy class of al to the class of ar, where 1 6 r 6 [(q−2)/2] and r ≡ ±lpk(mod q−1),

ii. the conjugacy class of bm to the class of bs, where 1 6 s 6 [q/2] and s ≡ ±mpk(mod q + 1),

and fixes all other conjugacy classes.

Lemma 3.3. Assume notation as above with q odd and let 1 6 k < f . In GL2(q), the automorphism
ϕk sends

i. the conjugacy class of A1(l) to the class of A1(r), where 1 6 r 6 q−1 and r ≡ lpk(mod q−1),

ii. the conjugacy class of A2(l) to the class of A2(r), where 1 6 r 6 q−1 and r ≡ lpk(mod q−1),

iii. the conjugacy class of A3(l1, l2) to the class of A3(r1, r2), where 1 6 r1 6 q−1, 1 6 r2 6 q−1,
r1 ≡ l1p

k(mod q − 1), and r2 ≡ l2p
k(mod q − 1), and

iv. the conjugacy class of B1(l) to the class of B1(t), where 1 6 t 6 q2 − 1, q + 1 ∤ t, and
t ≡ lpk(mod q2 − 1).

4 Characters and Automorphisms

In order to determine which subgroups of Aut(L2(q)) and (SL2(q)⋊ 〈δ〉)⋊ 〈ϕ〉 appear as stabilizers
of irreducible characters of SL2(q), GL2(q), L2(q), or PGL2(q), we first determine conditions under
which these characters are invariant under the action of powers of δ or ϕ.

It will be more convenient to work with characters and conjugacy class of SL2(q) or GL2(q).
Let G be either SL2(q) or GL2(q) and let Z = Z(G), so that G/Z is L2(q) or PGL2(q), respectively.
An automorphism σ of G induces an automorphism σ̄ on G/Z defined by (gZ)σ̄ = gσZ. Similarly,
the irreducible characters of G/Z are precisely those defined by χ̄(gZ) = χ(g), where χ ∈ Irr(G)
and Z 6 kerχ. It is straightforward to check that χ̄σ̄ = χ̄ if and only if χσ = χ. Hence the
irreducible characters of G/Z invariant under a particular automorphism σ are those characters
of G invariant under σ with kernel containing Z.

We first determine the characters of SL2(q) and GL2(q) whose kernels contain the center. Of
course, if q is even, then the center of SL2(q) is trivial and the diagonal automorphism is an inner
automorphism, and so SL2(q) ∼= L2(q) ∼= PGL2(q). In the notation of [3, §38], when q is even,
SL2(q) has irreducible characters

i. 1G of degree 1,

ii. ψ of degree q (= St, the Steinberg character),

iii. χi, 1 6 i 6 (q − 2)/2, of degree q + 1, and

iv. θj , 1 6 j 6 q/2, of degree q − 1.

We will assume q is odd in the following. For SL2(q), we use the notation and character table
in [3, §38] and for GL2(q), we use [9, §2]. The following results are easily obtained from the
respective character tables.

Lemma 4.1. Let G = SL2(q) with q odd. The irreducible characters of G with kernel containing
Z(G) are as follows:
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i. 1G of degree 1;

ii. ψ of degree q (= St, the Steinberg character);

iii. χi, for 1 6 i 6 (q − 3)/2 and i even, of degree q + 1;

iv. θj for 1 6 j 6 (q − 1)/2 and j even, of degree q − 1;

v. ξ1 and ξ2 of degree (q + 1)/2, if q ≡ 1(mod 4);

vi. η1 and η2 of degree (q − 1)/2, if q ≡ −1(mod 4).

Lemma 4.2. Let G = GL2(q) with q odd. The irreducible characters of G with kernel containing
Z(G) are as follows:

i. χ
(n)
1 and χ

(n)
q for n = (q − 1)/2 and n = q − 1,

ii. χ
(m,n)
q+1 for 1 6 n 6 (q − 3)/2 and m = (q − 1) − n,

iii. χ
((q−1)n)
q−1 for 1 6 n 6 (q − 1)/2.

Notation 4.3.

We will write χ
(n)
q+1 for the character χ

(m,n)
q+1 with 1 6 n 6 (q − 3)/2 and m = (q − 1) − n.

We will write θ
(n)
q−1 for the character χ

((q−1)n)
q−1 with 1 6 n 6 (q − 1)/2.

We first consider the action of δ on the irreducible characters of SL2(q) for odd q and relate the
characters of SL2(q) to those of GL2(q) and the characters of L2(q) to those of PGL2(q).

Lemma 4.4. Let q be odd. All characters of SL2(q) of degrees 1, q, q + 1, and q − 1 are invariant
under δ and each extends to q − 1 distinct irreducible characters of GL2(q).

Each of {ξ1, ξ2} and {η1, η2} is a single orbit under the action of δ. Each of these characters
extends to (q−1)/2 irreducible characters of its stabilizer SL2(q)⋊〈δ2〉 in GL2(q) and each extension
then induces to an irreducible character of GL2(q).

Proof. Observe first that GL2(q) = SL2(q) ⋊ 〈δ〉, so that GL2(q)/SL2(q) is cyclic of order q − 1.
Hence by Gallagher’s Theorem ([4, 6.17]), an invariant character of SL2(q) extends to q−1 distinct
irreducible characters of GL2(q). The characters of degrees 1, q, q + 1, and q − 1 have the same
value on the classes of c and d, and so also on the classes of cz and dz. Hence these characters are
invariant under δ by Lemma 3.1.

The pairs of characters {ξ1, ξ2} and {η1, η2} are equal on all classes except the classes of c, d,
cz, and dz. We have ξ1(c) = ξ2(d), ξ1(d) = ξ2(c), ξ1(cz) = ξ2(dz), and ξ1(dz) = ξ2(cz). Therefore,
ξδ
1 = ξ2 and ξδ

1 = ξ2 by Lemma 3.1, and similarly for η1 and η2. Recall that δ2 induces an inner
automorphism on SL2(q), and so the stabilizer in GL2(q) of each of these characters is SL2(q)⋊〈δ2〉.
The result then follows from Clifford’s Theorem ([4, 6.11]) and Gallagher’s Theorem.

For the following lemma, let ε = (−1)(q−1)/2 and denote by µ1, µ2 the irreducible characters of
SL2(q) of degree (q + ε)/2. Thus µi = ξi if q ≡ 1(mod 4) and µi = ηi if q ≡ −1(mod 4), so that
µ1, µ2 ∈ Irr(L2(q)) by Lemma 4.1.

Lemma 4.5. Let q be odd. All characters of L2(q) of degrees 1, q, q + 1, and q − 1 are invariant
under δ̄ and each extends to two distinct irreducible characters of PGL2(q).

The characters µ1 and µ2 of L2(q) of degree (q + ε)/2 form a single orbit under the action of δ̄
and induce to a single irreducible character of PGL2(q) of degree q + ε.

Proof. This follows from Lemma 4.4 and the fact that L2(q) is of index 2 in PGL2(q) = L2(q)〈δ̄〉.
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We now consider the action of the field automorphism ϕ on the irreducible characters of SL2(q),
L2(q), and PGL2(q). The situation for GL2(q) is more complicated and will be considered in §7.
Unless stated otherwise, q may be either even or odd.

Lemma 4.6. If χ is an irreducible character of SL2(q), L2(q), or PGL2(q) of degree 1, q, (q−1)/2,
or (q + 1)/2, then χ is invariant under the action of ϕ.

Proof. It is clear from the character tables that the characters of SL2(q), and hence of L2(q), of
degree 1 and q are invariant under ϕ, as are the principal character and Steinberg character of
PGL2(q). For odd q, the remaining characters of degree 1, q of PGL2(q) have value (−1)k+l on
the class of A3(k, l), and either (−1)l or −(−1)l on the class of B1(l). By Lemma 3.3, ϕ sends
A3(k, l) to A3(kp, lp) and B1(l) to B1(lp). Since p is odd in this case, (−1)k+l = (−1)kp+lp and
(−1)l = (−1)lp, and so these characters are also invariant under ϕ.

The characters of degree (q± 1)/2 occur only for SL2(q) and L2(q) with q odd. By Lemma 3.2,
the only conjugacy classes moved by ϕ are those of al and bl. The values of the µi on these classes
are 0, (−1)l or −(−1)l. The class of al, bl is sent to a±lp, b±lp, respectively. Again, since p is odd,
(−1)l = (−1)±lp and these characters are invariant under ϕ.

We next determine conditions under which a given character of degree q+1 or q−1 is invariant
under a power of ϕ. The following general result will be very useful.

Lemma 4.7. If ǫ is a complex kth root of unity and i, j are integers, then ǫi + ǫ−i = ǫj + ǫ−j if
and only if i ≡ ±j(mod k).

Proof. Observe that ǫi + ǫ−i = ǫj + ǫ−j if and only if

ǫi − ǫj = ǫ−j − ǫ−i =
ǫi − ǫj

ǫi+j
.

This holds if and only if either ǫi = ǫj , in which case i ≡ j(mod k), or ǫi+j = 1, in which case
i ≡ −j(mod k).

The next result also applies to characters of L2(q), of course, as these are characters of SL2(q).

Lemma 4.8. Let q = pf for a prime p and f > 2, and let 1 6 k 6 f .

i. The character χn of SL2(q) or χ
(n)
q+1 of PGL2(q) of degree q + 1 is invariant under ϕk if and

only if
pf − 1 | (pk − 1)n or pf − 1 | (pk + 1)n.

ii. The character θn of SL2(q) or θ
(n)
q−1 of PGL2(q) of degree q − 1 is invariant under ϕk if and

only if
pf + 1 | (pk − 1)n or pf + 1 | (pk + 1)n.

Proof. Distinct characters of SL2(q) or PGL2(q) of degree q + 1 differ only on the classes of al of
SL2(q) or A3(l1, l2) of GL2(q). Similarly, distinct characters of degree q−1 differ only on the classes
of bm of SL2(q) or B1(l) of GL2(q).

Let ρ be a complex primitive (q − 1)th root of unity, so that χn(al) = ρnl + ρ−nl for the
character χn of SL2(q) of degree q + 1. The character χn is then invariant under ϕk if and only if

χn(al) = χn((al)ϕk

) = χn(alpk

)

for all l, 1 6 l 6 [(q − 2)/2], by Lemma 3.2, hence if and only if

ρnl + ρ−nl = ρnlpk

+ ρ−nlpk
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for all l. By Lemma 4.7, this holds if and only if nlpk ≡ ±nl(mod q − 1) for all l. Observing that
q = pf and that if the congruence holds for l = 1 then it holds for all l, we see that χn is invariant
under ϕk if and only if npk ≡ ±n(mod pf − 1) as claimed.

Similarly, for the character χ
(n)
q+1 of PGL2(q), we have

χ
(n)
q+1(A3(l1, l2)) = ρn(l2−l1) + ρ−n(l2−l1)

and, by Lemma 3.3, χ
(n)
q+1 is invariant under ϕk if and only if

ρn(l2−l1) + ρ−n(l2−l1) = ρn(l2−l1)pk

+ ρ−n(l2−l1)pk

for all l1 6= l2, 1 6 l1 6 q − 1, 1 6 l2 6 q − 1. As before, this is equivalent to

n(l2 − l1)p
k ≡ ±n(l2 − l1)(mod q − 1)

for all l1, l2. Since q > 4, this must hold in particular for l1 = 1, l2 = 2, and so holds for all l1, l2
if and only if npk ≡ ±n(mod pf − 1) as claimed.

Let σ be a complex primitive (q + 1)th root of unity, so that θn(bm) = −(σnm + σ−nm) for the
character θn of SL2(q) of degree q − 1. The character θn is then invariant under ϕk if and only if

θn(bm) = θn((bm)ϕk

) = θn(bmpk

)

for all m, 1 6 m 6 [q/2], by Lemma 3.2, hence if and only if

σnm + σ−nm = σnmpk

+ σ−nmpk

for all m. By Lemma 4.7, this holds if and only if nmpk ≡ ±nm(mod q + 1) for all m. Again,
q = pf and if the congruence holds for m = 1 then it holds for all m, hence θn is invariant under ϕk

if and only if npk ≡ ±n(mod pf + 1) as claimed.

For the character θ
(n)
q−1 of PGL2(q), we have

θ
(n)
q−1(B1(l)) = −(σnl + σnlq) = −(σnl + σ−nl),

since σq = σ−1. By Lemma 3.3, θ
(n)
q−1 is invariant under ϕk if and only if

θnl + θ−nl = θnlpk

+ θ−nlpk

for all l, 1 6 l 6 q2 − 1 and q + 1 ∤ l. As before, this is equivalent to

nlpk ≡ ±nl(mod q + 1),

which holds for all l if and only if npk ≡ ±n(mod pf + 1).

The following number-theoretic result will be helpful in applying Lemma 4.8.

Lemma 4.9. If p is a prime and f , k are positive integers such that k | f , then

i. (pf − 1, pk − 1) = pk − 1,

ii. (pf − 1, pk + 1) =

{

(p− 1, 2) if f/k is odd
pk + 1 if f/k is even,

iii. (pf + 1, pk − 1) = (p− 1, 2),
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iv. (pf + 1, pk + 1) =

{

pk + 1 if f/k is odd
(p− 1, 2) if f/k is even.

Proof. Observe first that pk ≡ 1(mod pk − 1) and pk ≡ −1(mod pk + 1), hence

pf ≡ (pk)f/k ≡ (1)f/k ≡ 1(mod pk − 1)

and
pf ≡ (pk)f/k ≡ (−1)f/k(mod pk + 1).

It follows that pk − 1 | pf − 1, so that (i) holds. Similarly, if f/k is even, then pk + 1 | pf − 1 and
(pf − 1, pk + 1) = pk + 1, whereas if f/k is odd, then pk + 1 | pf + 1 and (pf + 1, pk + 1) = pk + 1.

Since pk − 1 | pf − 1, we have that (pf + 1, pk − 1) must divide 2. Similarly, if f/k is odd, then
pk + 1 | pf + 1 and so (pf − 1, pk + 1) divides 2, while if f/k is even, then pk + 1 | pf − 1 and
(pf + 1, pk + 1) divides 2. If p = 2, then all of pk ± 1 and pf ± 1 are odd, but if p is odd then all
of these integers are even. Hence these greatest common divisors are 1 when p = 2 and 2 when p
is odd, hence are equal to (p− 1, 2) as claimed.

5 Stabilizers of Characters of Degree q − 1 or q + 1

By Lemmas 4.4 and 4.5, the irreducible characters of SL2(q) and L2(q) of degree q − 1 or q + 1
are invariant in GL2(q) and PGL2(q), respectively. Also, recall that if q is even, then δ̄ is an inner
automorphism and SL2(q) ∼= PGL2(q) = L2(q). We now determine the subgroups of 〈ϕ〉 that occur
as stabilizers (in 〈ϕ〉) of characters of SL2(q), L2(q), GL2(q), or PGL2(q) of degree q − 1 or q + 1.
Throughout this section, we denote q = pf for some prime p and integer f > 2, and K will denote
a subgroup of 〈ϕ〉 of the form K = 〈ϕk〉 for some positive divisor k of f . We first determine when
K is a stabilizer of a character of degree q − 1.

Lemma 5.1. Let q = pf , k | f and K = 〈ϕk〉, and set n = (pf + 1)/(pk + 1).

i. If f/k is even, then K does not stabilize any irreducible character of SL2(q) or PGL2(q) of
degree q − 1.

ii. If f/k is odd, then K is the stabilizer in 〈ϕ〉 of θn ∈ Irr(SL2(q)), θ
(n)
q−1 ∈ Irr(PGL2(q)), and

an extension θ̂n of θn to GL2(q).

Proof. All characters of SL2(q) of degree q−1 are θj for some 1 6 j 6 [q/2] and for odd q, characters

of PGL2(q) of degree q − 1 are θ
(j)
q−1 for 1 6 j 6 (q − 1)/2. In particular, note that

1 6 j < (q + 1)/2 = (pf + 1)/2

in any case. By Lemma 4.8, θj and θ
(j)
q−1 are fixed by ϕk if and only if

pf + 1 | (pk − 1)j or pf + 1 | (pk + 1)j.

If f/k is even, then
(pf + 1, pk − 1) = (pf + 1, pk + 1) = (2, p− 1)

by Lemma 4.9. Thus if ϕk stabilizes θj or θ
(j)
q−1, then (pf + 1)/(2, p − 1) must divide j, which is

impossible as 1 6 j < (pf + 1)/2. Hence if f/k is even, ϕk does not stabilize any character of
degree q − 1.

Assume now that f/k is odd, so by Lemma 4.9, pk +1 | pf +1. Set n = (pf +1)/(pk +1). Since
pk + 1 > 3, we have

1 6 n =
pf + 1

pk + 1
6
pf + 1

3
<
pf + 1

2
=
q + 1

2
,
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hence n is an integer and n < (q+ 1)/2. If q is odd, this implies n 6 (q− 1)/2 and if q is even, this

implies n 6 q/2. Hence θn is a character of SL2(q) for any q and θ
(n)
q−1 is a character of PGL2(q)

for odd q. Moreover, we have pf + 1 | (pk + 1)n, so that by Lemma 4.8, θn and θ
(n)
q−1 are stabilized

by K.

If the stabilizer, T , of θn or θ
(n)
q−1 in 〈ϕ〉 properly contains K, then T = 〈ϕt〉 for some divisor t of

k with 1 6 t < k. Since ϕt stabilizes θn or θ
(n)
q−1, we have pf +1 | (pt+1)n or pf +1 | (pt−1)n. Hence

one of (pt + 1)/(pk + 1) or (pt − 1)/(pk + 1) is an integer. In any case, this implies pk + 1 6 pt + 1,

contradicting 1 6 t < k. Therefore, K is the stabilizer in 〈ϕ〉 of θn and θ
(n)
q−1.

Finally, we show that K is also the stabilizer in 〈ϕ〉 of some extension θ̂n of θn to GL2(q). We
assume q is odd as the result is trivial if q is even. It is straightforward to check that for any j, one

extension of θj to GL2(q) is χ
(j)
q−1. The irreducible characters of the cyclic group GL2(q)/SL2(q)

are precisely the characters χ
(i)
1 of GL2(q), for 1 6 i 6 q − 1, and so by Gallagher’s Theorem all

of the extensions of θj are the characters χ
(j)
q−1 · χ

(i)
1 . We claim that the extension θ̂n = χ

(n)
q−1 · χ

(i)
1

where

n =
pf + 1

pk + 1
and i =

pf − pk

p2k − 1
=
pk(pf−k − 1)

p2k − 1
,

has stabilizer K in 〈ϕ〉.
First, observe that since f/k is odd, f/k − 1 is even, and so 2k divides (f/k − 1)k = f − k.

Hence p2k − 1 | pf−k − 1 and i is an integer with 1 6 i 6 pf − 1 = q− 1. Thus θ̂n is an extension of
θn, and so the stabilizer of θ̂n is contained in K. It remains to show that θ̂n is invariant under ϕk.

The values of the character θ̂n and its image under ϕ−k are as follows:

θ̂n (θ̂n)ϕ−k

A1(l) (q − 1)ρ(n+2i)l (q − 1)ρ(n+2i)pkl

A2(l) −ρ(n+2i)l −ρ(n+2i)pkl

A3(l1, l2) 0 0

B1(l) −ǫ[n+(q+1)i]l − ǫ[nq+(q+1)i]l −ǫ[n+(q+1)i]pkl − ǫ[nq+(q+1)i]pkl

where ǫ is a complex primitive (q2−1)th root of unity and ρ = ǫq+1 is a complex primitive (q−1)th
root of unity.

For n and i as defined above, we have

n+ 2i =
pf − 1

pk − 1

n+ (q + 1)i = n ·
pf − 1

pk − 1
=

q2 − 1

p2k − 1

nq + (q + 1)i = npk ·
pf − 1

pk − 1
= [n+ (q + 1)i]pk.

Thus it is clear that ǫ[nq+(q+1)i]l = ǫ[n+(q+1)i]pkl for all l. Also, q2 − 1 | [n + (q + 1)i](p2k − 1), so
that

[nq + (q + 1)i]pkl = [n+ (q + 1)i]p2kl ≡ [n+ (q + 1)i]l (mod q2 − 1),

and hence ǫ[n+(q+1)i]l = ǫ[nq+(q+1)i]pkl. It follows that θ̂n and (θ̂n)ϕ−k

have the same values on the
classes B1(l). Finally, q − 1 | (n+ 2i)(pk − 1), so that (n+ 2i)l ≡ (n+ 2i)pkl (mod q − 1) for all l.

Therefore, θ̂n and (θ̂n)ϕ−k

have the same values on all classes and θ̂n is invariant under ϕ−k, and
hence also under ϕk.
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Lemma 5.2. Let q = pf be odd, k | f , K = 〈ϕk〉, and n = 2(pf + 1)/(pk + 1).

i. If f/k is even or pk = 3, then K does not stabilize any irreducible character of L2(q) of degree
q − 1.

ii. If f/k is odd and pk 6= 3, then K is the stabilizer in 〈ϕ〉 of θn ∈ Irr(L2(q)).

Proof. The characters of L2(q) of degree q−1 are θj for some even integer j with 1 6 j 6 (q−1)/2.
By Lemma 4.8, θj is fixed by ϕk if and only if

pf + 1 | (pk − 1)j or pf + 1 | (pk + 1)j.

By the same argument as in Lemma 5.1, if f/k is even, then ϕk does not stabilize any character of
degree q − 1.

Suppose now that p = 3 and k = 1, so that K = 〈ϕ〉, and f > 3 is odd. By Lemma 4.1, the
characters of L2(3

f ) of degree q− 1 are the θj with 1 6 j 6 (3f − 1)/2 and j even. By Lemma 4.8,
θj is fixed by ϕ if and only if 3f +1 | 2j or 3f +1 | 4j. Thus if K = 〈ϕ〉 stabilizes θj , then 3f +1 | 4j.
Since f is odd, 3f + 1 ≡ 4(mod 8), and so (3f + 1)/4 is odd and divides j. Since j is even, this
implies (3f + 1)/2 divides j, contradicting 1 6 j 6 (3f − 1)/2. Therefore, if p = 3 and k = 1, then
K = 〈ϕ〉 does not stabilize any character of L2(q) of degree q − 1.

We now assume pk > 3 and f/k is odd. Thus, by Lemma 4.9, pk + 1 | pf + 1, and so
n = 2(pf + 1)/(pk + 1) is an even integer. Since pk > 3, we have

1 6 n = 2 ·
pf + 1

pk + 1
< 2 ·

pf + 1

4
=
pf + 1

2
=
q + 1

2
,

hence n is a positive integer and n < (q + 1)/2, which implies n 6 (q − 1)/2. Therefore, θn is a
character of L2(q) of degree q − 1, and since pf + 1 | (pk + 1)n, θn is stabilized by ϕk.

If the stabilizer of θn properly contains K, then there is a divisor t of k with 1 6 t < k such that
ϕt stabilizes θn. Hence pf + 1 | (pt + 1)n or pf + 1 | (pt − 1)n, and so one of 2(pt + 1)/(pk + 1) or
2(pt−1)/(pk +1) is an integer. In particular, we must have pk +1 6 2(pt +1); that is, pk 6 2pt +1.
But p > 3 and 1 6 t < k, and so

pk
> pt+1

> 3pt = 2pt + pt > 2pt + 1,

a contradiction. Therefore, K is the stabilizer in 〈ϕ〉 of the character θn of L2(q).

We next determine when K = 〈ϕk〉 is the stabilizer in 〈ϕ〉 of a character of degree q + 1.

Lemma 5.3. Let q = pf be odd, k | f , and K = 〈ϕk〉.

i. If pk 6= 3, then K is the stabilizer in 〈ϕ〉 of χn ∈ Irr(SL2(q)), χ
(n)
q+1 ∈ Irr(PGL2(q)), and an

extension χ̂n of χn to GL2(q), for n = (pf − 1)/(pk − 1).

ii. If p = 3, k = 1, and f is even, then K = 〈ϕ〉 is the stabilizer in 〈ϕ〉 of χn ∈ Irr(SL2(q)),

χ
(n)
q+1 ∈ Irr(PGL2(q)), and an extension χ̂n of χn to GL2(q), for n = (3f − 1)/4.

iii. If p = 3, k = 1, and f is odd, then K = 〈ϕ〉 does not stabilize any irreducible character of
SL2(q) or PGL2(q) of degree q + 1.

Proof. Characters of SL2(q), PGL2(q) of degree q+1 are χj , χ
(j)
q+1 respectively, for 1 6 j 6 (q−3)/2.

By Lemma 4.8, χj and χ
(j)
q+1 are fixed by ϕk if and only if

pf − 1 | (pk − 1)j or pf − 1 | (pk + 1)j.
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Assume first that pk > 5 and let n = (pf − 1)/(pk − 1). We then have pk − 1 > 2, so that
n < (pf − 1)/2 = (q − 1)/2. Therefore,

n 6
q − 1

2
− 1 =

q − 3

2
,

and so χn ∈ Irr(SL2(q)) and χ
(n)
q+1 ∈ Irr(PGL2(q)). Moreover, (pk − 1)n = pf − 1, hence pf − 1

divides (pk − 1)n and χn and χ
(n)
q+1 are invariant under 〈ϕk〉. Therefore, K is contained in the

stabilizer, T , of χn and χ
(n)
q+1 in 〈ϕ〉.

We have K = 〈ϕk〉 6 〈ϕt〉 = T for some divisor t of k. Since χn and χ
(n)
q+1 are invariant under

ϕt, we have that pf − 1 divides either (pt − 1)n or (pt + 1)n, that is,

pf − 1 | (pt − 1) ·
pf − 1

pk − 1
or pf − 1 | (pt + 1) ·

pf − 1

pk − 1
.

Hence either pk − 1 | pt − 1 or pk − 1 | pt + 1. Since t | k, we have pt − 1 | pk − 1, and so if
pk − 1 | pt +1, then pt − 1 | pt +1 = (pt − 1)+2. Therefore, pt − 1 | 2 and since p is odd, this means
pt = 3. In particular, pk − 1 = 3k − 1 divides pt + 1 = 4, and hence k = 1 and pk = 3, contradicting
pk > 5. Therefore, pk − 1 | pt − 1, so that k | t, and since t | k, we have k = t and so K = T .

Now let pk = 3 so that pk − 1 = 2 and pk + 1 = 4. It follows that if ϕk = ϕ stabilizes χn or

χ
(n)
q+1 for some n, then 3f − 1 | 2n or 3f − 1 | 4n. Hence 3f − 1 | 4n in any case, and if f is odd,

then (3f − 1)/2 is odd and divides 2n. Hence (q− 1)/2 divides n, contradicting 1 6 n 6 (q− 3)/2.

Therefore, if ϕ stabilizes χn or χ
(n)
q+1 for some n, then f is even.

Conversely, if f is even, then 4 | 3f−1. Setting n = (3f−1)/4 = (q−1)/4, we have n < (q−1)/2,

so that n 6 (q− 3)/2 and χn ∈ Irr(SL2(q)) and χ
(n)
q+1 ∈ Irr(PGL2(q)). Moreover, 3f − 1 | 4n so that

χn and χ
(n)
q+1 are invariant under ϕ. Hence K = 〈ϕ〉 is the stabilizer of χn and χ

(n)
q+1.

Finally, we show that unless f is odd and pk = 3, K is also the stabilizer in 〈ϕ〉 of some extension
χ̂n of χn to GL2(q). It is straightforward to check that for any j, one extension of χj to GL2(q) is

χ
(j,q−1)
q+1 . The irreducible characters of the cyclic group GL2(q)/SL2(q) are precisely the characters

χ
(i)
1 of GL2(q), for 1 6 i 6 q− 1, and so by Gallagher’s Theorem all of the extensions of χj are the

characters χ
(j,q−1)
q+1 · χ

(i)
1 .

We claim that the extension χ̂n = χ
(n,q−1)
q+1 · χ

(i)
1 has stabilizer K in 〈ϕ〉 for some choice of i.

Since χ̂n is an extension of χn, the stabilizer of χ̂n is contained in K. We need to show that χ̂n is
invariant under ϕk.

The values of the character χ̂n and its image under ϕ−k are as follows:

χ̂n (χ̂n)ϕ−k

A1(l) (q + 1)ρ(n+2i)l (q + 1)ρ(n+2i)pkl

A2(l) ρ(n+2i)l ρ(n+2i)pkl

A3(l1, l2) (ρnl1 + ρnl2)ρi(l1+l2) (ρnl1pk

+ ρnl2pk

)ρi(l1+l2)pk

B1(l) 0 0

where ρ is a complex primitive (q − 1)th root of unity.

First assume pk 6= 3 and let i = q − 1, so that χ̂n = χ
(n,q−1)
q+1 · χ

(q−1)
1 = χ

(n,q−1)
q+1 and ρi = 1.

We have q − 1 | n(pk − 1), hence npk ≡ n (mod q − 1) and ρn = ρnpk

. It follows from the table of
character values above that χ̂n is invariant under ϕ−k, and so also under ϕk.

Now suppose p = 3, k = 1 (so K = 〈ϕ〉), and f is even. In this case, we have n = (3f − 1)/4

and we take i = (3f − 1)/8. Since f is even, i is an integer and χ̂n = χ
(n,q−1)
q+1 · χ

(i)
1 is an extension
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of χn. We have n+2i = (q−1)/2 and ρn+2i = −1. As pk = 3 is odd, it follows that χ̂n and (χ̂n)ϕ−1

agree on the classes A1(l) and A2(l). We also have n = 2i and pk = 3, and so

χ̂n(A3(l1, l2)) = ρ(3l1+l2)i + ρ(l1+3l2)i

and
(χ̂n)ϕ−1

(A3(l1, l2)) = ρ(3l1+l2)3i + ρ(l1+3l2)3i.

Finally, 9i = (q − 1) + i, hence ρ9i = ρi, and so χ̂n and (χ̂n)ϕ−1

agree on the classes A3(l1, l2).
Therefore, χ̂n is invariant under ϕ.

Lemma 5.4. Let q = pf , k | f , K = 〈ϕk〉, and n = 2(pf − 1)/(pk − 1).

i. If pk 6∈ {2, 3, 22, 5, 32}, then K is the stabilizer in 〈ϕ〉 of χn ∈ Irr(L2(q)).

ii. For pk ∈ {2, 3, 22, 5, 32}, K is the stabilizer in 〈ϕ〉 of an irreducible character of L2(q) of
degree q + 1 if and only if f/k even.

iii. If pk = 22 or 32 and f/2 is odd, then there is an irreducible character of L2(q) of degree q+1
whose stabilizer is 〈ϕ〉 and hence is invariant under K = 〈ϕ2〉.

Proof. Characters of L2(q) of degree q + 1 are χj for 1 6 j 6 (q − 2)/2 if q is even and 1 6 j 6

(q − 3)/2, j even, if q is odd. By Lemma 4.8, χj is fixed by ϕk if and only if

pf − 1 | (pk − 1)j or pf − 1 | (pk + 1)j.

Assume first that K is the stabilizer of χj for some j, and suppose pk ∈ {2, 3, 22, 5, 32}. We also
assume f/k is odd and work for a contradiction.

If pk = 2, 3, or 5, so k = 1, and K stabilizes χj , then pf − 1 | (p− 1)j or pf − 1 | (p+ 1)j. Since
f = f/k is odd, (pf − 1, p+ 1) | 2 by Lemma 4.9, and so if pf − 1 | (p+ 1)j, then pf − 1 | 2j, i.e.,
q − 1 | 2j. This contradicts the fact that j < (q − 1)/2 in all cases. Hence pf − 1 | (p− 1)j, and so
(q − 1)/(p− 1) | j. For p = 2 or 3, this again contradicts j < (q − 1)/2. Finally, for p = 5, we have
(5f − 1)/4 | j and since f is odd, (5f − 1)/4 is odd. Recalling that j must be even, we then have
2 · (5f − 1)/4 | j, and so (q − 1)/2 | j, again contradicting j < (q − 1)/2.

Now suppose pk = 22 or 32, so k = 2, and assume χj is invariant under K, hence under ϕ2, for
some j. In this case we have pf − 1 | (p2 − 1)j or pf − 1 | (p2 + 1)j. Since f/k = f/2 is odd, we
have (pf − 1, p2 + 1) | 2 by Lemma 4.9, and as before, this implies that if pf − 1 | (p2 + 1)j, then
q − 1 | 2j, a contradiction.

Hence we must have pf − 1 | (p2 − 1)j. If p = 2, this means 2f − 1 | 3j. Hence in fact
2f − 1 | (21 + 1)j, and so χj is invariant under ϕ. If p = 3, we have 3f − 1 | 8j. Since f/2 is odd, f
is not divisible by 4, and it follows that (3f − 1)/8 is odd and divides j, which is even. Hence
2 · (3f − 1)/8 | j, and so 3f − 1 | 4j = (31 + 1)j and again this implies χj is invariant under ϕ.
Therefore, in either case K = 〈ϕ2〉 is not the full stabilizer of χj in 〈ϕ〉.

On the other hand, if k = 2 and f/2 is odd, then both (2f − 1)/3 and (3f − 1)/4 are integers,
(2f − 1)/3 6 (2f − 2)/2 and (3f − 1)/4 6 (3f − 3)/2, and (3f − 1)/4 is even. Hence, setting
j = (2f − 1)/3 when p = 2 and j = (3f − 1)/4 when p = 3, we have that χj ∈ Irr(L2(q)). Since
2f − 1 = 3j and 3f − 1 = 4j, we obtain 2f − 1 | (21 + 1)j and 3f − 1 | (31 + 1)j, and so χj is
invariant under ϕ in either case.

We now have that if K is the stabilizer in 〈ϕ〉 of an irreducible character of L2(q) of degree q+1
and pk ∈ {2, 3, 22, 5, 32}, then f/k is even. We next consider the converse, and so let K = 〈ϕk〉
and if pk ∈ {2, 3, 22, 5, 32}, we assume f/k is even. We will find a j in each case such that K is the
stabilizer of χj .

We first suppose pk ∈ {2, 3, 5}, so that k = 1 and f is even. If p = 2, this implies 3 | 2f − 1 and
we set j = (2f − 1)/3, so that j < (2f − 1)/2, so j 6 (q − 2)/2 and χj ∈ Irr(L2(q)). If p = 3 or
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5, then f even implies 8 | pf − 1 and we set j = (pf − 1)/4. Thus j is even and strictly less than
(q−1)/2, hence j 6 (q−3)/2, and so χj ∈ Irr(L2(q)). In all three cases, we have j = (pf −1)/(p±1)
and so pf − 1 | (p ± 1)j, which implies that χj is invariant under ϕ. Hence the stabilizer of χj in
〈ϕ〉 is K = 〈ϕ〉.

Next, let pk = 22 or 32, so that k = 2 and f/k = f/2 is even. By Lemma 4.9, p2 +1 | pf −1 and
we set j = (pf −1)/(p2+1). For p = 2, we have j = (2f −1)/5 < (2f −1)/2, hence j 6 (q−2)/2 and
χj ∈ Irr(L2(q)). For p = 3, we have j = (3f − 1)/10 < (3f − 1)/2, hence j 6 (q − 3)/2. Also, since
f is even, 8 | 3f − 1 and so j is even. Thus again χj ∈ Irr(L2(q)). In both cases, pf − 1 | (p2 + 1)j,
and so χj is stabilized by ϕ2 = ϕk. Also p±1 < p2 +1, so (p±1)j < pf −1 and hence pf −1 divides
neither (p+ 1)j nor (p− 1)j. It follows that χj is not invariant under ϕ, and so the stabilizer of χj

in 〈ϕ〉 is K = 〈ϕ2〉, as claimed.
We now suppose pk 6∈ {2, 3, 22, 5, 32}. Set n = 2(pf −1)/(pk−1), which is even as pk−1 | pf −1.

Since pk > 7, we have

n = 2 ·
q − 1

pk − 1
6 2 ·

q − 1

6
<
q − 1

2
.

Therefore, if q is even, then n 6 (q− 2)/2 and if q is odd, then n is even and n 6 (q− 3)/2, so that
χn ∈ Irr(L2(q)) in any case. Moreover, pf − 1 | (pk − 1)n, and so χn is invariant under ϕk and K
is contained in the stabilizer T of χn in 〈ϕ〉.

We know that T is of the form T = 〈ϕt〉 for some positive divisor t of k. In particular, observe
that t | k implies pt − 1 | pk − 1. Also, since ϕt stabilizes χn, we have pf − 1 | (pt ± 1)n; that is

pf − 1 | (pt ± 1) · 2 ·
pf − 1

pk − 1
,

which implies that either pk − 1 | 2(pt − 1) or pk − 1 | 2(pt + 1).
First, we show that pk − 1 | 2(pt + 1) cannot occur if pk 6∈ {2, 3, 22, 5, 32}. If pk − 1 | 2(pt + 1),

then t | k implies pt − 1 | 2(pt + 1) = 2(pt − 1) + 4. Hence pt − 1 | 4 and pt = 2, 3, or 5, so t = 1
and we have pk − 1 | 2(p + 1) with p = 2, 3, or 5. If p = 2, then 2k − 1 | 6, hence k = 1 or 2 and
pk = 2 or 22. If p = 3, then 3k − 1 | 8, hence k = 1 or 2 and pk = 3 or 32. If p = 5, then 5k − 1 | 12,
hence k = 1 and pk = 5. Therefore, if pk 6∈ {2, 3, 22, 5, 32}, then pk − 1 ∤ 2(pt + 1).

Finally, suppose pk − 1 | 2(pt − 1). If p = 2, this implies pk − 1 | (pt − 1), hence k | t and so
t = k and T = K. If p is odd, this implies (pk − 1)/(pt − 1) divides 2. Suppose k > t, so that
(pk − 1)/(pt − 1) = 2 and pk − 1 = 2(pt − 1). We have pk > p · pt, hence

2(pt − 1) = pk − 1 > p · pt − 1 = p(pt − 1) + (p− 1) > 2(pt − 1),

a contradiction. Hence t = k and T = K in this case as well. Therefore, if pk 6∈ {2, 3, 22, 5, 32},
then K is the stabilizer in 〈ϕ〉 of χn.

6 Subgroups of Aut(L2(q)) and Their Degrees

Our goal in this section is to determine the character degrees of every group H with L2(q) 6 H 6

Aut(L2(q)). Recall that if q is even, then δ̄ is an inner automorphism, PGL2(q) = L2(q), and
Aut(L2(q)) = L2(q)〈ϕ〉. Hence, if L2(q) < H 6 Aut(L2(q)) with q even, then H = L2(q)〈ϕ

k〉 for
some k | f with 1 6 k < f , and H/L2(q) is cyclic.

If q is odd, then Aut(L2(q)) = L2(q)〈δ̄, ϕ〉 and the outer automorphism group of L2(q) is
Aut(L2(q))/L2(q) ∼= 〈δ̄〉 × 〈ϕ̄〉, where δ̄ is of order 2 and ϕ̄ is of order f . The following elementary
lemma will be useful in describing the subgroups of Aut(L2(q)) in this case.

Lemma 6.1. If A ∼= 〈x〉 × 〈y〉, where |〈x〉| = 2 and |〈y〉| = f , then any subgroup of A that does
not contain x is cyclic.
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Proof. If f is odd, then A is cyclic, so we may assume f is even. In this case, A contains exactly
three elements of order 2, as does any noncyclic subgroup of A. Thus a subgroup of A not containing
the element x of order 2 cannot contain three elements of order 2, hence is cyclic.

Corollary 6.2. If L2(q) < H 6 Aut(L2(q)) with q = pf , p an odd prime, then one of the following
occurs:

i. δ̄ ∈ H so that PGL2(q) 6 H and H = PGL2(q)〈ϕ
k〉 for some k | f with 1 6 k 6 f ;

ii. H = L2(q)〈ϕ
k〉 for some k | f with 1 6 k < f ;

iii. H = L2(q)〈δ̄ϕ
k〉 for some k | f with 1 6 k < f and f/k even.

Proof. If δ̄ ∈ H, then H contains L2(q)〈δ̄〉 ∼= PGL2(q). If δ̄ is not in H, then H/L2(q) is cyclic
by the lemma, hence H = L2(q)〈σ〉 for some outer automorphism σ. If H is not a subgroup of
L2(q)〈ϕ〉, then σ = δ̄ϕk for some k | f . Finally, f/k is the order of ϕk, and so if f/k is odd, then δ̄
is in H.

Corollary 6.3. Let L2(q) 6 H 6 Aut(L2(q)) and set G = PGL2(q) if δ̄ ∈ H and G = L2(q) if
δ̄ 6∈ H. If χ̂ ∈ Irr(H), then χ̂(1) = χ(1)|H : IH(χ)|, where χ is a constituent of χ̂G and IH(χ) is
the stabilizer of χ in H.

Proof. We have that GEH and H/G is cyclic. Hence a character χ ∈ Irr(G) extends to its stabilizer
IH(χ) in H and each extension induces irreducibly to H by Theorem 6.11 of [4]. Every character
of H lying over χ will therefore have degree χ(1)|H : IH(χ)|.

We first determine the stabilizers of characters of L2(q) of degrees 1, q, and (q + ε)/2, and the
degrees of the characters of H lying over these.

Theorem 6.4. Let S = L2(q) and let S 6 H 6 Aut(S). If χ ∈ Irr(S) has degree 1 or q, then every
irreducible character of H lying over χ has degree χ(1).

Proof. By Lemmas 4.5 and 4.6, χ is invariant in H. If H does not contain δ̄, then by Corollary 6.2,
H/S is cyclic and χ extends to H. The result then follows from Gallagher’s Theorem (see [4, 6.17]).

If δ̄ ∈ H, then by Lemma 4.5, χ extends to two irreducible characters of PGL2(q). By
Lemma 4.6, both of these are invariant in H. Since H/PGL2(q) is cyclic, these characters ex-
tend to H and the result again follows from Gallagher’s Theorem.

Theorem 6.5. Let S = L2(q) with q odd and let S 6 H 6 Aut(S). Let µ ∈ Irr(S) with µ(1) =
(q + ε)/2.

i. If H 6 S〈ϕ〉, then µ is invariant in H and every irreducible character of H lying over µ is
of degree (q + ε)/2.

ii. If H 
 S〈ϕ〉, then the stabilizer of µ in H is IH(µ) = H ∩ (S〈ϕ〉) and |H : IH(µ)| = 2. Every
irreducible character of H lying over µ is of degree q + ε.

Proof. If H 6 S〈ϕ〉, then µ is invariant in H by Lemma 4.6. Since H/S is cyclic, µ extends to H
and (i) follows from Gallagher’s Theorem ([4, 6.17]).

Assume now that H 
 S〈ϕ〉, so δ̄ϕk ∈ H for some integer k. By Lemma 4.5, µ is not fixed by
this automorphism, and so IH(µ) < H. By Lemma 4.6, µ is invariant in H ∩ (S〈ϕ〉) and we have
H ∩ (S〈ϕ〉) 6 IH(µ) < H. Since δ̄2 is an inner automorphism, |H : H ∩ (S〈ϕ〉)| = 2, and hence
IH(µ) = H ∩ (S〈ϕ〉).

We have that IH(µ) 6 S〈ϕ〉, and so IH(µ)/S is cyclic. Thus µ extends to IH(µ) and, by
Gallagher’s Theorem, each extension has degree (q + ε)/2. Finally, by Clifford’s Theorem, each
extension induces to an irreducible character of H of degree |H : IH(µ)|(q + ε)/2 = q + ε.
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Theorem 6.6. Let S = L2(q), where q = pf > 3 for a prime p, A = Aut(S), and let S 6 H 6 A.
Let G = PGL2(q) if δ̄ ∈ H and G = S if δ̄ 6∈ H, and set |H : G| = d = 2am, m odd.

The degrees of the irreducible characters of H lying over characters of G of degree q − 1 are
precisely (q − 1)2aℓ, where ℓ is a positive divisor of m, with the exception that if p = 3, f is odd,
and H = L2(q)〈ϕ〉, then ℓ 6= 1.

Proof. First suppose δ̄ ∈ H, so that H = PGL2(q)〈ϕ
f/d〉. (We include here the case where q is

even.) By Corollary 6.3, for j | d, there is a character of H of degree (q−1)j lying over a character θ
of PGL2(q) of degree q−1 if and only if |H : IH(θ)| = j, hence if and only if IH(θ) = PGL2(q)〈ϕ

k〉,
where k = (f/d)j. By Lemma 5.1, such a character θ of PGL2(q) exists if and only if f/k = d/j is
odd, that is, j = 2aℓ for some ℓ | m.

Suppose now that q is odd and δ̄ 6∈ H. By Corollary 6.2, H = L2(q)〈δ̄
cϕf/d〉, where c ∈ {0, 1}

and if d is odd, then c = 0 since δ̄ 6∈ H. Again by Corollary 6.3, there is a character of H of degree
(q− 1)j lying over a character θ of L2(q) of degree q− 1 if and only if IH(θ) = L2(q)〈δ̄

cjϕk〉, where
k = (f/d)j. By Lemma 5.2, this implies f/k = d/j must be odd, that is, j = 2aℓ for some ℓ | m.
Conversely, if d/j is odd, then such a character θ of L2(q) exists except when p = 3 and k = 1.
Since d | f , k = (f/d)j = 1 if and only if d = f (so f/d = 1) and j = 1. Observe that since d = f
is odd in this case, c = 0 and H = L2(q)〈ϕ〉.

Theorem 6.7. Let S = L2(q), where q = pf > 3 for a prime p, A = Aut(S), and let S 6 H 6 A.
Let G = PGL2(q) if δ̄ ∈ H and G = S if δ̄ 6∈ H, and set |H : G| = d.

The degrees of the irreducible characters of H lying over characters of G of degree q + 1 are
precisely (q + 1)j, where j is a positive divisor of d, with the following exceptions:

i. if f is odd, p = 3, and H = A, then j 6= 1;

ii. if f is odd, p = 2, 3, or 5, and H = S〈ϕ〉, then j 6= 1;

iii. if f ≡ 2(mod 4), p = 2 or 3, and H = S〈ϕ〉 or H = S〈δ̄ϕ〉, then j 6= 2.

Proof. First, suppose q is odd and δ̄ ∈ H, so that H = PGL2(q)〈ϕ
f/d〉. By Corollary 6.3, for j | d,

there is a character of H of degree (q + 1)j lying over a character χ of PGL2(q) of degree q + 1
if and only if |H : IH(χ)| = j, hence if and only if IH(χ) = PGL2(q)〈ϕ

k〉, where k = (f/d)j. By
Lemma 5.3, such a character χ of L2(q) exists except when f is odd, p = 3, and k = 1. Since
d | f , k = (f/d)j = 1 if and only if f = d (hence K = A) and j = 1, which is exception (i) in the
statement of the theorem.

Suppose now that either q is odd and δ̄ 6∈ H or q is even. By Corollary 6.2, H = L2(q)〈δ̄
cϕf/d〉,

where c ∈ {0, 1} and if d is odd, then c = 0 since δ̄ 6∈ H. Again, Corollary 6.3 implies that if j | d,
there is a character of H of degree (q + 1)j lying over a character χ of L2(q) of degree q + 1 if and
only if IH(χ) = L2(q)〈δ̄

cjϕk〉, where k = (f/d)j. Lemma 5.4 implies that if pk 6∈ {2, 3, 22, 5, 32}
or if pk ∈ {2, 3, 22, 5, 32} and f/k is even, then such a character χ of L2(q) exists and H has a
character of degree (q + 1)j. It therefore remains to consider the cases where pk ∈ {2, 3, 22, 5, 32}
and f/k is odd.

Suppose p = 2, 3, or 5, k = (f/d)j = 1, and f is odd. Since d | f , k = 1 implies that j = 1 and
d = f , which is odd, so that H = L2(q)〈ϕ〉. In this case, Lemma 5.4 implies there is no character
of L2(q) of degree q + 1 stabilized by H, hence H has no character of degree (q + 1)j for j = 1,
which is exception (ii) in the statement of the theorem.

Finally, suppose p = 2 or 3, k = (f/d)j = 2, and f/2 is odd, that is, f ≡ 2(mod 4). In this
case, k = (f/d)j = 2 implies that either j = 1 and d = f/2, or j = 2 and d = f .

If j = 1 and d = f/2, we have H = L2(q)〈ϕ
2〉. By Lemma 5.4, there is a character χ of L2(q)

of degree q+ 1 invariant under ϕ, hence under H, and so H has a character of degree (q+ 1)j with
j = 1.
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If j = 2 and d = f , then either H = L2(q)〈ϕ〉 or H = L2(q)〈δ̄ϕ〉, and the subgroup of H of index
j = 2 is K = L2(q)〈ϕ

2〉. However, by Lemma 5.4, K is not the stabilizer in H of any character of
L2(q) of degree q + 1 (any such character invariant under ϕ2 is also invariant under ϕ). Hence H
does not have a character of degree (q + 1)j for j = 2, which is exception (iii) in the statement of
the theorem.

Finally, we observe that Theorem A now follows from Corollary 6.3 and Theorems 6.4, 6.5, 6.6,
and 6.7.

7 Subgroups of (SL2(q) ⋊ 〈δ〉) ⋊ 〈ϕ〉 and Their Degrees

Throughout this section we will denote A = (SL2(q) ⋊ 〈δ〉) ⋊ 〈ϕ〉 = GL2(q) ⋊ 〈ϕ〉, where q = pf

is odd. Our goal is to determine the character degrees of all subgroups of A of the form H =
(SL2(q) ⋊ 〈δα〉) ⋊ 〈ϕβ〉, where α | q − 1 and β | f .

We will first determine the characters of H0 = SL2(q)⋊〈δα〉 lying over the irreducible characters
of SL2(q) of degree 1, q, (q−1)/2, and (q+1)/2 and then determine the stabilizers of these characters
in H. As before, since H/H0 is cyclic, each character of H0 will extend to its stabilizer in H and
then induce irreducibly to H. For the characters of SL2(q) of degrees q−1 and q+1, we have shown
that each of the characters of degree q − 1 or q + 1 from Lemmas 5.1 and 5.3 has an extension to
GL2(q), hence also to H0, with the same stabilizer in 〈ϕ〉.

The following lemma will be necessary for computing restrictions of characters of GL2(q) to H0.
It is straightforward to verify the lemma using the list of conjugacy class representatives in [9].

Lemma 7.1. Let α | q − 1, H0 = SL2(q) ⋊ 〈δα〉, and α′ = α/(2, α). An element X of GL2(q) is
in H0 if and only if the determinant of X is a power of να. Representatives of the the conjugacy
classes of GL2(q) that are contained in H0 are as follows:

i. A1(jα
′), where 1 6 j 6 (q − 1)/α′;

ii. A2(jα
′), where 1 6 j 6 (q − 1)/α′;

iii. A3(l1, l2), where 1 6 li 6 q − 1, l1 6= l2, and l1 + l2 = jα for some integer j;

iv. B1(jα), where 1 6 j 6 (q2 − 1)/α, q + 1 ∤ jα.

Observe that if α is odd, each conjugacy class of GL2(q) contained in H0 is a single conjugacy
class of H0, but if α is even, then the class of A2(l) in GL2(q) splits into two conjugacy classes
A′

2(l) and A′′
2(l) of H0.

7.1 Characters of H Lying Over 1SL and ψ

The irreducible characters of SL2(q) of degree 1 and q are the principal character 1SL and the
Steinberg character ψ, respectively. These extend to the principal and Steinberg character of

GL2(q), denoted in [9] by 1GL = χ
(q−1)
1 and St = χ

(q−1)
q , respectively. By Gallagher’s Theorem, the

remaining irreducible characters of GL2(q) lying over 1SL and ψ are the products of these characters
with the q − 1 irreducible characters of GL2(q)/SL2(q), which is cyclic of order q − 1. Of course,

the characters of this quotient are precisely the extensions of 1SL, which are denoted χ
(n)
1 for n =

1, 2, . . . , q−1 in [9], and the extensions of the Steinberg character are χ
(n)
q = St ·χ

(n)
1 = χ

(q−1)
q ·χ

(n)
1 .

The irreducible characters of H0 lying over 1SL and ψ are therefore the restrictions of χ
(n)
1 and

χ
(n)
q = St · χ

(n)
1 to H0. As the Steinberg character St is invariant under ϕ, the stabilizer in 〈ϕ〉 of

the restriction of χ
(n)
q to H0 is equal to the stabilizer of the restriction of χ

(n)
1 .

17



Lemma 7.2. Let q = pf be odd, H0 = SL2(q)⋊〈δα〉 for α | q−1, and ℓ = (q−1)/α = |H0 : SL2(q)|.

Let β | f . For n = 1, 2, . . . , q − 1, the stabilizer in 〈ϕβ〉 of (χ
(n)
1 )H0

and (χ
(n)
q )H0

is 〈ϕβk〉, where k
is the order of pβ modulo ℓ/(ℓ, n).

Proof. As noted above, we only need to consider the restriction of χ
(n)
1 to H0. By Lemma 7.1,

Lemma 3.3, and the values of χ
(n)
1 given in [9], the values of (χ

(n)
1 )H0

and its image under ϕ−r for
any r | f are as follows:

(χ
(n)
1 )H0

(χ
(n)
1 )ϕ−r

H0

A1(jα
′) ρ2njα′

ρ2njα′pr

A2(jα
′) ρ2njα′

ρ2njα′pr

A3(l1, l2) ρnjα ρnjαpr

B1(jα) ρnjα ρnjαpr

where ρ is a complex primitive (q − 1)th root of unity. Note that since α | q − 1, we know that

q+ 1 ∤ α and so B1(α) is a conjugacy class of H0. Therefore, if (χ
(n)
1 )H0

is invariant under ϕr (and
hence under ϕ−r) we must have ρnα = ρnαpr

, and thus nα ≡ nαpr(mod q − 1). Conversely, if this

congruence holds, then, since 2α′ is either α or 2α, it is clear that (χ
(n)
1 )H0

is invariant under ϕr.

We therefore have that (χ
(n)
1 )H0

is invariant under ϕr if and only if pf − 1 | nα(pr − 1).
Suppose now that ϕr is in 〈ϕβ〉, and let r = βk for a positive integer k. Replacing α with

(q− 1)/ℓ, we have that (χ
(n)
1 )H0

is invariant under ϕβk if and only if pf − 1 | n((pf − 1)/ℓ)(pβk − 1),
hence if and only if ℓ | n(pβk − 1), which is equivalent to ℓ/(ℓ, n) | (pβk − 1). Therefore, if k is

the order of pβ modulo ℓ/(ℓ, n), then by definition ϕβk stabilizes (χ
(n)
1 )H0

, but no smaller positive

power of ϕβ does, and so the stabilizer of (χ
(n)
1 )H0

in 〈ϕβ〉 is 〈ϕβk〉.

Theorem 7.3. Let q = pf be odd and set H = (SL2(q) ⋊ 〈δα〉) ⋊ 〈ϕβ〉 and H0 = SL2(q) ⋊ 〈δα〉,
where α | q − 1 and β | f . Denote d = f/β = |H : H0| and ℓ = (q − 1)/α = |H0 : SL2(q)|.

The set of degrees of irreducible characters of H lying over the principal character of SL2(q) is

{k : k | d and k = Ov(p
β) for some v | ℓ}

and the set of degrees of irreducible characters of H lying over the Steinberg character of SL2(q) of
degree q is

{qk : k | d and k = Ov(p
β) for some v | ℓ}.

Proof. By the remarks above, the irreducible characters of H lying over 1SL and ψ are precisely

those lying over the restrictions of χ
(n)
1 and χ

(n)
q to H0. As H/H0

∼= 〈ϕβ〉 is cyclic, each irreducible
character χ of H0 will extend to its stabilizer I in H and then induce to H. Hence the degree
of each character of H lying over χ is |H : I|χ(1). Therefore, k is the degree of an irreducible
character of H lying over the principal character of SL2(q) if and only if Ik = H0 ⋊ 〈ϕβk〉 is the

stabilizer in H of (χ
(n)
1 )H0

for some 1 6 n 6 q − 1.

By Lemma 7.2, if Ik is the stabilizer in H of (χ
(n)
1 )H0

, then k is the order of pβ modulo the
divisor v = ℓ/(ℓ, n) of ℓ. Conversely, suppose v | ℓ and k is the order of pβ modulo v. Setting
n = ℓ/v, we have 1 6 n 6 ℓ 6 q − 1 and (ℓ, n) = n = ℓ/v. Hence k is the order of pβ modulo

v = ℓ/(ℓ, n), and Ik is the stabilizer in H of (χ
(n)
1 )H0

.
Therefore, the degrees of characters of H lying over the principal character of SL2(q) are as

claimed. As the stabilizers of (χ
(n)
1 )H0

and (χ
(n)
q )H0

in H are the same, the second conclusion in
the lemma follows from the first.
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7.2 Characters of H Lying Over ξ1, ξ2, η1, and η2

We next consider characters of H lying over the irreducible characters ξ1, ξ2, η1, and η2 of SL2(q).
These characters are invariant under ϕ and under δ2, while ξδ

i = ξj and ηδ
i = ηj for i 6= j. Each

character ξi, ηi extends to (q − 1)/2 irreducible characters of its stabilizer G0 = SL2(q) ⋊ 〈δ2〉 in
GL2(q) and then induces irreducibly to GL2(q). It is not difficult to determine from the character

tables of GL2(q) and SL2(q) that the characters of GL2(q) lying over ξ1 and ξ2 are χ
(n,n+ q−1

2
)

q+1 for

1 6 n 6 (q− 1)/2, and the characters of GL2(q) lying over η1 and η2 are χ
(n· q+1

2
)

q−1 for 1 6 n 6 q− 1

and n odd. For 1 6 n 6 (q − 1)/2, denote by ξ
(n)
i the extension of ξi to G0 such that ξ

(n)
1 and

ξ
(n)
2 induce to χ

(n,n+ q−1

2
)

q+1 , and for 1 6 n 6 q − 1 and n odd, denote by η
(n)
i the extension of ηi

to G0 such that η
(n)
1 and η

(n)
2 induce to χ

(n· q+1

2
)

q−1 . As before, set H = (SL2(q) ⋊ 〈δα〉) ⋊ 〈ϕβ〉 and
H0 = SL2(q) ⋊ 〈δα〉, where α | q − 1 and β | f .

Let α′ = α/(2, α), so that H0 ∩ G0 = SL2(q) ⋊ 〈δ2α′

〉. The characters of H0 ∩ G0 lying over

ξ1, ξ2, η1, and η2 are just the restrictions of ξ
(n)
i and η

(n)
i to H0 ∩ G0. Setting Z = Z(GL2(q)),

we have that G0 is a central product of SL2(q) and Z, with SL2(q) ∩ Z = 〈z〉 of order 2. Thus
G0

∼= (SL2(q) × Z)/〈(z, z)〉. Viewing Z as the cyclic group of order q − 1, it is straightforward to
calculate the values of the characters of G0 lying over ξ1, ξ2, η1, and η2. Their restrictions to H0

are given in the following lemma.

Lemma 7.4. Let q = pf be odd, G0 = SL2(q) ⋊ 〈δ2〉, and H0 = SL2(q) ⋊ 〈δα〉, where α | q − 1.

Let α′ = α/(2, α), so that H0 ∩G0 = SL2(q) ⋊ 〈δ2α′

〉. The extensions of ξi and ηi to H0 ∩G0 are

ξ̂
(n)
i = (ξ

(n)
i )H0∩G0

and η̂
(n)
i = (η

(n)
i )H0∩G0

, and the values of these characters are as follows:

ξ̂
(n)
1 ξ̂

(n)
2 η̂

(n)
1 η̂

(n)
2

A1(jα
′) 1

2 (q + 1)(−1)jα′

ρ2njα′ 1
2 (q + 1)(−1)jα′

ρ2njα′ 1
2 (q − 1)(−1)jα′

ρnjα′ 1
2 (q − 1)(−1)jα′

ρnjα′

A′
2(jα

′)
1+

√
εq

2 (−1)jα′

ρ2njα′ 1−
√

εq

2 (−1)jα′

ρ2njα′ −1+
√

εq

2 (−1)jα′

ρnjα′ −1−
√

εq

2 (−1)jα′

ρnjα′

A′′
2(jα′)

1−
√

εq

2 (−1)jα′

ρ2njα′ 1+
√

εq

2 (−1)jα′

ρ2njα′ −1−
√

εq

2 (−1)jα′

ρnjα′ −1+
√

εq

2 (−1)jα′

ρnjα′

A3(l1, l2) (−1)l1ρ2njα′

(−1)l1ρ2njα′

0 0

B1(2jα
′) 0 0 −ρnjα′

−ρnjα′

where ρ is a complex primitive (q − 1)th root of unity, ε = (−1)(q−1)/2, and l1 + l2 = 2jα′.
If α is even, then H0 = H0 ∩G0.

If α is odd, then for each 1 6 n 6 (q − 1)/2, ξ̂
(n)
1 and ξ̂

(n)
2 induce irreducibly to a character of

H0 of degree q+1 and for each odd n, 1 6 n 6 q−1, η̂
(n)
1 and η̂

(n)
2 induce irreducibly to a character

of H0 of degree q − 1.

We next determine the stabilizer in 〈ϕβ〉 of the irreducible characters of H0 lying over ξ1, ξ2,
η1, and η2.

Lemma 7.5. Let q = pf be odd and set G0 = SL2(q) ⋊ 〈δ2〉 and H0 = SL2(q) ⋊ 〈δα〉 for α | q − 1.
Set α′ = α/(2, α) and ℓ = (q − 1)/(2α′) = |H0 ∩G0 : SL2(q)|. Let β | f .

i. The stabilizer in 〈ϕβ〉 of the characters ξ̂
(n)
1 and ξ̂

(n)
2 of H0 ∩ G0, for 1 6 n 6 (q − 1)/2, is

〈ϕβk〉, where k is the order of pβ modulo ℓ/(ℓ, n).

ii. The stabilizer in 〈ϕβ〉 of the characters η̂
(n)
1 and η̂

(n)
2 of H0 ∩ G0, for 1 6 n 6 q − 1 and n

odd, is 〈ϕβk〉, where k is the order of pβ modulo 2ℓ/(ℓ, n).

iii. Moreover, if α is odd, the stabilizer of the induced character (ξ̂
(n)
i )H0 or (η̂

(n)
i )H0 is equal to

the stabilizer of ξ̂
(n)
i or η̂

(n)
i respectively.
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Proof. For r | f , the effect of ϕ−r acting on any of ξ̂
(n)
i or η̂

(n)
i is to replace jα′ in each character

value with jα′pr and l1 with l1p
r. As pr is odd, this has no effect on the value of either (−1)jα′

or

(−1)l1 . Also, if α is odd, (ξ̂
(n)
i )H0 = ξ̂

(n)
1 + ξ̂

(n)
2 and (η̂

(n)
i )H0 = η̂

(n)
1 + η̂

(n)
2 on H0 ∩ G0 and both

vanish on H0 − (H0 ∩G0), and so (iii) holds.

If ϕr (and hence ϕ−r) stabilizes ξ̂
(n)
i , then because A1(α

′) is a conjugacy class of H0 ∩ G0,
we must have 2nα′ ≡ 2nα′pr(mod q − 1). Conversely, if this congruence holds, then 2njα′ ≡

2njα′pr(mod q−1) for every integer j, and so ϕr stabilizes ξ̂
(n)
i . Therefore, ϕr stabilizes ξ̂

(n)
i if and

only if pf − 1 | 2nα′(pr − 1).
Suppose now that ϕr is in 〈ϕβ〉, and let r = βk for a positive integer k. Replacing 2α′ with

(q − 1)/ℓ, we have that ξ̂
(n)
i is invariant under ϕβk if and only if pf − 1 | n((pf − 1)/ℓ)(pβk − 1),

hence if and only if ℓ | n(pβk − 1), which is equivalent to ℓ/(ℓ, n) | (pβk − 1). Therefore, if k is the

order of pβ modulo ℓ/(ℓ, n), then by definition ϕβk stabilizes ξ̂
(n)
i , but no smaller positive power of

ϕβ does, and so the stabilizer of ξ̂
(n)
i in 〈ϕβ〉 is 〈ϕβk〉.

Similarly, ϕr stabilizes η̂
(n)
i if and only if pf − 1 | nα′(pr − 1). If r = βk for a positive integer k,

replacing α′ with (q− 1)/(2ℓ) yields η̂
(n)
i is invariant under ϕβk if and only if 2ℓ | n(pβk − 1), which

is equivalent to 2ℓ/(ℓ, n) | (pβk − 1), since n is odd. The conclusion (ii) now follows as before.

Theorem 7.6. Let q = pf be odd and set G0 = SL2(q) ⋊ 〈δ2〉, H = (SL2(q) ⋊ 〈δα〉) ⋊ 〈ϕβ〉, and
H0 = SL2(q) ⋊ 〈δα〉, where α | q − 1 and β | f . Denote d = f/β = |H : H0|, α

′ = α/(2, α), and
ℓ = (q − 1)/(2α′) = |H0 ∩G0 : SL2(q)|.

i. The set of degrees of irreducible characters of H lying over ξ1 and ξ2 is
{

1

(α, 2)
(q + 1)k : k | d and k = Ov(p

β) for some v | ℓ

}

.

ii. The set of degrees of irreducible characters of H lying over η1 and η2 is
{

1

(α, 2)
(q − 1)k : k | d and k = O2v(p

β) for some v | ℓ with ℓ/v odd

}

.

Proof. The irreducible characters of H lying over ξi and ηi are precisely those lying over the

extensions ξ̂
(n)
i and η̂

(n)
i to H0∩G0. Let χ = ξi or χ = ηi and let χ̂ be an extension of χ to H0∩G0.

Denote by I = I〈ϕβ〉(χ̂) the stabilizer of χ̂ in 〈ϕβ〉.

If α is even, then H0 ∩ G0 = H0 and H/H0
∼= 〈ϕβ〉 is cyclic, thus χ̂ extends to its stabilizer

H0 ⋊ I in H and then induces irreducibly to H. Hence the degree of each character of H lying
over χ is |H : H0 ⋊ I|χ(1) = |〈ϕβ〉 : I|χ(1).

If α is odd, then χ̂ induces irreducibly to (χ̂)H0 ∈ Irr(H0). By Lemma 7.5, the stabilizer of
(χ̂)H0 in 〈ϕβ〉 is the same as that of χ̂. Hence (χ̂)H0 extends to its stabilizer H0 ⋊ I in H and then
induces irreducibly to H as before. We have |H0 : H0 ∩ G0| = 2, and so χ̂H0(1) = 2χ(1). Thus if
α is odd, the degree of each character of H lying over χ is 2|H : H0 ⋊ I|χ(1) = 2|〈ϕβ〉 : I|χ(1).
Hence, for any α, the degree is 2

(2,α) |〈ϕ
β〉 : I|χ(1).

Therefore, 1
(α,2)(q + 1)k is the degree of an irreducible character of H lying over ξ1 or ξ2 if and

only if Ik = 〈ϕβk〉 is the stabilizer in 〈ϕβ〉 of ξ̂
(n)
i for some 1 6 n 6 (q − 1)/2. By Lemma 7.5,

if Ik is the stabilizer in 〈ϕβ〉 of ξ̂
(n)
i , then k is the order of pβ modulo the divisor v = ℓ/(ℓ, n)

of ℓ. Conversely, suppose v | ℓ and k is the order of pβ modulo v. Setting n = ℓ/v, we have
1 6 n 6 ℓ 6 (q − 1)/2 and (ℓ, n) = n = ℓ/v. Hence k is the order of pβ modulo v = ℓ/(ℓ, n) and Ik

is the stabilizer in 〈ϕβ〉 of ξ̂
(n)
i .

Similarly, 1
(α,2)(q − 1)k is the degree of an irreducible character of H lying over η1 or η2 if and

only if Ik = 〈ϕβk〉 is the stabilizer in 〈ϕβ〉 of η̂
(n)
i for some 1 6 n 6 q−1 with n odd. By Lemma 7.5,
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if Ik is the stabilizer in 〈ϕβ〉 of η̂
(n)
i , then k is the order of pβ modulo 2v for the divisor v = ℓ/(ℓ, n)

of ℓ, and ℓ/v = n is odd. Conversely, suppose v | ℓ, with ℓ/v odd, and k is the order of pβ modulo
2v. Setting n = ℓ/v, we have 1 6 n 6 ℓ 6 q − 1 and (ℓ, n) = n = ℓ/v is odd. Hence k is the order

of pβ modulo 2v = 2ℓ/(ℓ, n) and Ik is the stabilizer in 〈ϕβ〉 of η̂
(n)
i .

The degrees of characters of H lying over ξ1, ξ2, η1, and η2 are therefore as claimed.

7.3 Characters of H Lying Over θj and χi

We next consider characters of H lying over the irreducible characters θj and χi of SL2(q). These
characters are invariant under δ, and in Lemmas 5.1 and 5.3 we determined the subgroups 〈ϕk〉 of
〈ϕ〉 that occur as stabilizers of some θj or χi. Moreover, we showed that for each of these subgroups,
there is an character of SL2(q) and an extension of that character to GL2(q) with stabilizer 〈ϕk〉 in
〈ϕ〉.

Theorem 7.7. Let q = pf be odd and set H = (SL2(q) ⋊ 〈δα〉) ⋊ 〈ϕβ〉 and H0 = SL2(q) ⋊ 〈δα〉,
where α | q − 1 and β | f . Denote d = 2am = f/β = |H : H0|, where m is odd.

i. The set of degrees of irreducible characters of H lying over θn for some n is {(q−1)2ai : i | m}.

ii. The set of degrees of irreducible characters of H lying over χn for some n is {(q+1)j : j | d},
with the exception that if p = 3, β = 1, and f is odd, then j 6= 1.

Proof. If χ = θn or χ = χn is a character of SL2(q) of degree q − 1 or q + 1, then χ is invariant
under δ and so extends to a character χ̂ of H0. As H/H0

∼= 〈ϕβ〉 is cyclic, χ̂ extends to its stabilizer
IH(χ̂) in H and then induces irreducibly to a character of H of degree |H : IH(χ̂)|χ(1). Since χ is
invariant under δ, IH(χ̂) = H0 ⋊ 〈ϕβj〉 for some j | d, and |H : IH(χ̂)| = j. Hence, for j | d, there
is an irreducible character of H of degree χ(1)j lying over χ if and only if there is an extension χ̂
of χ to H0 such that I〈ϕβ〉(χ̂) = 〈ϕβj〉. Observe also that I〈ϕβ〉(χ̂) 6 I〈ϕβ〉(χ) 6 I〈ϕ〉(χ).

We first consider degrees of characters of H lying over some character of SL2(q) of degree q− 1.
Let j | d. If d/j = f/(βj) is even, then by Lemma 5.1, no irreducible character of SL2(q) is
invariant under ϕβj . Hence there is no character of H of degree (q − 1)j lying over a character of
SL2(q) of degree q − 1. If d/j is odd, that is, j = 2ai for some i | m, then by Lemma 5.1 there is
θn ∈ Irr(SL2(q)) and an extension of θn to GL2(q) that both have stabilizer 〈ϕβj〉 in 〈ϕ〉. Hence
there is an extension of θn to H0 with this stabilizer as well, and so there is a character of H of
degree (q − 1)j = (q − 1)2ai lying over θn.

Finally, we consider degrees of characters of H lying over some character of SL2(q) of degree
q + 1. Let j | d. By Lemma 5.3, unless p = 3, f is odd, and β = j = 1, there is χn ∈ Irr(SL2(q))
and an extension of χn to GL2(q) that both have stabilizer 〈ϕβj〉 in 〈ϕ〉. Hence there is also an
extension of χn to H0 with this stabilizer, and so there is a character of H of degree (q + 1)j
lying over χn. If p = 3, f is odd, and β = j = 1 (so that ϕβj = ϕ), then there is no character
of SL2(q) of degree q + 1 that is invariant under ϕ, and hence no character of H0 lying over any
χn ∈ Irr(SL2(q)) is invariant under ϕ. Thus there is no character of H of degree q + 1 lying over
any χn ∈ Irr(SL2(q)).
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