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Abstract: Variable-length license plate segmentation and recognition has always been a challenging
barrier in the application of intelligent transportation systems. Previous approaches mainly concern
fixed-length license plates, lacking adaptability for variable-length license plates. Although objection
detection methods can be used to address the issue, they face a series of difficulties: cross class
problem, missing detections, and recognition errors between letters and digits. To solve these
problems, we propose a machine learning method that regards each character as a region of interest.
It covers three parts. Firstly, we explore a transfer learning algorithm based on Faster-RCNN with
InceptionV2 structure to generate candidate character regions. Secondly, a strategy of cross-class
removal of character is proposed to reject the overlapped results. A mechanism of template matching
and position predicting is designed to eliminate missing detections. Moreover, a twofold broad
learning system is designed to identify letters and digits separately. Experiments performed on
Macau license plates demonstrate that our method achieves an average 99.68% of segmentation
accuracy and an average 99.19% of recognition rate, outperforming some conventional and deep
learning approaches. The adaptability is expected to transfer the developed algorithm to other
countries or regions.

Keywords: character segmentation; ROI detection; deep transfer learning; cross class removal; broad
learning system

1. Introduction

Automatic license plate recognition (ALPR) plays an important role in intelligent
transportation systems [1–4]. The core of ALPR is to recognize license plate characters that
constitute an identification of a vehicle [5–7]. For each country or region, it has its own
standards for license plates. If only one standard is required, license plates can be produced
with a fixed length. In practice, due to historic or political reasons, more than one type of
license plates are used in one country or region. Each type of license plate has its own fixed
length and character distributions. Thus, it results in various representations of license
plates [8–11].

Generally, two factors have influences on ALPR. The first factor is that there are many
variable-length license plates. Some samples are shown in Figure 1. Four, five, or six
characters are printed on one plate. Significant differences appear between single-row and
double-row license plates. The second is that there are many variations between characters
such as color, font, space mark, and screws. Notably, some letters are similar with some
digits, for example, ‘A’ and ‘4’, ‘Q’ and ‘0’, and ‘B’ and ‘8’.
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Figure 1. Some examples of variable-length license plates. Different numbers, colors, and fonts
are covered.

Previous works mainly focus on fixed-length license plates with one style. They
include projection-based approaches [12–16], MSER-based approaches [17,18], con-
nected components analysis-based approaches [19–21], and template matching-based
approaches [22–24]. Although these approaches have achieved good results in given
scenes, they lack of flexibility and adaptability to handle variable-length license plates.
Thus, investing variable-length license plate segmentation and recognition is necessary
and valuable.

The objective of this paper is to propose a solution to solve the problems of variable-
length license plate segmentation and recognition. Recently, deep learning-based methods
have achieved surprising results in the field of ALPR [4]. However, some problems still
exist, as shown in Figure 2. The first is the cross-class problem. For one character on the
license plate, more than one region might be located. The overlapped regions have the
same class in most cases. One potential reason is that detection models of deep neural
network may be restricted by its region proposal network. The overlapped regions also
have different classes. One possibility is that some subregions of complex character (e.g.,
‘M’ and ‘W’) are probably detected by deep learning models.

The second problem is false positives or missing detections. Figure 2b sheds light
on some background regions that look similar to characters, and these regions are easily
detected as characters. It should be noted that some real characters are not detected by
deep learning methods. One of the main reasons seems to be that deep learning methods
are data-driven, and a limited number of samples cannot ensure that trained models cover
all application scenes.

Thirdly, recognition errors may occur due to the similarity between letters and digits,
for example, digit ‘1’ and letter ‘I’. The reason may be derived from the absurd structure
design of license plates. Designers initially do not consider the minor differences between
some letters and digits carefully. It is impracticable to transform all types of license plates
into a unified type due to reasons with respect to time and cost.

In this paper, we propose a solution for the segmentation and recognition of variable-
length license plates. Our work is based on the results of license plate detection [11]. Given
one license plate, regions of interests (ROIs) are detected firstly. Then, cross class is removed
and template matching is carried out to overcome missing detections. Lastly, two-fold
broad learning systems are exploited for recognition. The main contributions include the
following:

• We propose a method that regards character segmentation problem as an object
detection problem. A deep transfer learning model based on Faster-RCNN framework
is trained to generate sufficient ROIs;

• A strategy of cross class removal of character is designed to reject overlapped ROIs,
and a mechanism of template matching is designed to predict missing characters.
They can improve segmentation accuracy significantly;

• This paper exploits two-fold broad learning systems for character recognition. It can
largely reduce recognition errors caused by the confusion between letters and digits.
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(a)

(b)

(c)

Figure 2. Some problems of character segmentation and recognition generated by the ROI detection
approach. (a) Cross class problem. (b) False positives or missing detections. (c) Recognition confusion
between letters and digits.

2. Related Work

Over the past decade, many algorithms were proposed for license plate character
segmentation (LPCS). They can be divided into conventional methods and deep learn-
ing methods.

2.1. Conventional Methods

Generally, conventional LPCS methods are classified as follows: projection-based
methods [12–16], MSER-based methods [17,18], CCA-based methods [19–21], and
template matching-based methods [22–24].

Pun et al. [13] explored an edge-based method for ALPR. Vertical projection is used
to extract character separators by using the pixel intensities followed by morphological
erosion and trimming operations. However, it mainly tackled some simple scenes for
Macau license plates with a 95% recognition rate. Ariel et al. [16] employed vertical and
horizontal coordinates to delimit characters for Argentine license plates, which reached an
accuracy of 96.49%. Our previous work [14] exploited a key character and used projection
analysis to segment single-row or double-row license plates in Macau. However, only
fixed-length license plates were processed.

Yang et al. [17] employed a Maximally Stable Extremal Region (MSER) to detect
candidate regions and located the positions of characters using the template matching
approach. It was able to process two kinds of Chinese license plates. However, it faces
challenges in touching characters. Kim et al. [20] exploited a super-pixel based degeneracy
factor to realize the adaptive binarization of character regions. Then, CCA is used to
obtain segmented characters. It is claimed to be effective for local illumination change
scenes. Gonccalves et al. [19] presented a detailed review about character segmentation.
They hold the view that the (near) optimal effectiveness of LPCS is very important for
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ALPR. CCA was selected to segment license plate characters of Brazilian plates. Miao [22]
explored the characteristics of horizontal and vertical projections for LPCS by applying a
variable-length template matching strategy. Although the templates have multiple sizes,
the number of license plate characters is fixed. Kim et al. [24] firstly detected one common
character from an anchor image and then used a classifier to determine the license plate
type. Structural information was utilized to estimate the approximate locations of other
characters according to the type. However, if the common character was not found, the
method failed.

In addition, there are some other methods developed for character segmentation
task [25–29]. Most conventional methods primarily focus on fixed-length license plates for
which their characters are frontal and structured information is clear.

2.2. Deep Learning Methods

Most deep learning methods for ALPR depend on Convolutional Neural Network
(CNN).

Musaddid et al. [30] used some techniques including CNN, sliding window, and
a bounding box refinement for the character segmentation of Indonesian license plates.
Sliding window provides candidate regions that will be classified by CNN. However, this
process requires increased computation costs. Silva et al. [29] proposed a flexible approach
for ALPR and agreed to use detection-based methods for character segmentation, especially
for multi-row characters. The culmination some prior knowledge can help improve the
recognition rate.

Duan et al. [31] developed an end-to-end CNN classification model to detect consec-
utive characters. However, it is limited to imbalanced data. Selmi et al. [32] employed
Mask-RCNN to extract object instance regions and classified 38 classes of characters. It
might avoid the cross-class problem, but it cannot handle the confusion problem between
letters and digits. An ROI-based deep learning method [33] was proposed for the character
segmentation of variable-length license plates, which achieved higher accuracy than some
conventional methods for LPCS. However, the cross-class problem and missing detection
problem remain to be solved. In addition, there are many other methods proposed for
ALPR [34–38]. As far as object recognition is concerned, many algorithms including neural
networks have been proposed [39–44]. Notably, it is reported that the broad learning system
(BLS) [43,44] has advantages over deep learning methods [40,42] in training efficiency.

In summary, deep learning methods have been verified to have advantages over
conventional methods in the field of LPCS. ROI detection-based methods are expected to
segment characters well for variable-length license plates [33]. In this paper, Faster-RCNN
framework [45] and InceptionV2 structure[46] are employed for variable-length LPCS, and
the broad learning system is selected for character recognition.

3. The Proposed Method

The outline to our method is illustrated in Figure 3. It mainly has three stages. Stage A
aims to provide candidate character regions, i.e., ROIs. Stage B is designed to remove cross
class and reduce missing detections. With the potential candidate regions, two-fold broad
learning systems are utilized for character recognition in Stage C.
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Figure 3. The flowchart of the proposed method. It includes three stages: stage A is employed to
generated ROIs, stage B is designed to remove cross class and predict positions of missing characters,
and stage C is designed to handle the problem of recognition confusions.

3.1. Deep Learning for ROI Detection

In this section, the character segmentation problem is converted into an object detection
problem because each character can be regarded as an object. We train a deep transfer
learning model to realize the function. It is built up on Faster-RCNN with InceptionV2
structure, which encompasses four steps.

1. Extract feature maps through Conv layers. This step is designed by a series of conv +
relu+ poolinglayers. The last feature map is shared by the subsequent operations such
as region proposal network (RPN) and ROI pooling.

2. Generate proposals by RPN. RPN is utilized to provide a group of potential charac-
ter proposals for classification. Each proposal is an anchor. To generate sufficient
proposals, three aspect ratios (0.5, 1.0, and 2.0) and four scales (0.25, 0.5, 1.0, and 2.0)
are selected. RPN includes a box-regression layer and a box-classification layer. It
determines whether a box belongs to object or background, and it also adjusts the
positions of a box.

3. Obtain fixed-dimension of features by ROI pooling. It receives a feature map from
step 1. and converts different dimension of proposals into a fixed-dimension feature
map by using the max-pooling operation. It generates a fixed dimension of the feature
map for multi-dimension feature maps.

4. Proposal classification. It receives feature maps of many proposals and outputs
classification results. Meanwhile, the positions of proposals are predicted by bounding
box regression. Finally, the objects and their locations are generated.

It is pretty clear that RPN is of importance to produce effective proposals, which
ensures detection accuracy. Considering the small sizes for most license plates, a good
trade-off can be achieved by the straightforward pass of four steps. Moreover, a traditional
convolution network used in Faster-RCNN requires many computations and faces repre-
sentational bottleneck. To address these issues, the InceptionV2 structure is employed [46].

In this paper, our ROI detection model is transferred from a model that is pre-trained on
a COCO dataset (https://github.com/tensorflow/models/blob/master/research/object_
detection/g3doc/tf1_detection_zoo.md, accessed on 1 January 2022). All training images
for character detection are labeled manually by a tool called “LabelImg” (https://github.
com/tzutalin/labelImg/, accessed on 1 January 2022). Finally, a group of candidate
characters with locations and scores was generated.

3.2. Proposed Techniques for ROIs Processing
3.2.1. Proposed Cross Class Removal of Character

Although the ROI detection technique provides many regions, overlapped regions
may occur, as illustrated in Figure 2a. This easily results in redundant detections and

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tzutalin/labelImg/
https://github.com/tzutalin/labelImg/
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causes erroneous recognitions. This is called the cross-class problem. To solve the problem,
the redundant regions need to be removed. Thus, a strategy of Cross Class Removal of
Character (CCRC) is proposed as follows.

For one license plate, firstly, its candidate regions are sorted by x coordinate ascending.
Then, all the values of Intersection over Union (IoU) between adjacent regions are computed.
IoU is used to compare with a threshold τ. If one IoU value is larger than τ, the two regions
are merged into one new region. It is effective for single-row license plates. When it
comes to double-row license plates, they are divided into two rows. After that, each row is
handled individually. In practice, τ = 0.25 may provide satisfactory results. The process of
obtaining accurate segmented characters is described in Algorithm 1.

Algorithm 1 Cross Class Removal of Character.

Input: Candidate regions C = {C1, C2, . . . , Ck} with their locations.
Output: Updated regions UC = {UC1, UC2, . . . , UCm}.

1: Do ascending sort according to x position for all candidate regions C’ ={
C
′
1, C

′
2, . . . , C

′
k

}
.

2: Compute Intersection over Union (IoU) for adjacent regions in C’: IU =
{IU1, IU2, . . . , IUk−1}.

3: for j = 1 to k− 1 do
4: if (IUj > τ) then
5: Merge the two regions C

′
j , C

′
j+1 into one region UCt by MER-Minimum Enclosing

Rectangle.
6: Add UCt into UC.
7: else
8: Add C

′
j into UC directly.

9: end if
10: end for
11: return UC

Be aware that all the detected classes for candidate regions will not be used. All
candidate regions will be recognized by subsequent broad learning systems.

3.2.2. Proposed Template Matching and Position Predicting

Some missing detections or false positives may be generated by the ROI detection
technique. To address this problem, a Template Matching and Position Predicting (TMPP)
algorithm is proposed, which is based some prior knowledge such as the basic structural
information of license plates.

The flowchart of TMPP is presented in Figure 4. For one single-row license plate, its
third character is missing by the ROI detection method (Figure 4a). Then, all the positions
of detected characters are mapped into one labeled figure in Figure 4b. Next, the figure
is compared with the license plate template library. The most matching template will
be selected for predicting positions (Figure 4c). The position of the missing character is
predicted by its neighboring region in Figure 4d. Finally, the segmentation results are
updated, as shown in Figure 4e. More results processed by TMPP are given in Figure 5.

For the efficiency of template matching method, experiments are conducted on 2234 im-
ages (including single-row and double-row license plates). It takes about 6.26 ms for the
TMPP strategy to reduce the false positives and missing detections.

As far as the adaptability of template matching is concerned, it depends on the practical
problems and the standards of the country or region. The design of template matching
library is supposed to refer to the standards. In our manuscript, Macau license plates
have many forms due to historical or political reasons. The establishment of license plate
template library can provide valuable structural information for reference. When TMPP
is applied to other countries or regions, a similar library is expected to be built for the
segmentation task.
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Figure 4. The flowchart of handling missing detection by the proposed TMPP. (a) is the detection
result generated by ROI-based method, (b) shows the rectangles of detected regions, (c) is the selected
template from license plate template library that matches with (b), (d) represents predicted result by
template matching, (e) shows final detection result.

(a) (b) (c)

Figure 5. Some examples to show the function of TMPP. (a) Input images. (b) False positives or
missing detections. (c) The results processed by TMPP.

3.3. Designed Dual Broad Learning Systems for Recognition

In this section, to realize the classification goal, a broad learning system is exploited. It
is built up on a flat neural network [43], which is the main characteristic. Figure 6 elaborates
on the detailed structure.

For the classification task, at first input images are transformed into random features
called “mapped feature nodes”; then, all the mapped feature nodes are expanded to
enhanced features called “enhanced feature nodes”. The design is a dependable method
for extracting essential features from the wider perspective.
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Figure 6. The structure of BLS. It encompasses mapped feature nodes and enhanced feature nodes.

Mapped feature nodes are defined by the following:

Mi = φ(XWmi + βmi ), i = 1, 2, . . . , n (1)

where Wmi and βmi are random weights generated from specific distributions, and φ is a
mapping function. Then, a sparse auto-encoder [41] is employed to finetune the mapped
features and explore more essential features. After the mapping operations, n groups of
feature nodes are produced, which can be denoted by Mn ≡ [M1, . . . , Mn]. After that, Mn

is used to expand to enhanced features:

Ej = ξ(MnWej + βej), j = 1, 2, . . . , q (2)

where ξ is a nonlinear activation function, e.g., tansig. Wej and βej are random weights
generated from specified distribution. Herein, the first q groups of enhanced feature nodes
can be denoted by Eq ≡ [E1, . . . , Eq].

With mapped feature nodes and enhanced feature nodes obtained, they are both
connected to the output layer:

Y = [M1, M2, . . . , Mn, E1, E2, . . . , Eq]W

= [Mn|Eq]W
(3)

where W represents the entire weight, and Y is the output layer. The term W can be
computed by W,[Mn|Eq]+Y, where [Mn|Eq]+ can be derived from the pseudoinverse of
the ridge regression approximation.

In practice, when the current BLS model cannot learn a task well, an effective solution
is to add feature nodes: mapped or enhanced. This is the function of incremental learning
for BLS, updating the model without retraining it from the start.

When one mapped feature node is added, Mn+1 = φ(XWmn+1 + βmn+1), the new
mapped features can be expressed by Mn+1 ≡ [M1, . . . , Mn+1]. As a result, enhanced
feature nodes are updated as Eexj , [ξ(Mn+1Wex1 + βex1), . . . , ξ(Mn+1Wexj + βexj)], where
Wexj and βexj j = 1, 2, . . . , q are the weights generated randomly. If one enhanced feature
node is added, it can be expressed by Eq+1 = ξ(Mn+1Wexq+1 + βexq+1).

Herein, we denote Aq
n , [Mn|Eq] and Aq+1

n+1 , [Mn|Mn+1|Eexq |Eq+1]. The updated
weights can be calculated by the following:

(Aq+1
n+1)

+ =

[
(Aq

n)
+ − DBT

BT

]
(4)
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Wq+1
n+1 =

[
Wq

n − DBTY
BTY

]
(5)

where D = (Aq
n)

+[Mn+1|Eexq |Eq+1]:

BT =

{
(C)+ i f C 6= 0
(1 + DT D)−1DT(Aq

n)
+ i f C = 0

(6)

and C = [Mn+1|Eexq |Eq+1]− Aq
nD.

To recognize characters and avoid confusion between letters and digits, we trained
two broad learning systems to classify letters and digits, respectively. These are called dual
broad learning systems. Letters and digits are the most widely used characters around the
world. Thus, the trained models can be applied to other countries or regions. Moreover, it is
also expected to train more models for recognition task when more categories of characters
are added.

4. Experimental Results
4.1. Dataset, Evaluation Metric, and Parameter Setting

To evince the effectiveness of the proposed method, we provide experimental results
on Macau license plates. The license plate images are collected from parking lots and bus
stations for training, validation, and testing. The training set includes 1913 images, and the
validation set includes 287 images. They are labeled manually by one tool “labelImg”. The
testing set includes 2234 images that are divided into three categories, as shown in Table 1:
Indoor, Outdoor, Complex. Among the three test sets, Complex is the most challenging set.
The dataset has been open to the public: https://github.com/BookPlus2020/VL_LPR
(accessed on 1 January 2022). Related segmentation and recognition models are also
available for download. Details have been released on the Github website.

Table 1. The dataset of Macau license plate for test.

Indoor Outdoor Complex Sum

Number 1000 830 404 2234

In this paper, the projection-based approach [13], MSER-based approach [17], CCA-
based approach [19], ROI-based approach [33] are selected for quantitative and visual
comparisons. They are typical conventional approaches or deep learning techniques, and
they run on a PC with Windows 10 OS and Intel Xeon CPU E5-1650 V2. Their parameters
refer to [33]. For our method, the parameter setting is presented as follows. For the ROI
detection stage, the maximum of proposals for RPN is 300, the momentum is 0.9, the
learning rate is 0.0002, and the number of training steps is 200k. For CCRC, τ = 0.25 is
selected. For the BLS model, the number of mapped feature nodes is 600, and the number of
enhanced feature nodes is 5600. Experiments are conducted on a PC with windows 10 OS,
Intel Core i7-10700F CPU, Tensorflow 1.5, and NVIDIA Geforce GTX 1660 Super with
6 GB memory.

With respect to the evaluation metric of character segmentation, if there are false
positives or missing detections for one license plate, it will be regarded as a failure; thus,
the metric refers to the following [17]:

η =
(

1− errors
total

)
× 100% (7)

where errors is defined as the number of failures, and total is the number of all license
plates. Similarly with segmentation accuracy η, if any character is recognized erroneously,
license plate recognition will be regarded as a failure.

https://github.com/BookPlus2020/VL_LPR
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4.2. Quantitative Analysis

We present a quantitative segmentation comparison in Table 2. The complexity of the
scenes Indoor, Outdoor, Complex is ranges from easy to difficult. For the Indoor scene, the
Projection-based approach [13] achieved 97.60% accuracy, outperforming the MSER-based
approach [17] and CCA-based approach [19]. The ROI-based approach [33] is 2.7% larger
than that of [13]. This indicates the effectiveness of the ROI-based approach for character
segmentation. With the addition of CCRC, there is a slight 0.1% improvement. It is also
notable that, when TMPP is utilized, accuracy reaches an encouraging result of 100%.

Compared with the Indoor set, the segmentation accuracy of all the approaches on
the Outdoor set decreases except for the MSER-based approach. Since the MSER-based
approach has difficulty in dealing with touching characters that appear many times in
the Indoor set, its segmentation rate is very low. Notably, the Complex set is the most
challenging set because the highest accuracy among all the conventional approaches is no
more than 92%, while the ROI detection approach achieves an obvious value of 96.75%.
In a collaboration with the designed CCRC and TMPP, the ROI detection approach has a
striking improvement. The proposed method, a combination of ROI, CCRC, and TMPP,
reaches a 99.25% for Complex set and 99.68% of average value. We experimentally show
that the proposed method surpasses the compared approaches on three test sets.

Table 2. Quantitative segmentation comparison (%) between our method and the compared ap-
proaches. The strategy used in our method is ROI+CCRC+TMPP.

Scene Indoor Outdoor Complex Sum

Projection-based [13] 97.60 85.54 79.95 87.69
MSER-based [17] 89.50 92.41 91.58 91.16
CCA-based [19] 96.50 90.60 88.12 91.74
ROI-based [33] 99.20 96.75 96.04 97.32
ROI+CCRC 99.30 97.71 97.27 98.34
ROI+CCRC+TMPP 100 99.52 99.25 99.68

We also provide experiments for recognition comparison, as shown in Table 3. The
ROI-based detection approach [33] is implemented by Faster-RCNN with InceptionV2
structure, with an accuracy of average 88.14%. It recognizes letters and digits together and
is easily confused by the cross-class problem. In addition, it also faces the false positives
problem. We compare several methods on ablation research, in a task involving character
recognition, and found that the combination of ROI, CCRC, TMPP, and a two-fold BLS
is able to achieve better performance than others in Table 3. CCRC can promote the
performance of [33] slightly. With the introduction of dual broad learning systems, the
recognition rate is promoted from 89.03% to 98.21% significantly. In a collaboration with
the designed TMPP, the recognition accuracy reaches an average value of 99.19%, with
every set higher than 98.5%. It is clearly noted that the improvement is obvious. Thus, the
proposed method outperforms [33] in the recognition task of Macau license plates.

Table 3. Quantitative comparison between character recognition methods. The last row
ROI+CCRC+TMPP+BLS is the proposed method for ALPR task.

Scene Indoor Outdoor Complex Sum

ROI-based [33] 87.6 88.43 88.86 88.14
ROI+CCRC 88.2 89.46 89.85 89.03
ROI+CCRC+BLS 99.2 97.71 96.78 98.21
Ours 99.7 98.92 98.51 99.19

4.3. Efficiency Analysis

We also present a running time comparison between the proposed approach and the
compared methods, as shown in Table 4. Two sizes, 320× 64 and 256× 128, are selected
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to test the efficiency of methods. Obviously, the larger the image’s size, the more time it
takes. It can be seen from Table 4 that conventional approaches require less time to segment
characters. For example, to process a 256× 128 image, projection-based , MSER-based and
CCA require 3.65 ms, 6.73 ms, and 4.18 ms, respectively. The ROI-based method needs
more time (125.49 ms), because it requires much time in the forward propagation of a deep
neural network.

It should be noted that, for character segmentation, it takes about 0.015 ms for the
CCRC module and 6.20 ms for the TMPP module to process one license plate. Compared
with ROI detection, CCRC and TMPP take less time. One of the main reasons is that
only a few logistic computations are carried out. Although it needs more time than
that of conventional methods, the addition of CCRC and TMPP modules helps improve
segmentation accuracy significantly. For recognition tasks, the trained digit BLS or letter
BLS needs about 5.09 ms to process one image with a size of 32× 32 pixels. The running
time of BLS is based on the selection of parameters. In this paper, it is enough to use
600 mapped feature nodes and 5600 enhanced feature nodes. Compared with conventional
methods, the segmentation accuracy and recognition rate of the deep learning method
increase at the cost of computations.

Table 4. Running time (ms) comparison between the proposed approach and the compared methods.

Image Size 320 × 64 256 × 128

Projection-based [13] 2.31 3.65
MSER-based [17] 4.03 6.73
CCA-based [19] 2.53 4.18
ROI-based [33] 117.49 125.49

4.4. Visual Results and Discussion

Visual comparison includes two parts: segmentation results and recognition re-
sults. Figure 7 illustrates the variable-length segmentation results of single-row license
plates. Conventional methods such as the Projection-based approach [13] and CCA-
based approach [19] have difficulties in handling variable-length license plates. The
approaches [13,19] even fail to locate the positions of license plates with red backgrounds.
The MSER-based approach [17] can produce good results for proper images. However, it
may fail to deal with touching characters (e.g., the result at the second row and third
column). The ROI-based approach [33] offers a powerful new method to segment charac-
ters. However, it easily brings about the cross-class problem (from the fourth row to the
eight row in Figure 7), missing detections (from the 9th row to the 12th row in Figure 7),
and false positives (from the sixth row to the ninth row in Figure 8). Benefiting from
CCRC and TMPP, the proposed method outperforms the compared approaches in terms
of handling these complex problems.

Figure 9 exhibits some visual recognition results. The odd rows are generated by [33],
while the even rows are generated by our method. There are classification confusions
between letters and digits for the approach [33]. For example, in the Indoor part, ‘S’ and
‘3’ are at the first row and the first column, ‘I’ and ‘1’ are at the first row and the second
column, and ‘X’ and ‘4’ are at the third row and the first column. Figure 9 shows that our
method produces the correct results by classifying letters and digits separately.

The cross-class problem is also covered in Figure 9; for example, in the Outdoor
part, the license plate with real number ‘MW5940’ at the first row and the fifth column is
recognized as ‘M1W5940’. Thanks to the design of CCRC, the redundant ‘1’ is excluded
and does not appear in our recognition result. One example of false positive is presented in
the third row and the fifth column in the Complex part. The real number is ‘ME0628’, but
the license plate is recognized as ‘MME0628’ by [33] due to a false positive at the top left.
In contrast, the false positive is removed by using TMPP.
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(a) (b) (c) (d) (e) (f)

Figure 7. Some segmentation results of single-row license plates. (a) Input images. (b) Projection-
based [13]. (c) MSER-based [17]. (d) CCA-based [19]. (e) ROI-based [33]. (f) Ours.

(a) (b) (c) (d) (e) (f)

Figure 8. Some segmentation results of double-row license plates. (a) Input images. (b) Projection-
based [13]. (c) MSER-based [17]. (d) CCA-based [19]. (e) ROI-based [33]. (f) Ours.
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(a)

(b)

(c)

Figure 9. Some comparison of recognition results between ROI-based approach [33] and ours. Three
sets are covered. The odd rows are generated by [33], and the even rows are generated by the
proposed method. (a) Indoor; (b) outdoor; (c) complex.

Quantitative and visual results indicate the effectiveness of proposed method. Actually,
there are some failures, as shown in Figure 10. They are complex or extreme cases for
slanting, touching characters, and low-quality image. These cases are inevitable for realistic
applications. An potential solution to deal these cases is to use image sequences. When



Remote Sens. 2022, 14, 1560 14 of 16

one car drives close to or leaves the camera, a series of frames can be captured. Thus,
to boost the performance of an ALPR, image sequences can be employed with statistical
information for recognition tasks. Two examples are illustrated in Figure 11. Nine of ten
frames are recognized successfully, and the license plater number is expected to be obtained
accurately.

Figure 10. Some segmentation failures including missing detections and incorrect segmentation.

(a) (b)

Figure 11. The recognition of license plates using image sequences. For each example, (a) MN8850
and (b) ML5752, among the 10 frames, 9 frames are successful and only 1 failure occurred (at 2nd
row, 3rd column) because of a strong reflection of illumination.

5. Conclusions

In this paper, we propose a method using ROI detection and BLS for variable-length
LPR. Our method is based on the Faster-RCNN framework, and it aims to solve several
problems of ROI detections and generate correct recognition results. The designed strategy
of Cross Class Removal of Character aims to reduce overlapped detections. The developed
mechanism of template matching and position predicting is used to reduce false positives
and estimate the possible positions of missing characters. Specially, we employ a dual
broad learning system to tackle the confusions of character recognitions. Experiments
conducted on Macau license plates demonstrate that our method achieves an average
99.68% accuracy for the character segmentation task, and an average 99.19% accuracy for
the character recognition task. With the promising adaptability, the proposed strategies
are expected to become translated into other regions for which their license plates have
similar characteristics with Macau’s. In the future, it would be interesting to process image
sequences by integrating these modules, and the computation costs should be reduced
with more investigations.
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