REPRESENTATION THEORY An Electronic Journal of the American Mathematical Society Volume 10, Pages 353–379 (August 17, 2006) S 1088-4165(06)00315-3

CHARACTER SHEAVES ON DISCONNECTED GROUPS, IX

G. LUSZTIG

ABSTRACT. We associate a two-sided cell to any (parabolic) character sheaf. We study the interaction between the duality operator for character sheaves and the operation of "twisted induction".

INTRODUCTION

Throughout this paper, G denotes a fixed, not necessarily connected, reductive algebraic group over an algebraically closed field **k**. This paper is a part of a series [L9] which attempts to develop a theory of character sheaves on G.

One of the main constructions in [L3] (going back to [L14]) was a procedure which to any character sheaf on G^0 associates a certain two-sided cell in an (extended) Coxeter group. A variant of this construction (restricted to "unipotent" character sheaves) was later given by Grojnowski [Gr]. Here we give a construction which generalizes that in [L3] (and takes into account the approach in [Gr]) which to any (parabolic) character sheaf on $Z_{J,D}$ associates a certain type of two-sided cell.

The paper is organized as follows. In Section 40 we study certain equivariant sheaves on $G^0/U^* \times G^0/U^*$ (where U^* is the unipotent radical of a Borel in G^0) under the convolution operation. Some results in this section are implicit in [L14, Ch.1]. In Section 41 we study the character sheaves on $Z_{\emptyset,D}$ (where D is a connected component of G) by connecting them with sheaves on $G^0/U^* \times G^0/U^*$. We use this study to attach a two-sided cell to any character sheaf on $Z_{J,D}$. (See 41.4.) In Section 42 we study the interaction between the duality operation **d** (see 38.10, 38.11) and the functor $\mathfrak{f}_{\emptyset,\mathbf{I}}$ (see 36.4). The main result in this section is Proposition 42.9 which contains [L3, III, Cor. 15.8(b)] as a special case (with $G = G^0, v = 1$). Notation. We fix a 1-dimensional $\bar{\mathbf{Q}}_l$ -vector space V with a given isomorphism $V^{\otimes 2} \xrightarrow{\sim} \bar{\mathbf{Q}}_l(1)$ (Tate twist of $\bar{\mathbf{Q}}_l$). For $n \in \mathbf{N}$ we set $\bar{\mathbf{Q}}_l(n/2) = V^{\otimes n}$. For $n \in \mathbb{Z}$ $n \in 0$ let $\bar{\mathbf{Q}}_l(n/2)$ be the dual space of $\bar{\mathbf{Q}}_l(-n/2)$. If X is an algebraic

 $n \in \mathbf{Z}, n < 0$ let $\bar{\mathbf{Q}}_l(n/2)$ be the dual space of $\bar{\mathbf{Q}}_l(-n/2)$. If X is an algebraic variety and $A \in \mathcal{D}(X), n \in \mathbf{Z}$, we write A(n/2) instead of $A \otimes \bar{\mathbf{Q}}_l(n/2)$ and A[[n/2]] instead of A[n](n/2). (When n is even, this agrees with the notation in [L9, II, p. 73].)

CONTENTS

40. Sheaves on $G^0/U^* \times G^0/U^*$.

- 41. Character sheaves and two-sided cells.
- 42. Duality and the functor $f_{\emptyset,\mathbf{I}}$.

Received by the editors February 8, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20G99.

Supported in part by the National Science Foundation.

^{©2006} American Mathematical Society Reverts to public domain 28 years from publication

40. Sheaves on $G^0/U^* \times G^0/U^*$

40.1. Let $\mathcal{A} = \mathbf{Z}[v, v^{-1}]$. Let \hat{H} (resp. H) be the \mathcal{A} -module consisting of all formal (resp. finite) linear combinations $\sum_{w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}} a_{w,\lambda} \tilde{T}_w \mathbf{1}_{\lambda}$ with $a_{w,\lambda} \in \mathcal{A}$. Note that H is naturally an \mathcal{A} -submodule of \hat{H} with \mathcal{A} -basis $\{\tilde{T}_w \mathbf{1}_{\lambda}; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}\}$. For any $n \in \mathbf{N}^*_{\mathbf{k}}$, the \mathcal{A} -submodule of H spanned by $\{\tilde{T}_w \mathbf{1}_{\lambda}; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n\}$ may be naturally identified with H_n (see 31.2(a)). There is a unique \mathcal{A} -algebra structure on \hat{H} in which the product of two elements

$$h = \sum_{w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}} a_{w,\lambda} \tilde{T}_w \mathbf{1}_{\lambda}, \ h' = \sum_{w' \in \mathbf{W}, \lambda' \in \underline{\mathfrak{s}}} a'_{w',\lambda'} \tilde{T}_{w'} \mathbf{1}_{\lambda'}$$

as above is $hh' = \sum_{y \in \mathbf{W}, \nu \in \underline{\mathfrak{s}}} b_{y',\nu} \tilde{T}_y \mathbf{1}_{\nu}$ where for any $\nu \in \underline{\mathfrak{s}}$,

$$\sum_{w,w'\in\mathbf{W}} a_{w,w'^{-1}\nu} a'_{w',\nu} \tilde{T}_w \tilde{T}_{w'} 1_\nu = \sum_{y\in\mathbf{W}} b_{y,\nu} \tilde{T}_y 1_\nu$$

is computed in the algebra structure of H_n for any n such that $\nu \in \underline{s}_n$. Thus \hat{H} becomes an associative algebra with 1; H is a subalgebra (without 1) and, for $n \in \mathbf{N}^*_{\mathbf{k}}$, H_n is a subalgebra (with a different 1) with the algebra structure as in 31.2.

Now in the definition of \hat{H} given above, although $\tilde{T}_w 1_{\lambda}$ is defined, the elements $\tilde{T}_w, 1_{\lambda}$ are not defined separately (as was the case in H_n). To remedy this we set $\tilde{T}_w = \sum_{\lambda \in \underline{s}} \tilde{T}_w 1_{\lambda} \in \hat{H}$ (for $w \in \mathbf{W}$) and $1_{\lambda} = \tilde{T}_1 1_{\lambda} \in H$ (for $\lambda \in \underline{s}$). Then $\tilde{T}_w 1_{\lambda}$ is the product of $\tilde{T}_w, 1_{\lambda}$ in the algebra \hat{H} . Note that \tilde{T}_1 is the unit element of \hat{H} and the following equalities hold in \hat{H} :

$$\begin{split} & 1_{\lambda} 1_{\lambda} = 1_{\lambda} \text{ for } \lambda \in \underline{\mathfrak{s}}, 1_{\lambda} 1_{\lambda'} = 0 \text{ for } \lambda \neq \lambda' \text{ in } \underline{\mathfrak{s}}; \\ & \tilde{T}_{w} \tilde{T}_{w'} = \tilde{T}_{ww'} \text{ for } w, w' \in \mathbf{W} \text{ such that } l(ww') = l(w) + l(w'); \\ & \tilde{T}_{w} 1_{\lambda} = 1_{w\lambda} \tilde{T}_{w} \text{ for } w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}; \\ & \tilde{T}_{s}^{2} = \tilde{T}_{1} + (v - v^{-1}) \sum_{\lambda \in \underline{\mathfrak{s}}; s \in \mathbf{W}_{\lambda}} \tilde{T}_{s} 1_{\lambda} \text{ for } s \in \mathbf{I}. \\ & \text{By a standard argument we see that} \end{split}$$

(a) *H* is exactly the \mathcal{A} -algebra defined by the generators $\tilde{T}_w \mathbb{1}_l \ (w \in \mathbf{W}, \lambda \in \mathfrak{s})$ and the relations:

 $\begin{aligned} (\tilde{T}_w 1_{\lambda})(\tilde{T}_{w'} 1_{\lambda'}) &= 0 \text{ if } w, w' \in \mathbf{W}, \lambda, \lambda' \in \underline{\mathfrak{s}}, w'\lambda' \neq \lambda, \\ (\tilde{T}_w 1_{w'\lambda'}(\tilde{T}_{w'} 1_{\lambda'}) &= \tilde{T}_{ww'} 1_{\lambda'} \text{ if } w, w' \in \mathbf{W}, \lambda, \lambda' \in \underline{\mathfrak{s}}, l(ww') = l(w) + l(w'), \\ (\tilde{T}_s 1_{s\lambda'})(\tilde{T}_s 1_{\lambda'}) &= \tilde{T}_1 1_{\lambda'} + (v - v^{-1})c\tilde{T}_s 1_{\lambda'} \text{ if } s \in \mathbf{I}, \lambda' \in \underline{\mathfrak{s}} \text{ where } c = 1 \text{ for } s \in \mathbf{W}_{\lambda'} \\ \text{and } c = 0 \text{ for } s \notin \mathbf{W}_{\lambda'}. \end{aligned}$

40.2. Let R, R^+ be as in 28.3. The following result is well known:

(a) If $w \in \mathbf{W}, \alpha \in \mathbb{R}^+$ and s_{α} is as in 28.3, then we have $l(ws_{\alpha}) > l(w)$ if and only if $w(\alpha) \in \mathbb{R}^+$.

Let $\lambda \in \mathfrak{s}$. Let $R_{\lambda}, R_{\lambda}^{+}, \mathbf{W}_{\lambda}, H_{\lambda}$ be as in 34.2. We write \vee_{λ} instead of \vee_{λ}^{D} (as in 34.4 with $D = G^{0}$). We show that

(b) if $w \in \mathbf{W}$, then $w\mathbf{W}_{\lambda}$ contains a unique element w_1 of minimal length; it is characterized by the property $w_1(R_{\lambda}^+) \subset R^+$.

Let w_1 be an element of minimal length in $w\mathbf{W}_{\lambda}$. Let $\alpha \in R_{\lambda}^+$. Then $l(w_1s_{\alpha}) \geq l(w_1)$. Since $l(w_1s_{\alpha}) = l(w_1) + 1 \mod 2$ we see that $l(w_1s_{\alpha}) > l(w_1)$. By (a) we have $w_1(\alpha) \in R^+$. Thus, $w_1(R_{\lambda}^+) \subset R^+$. Now let $u \in \mathbf{W}_{\lambda} - \{1\}$. We pick $\alpha \in R_{\lambda}^+$ such that $u(\alpha)^{-1} \in R_{\lambda}^+$; then $w_1u(\alpha)^{-1} \in R^+$. If w_1u has minimal length in $w\mathbf{W}_{\lambda}$,

then by an earlier part of the argument applied to $w_1 u$ instead of w_1 we have $w_1 u(\alpha) \in R^+$, a contradiction. We see that w_1 is the unique element of minimal length in $w \mathbf{W}_{\lambda}$. It remains to show that if $u \in \mathbf{W}_{\lambda}$ satisfies $w_1 u(R_{\lambda}^+) \subset R^+$, then u = 1. If $u \neq 1$, then by an earlier part of the argument we have $w_1 u(\alpha)^{-1} \in R^+$ for some $\alpha \in R_{\lambda}^+$, a contradiction. This proves (b).

We show that

(c) if $s \in \mathbf{I}$ and $w \in \mathbf{W}$ has minimal length in $w\mathbf{W}_{\lambda}$, then either (i) sw has minimal length in $sw\mathbf{W}_{\lambda}$ or (ii) $w^{-1}sw \in \mathbf{W}_{\lambda}$.

There is a unique $\beta \in \mathbb{R}^+$ such that $s(\beta)^{-1} \in \mathbb{R}^+$. Assume that (i) does not hold. By (b) there exists $\alpha \in \mathbb{R}^+_{\lambda}$ such that $sw(\alpha)^{-1} \in \mathbb{R}^+$; moreover, $w(\alpha) \in \mathbb{R}^+$. Hence $w(\alpha) = \beta$. We have $w^{-1}(\beta) = \alpha \in \mathbb{R}_{\lambda}$, hence $w^{-1}sw \in \mathbf{W}_{\lambda}$ and (ii) holds. This proves (c).

For $z \in \mathbf{W}_{\lambda}$ let $\tilde{T}_{z}^{\lambda}, c_{z}^{\lambda} \in H_{\lambda}$ be as in 34.2. Then $c_{z}^{\lambda} = \sum_{z' \in \mathbf{W}_{\lambda}} p_{z',z}^{\lambda} \tilde{T}_{z'}^{\lambda}$ where $p_{z',z}^{\lambda} \in \mathbf{Z}[v^{-1}]$ are uniquely defined.

For any $w \in \mathbf{W}$, $\lambda \in \underline{\mathfrak{s}}$ there is a unique element of H which is equal to $c_{w,\lambda} \in H_n$ (see 34.4) for any n such that $\lambda \in \underline{\mathfrak{s}}_n$; we denote this element again by $c_{w,\lambda}$. We have $c_{w,\lambda} = \sum_{w' \in \mathbf{W}} \pi_{w',w,\lambda} \tilde{T}_{w'} \mathbf{1}_{\lambda}$ where $\pi_{w',w,\lambda} \in \mathbf{Z}[v^{-1}]$ are uniquely defined. Note that $\{c_{w,\lambda}; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}\}$ is an \mathcal{A} -basis of H.

Now:

(d) Let $w, w' \in \mathbf{W}$. We write $w = w_1 z, w' = w'_1 z'$ where w_1 has minimal length in $w\mathbf{W}_{\lambda}$, w'_1 has minimal length in $w'\mathbf{W}_{\lambda}$ and $z, z' \in \mathbf{W}_{\lambda}$. If $w_1 \neq w'_1$, then $\pi_{w',w,\lambda} = 0$. If $w_1 = w'_1$, then $\pi_{w',w,\lambda} = p_{z',z}^{\lambda}$.

From the definitions we see that if $w\lambda \neq w'\lambda$, then $\pi_{w',w,\lambda} = 0$. Thus we may assume that $w\lambda = w'\lambda$. We choose a sequence s_1, s_2, \ldots, s_r in **I** such that $w\lambda = w'\lambda = s_r s_{r-1} \ldots s_1 \lambda \neq s_{r-1} \ldots s_1 \lambda \neq \cdots \neq s_1 \lambda \neq \lambda$.

We show that for $k \in [0, r]$, $s_k s_{k-1} \dots s_1$ has minimal length in $s_k s_{k-1} \dots s_1 \mathbf{W}_{\lambda}$. We argue by induction. For k = 0 the result is obvious. Assume now that $k \in [1, r]$. Since $s_{k-1} \dots s_1$ has minimal length in $s_{k-1} \dots s_1 \mathbf{W}_{\lambda}$ and $s_k s_{k-1} \dots s_1 \lambda \neq s_{k-1} \dots s_1 \lambda$, we see from (c) that $s_k s_{k-1} \dots s_1$ has minimal length in $s_k s_{k-1} \dots s_1 \mathbf{W}_{\lambda}$ as required.

In particular, $s_r s_{r-1} \dots s_1$ has minimal length in $s_r s_{r-1} \dots s_1 \mathbf{W}_{\lambda}$. Since $w\lambda = s_r s_{r-1} \dots s_1 \lambda$ we have $w = s_r s_{r-1} \dots s_1 h_1 h_2$ where $h_1 \in \vee_{\lambda}$, $h_2 \in \mathbf{W}_{\lambda}$. Then both w_1 and $s_r s_{r-1} \dots s_1 h_1$ have minimal length in $s_r s_{r-1} \dots s_1 h_1 \mathbf{W}_{\lambda} = w \mathbf{W}_{\lambda} = w_1 \mathbf{W}_{\lambda}$; using (b) we deduce that $s_r s_{r-1} \dots s_1 h_1 = w_1$. Hence $s_1 \dots s_r w = s_1 \dots s_r w_1 z = h_1 z$. Similarly, $s_1 \dots s_r w' = h'_1 z'$ where $h'_1 \in \vee_{\lambda}$.

From the results in 34.7–34.10 we see that $\pi_{w',w,\lambda} = p_{s_1...s_rw',s_1...s_rw}^{\lambda} = p_{h'_1z',h_1z}^{\lambda}$. Using $h_1, h'_1 \in \vee_{\lambda}$ and the definitions (34.2) we see that $p_{h'_1z',h_1z}^{\lambda} = 0$ if $h_1 \neq h'_1$ and $p_{h'_1z',h_1z}^{\lambda} = p_{z',z}^{\lambda}$ if $h_1 = h'_1$.

It remains to show that we have $w_1 = w'_1$ if and only if $h_1 = h'_1$. We have $s_r s_{r-1} \dots s_1 = h_1^{-1} w_1$ and similarly $s_r s_{r-1} \dots s_1 = (h'_1)^{-1} w'_1$. Hence $h_1^{-1} w_1 = (h'_1)^{-1} w'_1$. We see that $w_1 = w'_1$ if and only if $h_1 = h'_1$. This proves (d).

For $w' \leq w$ in \mathbf{W} , $\lambda \in \underline{\mathfrak{s}}$ and $i \in \mathbf{Z}$ we define $N_{i,w',w,\lambda} \in \mathbf{Z}$ by

(e) $\pi_{w',w,\lambda} = v^{l(w')-l(w)} \sum_{i \in \mathbf{Z}} N_{i,w',w,\lambda} v^i$, that is,

$$p_{z',z}^{\lambda} = v^{l(w')-l(w)} \sum_{i \in \mathbf{Z}} N_{i,w',w,\lambda} v^{i}$$

if $w'\mathbf{W}_{\lambda} = w\mathbf{W}_{\lambda}$ and z, z' are as in (d), then

$$N_{i,w',w,\lambda} = 0$$
 if $w' \mathbf{W}_{\lambda} \neq w \mathbf{W}_{\lambda}$.

Note that $N_{i,w',w,\lambda}$ is 0 unless *i* is even.

40.3. Let $B^* \in \mathcal{B}$. Let $U^* = U_{B^*}$ and let T be a maximal torus of B^* . Let $\mathbf{r} = \dim \mathbf{T}$. Let $W_T = N_{G^0}T/T$. We identify $T = \mathbf{T}, W_T = \mathbf{W}$ as in 28.5. For any $w \in \mathbf{W}$ we denote by \dot{w} a representative of w in $N_{G^0}T$.

Let $C = G^0/U^* \times G^0/U^*$. We have a partition $C = \bigcup_{w \in \mathbf{W}} C_w$ where

$$C_w = \{ (hU^*, h'U^*) \in C; h^{-1}h' \in B^* \dot{w}B^* \}.$$

For $w \in \mathbf{W}$ let $d_w = \dim C_w$ and let

$$\bar{C}_w = \{(hU^*, h'U^*) \in C; h^{-1}h' \in \overline{B^*\dot{w}B^*}\}$$

(closure in G^0). Now \bar{C}_w is an irreducible variety and we have a partition $\bar{C}_w = \bigcup_{w':w' \le w} C_{w'}$ with C_w smooth, open dense in \bar{C}_w .

Define $\gamma_{\dot{w}}: B^*\dot{w}B^* \to T$ by $\gamma_{\dot{w}}(g) = t$ where $g \in U^*\dot{w}tU^*$ with $t \in T$. Define $\psi: C_w \to T$ by $\psi(hU^*, h'U^*) = \gamma_{\dot{w}}(h^{-1}h')$.

For $\mathcal{L} \in \mathfrak{s}$ we set $\mathcal{L}_w = \psi^* \mathcal{L}$, a local system on C_w . (Using 28.1(c) we see that the isomorphism class of $\psi^* \mathcal{L}$ is independent of the choice of \dot{w} .) Let $\mathcal{L}_w^{\sharp} = IC(\bar{C}_w, \mathcal{L}_w) \in \mathcal{D}(\bar{C}_w)$.

40.4. For $w \in \mathbf{W}, \mathcal{L} \in \mathfrak{s}$ let $\underline{\mathcal{L}}_w = j_w!\mathcal{L}_w, \underline{\mathcal{L}}_w^{\sharp} = \overline{j}_{w!}\mathcal{L}_w^{\sharp}$ where $j_w : C_w \to C$, $\overline{j}_w : \overline{C}_w \to C$ are the inclusions. Let \hat{C} be the full subcategory of $\mathcal{D}(C)$ whose objects are the simple perverse sheaves on C which are equivariant for the $G^0 \times T \times T$ action

(a)
$$(x, t, t') : (hU^*, h'U^*) \mapsto (xht^nU^*, xh't'^nU^*)$$

on C (for some $n \in \mathbf{N}_{\mathbf{k}}^{*}$) or equivalently, are isomorphic to $\underline{\mathcal{L}}_{w}^{\sharp}[d_{w}]$ for some $\mathcal{L} \in \mathfrak{s}$ and some $w \in \mathbf{W}$. Let $\mathcal{D}^{cs}(C)$ be the subcategory of $\mathcal{D}(C)$ whose objects are those $K \in \mathcal{D}(C)$ such that for any j, any simple subquotient of ${}^{p}H^{j}K$ is in \hat{C} .

If w, \mathcal{L} are as above, then $\underline{\mathcal{L}}_w \in \mathcal{D}^{cs}(C)$. Indeed this constructible sheaf is equivariant for the action (a) (for some n), hence so is each ${}^{p}H^{j}(\underline{\mathcal{L}}_w)$.

We have a diagram $C \times C \xleftarrow{r} (G^0/U^*)^3 \xrightarrow{s} C$ where

$$\begin{aligned} r(h_1U^*, h_2U^*, h_3U^*) &= ((h_1U^*, h_2U^*), (h_2U^*, h_3U^*)), \\ s(h_1U^*, h_2U^*, h_3U^*) &= (h_1U^*, h_3U^*). \end{aligned}$$

We define a bi-functor $\mathcal{D}(C) \times \mathcal{D}(C) \to \mathcal{D}(C)$ by $A, A' \mapsto A * A' = s_! r^* (A \boxtimes A')$. The "product" A * A' is associative in an obvious sense. We show that

(b) $A, A' \mapsto A * A'$ restricts to a bi-functor $\mathcal{D}^{cs}(C) \times \mathcal{D}^{cs}(C) \to \mathcal{D}^{cs}(C)$. Let $A, A' \in \mathcal{D}^{cs}(C)$. To show that $A * A' \in \mathcal{D}^{cs}(C)$ we may assume that $A, A' \in \hat{C}$. Then each ${}^{p}H^{j}(A * A')$ is equivariant for the action (a) (for some *n*). This proves (b).

40.5. For $w' \leq w$ in $\mathbf{W}, \lambda \in \mathfrak{s}, \mathcal{L} \in \lambda$ and $i \in \mathbf{Z}$ we show that

(a)
$$\mathcal{H}^i(\mathcal{L}^\sharp_w)|_{C_{w'}} \cong (\mathcal{L}_{w'}(-i/2))^{\oplus N_{i,w',w,\lambda}}.$$

(Both sides are 0 unless i is even.)

Let

$$\tilde{C}_w = \{(h,h') \in G^0 \times G^0; h^{-1}h' \in B^* \dot{w} B^*\} \times \mathbf{k}^*, \\
\tilde{\tilde{C}}_w = \{(h,h') \in G^0 \times G^0; h^{-1}h' \in \overline{B^* \dot{w} B^*}\} \times \mathbf{k}^*.$$

Now \tilde{C}_w is an irreducible variety and we have a partition $\tilde{C}_w = \bigcup_{w';w' \leq w} \tilde{C}_{w'}$ with \tilde{C}_w smooth, open dense in \tilde{C}_w . Define $\bar{d}: \tilde{C}_w \to \bar{C}_w$, $d: \tilde{C}_w \to \bar{C}_w$ by $(h, h', z) \mapsto (hU^*, h'U^*)$. Let $\tilde{\mathcal{L}}_w = d^*\mathcal{L}_w$, a local system on \tilde{C}_w . Let $\tilde{\mathcal{L}}_w^{\sharp} = IC(\tilde{C}_w, \tilde{\mathcal{L}}_w)$. Since d, \bar{d} are principal $U^* \times \mathbf{k}^*$ -bundles, it is enough to show that

(b)
$$\mathcal{H}^{i}(\tilde{\mathcal{L}}^{\sharp}_{w})|_{\tilde{C}_{w'}} \cong (\tilde{\mathcal{L}}_{w'}(-i/2))^{\oplus N_{i,w',w,\lambda}}.$$

(Both sides are 0 unless i is even.)

We choose $\kappa \in \text{Hom}(T, \mathbf{k}^*), \mathcal{E} \in \mathfrak{s}(\mathbf{k}^*)$ such that $\mathcal{L} \cong \kappa^* \mathcal{E}$; see 28.1(c). Now B^* acts on $(B^* \dot{w} B^*) \times \mathbf{k}^*$ and on $(\overline{B^* \dot{w} B^*}) \times \mathbf{k}^*$ by

$$t_1u: (g,z) \mapsto (g(t_1u)^{-1}, \kappa(t_1)z)$$

where $t_1 \in T, u \in U^*$. Let $\bar{\mathbf{P}}_w^{\kappa} = ((\overline{B^* \dot{w} B^*}) \times \mathbf{k}^*)/B^*, PP_w^{\kappa} = ((B^* \dot{w} B^*) \times \mathbf{k}^*)/B^*$. Now \mathbf{P}_w^{κ} is a smooth open dense subvariety of the irreducible variety $\bar{\mathbf{P}}_w^k$ and $\bar{\mathbf{P}}_w^{\kappa} = \bigcup_{w';w' \leq w} \mathbf{P}_{w'}^{\kappa}$ is a partition. The morphism $(B^* \dot{w} B^*) \times \mathbf{k}^* \to \mathbf{k}^*$ given by $(g, z) \mapsto \kappa(\gamma_{\dot{w}}(g))z$ factors through a morphism $\phi : \mathbf{P}_w^{\kappa} \to \mathbf{k}^*$. Let $\mathcal{E}_w^{\kappa} = \phi^* \mathcal{E}$, a local system of rank 1 on \mathbf{P}_w^{κ} . Let $\mathcal{E}_w^{\kappa \sharp} = IC(\bar{\mathbf{P}}_w^{\kappa}, \mathcal{E}_w^{\kappa}) \in \mathcal{D}(\bar{\mathbf{P}}_w^{\kappa})$. From [L14, 1.24] we see that

(c)
$$\mathcal{H}^{i}(\mathcal{E}_{w}^{\kappa\sharp})|_{\mathbf{P}_{w'}^{\kappa}} \cong (\mathcal{E}_{w'}^{\kappa}(-i/2))^{\oplus N_{i,w',w,\lambda}}.$$

(Both sides are 0 unless i is even.)

We can find $n \in \mathbf{N}_{\mathbf{k}}^*$ such that $\mathcal{E} \in \mathfrak{s}_n(\mathbf{k}^*)$. Define $\bar{c} : \tilde{C}_w \to \bar{\mathbf{P}}_w$, $c : \tilde{C}_w \to \bar{\mathbf{P}}_w$ by $(h, h', z) \mapsto B^*$ – orbit of $(h^{-1}h', z^n)$. Now \bar{c}, c are locally trivial fibrations with smooth fibres of pure dimension. Hence (b) follows from (c) provided that we can show that $c^* \mathcal{E}_{w'}^{\kappa} = \tilde{\mathcal{L}}_{w'}$ for $w' \leq w$. We may assume that w = w'. We have a commutative diagram

with ϕ, ψ, c, d as above, $\phi'(h, h', z) = (\kappa(\gamma_{\dot{w}}(h^{-1}h')), z), c'(z', z) = z'z^n, d'(z', z) = z'$. Using this and the definitions we have $\tilde{\mathcal{L}}_w = \phi'^* d'^* \mathcal{E}, c^* \mathcal{E}_w = \phi'^* c'^* \mathcal{E}$. It remains to show that $d'^* \mathcal{E} = c'^* \mathcal{E}$. This expresses the fact that \mathcal{E} is equivariant for the \mathbf{k}^* -action $z_1 : z \mapsto z_1^n z$ on \mathbf{k}^* which follows from $\mathcal{E} \in \mathfrak{s}_n(\mathbf{k}^*)$. This proves (b), hence (a).

40.6. Let $w, w' \in \mathbf{W}, \mathcal{L}, \mathcal{L}' \in \mathfrak{s}$. We set $L = \underline{\mathcal{L}}_w * \underline{\mathcal{L}}'_{w'} \in \mathcal{D}^{cs}(C)$. Let

$$\begin{split} X &= \{(h_1U^*, h_2U^*, h_3U^*) \in (G^0/U^*)^3; h_1^{-1}h_2 \in B^* \dot{w} B^*, h_2^{-1}h_3 \in B^* \dot{w}' B^*\},\\ \bar{X} &= \{(h_1U^*, h_2B^*, h_3U^*) \in G^0/U^* \times G^0/B^* \times G^0/U^*;\\ h_1^{-1}h_2 \in B^* \dot{w} B^*, h_2^{-1}h_3 \in B^* \dot{w}' B^*\}. \end{split}$$

We have a commutative diagram with a cartesian square

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & \bar{X} & \stackrel{\bar{\sigma}}{\longrightarrow} & C \\ \tau & & & \bar{\tau} \\ T \times T & \stackrel{f'}{\longrightarrow} & T \end{array}$$

where f is given by $(h_1U^*, h_2U^*, h_3U^*) \mapsto (h_1U^*, h_2B^*, h_3U^*),$ f' is $(t, t') \mapsto \operatorname{Ad}(\dot{w}')^{-1}(t)t',$ τ is $(h_1U^*, h_2U^*, h_3U^*) \mapsto (t, t')$ with $h_1^{-1}h_2 \in U^* \dot{w}tU^*, h_2^{-1}h_3 \in U^* \dot{w}'t'U^*,$ $\bar{\tau}$ is $(h_1U^*, h_2B^*, h_3U^*) \mapsto \operatorname{Ad}(\dot{w}')^{-1}(t)t'$ with t, t' as in the definition of $\tau,$ $\bar{\sigma}$ is $(h_1U^*, h_2B^*, h_3U^*) \mapsto (h_1U^*, h_3U^*).$

From the definitions we have $L = \bar{\sigma}_! f_! \tau^* (\mathcal{L} \boxtimes \mathcal{L}')$. Using the diagram above, we have $L = \bar{\sigma}_! \bar{\tau}^* f'_! (\mathcal{L} \boxtimes \mathcal{L}')$. From the definitions we see that either (i) or (ii) below holds:

(i)
$$\mathcal{L} \not\cong (\mathrm{Ad}(\dot{w}')^{-1})^* \mathcal{L}'$$
 and $f'_! (\mathcal{L} \boxtimes \mathcal{L}') = 0;$
(ii) $\mathcal{L} \cong (\mathrm{Ad}(\dot{w}')^{-1})^* \mathcal{L}'$ and $\mathcal{L} \boxtimes \mathcal{L}' = f'^* \mathcal{L}'.$

If (i) holds, then K = 0. If (ii) holds, then, as in 32.16, we have

$$f'_{l}(\mathcal{L} \boxtimes \mathcal{L}') = f'_{l}f'^{*}\mathcal{L}' = \mathcal{L}' \otimes f'_{l}\bar{\mathbf{Q}}_{l} \approx \{\mathcal{L}' \otimes \mathcal{H}^{e}(f'_{l}\bar{\mathbf{Q}}_{l})[-e], e \in \mathbf{Z}\},\$$
$$\mathcal{L}' \otimes \mathcal{H}^{e}(f'_{l}\bar{\mathbf{Q}}_{l})[-e] \approx \{\mathcal{L}'(\mathbf{r}-e), \dots, \mathcal{L}'(\mathbf{r}-e), (\begin{pmatrix} \mathbf{r} \\ 2\mathbf{r}-e \end{pmatrix} \text{ copies})\}.$$

Setting $\bar{L} = \bar{\sigma}_! \bar{\tau}^*(\mathcal{L}')$, it follows that

$$L \approx \{ \bar{L}(\mathbf{r}-e)[-e], \dots, \bar{L}(\mathbf{r}-e)[-e], (\begin{pmatrix} \mathbf{r} \\ 2\mathbf{r}-e \end{pmatrix} \text{ copies}), e \in \mathbf{Z} \}.$$

We now consider \overline{L} for certain choices of w, w'.

If w, w' satisfy l(ww') = l(w) + l(w'), then $\bar{\sigma}$ restricts to an isomorphism $\bar{X} \to C_{ww'}$ and $\bar{L} = \underline{\mathcal{L}}'_{ww'}$.

Now assume that $\alpha, \check{\alpha}, s_{\alpha}$ are as in 28.3 and that $w = w' = s_{\alpha} \in \mathbf{I}$. We have

$$\bar{L} \approx \{j_{u!}\bar{L}_u; u \in \mathbf{W}\}$$

where $j_u : C_u \to C$ is the inclusion and $\bar{L}_u = j_u^* \bar{L}$. Let $\bar{X}_u = \bar{\sigma}^{-1}(C_u)$. Then $\bar{L}_u = \bar{\sigma}_{u!} \bar{\tau}_u^*(\mathcal{L}')$ where $\bar{\sigma}_u : \bar{X}_u \to C_u, \, \bar{\tau}_u : \bar{X}_u \to T$ are the restrictions of $\bar{\sigma}, \bar{\tau}$. If $u \notin \{1, s_\alpha\}$, then $\bar{X}_u = \emptyset$ and $\bar{L}_u = 0$. If u = 1, then $\bar{\sigma}_u : \bar{X}_u \to C_u$ is an affine

If $u \notin \{1, s_{\alpha}\}$, then $\bar{X}_u = \emptyset$ and $\bar{L}_u = 0$. If u = 1, then $\bar{\sigma}_u : \bar{X}_u \to C_u$ is an affine line bundle and $\bar{\tau}_u^*(\mathcal{L}') = \bar{\sigma}_u^*\mathcal{L}'_u$; hence $\bar{\sigma}_{u!}\bar{\tau}_u^*(\mathcal{L}') = \bar{\sigma}_{u!}\bar{\sigma}_u^*\mathcal{L}'_u = \mathcal{L}'_u[[-1]]$. If $u = s_{\alpha}$, then $\bar{\sigma}_u : \bar{X}_u \to C_u$ is a principal \mathbf{k}^* -bundle and either (iii) or (iv) below holds:

- (iii) $\check{\alpha}^* \mathcal{L}' \not\cong \bar{\mathbf{Q}}_l$ and $\bar{\sigma}_{u!} \bar{\tau}_u^*(\mathcal{L}') = 0$,
- (iv) $\check{\alpha}^* \mathcal{L}' \cong \bar{\mathbf{Q}}_l$ and $\bar{\tau}_u^* (\mathcal{L}') = \bar{\sigma}_u^* \mathcal{L}'_u$.

If (iv) holds, then, as in case (ii) above, we have

$$\bar{\sigma}_{u!}\bar{\tau}_{u}^{*}(\mathcal{L}') = \bar{\sigma}_{u!}\bar{\sigma}_{u}^{*}\mathcal{L}'_{u} = \mathcal{L}'_{u} \otimes \bar{\sigma}_{u!}\bar{\mathbf{Q}}_{l} \approx \{\mathcal{L}'_{u} \otimes \mathcal{H}^{e}(\bar{\sigma}_{u!}\bar{\mathbf{Q}}_{l})[-e], e \in \mathbf{Z}\},\$$
$$\mathcal{L}'_{u} \otimes \mathcal{H}^{e}(\bar{\sigma}_{u!}\bar{\mathbf{Q}}_{l})[-e] \approx \{\mathcal{L}'_{u}(1-e), \dots, \mathcal{L}'_{u}(1-e), (\begin{pmatrix}1\\2-e\end{pmatrix} \text{ copies})\}.$$

40.7. In this subsection we assume that **k** is an algebraic closure of a finite field. Now the \mathcal{A} -module $\mathfrak{K}(C)$ is defined as in 36.8 (the character sheaves on C are taken to be the objects in \hat{C}).

For $(w, \lambda) \in \mathbf{W} \times \underline{\mathfrak{s}}$, let $[w; \lambda]$ be the basis element of $\mathfrak{K}(C)$ given by $\underline{\mathcal{L}}_{w}^{\sharp}[[d_{w}/2]]$; we choose $\mathcal{L} \in \lambda$ and we regard $\underline{\mathcal{L}}_{w}, \underline{\mathcal{L}}_{w}^{\sharp}$ as mixed complexes on C whose restriction to C_{w} is pure of weight 0; then $gr(\underline{\mathcal{L}}_{w}), gr(\underline{\mathcal{L}}_{w}^{\sharp})$ are defined in $\mathfrak{K}(C)$ as in 36.8. We denote these elements of $\mathfrak{K}(C)$ by $[w; \lambda]', [w; \lambda]'^{\sharp}$ respectively. From 40.5(a) we see that

(a) $(-v)^{d_w}[w;\lambda] = [w;\lambda]'^{\sharp} = \sum_{w' \in \mathbf{W}} \sum_{i \in 2\mathbf{Z}} N_{i,w',w,\lambda} v^i[w';\lambda]'$ in $\mathfrak{K}(C)$ where $N_{i,w',w,\lambda}$ is as in 40.2(e).

Let r, s be as in 40.4. By 40.4(b), $s_!r^* : \mathcal{D}(C \times C) \to \mathcal{D}(C)$ restricts to a functor $\mathcal{D}^{cs}(C \times C) \to \mathcal{D}^{cs}(C)$ where the character sheaves on $C \times C$ are by definition complexes of the form $A \boxtimes A'$ with $A \in \hat{C}, A' \in \hat{C}$. Hence the \mathcal{A} -linear map $gr(s_!r^*) : \mathfrak{K}(C \times C) \to \mathfrak{K}(C)$ or equivalently $\mathfrak{K}(C) \otimes_{\mathcal{A}} \mathfrak{K}(C) \to \mathfrak{K}(C)$ is well defined. (We have canonically $\mathfrak{K}(C \times C) = \mathfrak{K}(C) \otimes_{\mathcal{A}} \mathfrak{K}(C)$.) We write $\xi * \xi'$ instead of $gr(s_!r^*)(\xi \boxtimes \xi')$ where $\xi, \xi' \in \mathfrak{K}(C)$. Note that $\xi, \xi' \mapsto \xi * \xi'$ defines an associative \mathcal{A} -algebra structure on $\mathfrak{K}(C)$.

Let $w, w' \in \mathbf{W}, \lambda, \lambda' \in \mathfrak{s}$. From 40.6 we see that

if $w'\lambda' \neq \lambda$, then $[w;\lambda]' * [w';\lambda']' = 0$ in $\mathfrak{K}(C)$;

if $w'\lambda' = \lambda$ and l(ww') = l(w) + l(w'), then $[w; \lambda]' * [w', \lambda']' = (v^2 - 1)^{\mathbf{r}} [ww'; \lambda']'$ in $\mathfrak{K}(C)$;

if $s \in \mathbf{I}$ and $s\lambda' = \lambda$, then $[s; \lambda]' * [s, \lambda']' = (v^2 - 1)^{\mathbf{r}} (v^2[1; \lambda']' + (v^2 - 1)c[s; \lambda']')$ where c = 1 for $s \in \mathbf{W}_{\lambda'}$ and c = 0 for $s \notin \mathbf{W}_{\lambda'}$.

Using this and (a), 40.1(a), 40.2(e), we see that

(b) the unique \mathcal{A} -linear isomorphism $\omega : \mathfrak{K}(C) \to H$ (H as in 40.1) given by $[w,\lambda]' \mapsto v^{l(w)} \tilde{T}_w 1_{\lambda}$ for $w \in \mathbf{W}$, $\lambda \in \mathfrak{s}$, satisfies $\omega([w,\lambda]) = (-v)^{-d_w} v^{l(w)} c_{w,\lambda}$ for $w \in \mathbf{W}$, λ in \mathfrak{s} and $\omega(x * x') = (v^2 - 1)^{\mathbf{r}} \omega(x) \omega(x')$ for any $x, x' \in \mathfrak{K}(C)$.

40.8. For $w, w' \in \mathbf{W}$ and $\lambda, \lambda' \in \underline{\mathfrak{s}}$ we have $c_{w,\lambda}c_{w',\lambda'} = \sum_{y \in \mathbf{W}, \nu \in \underline{\mathfrak{s}}} \gamma_{y,\nu}^{w,\lambda;w',\lambda'} c_{y,\lambda}$ in the algebra H. Here $\gamma_{u,\nu}^{w,\lambda;w',\lambda'} \in \mathcal{A}$. We have:

(a)
$$\gamma_{y,\nu}^{w,\lambda;w',\lambda'} \in \mathbf{N}[v,v^{-1}].$$

By the arguments in 34.4–34.10 (with $D = G^0$) this is reduced to the analogous (well-known) statement for the structure constants of the algebra H^D_{λ} with its basis (c_w^{λ}) (see 34.2).

40.9. For any $J \subset \mathbf{I}$ let H_J be the \mathcal{A} -submodule of H spanned by $\{c_{w,\lambda}; w \in \mathbf{W}_J, \lambda \in \underline{\mathfrak{s}}\}$ or equivalently by $\{\tilde{T}_w \mathbf{1}_\lambda; w \in \mathbf{W}_J, \lambda \in \underline{\mathfrak{s}}\}$. From the definitions we see that H_J is a subalgebra of H. For any $J \subset \mathbf{I}, J' \subset \mathbf{I}$ we define a relation $\preceq_{J,J'}$ on $\mathbf{W} \times \underline{\mathfrak{s}}$ as follows. We say that $(y, \nu) \preceq_{J,J'} (w, \lambda)$ if there exist $w_1 \in \mathbf{W}_J, w_2 \in \mathbf{W}_{J'}, \lambda_1, \lambda_2 \in \underline{\mathfrak{s}}$ such that in the expansion (in the algebra H)

$$c_{w_1,\lambda_1}c_{w,\lambda}c_{w_2,\lambda_2} = \sum_{y' \in \mathbf{W}, \nu' \in \underline{\mathfrak{s}}} a_{y',\nu'}c_{y',\nu'}$$

(with $a_{y',\nu'} \in \mathcal{A}$) we have $a_{y,\nu} \neq 0$.

Using the associativity of the product in H, the fact that $H_J, H_{J'}$ are subalgebras of H and 40.8(a), we see that $\preceq_{J,J'}$ is transitive. Using the formula $c_{1,w\lambda}c_{w,\lambda}c_{1,\lambda} = c_{w,\lambda}$ we see that it is reflexive. Thus, it is a preorder. Let $\sim_{J,J'}$ be the equivalence relation attached to $\preceq_{J,J'}$; thus, $(y,\nu) \sim_{J,J'} (w,\lambda)$ if $(y,\nu) \preceq_{J,J'} (w,\lambda)$ and $(w,\lambda) \preceq_{J,J'} (y,\nu)$. The equivalence classes for $\sim_{J,J'}$ are called (J,J')-two-sided cells. The (\mathbf{I},\mathbf{I}) -two-sided cells in $\mathbf{W} \times \underline{\mathfrak{s}}$ are also called two-sided cells.

40.10. Let $w, w', w'' \in \mathbf{W}, \mathcal{L}, \mathcal{L}', \mathcal{L}'' \in \mathfrak{s}$. We set $K = \underline{\mathcal{L}}_w * \underline{\mathcal{L}}'_{w'} * \underline{\mathcal{L}}''_{w''} \in \mathcal{D}^{cs}(C)$. Let

$$X = \{(h_1U^*, h_2U^*, h_3U^*, h_4U^*) \in (G^0/U^*)^4; h_1^{-1}h_2 \in B^* \dot{w}B^*, h_2^{-1}h_3 \in \overline{B^* \dot{w}'B^*}, h_3^{-1}h_4 \in B^* \dot{w}''B^*\}$$

an irreducible variety. Let X_0 be the smooth open dense subset of X defined by the condition $h_2^{-1}h_3 \in B^*\dot{w}'B^*$. Define $\sigma: X \to C$ by

$$(h_1U^*, h_2U^*, h_3U^*, h_4U^*) \mapsto (h_1U^*, h_4U^*).$$

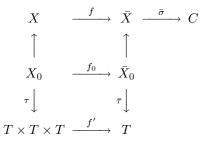
Define $\tau: X_0 \to T \times T \times T$ by

$$(h_1U^*, h_2U^*, h_3U^*, h_4U^*) \mapsto (t, t', t'')$$

with $h_1^{-1}h_2 \in U^*\dot{w}tU^*, h_2^{-1}h_3 \in U^*\dot{w}'t'U^*, h_3^{-1}h_4 \in U^*\dot{w}''t''U^*.$ Let $\mathcal{F} = \tau^*(\mathcal{L} \boxtimes \mathcal{L}' \boxtimes \mathcal{L}'')$, a local system on X_0 . Then $\mathcal{F}^{\sharp} := IC(X, \mathcal{F}) \in \mathcal{D}(X)$

Let $\mathcal{F} = \tau^*(\mathcal{L} \boxtimes \mathcal{L}' \boxtimes \mathcal{L}'')$, a local system on X_0 . Then $\mathcal{F}^{\sharp} := IC(X, \mathcal{F}) \in \mathcal{D}(X)$ is defined and we have $K = \sigma_! \mathcal{F}^{\sharp}$.

Let \bar{X} (resp. \bar{X}_0) be the variety of all $(h_1U^*, h_2B^*, h_3B^*, h_4U^*) \in G^0/U^* \times G^0/B^* \times G^0/U^*$ that satisfy the same equations as those defining X (resp. X_0). Note that \bar{X} is irreducible and \bar{X}_0 is an open dense smooth subset of \bar{X} . We have a cartesian diagram



where $X_0 \to X, \bar{X}_0 \to \bar{X}$ are the obvious imbeddings,

$$f, f_0 \text{ are given by } (h_1U^*, h_2U^*, h_3U^*, h_4U^*) \mapsto (h_1U^*, h_2B^*, h_3B^*, h_4U^*), \\ f' \text{ is } (t, t', t'') \mapsto \operatorname{Ad}(iv'iv'')^{-1}(t) \operatorname{Ad}(iv'')^{-1}(t')t''$$

 $\bar{\tau} \text{ is } (t, t, t^{*}) \mapsto \operatorname{Ad}(w^{w^{*}})^{-1}(t)\operatorname{Ad}(w^{*})^{-1}(t)t^{*},$ $\bar{\tau} \text{ is } (h_{1}U^{*}, h_{2}B^{*}, h_{3}B^{*}, h_{4}U^{*}) \mapsto \operatorname{Ad}(\dot{w}'\dot{w}'')^{-1}(t)\operatorname{Ad}(\dot{w}'')^{-1}(t')t'' \text{ with } t, t', t'' \text{ as in the definition of } \tau, \bar{\sigma} \text{ is } (h_{1}U^{*}, h_{2}B^{*}, h_{3}B^{*}, h_{4}U^{*}) \mapsto (h_{1}U^{*}, h_{4}U^{*}). \text{ Assume that } \mathcal{L} \cong (\operatorname{Ad}(\dot{w}')^{-1})^{*}\mathcal{L}' \text{ and } \mathcal{L}' \cong (\operatorname{Ad}(\dot{w}'')^{-1})^{*}\mathcal{L}''. \text{ Then } \mathcal{L}\boxtimes \mathcal{L}'\boxtimes \mathcal{L}'' = f'^{*}\mathcal{L}''. \text{ We have } \mathcal{F} = \tau^{*}f'^{*}\mathcal{L}'' = f_{0}^{*}\bar{\tau}^{*}\mathcal{L}''. \text{ Since } f \text{ is a principal } T \times T\text{-bundle and } X_{0} = f^{-1}(\bar{X}_{0}) \text{ it follows that } \mathcal{F}^{\sharp} = f^{*}IC(\bar{X}, \bar{\tau}^{*}\mathcal{L}''). \text{ Note that } f_{!}\bar{\mathbf{Q}}_{l} \approx \{\mathcal{H}^{e}(f_{!}\bar{\mathbf{Q}}_{l})[-e], 2\mathbf{r} \leq e \leq 4\mathbf{r}\},$

$$\mathcal{H}^{e}(f_{!}\bar{\mathbf{Q}}_{l}) \approx \{\bar{\mathbf{Q}}_{l}(2\mathbf{r}-e), \dots, \bar{\mathbf{Q}}_{l}(2\mathbf{r}-e), (\begin{pmatrix} 2\mathbf{r} \\ 4\mathbf{r}-e \end{pmatrix} \text{ copies})\}.$$

Hence setting $\bar{K} = \bar{\sigma}_! (IC(\bar{X}, \bar{\tau}^* \mathcal{L}''))$ we have

$$K = \sigma_! f^* IC(\bar{X}, \bar{\tau}^* \mathcal{L}'') = \bar{\sigma}_! f_! f^* IC(\bar{X}, \bar{\tau}^* \mathcal{L}'') = \bar{\sigma}_! (IC(\bar{X}, \bar{\tau}^* \mathcal{L}'') \otimes f_! \bar{\mathbf{Q}}_l),$$

(a)
$$K \approx \{\overline{K}(2\mathbf{r}-e)[-e], \dots, \overline{K}(2\mathbf{r}-e)[-e], (\binom{2\mathbf{r}}{4\mathbf{r}-e} \text{ copies}), 2\mathbf{r} \le e \le 4\mathbf{r}\}.$$

We now show that

(b) if $A \in \hat{C}$ is such that $A \dashv \overline{K}$, then $A \dashv K$.

We may regard $\mathcal{L}, \mathcal{L}', \mathcal{L}''$ as mixed local systems (with respect to a rational structure over a sufficiently large finite subfield of **k**) which are pure of weight 0. Then K, \bar{K} are naturally mixed complexes and (a) is compatible with the mixed structures. For any mixed perverse sheaf P, let P_h be the subquotient of P of pure weight h. We can find $h \in \mathbf{Z}$ such that $A \dashv {}^p H^{j}(\bar{K})_h$ for some $j \in \mathbf{Z}$; moreover, we may assume that h is maximum possible. Note that $A \dashv {}^p H^{j+4\mathbf{r}}(\bar{K}[-4\mathbf{r}](-2\mathbf{r}))_{h+2\mathbf{r}}$ and $A \not \dashv {}^p H^{j'}(\bar{K}[-e](2\mathbf{r}-e))_{h+2\mathbf{r}}$ for $2\mathbf{r} \leq e < 4\mathbf{r}$ and any j'; hence from (a) we see that $A \dashv {}^p H^{j+4\mathbf{r}}(K)_{h+2\mathbf{r}}$. In particular, $A \dashv K$, and (b) is proved.

40.11. Let $w, w'\mathcal{L}, \mathcal{L}', X, \overline{X}, \tau$ be as in 40.6. We set $\mathbf{L} = \underline{\mathcal{L}}_{w}^{\sharp} * \underline{\mathcal{L}}_{w'}^{\prime} \stackrel{\sharp}{=} \mathcal{D}^{cs}(C)$. Let $A = \underline{\mathcal{L}}_{w''}^{''} \stackrel{\sharp}{=} [d_{w''}]$. We show that

(a) if $A \dashv \mathbf{L}$, then $[w'', \lambda'']$ appears with nonzero coefficient in the expansion of the product $[w, \lambda] * [w', \lambda']$ in terms of the basis $([y, \nu])$ of $\mathfrak{K}(C)$. Let

$$\mathbf{X} = \{(h_1U^*, h_2U^*, h_3U^*) \in (G^0/U^*)^3; h_1^{-1}h_2 \in \overline{B^*\dot{w}B^*}, h_2^{-1}h_3 \in \overline{B^*\dot{w}'B^*}\}, \\ \bar{\mathbf{X}} = \{(h_1U^*, h_2B^*, h_3U^*) \in G^0/U^* \times G^0/B^* \times G^0/U^*; \\ h_1^{-1}h_2 \in \overline{B^*\dot{w}B^*}, h_2^{-1}h_3 \in \overline{B^*\dot{w}'B^*}\}.$$

Note that X (resp. \bar{X}) is naturally an open dense subset of \mathbf{X} (resp. $\bar{\mathbf{X}}$). Define $\sigma' : \mathbf{X} \to C$ by $(h_1U^*, h_2U^*, h_3U^*) \mapsto (h_1U^*, h_3U^*)$. Define $\bar{\sigma}' : \bar{\mathbf{X}} \to C$ by $(h_1U^*, h_2B^*, h_3U^*) \mapsto (h_1U^*, h_3U^*)$. Let $\mathcal{F} = \tau^*(\mathcal{L} \boxtimes \mathcal{L}')$, a local system on X. Then $\mathcal{F}^{\sharp} := IC(\mathbf{X}, \mathcal{F}) \in \mathcal{D}(\mathbf{X})$ is defined and we have $\mathbf{L} = \sigma'_1 \mathcal{F}^{\sharp}$. We have a cartesian diagram

where $X \to \mathbf{X}, \overline{X} \to \overline{\mathbf{X}}$ are the obvious imbeddings, $f, f', \overline{\tau}$ are as in 40.6 and \tilde{f} is the obvious map.

Assume first that 40.6(i) holds. Let $m': T \times \mathbf{X} \to \mathbf{X}$ be the free *T*-action $t_1: (h_1U^*, h_2U^*, h_3U^*) \mapsto (h_1U^*, h_2t_1^{-1}U^*, h_3U^*)$. This restricts to a free *T*-action $m: T \times X \to X$. Define a free *T* action $m_0: T \times (T \times T) \to T \times T$ by $t_1: (t, t') \mapsto (t_1^{-1}t, \operatorname{Ad}(\dot{w}')^{-1}(t_1)t'$. Then m, m_0 are compatible with τ . By our assumption we have $m_0^*(\mathcal{L} \boxtimes \mathcal{L}') = \mathcal{L}_0 \boxtimes \mathcal{L} \boxtimes \mathcal{L}'$ where $\mathcal{L}_0 \in \mathfrak{s}(T), \mathcal{L}_0 \ncong \overline{\mathbf{Q}}_l$. It follows that $m^*(\mathcal{F}) \cong \mathcal{L}_0 \boxtimes \mathcal{F}^{\sharp}$. Let $r: T \times \mathbf{X} \to \mathbf{X}$ be the second projection. Since $\mathcal{L}_0 \in \mathfrak{s}(T), \mathcal{L}_0 \ncong \overline{\mathbf{Q}}_l$, we have $r_!(\mathcal{L}_0 \boxtimes \mathcal{F}^{\sharp}) = 0$. Hence $r_!m'^*(\mathcal{F}^{\sharp}) = 0$. Since m', f', r, f' form a cartesian diagram we must have $f'^*f'(\mathcal{F}^{\sharp}) = 0$. Since f' is a principal *T*-bundle we deduce that $f'_!(\mathcal{F}^{\sharp}) = 0$. We have $\mathbf{L} = \bar{\sigma}'_! f'_!(\mathcal{F}^{\sharp})$ hence $\mathbf{L} = 0$. In this case (a) is clear.

Assume next that 40.6(ii) holds. Then $\mathcal{L} \boxtimes \mathcal{L}' = f'^* \mathcal{L}'$ and $\mathcal{F} = \tau^* f'^* \mathcal{L}' = f^* \bar{\tau}^* \mathcal{L}'$. Since f' is a principal *T*-bundle and $X = f'^{-1}(\bar{X})$ it follows that $\mathcal{F}^{\sharp} =$

G. LUSZTIG

 $f'^* IC(\bar{\mathbf{X}}, \bar{\tau}^* \mathcal{L}')$. Note that $f'_! \bar{\mathbf{Q}}_l \approx \{\mathcal{H}^e(f'_! \bar{\mathbf{Q}}_l)[-e], \mathbf{r} \leq e \leq 2\mathbf{r}\},\$

$$\mathcal{H}^{e}(f_{!}^{\prime}\bar{\mathbf{Q}}_{l}) \approx \{\bar{\mathbf{Q}}_{l}(\mathbf{r}-e), \dots, \bar{\mathbf{Q}}_{l}(\mathbf{r}-e), (\begin{pmatrix} \mathbf{r} \\ 2\mathbf{r}-e \end{pmatrix} \text{ copies})\}.$$

Hence setting $\bar{\mathbf{L}} = \bar{\sigma}'_{!}(IC(\bar{\mathbf{X}}, \bar{\tau}^{*}\mathcal{L}'))$ we have

$$\mathbf{L} = \sigma'_{!} f'^{*} IC(\bar{\mathbf{X}}, \bar{\tau}^{*} \mathcal{L}') = \bar{\sigma}'_{!} f'_{!} f'^{*} IC(\bar{\mathbf{X}}, \bar{\tau}^{*} \mathcal{L}') = \bar{\sigma}'_{!} (IC(\bar{\mathbf{X}}, \bar{\tau}^{*} \mathcal{L}') \otimes f'_{!} \bar{\mathbf{Q}}_{l}),$$
$$\mathbf{L} \approx \{ \bar{\mathbf{L}}(\mathbf{r} - e)[-e], \dots, \bar{\mathbf{L}}(\mathbf{r} - e)[-e], (\begin{pmatrix} \mathbf{r} \\ 2\mathbf{r} - e \end{pmatrix} \text{ copies}), \mathbf{r} \leq e \leq 2\mathbf{r} \}.$$

Since $A \dashv \mathbf{L}$, this shows that $A \dashv \bar{\mathbf{L}}$. We regard \mathcal{L}' as a pure local system of weight 0. Then $\bar{\mathbf{L}} = \bar{\sigma}'_{!}(IC(\bar{\mathbf{X}}, \bar{\tau}^{*}\mathcal{L}'))$ is again pure of weight 0, since $\bar{\sigma}'$ is proper (see [BBD]). Hence the coefficient with which A appears in the expansion of $gr(\bar{\mathbf{L}})$ is a polynomial in -v with coefficients given by the multiplicities of A in the various ${}^{p}H^{j}(\bar{\mathbf{L}})$; in particular, A appears with coefficient $\neq 0$ in $gr(\bar{\mathbf{L}})$. On the other hand, the arguments above show that $[w, \lambda] * [w', \lambda'] = (v^{2} - 1)^{\mathbf{r}}gr(\bar{\mathbf{L}})$. It follows that A appears with coefficient $\neq 0$ in $[w, \lambda] * [w', \lambda']$. This proves (a).

41. Character sheaves and two-sided cells

41.1. In this section we preserve the notation of 40.3. We fix a connected component D of G and we pick $\delta \in N_D B^* \cap N_D T$. We write ϵ instead of $\epsilon_D : \mathbf{W} \to \mathbf{W}$. For $w \in \mathbf{W}$ we set

$$Z^{w}_{\emptyset,D} = \{ (B, B', xU_B) \in Z_{\emptyset,D}; \text{pos}(B, B') = w \}.$$

(This is the same as ${}^{w^{-1}}Z_{\emptyset,D}$ in 36.2.) Define $\xi_D: C \to Z_{\emptyset,D}$ by $(hU^*, h'U^*) \mapsto (hB^*h^{-1}, h'B^*h'^{-1}, h'\delta h^{-1}U_{hB^*h^{-1}})$, a principal *T*-bundle for the free *T*-action on *C* given by $t: (hU^*, h'U^*) \to (htU^*, h'(\delta t\delta^{-1})U^*)$.

Since $\xi_D^{-1}(Z_{\emptyset,D}^w) = C_w$, ξ_D restricts to a principal *T*-bundle $\xi_{D,w} : C_w \to Z_{\emptyset,D}^w$. We have a commutative diagram

$$T \xleftarrow{\psi} C_{w} \xrightarrow{=} C_{w}$$

$$\zeta \downarrow \qquad j' \uparrow \qquad \xi_{D,w} \downarrow$$

$$\mathbf{d} \xleftarrow{pr_{2}} G^{0}/(U^{*} \cap \dot{w}U^{*}\dot{w}^{-1}) \times \mathbf{d} \xrightarrow{j} Z_{\emptyset,I}^{w}$$

where ψ is as in 40.3,

$$\begin{aligned} \mathbf{d} &= \dot{w}\delta T, \\ j(f(U^* \cap \dot{w}U^*\dot{w}^{-1}), s) &= (fB^*f^{-1}, f\dot{w}B^*\dot{w}^{-1}f^{-1}, fsf^{-1}U_{fB^*f^{-1}}), \\ j'(f(U^* \cap \dot{w}U^*\dot{w}^{-1}), s) &= (fU^*, fs\delta^{-1}U^*), \\ \zeta(t) &= \dot{w}\delta(\delta^{-1}t\delta). \end{aligned}$$

Note that the lower row in the diagram is as in 36.2(a).

Define $\iota : \mathbf{d} \to T$ by $\iota(\dot{w}\delta t) = t$ where $t \in T$. If $\mathcal{L} \in \mathfrak{s}$ is such that $\operatorname{Ad}((\dot{w}d)^{-1})^*\mathcal{L} \cong \mathcal{L}$, then $pr_2^*\iota^*(\mathcal{L})$ is a local system on $G^0/(U^* \cap \dot{w}U^*\dot{w}^{-1}) \times \mathbf{d}$, equivariant for the T-action $t_0 : (f(U^* \cap \dot{w}U^*\dot{w}^{-1}), s) = (ft_0^{-1}(U^* \cap \dot{w}U^*\dot{w}^{-1}), t_0st_0^{-1})$ on $G^0/(U^* \cap \dot{w}U^*\dot{w}^{-1}) \times \mathbf{d}$, which makes j a principal T-bundle. It follows that there is a well-defined local system $\dot{\mathcal{L}}_w$ (of rank 1) on $Z^w_{\emptyset,D}$ such that $j^*\dot{\mathcal{L}}_w = pr_2^*\iota^*(\mathcal{L})$. We show that

(a) $\xi_{D,w}^*(\dot{\mathcal{L}}_w) = (\mathrm{Ad}(\delta^{-1})^*\mathcal{L})_w.$

Since j' is an isomorphism, it is enough to show that $j'^*\xi_{D,w}^*(\dot{\mathcal{L}}_w) = j'^*(\mathrm{Ad}(\delta^{-1})^*\mathcal{L})_w$ or that $j^* \dot{\mathcal{L}}_w = j'^* (\operatorname{Ad}(\delta^{-1})^* \mathcal{L})_w$ or that $pr_2^* \iota^* \mathcal{L} = j'^* \psi^* (\operatorname{Ad}(\delta^{-1})^*) \mathcal{L})$ or that $j'^* \psi^* \zeta^* \iota^* \mathcal{L} = j'^* \psi^* (\operatorname{Ad}(\delta^{-1})^*) \mathcal{L})$. It is enough to show that $\zeta^* \iota^* \mathcal{L} = \operatorname{Ad}(\delta^{-1})^* \mathcal{L}$. This follows from $\operatorname{Ad}(\delta^{-1}) = \iota \zeta : T \to T$.

Let $h_w: Z^w_{\emptyset,D} \to Z_{\emptyset,D}, \ \bar{h}_w: \bar{Z}^w_{\emptyset,D} \to Z_{\emptyset,D}$ be the inclusions $(\bar{Z}^w_{\emptyset,D} = \bigcup_{w';w' \leq w} Z^{w'}_{\emptyset,D})$ is the closure of $Z_{\emptyset,D}^w$ in $Z_{\emptyset,D}$). Let $\underline{\dot{\mathcal{L}}}_w = h_w! \underline{\dot{\mathcal{L}}}_w = \bar{h}_w! \underline{\dot{\mathcal{L}}}_w^{\sharp}$. Using (a) and the fact that ξ_D is a principal *T*-bundle we deduce

(b) $\xi_D^*(\underline{\dot{\mathcal{L}}}_w) = \frac{(\operatorname{Ad}(\delta^{-1})^* \mathcal{L})_w}{(\operatorname{Ad}(\delta^{-1})^* \mathcal{L})_w^{\sharp}}.$ (c) $\xi_D^*(\underline{\dot{\mathcal{L}}}_w^{\sharp}) = \frac{(\operatorname{Ad}(\delta^{-1})^* \mathcal{L})_w^{\sharp}}{(\operatorname{Ad}(\delta^{-1})^* \mathcal{L})_w^{\sharp}}.$

Now let D' be another connected component of G. We pick $\delta' \in N_{D'}B^* \cap N_{D'}T$. We have a commutative diagram with a cartesian right square

where r, s are as in 40.4, Z_0, b_1, b_2 are as in 32.5 (with $J = \emptyset$) and

$$\begin{split} \xi_0(h_1U^*,h_2U^*,h_3U^*) \\ &= (h_1B^*h_1^{-1},h_2B^*h_2^{-1},h_3B^*h_3^{-1},h_2\delta h_1^{-1}U_{h_1B^*h_1^{-1}},h_3\delta'h_2^{-1}U_{h_2B^*h_2^{-1}}). \end{split}$$

Hence, if $A \in \mathcal{D}(Z_{\emptyset,D}), A' \in \mathcal{D}(Z_{\emptyset,D'})$, then $\xi_{D'D}^* b_{2!} b_1^* (A \boxtimes A') = s_! r^* (\xi_D^* A \boxtimes \xi_{D'}^* A')$, or equivalently

(d) $\xi_{D'D}^*(A * A') = (\xi_D^*A) * (\xi_{D'}^*A').$

41.2. Let $u \in \mathbf{W}$. Let

$$\Upsilon_u = \{ (B, B', g(U_B \cap U_{B'}); \\ B \in \mathcal{B}, B' \in \mathcal{B}, g(U_B \cap U_{B'}) \in D/(U_B \cap U_{B'}), \operatorname{pos}(B, B') = u \}$$

and let $\Phi_u : \mathcal{D}(Z_{\emptyset,D}) \to \mathcal{D}(Z_{\emptyset,D})$ be the composition $\mathfrak{h}_! \mathfrak{j}^*$ where $\mathfrak{j} : \Upsilon_u \to Z_{\emptyset,D}$ is $(B, B', g(U_B \cap U_{B'}) \mapsto (B, gBg^{-1}, gU_B) \text{ and } \mathfrak{h} : \Upsilon_u \to Z_{\emptyset, D} \text{ is}$

$$(B, B', g(U_B \cap U_{B'}) \mapsto (B', gB'g^{-1}, gU_{B'}).$$

(A special case of definitions in 37.1.) Let

$$\begin{split} \Upsilon' &= \{ (B', B, \tilde{B}, \tilde{B}', gU_{B'}); B' \in \mathcal{B}, B \in \mathcal{B}, \tilde{B} \in \mathcal{B}, \tilde{B}' \in \mathcal{B}, \\ gU_{B'} &\in D/U_{B'}, \operatorname{pos}(B', B) = u^{-1}, \operatorname{pos}(\tilde{B}, \tilde{B}') = \epsilon(u), gB'g^{-1} = \tilde{B}' \}, \\ s: \Upsilon_u \to \Upsilon', (B, B', g(U_B \cap U_{B'}) \mapsto (B', B, gBg^{-1}, gB'g^{-1}, gU_{B'}). \end{split}$$

Note that s is an isomorphism. (We show this only at the level of sets. Define $s': \Upsilon' \to \Upsilon_u$ by $(B', B, \tilde{B}, \tilde{B}', gU_{B'}) \mapsto (B, B', x(U_B \cap U_{B'}))$ where $x \in D$ is such that $xBx^{-1} = \tilde{B}$, $xU_{B'} = gU_{B'}$. This is well defined and clearly an inverse of s.) It follows that $\mathfrak{h}_!\mathfrak{j}^* = \mathfrak{h}'_!\mathfrak{j}'^*$ where

$$\begin{split} \mathfrak{h}' &= \mathfrak{h}s': \Upsilon' \to Z_{\emptyset,D} \quad \text{is} \ (B',B,\tilde{B},\tilde{B}',gU_{B'}) \mapsto (B',\tilde{B}',gU_{B'}), \\ \mathfrak{j}' &= \mathfrak{j}s': \Upsilon' \to Z_{\emptyset,D} \quad \text{is} \ (B',B,\tilde{B},\tilde{B}',gU_{B'}) \mapsto (B,\tilde{B},xU_B) \end{split}$$

G. LUSZTIG

and $x \in D$ is such that $xBx^{-1} = \tilde{B}, xU_{B'} = gU_{B'}$ (then $x(U_B \cap U_{B'})$ is well defined). We have a commutative diagram with a cartesian right square

$$\begin{array}{cccc} C & \xleftarrow{\tilde{j}} & \tilde{C} & \xrightarrow{\tilde{h}} & C \\ \xi_D & & \xi' & & \xi_D \\ Z_{\emptyset,D} & \xleftarrow{j'} & \Upsilon'_u & \xrightarrow{\mathfrak{h}'} & Z_{\emptyset,D} \end{array}$$

where ξ_D is as in 41.1,

$$\dot{C} = \{ (h_1 U^*, h_2 B^*, h_3 B^*, h_4 U^*) \in (G^0 / U^*)^4; h_1^{-1} h_2 \in B^* \dot{u}^{-1} B^*, h_3^{-1} h_4 \in B^* \delta \dot{u} \delta^{-1} B^* \},\$$

$$\begin{split} \tilde{h} \text{ is } (h_1 U^*, h_2 B^*, h_3 B^*, h_4 U^*) &\mapsto (h_1 U^*, h_4 U^*), \, \xi' \text{ is } \\ (h_1 U^*, h_2 B^*, h_3 B^*, h_4 U^*) \\ &\mapsto (h_1 B^* h_1^{-1}, h_2 B^* h_2^{-1}, h_3 B^* h_3^{-1}, h_4 B^* h_4^{-1}, h_4 \delta h_1^{-1} U_{h_1 B^* h_1^{-1}}), \end{split}$$

 \tilde{j} is $(h_1U^*, h_2B^*, h_3B^*, h_4U^*) \mapsto (h_2t^{-1}U^*, h_3\tilde{t}U^*)$ where $t, \tilde{t} \in T$ are given by $h_1^{-1}h_2 \in U^*\dot{u}^{-1}tU^*, h_3^{-1}h_4 \in U^*\tilde{t}\delta\dot{u}\delta^{-1}U^*.$ We see that for $A \in \mathcal{D}(Z_{\emptyset,D})$ we have

Set that for
$$M \in \mathcal{D}(\mathbb{Z}\emptyset, \mathbb{D})$$
 we have

$$\xi_D^* \Phi_u(A) = \xi_D \mathfrak{h}_! \mathfrak{j}^* A = \xi_D^* \mathfrak{h}_! \mathfrak{j}'^* A = h_! \xi'^* \mathfrak{j}'^* A = h_! j^* \xi_D^* A.$$

Taking here $A = \underline{\dot{\mathcal{L}}}_{w}^{\sharp}$ (with $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}, \mathcal{L} \in \lambda$ with $w\underline{D}\lambda = \lambda$) and using 41.1(c) we obtain $\xi_{D}^{*}\Phi_{u}(\underline{\dot{\mathcal{L}}}_{w}^{\sharp}) = \tilde{h}_{!}\tilde{j}^{*}(\underline{(\mathrm{Ad}(\delta^{-1})^{*}\mathcal{L})}_{w}^{\sharp})$ or equivalently $\xi_{D}^{*}\Phi_{u}(\underline{\dot{\mathcal{L}}}_{w}^{\sharp}) = \bar{\sigma}_{!}\tilde{j}'^{*}((\mathrm{Ad}(\delta^{-1})^{*}\mathcal{L})_{w}^{\sharp})$ where

$$\bar{X} = \{(h_1U^*, h_2B^*, h_3B^*, h_4U^*) \in \tilde{C}; h_2^{-1}h_3 \in \overline{B^*\dot{w}B^*}\}$$

and $\tilde{j}': \bar{X} \to \bar{C}_w, \bar{\sigma}: \bar{X} \to C$ are the restrictions of \tilde{j}, \tilde{h} . Let

$$\bar{X}_0 = \{(h_1U^*, h_2B^*, h_3B^*, h_4U^*) \in \tilde{C}; h_2^{-1}h_3 \in B^*\dot{w}B^*\}$$

and let $\tilde{j}'_0: \bar{X}_0 \to C_w$ be the restriction of \tilde{j} . Let $\mathcal{F}_0 = \tilde{j}'_0 (\operatorname{Ad}(\delta^{-1}) \mathcal{L})$, a local system on \bar{X}_0 . Since \tilde{j}' is a fibration with smooth connected fibres, we have $\tilde{j}'((\operatorname{Ad}(\delta^{-1}) \mathcal{L})^{\sharp}_w) = IC(\bar{X}, \mathcal{F}_0)$. Thus, $\xi_D^* \Phi_u(\underline{\dot{\mathcal{L}}}^{\sharp}_w) = \bar{\sigma}_!(IC(\bar{X}, \mathcal{F}_0))$. From the definitions we see that $\mathcal{F}_0 = \bar{\tau} \mathcal{L}''$, hence $\bar{\sigma}_!(IC(\bar{X}, \mathcal{F}_0)) = \bar{K}$ and

(a)
$$\xi_D^* \Phi_u(\underline{\dot{\mathcal{L}}}_w^\sharp) = \bar{K}$$

where $\bar{\tau}^* \mathcal{L}', \bar{K}$ are given as in 40.10 in terms of

$$(u^{-1}, \mathcal{L}), (w, \mathrm{Ad}(\delta^{-1})^*\mathcal{L}), (\epsilon(u), \mathrm{Ad}(\delta \dot{u} \delta^{-1})^*\mathrm{Ad}(\delta^{-1})^*\mathcal{L})$$

instead of $(w, \mathcal{L}), (w', \mathcal{L}'), (w'', \mathcal{L}'').$

41.3. For $J \subset \mathbf{I}$ let $\mathcal{D}_J^{cs}(C)$ be the subcategory of $\mathcal{D}^{cs}(C)$ whose objects are those $K \in \mathcal{D}(C)$ such that for any j, any simple subquotient of ${}^{p}H^{j}K$ is isomorphic to \mathcal{L}_{w}^{\sharp} for some $\mathcal{L} \in \mathfrak{s}$ and some $w \in \mathbf{W}_{J}$.

 $\underbrace{\mathcal{L}}_{w}^{\sharp} \text{ for some } \mathcal{L} \in \mathfrak{s} \text{ and some } w \in \mathbf{W}_{J}.$ Let $J, J' \subset \mathbf{I}$. Let $K \in \mathcal{D}_{J}^{cs}(C), K' \in \mathcal{D}_{J'}^{cs}(C)$, and let $w', w'' \in \mathbf{W}, \lambda', \lambda'' \in \mathfrak{s},$ $\mathcal{L}' \in \lambda', \mathcal{L}'' \in \lambda''$. Let $A = \underbrace{\mathcal{L}}_{w''}^{w''} {}^{\sharp}[d_{w''}].$ We show that

(a) if (i) $A \dashv K * \underline{\mathcal{L}}'_{w'} {}^{\sharp}[d_{w'}]$ or (ii) $A \dashv \underline{\mathcal{L}}'_{w'} {}^{\sharp}[d_{w'}] * K'$ or (iii) $A \dashv K * \underline{\mathcal{L}}'_{w'} {}^{\sharp}[d_{w'}] * K'$, then $(w'', \lambda'') \preceq_{J,J'} (w', \lambda')$.

For the proof we may assume that **k** is an algebraic closure of a finite field. Then the results in 40.7 are applicable. We first consider the case (i). In this case we can find $\mathcal{L} \in \mathfrak{s}, w \in \mathbf{W}_J$ such that $A \dashv \underline{\mathcal{L}}_w^{\sharp}[d_w] * \underline{\mathcal{L}}'_{w'}{}^{\sharp}[d_{w'}]$. By 40.11(a), $[w'', \lambda'']$ appears with nonzero coefficient in the expansion of the product $[w, \lambda] * [w', \lambda']$ in terms of the basis $([y, \nu])$ of $\mathfrak{K}(C)$. Applying ω (see 40.7(b)) we see that $c_{w'',\lambda''}$ appears with nonzero coefficient in the expansion of the product $c_{w,\lambda}c_{w',\lambda'}$ in terms of the basis $(c_{y,\nu})$ of H and the desired result follows. Case (ii) is treated in an entirely similar way. We now consider case (iii). In this case we must have $A \dashv A' * K'$ for some simple perverse sheaf A' such that $A' \dashv K * \underline{\mathcal{L}}'_{w'}{}^{\sharp}[d_{w'}]$. We have $A' = \underline{\mathcal{M}}_y^{\sharp}[d_y]$ where $y \in \mathbf{W}, \ \mathcal{M} \in \mathfrak{s}$. Let ν be the isomorphism class of \mathcal{M} . From case (ii) applied to $A \dashv A' * K'$ we see that $(w'', \lambda'') \preceq_{J,J'} (y, \nu)$. From case (i) applied to $A' \dashv K * \underline{\mathcal{L}}'_{w'}{}^{\sharp}[d_{w'}]$ we see that $(y, \nu) \preceq_{J,J'} (w', \lambda')$. Combining these two inequalities we obtain $(w'', \lambda'') \preceq_{J,J'} (w', \lambda')$, as desired.

41.4. Let $J \subset \mathbf{I}$. In the remainder of this section we write $\mathfrak{f}, \mathfrak{e}$ instead of $\mathfrak{f}_{\emptyset,J}$: $\mathcal{D}(Z_{\emptyset,D} \to \mathcal{D}(Z_{J,D}), \mathfrak{e}_{\emptyset,J} : \mathcal{D}(Z_{J,D} \to \mathcal{D}(Z_{\emptyset,D}))$. We note that

(a) if $A \in \mathcal{D}(Z_{J,D})$, then $\mathfrak{fe}(A) \cong A[m] \oplus A'$ for some $m \in \mathbb{Z}$ and some $A' \in \mathcal{D}(Z_{J,D})$.

See [G], [MV] for the special case $D = G^0, J = \mathbf{I}$ and [L10, 6.6] for the general case. Now:

(b) Let A be a simple perverse sheaf on $Z_{J,D}$. Then $A \dashv \mathfrak{f}({}^{p}H^{j}(\mathfrak{e}(A)))$ for some $j \in \mathbb{Z}$.

Assume that this is not true. As in [BBD, p. 142], for any $n \in \mathbb{Z}$ we have a distinguished triangle $({}^{p}\tau_{\leq n-1}\mathfrak{e}A, {}^{p}\tau_{\leq n}\mathfrak{e}A, {}^{p}H^{n}(\mathfrak{e}A)[-n])$, hence a distinguished triangle

$$(\mathfrak{f}({}^{p}\tau_{\leq n-1}\mathfrak{e}A),\mathfrak{f}({}^{p}\tau_{\leq n}\mathfrak{e}A),\mathfrak{f}({}^{p}H^{n}(\mathfrak{e}A))[-n]).$$

Using our assumption, we see that $A \dashv \mathfrak{f}({}^{p}\tau_{\leq n-1}\mathfrak{e}A)$ if and only if $A \dashv \mathfrak{f}({}^{p}\tau_{\leq n}\mathfrak{e}A)$. Thus we have $A \dashv \mathfrak{f}({}^{p}\tau_{\leq n}\mathfrak{e}A)$ for some *n* if and only if $A \dashv \mathfrak{f}({}^{p}\tau_{\leq n}\mathfrak{e}A)$ for any *n*. Since ${}^{p}\tau_{\leq n}\mathfrak{e}A = 0$ for some *n*, we see that $A \not \prec \mathfrak{f}({}^{p}\tau_{\leq n}\mathfrak{e}A)$ for any *n*. Since ${}^{p}\tau_{\leq n}\mathfrak{e}A = \mathfrak{e}A$ for some *n*, we deduce that $A \not \prec \mathfrak{f}\mathfrak{e}A$. This contradicts (a); (b) is proved.

We show that

(c) if A is a simple perverse sheaf on $Z_{J,D}$, then there exists a simple perverse sheaf A' on $Z_{\emptyset,D}$ such that $A \dashv \mathfrak{f}(A'), A' \dashv \mathfrak{e}(A)$.

By (b) we can find $i, j \in \mathbb{Z}$ such that $A \dashv {}^{p}H^{i}(\mathfrak{f}(P))$ where $P = {}^{p}H^{j}(\mathfrak{e}(A))$.

Assume that $A \not \uparrow {}^{p}H^{i}(\mathfrak{f}(A'))$ for any simple subquotient A' of P. We claim that $A \not \uparrow {}^{p}H^{i}(\mathfrak{f}(P'))$ for any subobject P' of P. We argue by induction on the length of P'. If P' has length 1, the claim holds by assumption. If P' has length ≥ 2 , we can find a simple subobject P'' of P'. We have a distinguished triangle $(\mathfrak{f}(P'), \mathfrak{f}(P'), \mathfrak{f}(P'/P''))$. Hence we have an exact sequence ${}^{p}H^{i}(\mathfrak{f}(P'')) \rightarrow$ ${}^{p}H^{i}(\mathfrak{f}(P')) \rightarrow {}^{p}H^{i}(\mathfrak{f}(P'/P''))$. By the induction hypothesis, we have $A \not = {}^{p}H^{i}(\mathfrak{f}(P''))$, $A \not = {}^{p}H^{i}(\mathfrak{f}(P'/P''))$. Hence $A \not = {}^{p}H^{i}(\mathfrak{f}(P'))$. This proves the claim. In particular, $A \not = {}^{p}H^{i}(\mathfrak{f}(P))$, contradicting the definition of i, P.

We see that there exists a simple subquotient A' of P such that $A \dashv {}^{p}H^{i}(\mathfrak{f}(A'))$. Then A' is as required by (c).

Let $d_w = \dim Z^w_{\emptyset,D}$. Let

(d)
$$A' = \underline{\dot{\mathcal{L}}}_w^{\sharp}[\bar{d}_w], A'' = \underline{\dot{\mathcal{M}}}_y^{\sharp}[\bar{d}_y] \in \hat{Z}_{\emptyset,D}, \ \mathcal{L} \in \lambda, \mathcal{M} \in \nu.$$

Here $w\underline{D}\lambda = \lambda, \underline{y}\underline{D}\nu = \nu$. Now:

(e) Let A be a character sheaf on $Z_{J,D}$ such that $A \dashv \mathfrak{f}(A'), A'' \dashv \mathfrak{e}(A)$. Then $(y,\underline{D}\nu) \preceq_{J,J'} (w,\underline{D}\lambda)$.

Since f is proper, $\mathfrak{f}(A')$ is a semisimple complex (see [BBD]). Hence $\mathfrak{f}(A') \cong A[m] \oplus A_1$ for some $m \in \mathbb{Z}, A' \in \mathcal{D}(Z_{J,D})$ and $\mathfrak{e}\mathfrak{f}(A') \cong \mathfrak{e}(A)[m] \oplus \mathfrak{e}(A_1)$. Hence from $A'' \dashv \mathfrak{e}(A)$ we can deduce $A'' \dashv \mathfrak{e}\mathfrak{f}(A')$. By 37.2 we have $\mathfrak{e}\mathfrak{f}(A') \cong \{\Phi_u(A')[[-m_u]]; u \in \mathbb{W}_J\}$ where m_u are certain integers. Hence for some $u \in \mathbb{W}_J$ we have $A'' \dashv \Phi_u(A')[[-m_u]]$, that is, $A'' \dashv \Phi_u(A')$ and $\xi_D^*A''[\mathbf{r}] \dashv \xi_D^*\Phi_u(A')[\mathbf{r}]$. Hence using 41.2(a) we have $\xi_D^*A''[\mathbf{r}] \dashv \bar{K}$ where \bar{K} is as in the end of 41.2. Thus, $\underline{\mathcal{M}}_y^{\sharp}[d_y] \dashv \bar{K}$. Using 40.10(b) we deduce that

$$\underline{\mathcal{M}}_{y}^{\sharp}[d_{y}] \dashv \underline{\mathrm{Ad}(\dot{w})^{-1}}^{*} \underline{\mathrm{Ad}(\delta^{-1})^{*}}_{u^{-1}} * \underline{(\mathrm{Ad}(\delta^{-1})^{*}\mathcal{L})}_{w}^{\sharp} * \underline{\mathrm{Ad}(\delta\dot{u}\delta^{-1})^{*}}_{w} \underline{\mathrm{Ad}(\delta^{-1})^{*}}_{\epsilon(u)}.$$

Using this and 41.3(a) we see that (e) holds.

Now:

(f) Let A be a character sheaf on $Z_{J,D}$. In the setup of (d) assume that $A \dashv \mathfrak{f}(A')$, $A' \dashv \mathfrak{e}(A)$, $A \dashv \mathfrak{f}(A'')$, $A'' \dashv \mathfrak{e}(A)$. Then $(y, \underline{D}\nu) \sim_{J,J'} (w, \underline{D}\lambda)$.

Applying (e) to A', A'' we see that $(y, \underline{D}\nu) \preceq_{J,J'} (w, \underline{D}\lambda)$. Applying (e) to A'', A' (instead of A', A'') we see that $(w, \underline{D}\lambda) \preceq_{J,J'} (y, \underline{D}\nu)$. Hence (f) holds.

From (c),(f) we see that there is a well-defined map $A \mapsto \mathbf{c}_A$ from the set of character sheaves on $Z_{J,D}$ (up to isomorphism) to the set of (J, J')-two-sided cells in $\mathbf{W} \times \underline{\mathcal{F}}$ where \mathbf{c}_A is the unique (J, J')-two-sided cell that contains

$$\{(w,\underline{D}\lambda)\in\mathbf{W}\times\underline{\mathfrak{s}};w\underline{D}\lambda=\lambda,A\dashv\mathfrak{f}(\underline{\dot{\mathcal{L}}}_{w}^{\mu}[\bar{d}_{w}]),\underline{\dot{\mathcal{L}}}_{w}^{\mu}[\bar{d}_{w}]\dashv A\}$$

(a nonempty set); here $\mathcal{L} \in \lambda$.

41.5. In the setup of 41.4, let A be a character sheaf on $Z_{J,D}$. We show that:

(a) There exists $(w, \underline{D}\lambda) \in \mathbf{c}_A$ such that $w\underline{D}\lambda = \lambda$, $A \dashv \mathfrak{f}(\underline{\dot{\mathcal{L}}}_w^{\sharp}[\bar{d}_w])$. If $(w', \underline{D}\lambda') \in \mathbf{W} \times \mathfrak{s}$ is such that $w'\underline{D}\lambda' = \lambda'$, $A \dashv \mathfrak{f}(\underline{\dot{\mathcal{L}}}'_{w'}^{\sharp}[\bar{d}_{w'}])$, then $(w, \underline{D}\lambda) \preceq_{J,J'} (w', \underline{D}\lambda')$. Here $\mathcal{L} \in \lambda, \mathcal{L}' \in \lambda'$.

(b) There exists $(w, \underline{D}\lambda) \in \mathbf{c}_A$ such that $w\underline{D}\lambda = \lambda$, $\underline{\dot{\mathcal{L}}}_w^{\sharp}[\bar{d}_w] \dashv \mathfrak{e}(A)$. If $(w', \underline{D}\lambda') \in \mathbf{W} \times \underline{\mathfrak{s}}$ is such that $w'\underline{D}\lambda' = \lambda'$, $\underline{\dot{\mathcal{L}}}_{w'}^{\prime}{}^{\sharp}[\bar{d}_{w'}] \dashv \mathfrak{e}(A)$, then $(w', \underline{D}\lambda') \preceq_{J,J'} (w, \underline{D}\lambda)$. Here $\mathcal{L} \in \lambda, \mathcal{L}' \in \lambda'$.

Note that (a) follows immediately from 41.4(c),(e) and the definition of \mathbf{c}_A . Similarly, (b) follows from 41.4(c),(e) and the definition of \mathbf{c}_A .

41.6. In this subsection we assume that $J = \mathbf{I}$. The \mathcal{A} linear map $H \to H$ given by

(a) $\tilde{T}_w 1_{\lambda} \mapsto \tilde{T}_{\epsilon(w)} 1_{\underline{D}\lambda}$ for $w \in \mathbf{W}, \lambda \in \mathfrak{s}$

is an \mathcal{A} -algebra isomorphism. It carries $c_{w,\lambda}$ to $c_{\epsilon(w),\underline{D}\lambda}$ for any $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}$. It induces a bijection $\mathbf{c} \mapsto \mathbf{c}'$ from the set of two-sided cells in $\mathbf{W} \times \underline{\mathfrak{s}}$ onto itself. We show that

(b) if A is a character sheaf on D, then $(\mathbf{c}_A)' = \mathbf{c}_A$.

Consider the automorphism $\operatorname{Ad}(\delta) : D \to D$. From the definitions we see that for $(w, \lambda) \in \mathbf{W} \times \underline{\mathfrak{s}}$ such that $w\underline{D}\lambda = \lambda$ we have $A \dashv \mathfrak{f}(\underline{\dot{\mathcal{L}}}_w^{\sharp}[\overline{d}_w])$ if and only if

$$\operatorname{Ad}(\delta^{-1})^*A \dashv \mathfrak{f}(\underline{\operatorname{Ad}(\underline{D}^{-1})^*\mathcal{L}}_{\epsilon(w)}^{\sharp}[\bar{d}_w]).$$
 Using this and 41.5(a) we see that

$$\mathbf{c}_{\mathrm{Ad}(\delta^{-1})^*A} = (\mathbf{c}_A)'.$$

It is then enough to show that $\operatorname{Ad}(\delta^{-1})^*A \cong A$. By the G^0 -equivariance of A we have $m^*A \cong q^*A$ where $m: G^0 \times D \to D$ is $(x,g) \mapsto xgx^{-1}$ and $q: G^0 \times D \to D$ is $(x,g) \mapsto g$. Define $r: D \to G^0 \times D$ by $r(g) = (\delta g^{-1}, g)$. Then $r^*m^*A \cong r^*q^*A$ that is, $(mr)^*A \cong (qr)^*A$. We have $mr = \operatorname{Ad}(\delta), qr = 1$, hence $\operatorname{Ad}(\delta)^*A \cong A$ and $\operatorname{Ad}(\delta^{-1})^*A \cong A$, as required.

Note also that for (w, λ) as above we have

(c)
$$\mathfrak{f}(\underline{\mathrm{Ad}}(\underline{D}^{-1})^*\mathcal{L}^{\sharp}_{\epsilon(w)}[\bar{d}_w]) \cong \mathfrak{f}(\underline{\dot{\mathcal{L}}}^{\sharp}_w[\bar{d}_w]).$$

Indeed, let $K = \mathfrak{f}(\underline{\dot{\mathcal{L}}}_w^{\sharp}[\bar{d}_w])$. Clearly, we have $m^*K \cong q^*K$ with m, q as above. Then as in the proof of (b) we see that $\operatorname{Ad}(\delta)^*K \cong K$. From the definitions we see that $\mathfrak{f}(\underline{\operatorname{Ad}(\underline{D}^{-1})^*\mathcal{L}}_{\epsilon(w)}^{\sharp}[\bar{d}_w]) = \operatorname{Ad}(\delta^{-1})^*K$. Since $\operatorname{Ad}(\delta^{-1})^*K \cong K$, (c) follows.

41.7. In this and the next subsection we assume that **k** is an algebraic closure of a finite field. From 41.1(c) we see that $\xi_D^* : \mathcal{D}(Z_{\emptyset,D}) \to \mathcal{D}(C)$ restricts to a functor $\mathcal{D}^{cs}(Z_{\emptyset,D}) \to \mathcal{D}^{cs}(C)$, hence, as in 36.8, the \mathcal{A} -linear map $gr(\xi_D^*) : \mathfrak{K}(Z_{\emptyset,D}) \to \mathfrak{K}(C)$ is well defined; from 41.1(c) we see also that

(a) $gr(\xi_D^*)(\underline{\dot{\mathcal{L}}}_w^{\sharp}[\bar{d}_w]) = (-v)^{\mathbf{r}}[w;\underline{D}\lambda]$

for $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}$ such that $w\underline{D}\lambda = \lambda$ and $\mathcal{L} \in \lambda$. From (a) we see that $gr(\xi_D^*)$ is injective with image equal to $\mathfrak{K}(C)^D$, the \mathcal{A} -submodule of $\mathfrak{K}(C)$ spanned by $\{[w;\underline{D}\lambda]; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}, w\underline{D}\lambda = \lambda\}$ or equivalently by $\{[w;\underline{D}\lambda]'; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}, w\underline{D}\lambda = \lambda\}$. Thus, $gr(\xi_D^*)$ defines an isomorphism $\eta' : \mathfrak{K}(Z_{\emptyset,D}) \xrightarrow{\sim} \mathfrak{K}(C)^D$. Let $\eta = \eta'^{-1}$.

Let $n \in \mathbf{N}_{\mathbf{k}}^*$. Let $\mathfrak{K}(C)_n^D$ be the \mathcal{A} -submodule of $\mathfrak{K}(C)$ spanned by $\{[w; \underline{D}\lambda]; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n, w\underline{D}\lambda = \lambda\}$ or equivalently by $\{[w; \underline{D}\lambda]'; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n, w\underline{D}\lambda = \lambda\}$.

Let $u, w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n$ be such that $w\underline{D}\lambda = \lambda$ and let $\mathcal{L} \in \lambda$. From 37.3(c) we see that the \mathcal{A} -linear map $gr(\Phi_u) : \mathfrak{K}(Z_{\emptyset,D}) \to \mathfrak{K}(Z_{\emptyset,D})$ is well defined; we denote it again by Φ_u . From 40.10(a), 41.2(a) we have

$$[u^{-1};\lambda]' * [w;\underline{D}\lambda]'^{\sharp} * [\epsilon_D(u);\underline{D}(u^{-1}\lambda)]' = (v^2 - 1)^{2\mathbf{r}} \eta' \Phi_u \eta([w;\underline{D}\lambda]'^{\sharp}),$$

equality in $\mathfrak{K}(C)$. If $\lambda' \in \mathfrak{s}_n, \lambda' \neq \lambda$, we have (from 40.7) that $[u^{-1}; \lambda']' * [w; \underline{D}\lambda]'^{\sharp} * [\epsilon_D(u); \underline{D}(u^{-1}\lambda')]' = 0$. It follows that

$$(v^2 - 1)^{2\mathbf{r}} \eta' \Phi_u \eta([w, \underline{D}\lambda]'^{\sharp})) = \sum_{\lambda' \in \underline{\mathfrak{s}}_n} [u^{-1}; \lambda']' * [w; \underline{D}\lambda]'^{\sharp} * [\epsilon_D(u); \underline{D}(u^{-1}\lambda')]'.$$

Using this and the definition of $\mathfrak{K}(C)_n^D$ we see that

$$(v^2-1)^{2\mathbf{r}}\eta'\Phi_u\eta(x) = \sum_{\lambda'\in\underline{\mathfrak{s}}_n} [u^{-1};\lambda']' * x * [\epsilon_D(u);\underline{D}(u^{-1}\lambda')]'$$

for any $x \in \mathfrak{K}(C)_n^D$. Applying η to both sides we obtain

(b)
$$(v^2 - 1)^{2\mathbf{r}} \Phi_u \eta'(x) = \sum_{\lambda' \in \underline{\mathfrak{s}}_n} \eta([u^{-1}; \lambda']' * x * [\epsilon_D(u); \underline{D}(u^{-1}\lambda')]')$$

for any $x \in \mathfrak{K}(C)_n^D$.

G. LUSZTIG

41.8. In the setup of 41.4, let A be a character sheaf on $Z_{J,D}$. From 36.9(b) we see that the condition that, if $(w', \underline{D}\lambda') \in \mathbf{W} \times \underline{\mathfrak{s}}$ is such that $w'\underline{D}\lambda' = \lambda'$, then we have $A \dashv \mathfrak{f}(\underline{\dot{\mathcal{L}}}'_{w'}{}^{\sharp}[\bar{d}_{w'}])$ if and only if A appears with coefficient $\neq 0$ in the expansion of $\mathfrak{f}(\underline{\dot{\mathcal{L}}}'_{w'}{}^{\sharp}[\bar{d}_{w'}]) \in \mathfrak{K}(Z_{J,D})$ as a linear combination of the canonical basis of $\mathfrak{K}(Z_{J,D})$. Hence from 41.5(a) we deduce:

(a) There exists $(w, \underline{D}\lambda) \in \mathbf{c}_A$ such that $w\underline{D}\lambda = \lambda$ and A appears with nonzero coefficient in $\mathfrak{f}(\underline{\dot{\mathcal{L}}}_w^{\sharp}[\bar{d}_w]) \in \mathfrak{K}(Z_{J,D})$. If $(w', \underline{D}\lambda') \in \mathbf{W} \times \mathfrak{s}$ is such that $w'\underline{D}\lambda' = \lambda'$ and A appears with nonzero coefficient in $\mathfrak{f}(\underline{\dot{\mathcal{L}}}'_{w'}^{\sharp}[\bar{d}_{w'}]) \in \mathfrak{K}(Z_{J,D})$, then $(w, \underline{D}\lambda) \preceq_{J,J'}$ $(w', \underline{D}\lambda')$. Here $\mathcal{L} \in \lambda, \mathcal{L}' \in \lambda'$.

Clearly, property (a) characterizes \mathbf{c}_A .

41.9. Let $J \subset J' \subset \mathbf{I}$ and let D' be another connected component of G. Let $A_0 \in \mathcal{D}(Z_{J,D}), A' \in \mathcal{D}(Z_{\epsilon_D(J'),D'})$. We show that

(a) $\mathfrak{f}_{J,J'}(A_0) * A' \cong \mathfrak{f}_{J,J'}(A_0 * \mathfrak{e}_{\epsilon_D(J),\epsilon_D(J')}A')$ in $\mathcal{D}(Z_{J',D'D})$.

Indeed, from the definitions we see that both sides of (a) can be identified with $b_!c^*(A_0 \boxtimes A')$ where b, c are as in the diagram

$$Z_{J,D} \times Z_{\epsilon_D(J'),D'} \xleftarrow{c} Y \xrightarrow{b} Z_{J',D'D}$$

where

$$Y = \{ (P, R, R', gU_R, g'U_{R'}); P \in \mathcal{P}_J, R \in \mathcal{P}_{J'}, R' \in \mathcal{P}_{\epsilon_D(J')}, \\ gU_R \in D/U_R, g'U_{R'} \in D'/U_{R'}, gRg^{-1} = R', P \subset R \},$$

 $c \text{ is } (P, R, R', gU_R, g'U_{R'}) \mapsto ((P, gU_P), (R', g'U_{R'}), b \text{ is } (P, R, R', gU_R, g'U_{R'}) \mapsto (R, g'gU_R).$

An entirely similar proof shows that, if $A \in \mathcal{D}(Z_{J',D}), A'_0 \in \mathcal{D}(Z_{\epsilon_D(J),D'})$, then (b) $A * \mathfrak{f}_{\epsilon_D(J),\epsilon_D(J')}(A'_0) \cong \mathfrak{f}_{J,J'}(\mathfrak{e}_{J,J'}A * A'_0)$ in $\mathcal{D}(Z_{J',D'D})$.

41.10. Let **c** be a two-sided cell in $\mathbf{W} \times \underline{\mathfrak{s}}$. Let $\overline{\mathbf{c}}$ be the set of all $(w, \lambda) \in \mathbf{W} \times \underline{\mathfrak{s}}$ such that $(w, \lambda) \preceq_{\mathbf{I},\mathbf{I}} (y, \nu)$ for some/any $(y, \nu) \in \mathbf{c}$.

If $K \in \mathcal{D}(Z_{\emptyset,D})$, we say that $K \in \mathcal{D}_{\mathbf{c}}^{cs}(Z_{\emptyset,D})$ if for any $j \in \mathbf{Z}$ and simple subquotient A of ${}^{p}H^{j}(K)$ satisfies $\mathbf{c}_{A} \subset \mathbf{c}$.

Let D' be another connected component of G. We show that

(a) if $K \in \mathcal{D}^{cs}_{\bar{\mathbf{c}}}(Z_{\emptyset,D}), K' \in \mathcal{D}^{cs}(Z_{\epsilon_D(J'),D'}), \text{ then } K * K' \in \mathcal{D}^{cs}_{\bar{\mathbf{c}}}(Z_{\emptyset,D'D}).$

We may assume that **k** is an algebraic closure of a finite field. We may assume that $K \in \hat{Z}_{\emptyset,D}$ and $\mathbf{c}_K \subset \bar{\mathbf{c}}$. Then there exists $(w, \underline{D}\lambda) \in \mathbf{c}_K$ such that $w\underline{D}\lambda = \lambda$, $K \dashv \mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w]), \ \mathcal{L} \in \lambda$. It is enough to show that, if $\tilde{A} \in \hat{Z}_{\emptyset,D'D}$ is such that $\tilde{A} \dashv K \ast K'$, then $\mathbf{c}_{\tilde{A}} \subset \bar{\mathbf{c}}$. Since $\mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w])$ is a semisimple complex (see the line after 41.4(e)) we have $\mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w]) \cong K[m] \oplus \tilde{K}$ for some $m \in \mathbf{Z}, \ \tilde{K} \in \mathcal{D}(Z_{\emptyset,D'D})$. It follows that $\mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w]) \ast K' \cong K \ast K'[m] \oplus \tilde{K} \ast K'$ hence $\tilde{A} \dashv \mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w]) \ast K'$. By 41.9(a) we have $\mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w]) \ast K' \cong \mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w] \ast \mathfrak{e}(K'))$ hence $\tilde{A} \dashv \mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w] \ast \mathfrak{e}(K'))$. We deduce that there exists $K'_0 \in \hat{Z}_{\emptyset,D'}$ such that $\tilde{A} \dashv \mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w] \ast \mathfrak{e}(K'))$. We tend have $\mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w] \ast K'_0) \approx \mathfrak{f}(\underline{\dot{L}}_w^{\sharp}[\bar{d}_w] \ast K'_0)$ and $K''_0 \in \hat{Z}_{\emptyset,D'D}$ such that $K''_0 \dashv \underline{\dot{L}}_w^{\sharp}[\bar{d}_w] \ast K'_0$, $\tilde{A} \dashv \mathfrak{f}(K''_0)$. We then have $\mathfrak{f}_{D'D}K''_0[\mathbf{r}] \dashv \mathfrak{f}_{D'D}K''_0[\mathbf{r}] \dashv \mathfrak{f}_{D'D}K''_0[\mathbf{r}] = [w_1, \underline{D}'D\lambda_1] \in \mathfrak{K}(C)$ with $(w_1, \lambda_1) \in \mathbf{W} \times \mathfrak{s}$ we see, using 41.3(a) that $(w_1, \underline{D}'D\lambda_1) \preceq_{\mathbf{I}}(w, \underline{D}\lambda)$. From $\tilde{A} \dashv \mathfrak{f}(K''_0)$ we see using 41.5(a) that

 $\mathbf{c}_{\tilde{A}} \preceq_{\mathbf{I},\mathbf{I}} (w_1, \underline{D}'\underline{D}\lambda_1)$ (that is, some/any element of $\mathbf{c}_{\tilde{A}}$ is $\preceq_{\mathbf{I},\mathbf{I}} (w_1, \underline{D}'\underline{D}\lambda_1)$). Using the transitivity of $\preceq_{\mathbf{I},\mathbf{I}}$ we see that $\mathbf{c}_{\tilde{A}} \preceq_{\mathbf{I},\mathbf{I}} (w, \underline{D}\lambda)$. This proves (a).

An entirely similar argument shows that

(b) if $K \in \mathcal{D}^{cs}(Z_{\emptyset,D}), K' \in \mathcal{D}^{cs}_{\bar{\mathbf{c}}}(Z_{\epsilon_D(J'),D'})$, then $K * K' \in \mathcal{D}^{cs}_{\bar{\mathbf{c}}}(Z_{\emptyset,D'D})$.

42. DUALITY AND THE FUNCTOR $\mathfrak{f}_{\emptyset,\mathbf{I}}$

42.1. In this section we fix a connected component D of G. We write ϵ instead of $\epsilon_D : \mathbf{W} \to \mathbf{W}$. We write \mathfrak{f} instead of $\mathfrak{f}_{\emptyset,\mathbf{I}} : \mathcal{D}(Z_{\emptyset,D} \to \mathcal{D}(Z_{\mathbf{I},D}))$. We assume that \mathbf{k} is an algebraic closure of a finite field.

Let $J \subset \mathbf{I}$ be such that $\epsilon(J) = J$. Recall from 30.3 that $V_{J,D} = \{(P, gU_P); P \in \mathcal{P}_J, gU_P \in N_D P/U_P\}$. As in 30.4 (with $J' = \mathbf{I}$) we consider the diagram $V_{J,D} \leftarrow V_{J,\mathbf{I},D} \xrightarrow{d} D$ where $V_{J,\mathbf{I},D} = \{(P,g); P \in \mathcal{P}_J, g \in N_D P\}$, c is $(P,g) \mapsto (P,gU_P)$ and d is $(P,g) \mapsto g$. Define $\tilde{f}_J : \mathcal{D}(V_{J,D}) \to \mathcal{D}(D)$, $\tilde{e}_J : \mathcal{D}(D) \to \mathcal{D}(V_{J,D})$ by $\tilde{f}_J A = d_! c^* A, \tilde{e}_J A' = c_! d^* A'$. (In the notation of 30.4 we have $\tilde{f}_J = \tilde{f}_{J,\mathbf{I}}, \tilde{e}_J = \tilde{e}_{J,\mathbf{I}}$.) Define $f_J : \mathcal{D}(V_{J,D}) \to \mathcal{D}(D), e_J : \mathcal{D}(D) \to \mathcal{D}(V_{J,D})$ by $f_J A = \tilde{e}_J A[[\alpha_J/2]]$ where $\alpha_J = \dim \mathcal{P}_J$. (In the notation of 30.4 we have $f_J A = f_J A[[\alpha_J/2]]$, $e_J A = \tilde{e}_J A[[\alpha_J/2]]$ where $\alpha_J = \dim \mathcal{P}_J$. (In the notation of 30.4 we have $f_J A = f_J A[[\alpha_J/2]]$, $e_J A = e_{J,\mathbf{I}} A(-\alpha_J/2)$). Thus, f_J, e_J are the same, up to a twist, as $f_{J,\mathbf{I}}, e_{J,\mathbf{I}}$.)

From 30.5 (with $J' = \mathbf{I}$) we see that for $A \in \mathcal{D}(V_{J,D}), A' \in \mathcal{D}(D)$ we have canonically

(a) $\operatorname{Hom}_{\mathcal{D}(V_{J,D})}(e_J A', A) = \operatorname{Hom}_{\mathcal{D}(D)}(A', f_J A).$

Let $CS(V_{J,D}), CS(D)$ be as in 38.1. From 38.2, 38.3 we see that

(b) f_J, e_J restrict to functors $CS(V_{J,D}) \to CS(D), CS(D) \to CS(V_{J,D})$ denoted again by f_J, e_J .

We show that

(c) if $A \in CS(V_{J,D})$ comes from a pure complex of weight 0 with respect to a rational structure over a finite subfield of **k**, then f_JA (naturally regarded as a mixed complex) is pure of weight 0.

Indeed, the functor c^* preserves pure complexes of weight 0 since c is smooth with connected fibres; the functor d_1 preserves pure complexes of weight 0 since d is proper (see [De, 6.2.6]) and $[[\alpha_J/2]]$ also preserves pure complexes of weight 0.

We show that

(d) if $A' \in CS(D)$ comes from a pure complex of weight 0 with respect to a rational structure over a finite subfield of \mathbf{k} , then $e_J A'$ (naturally regarded as a mixed complex) is pure of weight 0.

Using (b), it is enough to show that for any simple A as in (c), the natural action of Frobenius on the vector space $\operatorname{Hom}_{\mathcal{D}(V_{J,D})}(e_{J}A', A)$ has weight 0. Using (a) we see that it is enough to show that the natural action of Frobenius on the vector space $\operatorname{Hom}_{\mathcal{D}(D)}(A', f_{J}A)$ has weight 0. This follows from (c) using (b).

Define an imbedding $s: V_{J,D} \to Z_{J,D}$ by $(P, gU_P) \mapsto (P, P, gU_P)$. From the definitions we see that

(e) $\tilde{f}_J : \mathcal{D}(V_{J,D}) \to \mathcal{D}(D)$ is the composition $\mathcal{D}(V_{J,D}) \xrightarrow{s_1} \mathcal{D}(Z_{J,D}) \xrightarrow{\dagger_{J,I}} \mathcal{D}(D)$,

(f) $\tilde{e}_J : \mathcal{D}(D) \to \mathcal{D}(V_{J,D})$ is the composition $\mathcal{D}(D) \xrightarrow{e_{J,\mathbf{I}}} \mathcal{D}(Z_{J,D}) \xrightarrow{s^*} \mathcal{D}(V_{J,D}).$

Let $Y = \{(B, B', gU_B) \in Z_{\emptyset,D}; \text{pos}(B, B') \in \mathbf{W}_J\}$ and let $r : Y \to Z_{\emptyset,D}$ be the inclusion. From the definitions we have

(g) $s_! s^* \mathfrak{f}_{\emptyset,J} = \mathfrak{f}_{\emptyset,J} r_! r^* : \mathcal{D}(Z_{\emptyset,D}) \to \mathcal{D}(Z_{J,D}).$

Note that $V_{J,D} = {}^{1}Z_{J,D}$ (see 36.2); hence the "character sheaves" on $V_{J,D} = {}^{1}Z_{J,D}$ are defined as in 36.8 and $\mathcal{D}^{cs}(V_{J,D} = \mathcal{D}^{cs}({}^{1}Z_{J,D}))$ is defined as 36.8. In particular, $\mathfrak{K}(V_{J,D}) = \mathfrak{K}({}^{1}Z_{J,D})$ is defined. Let $\mathfrak{K}_{0}(V_{J,D}) = \bigoplus_{A} \mathbb{Z}A \subset \mathfrak{K}(V_{J,D})$ where A runs through the character sheaves on $V_{J,D}$ (up to isomorphism).

From (b) we see that \tilde{f}_J, \tilde{e}_J restrict to functors $\mathcal{D}^{cs}(V_{J,D}) \to \mathcal{D}^{cs}(D), \mathcal{D}^{cs}(D) \to \mathcal{D}^{cs}(V_{J,D})$, hence the \mathcal{A} -linear maps $gr(\tilde{f}_J) : \mathfrak{K}(V_{J,D}) \to \mathfrak{K}(D), gr(\tilde{e}_J) : \mathfrak{K}(D) \to \mathfrak{K}(V_{J,D})$ are well defined; we denote them by \tilde{f}_J, \tilde{e}_J . Define $f_J : \mathfrak{K}(V_{J,D}) \to \mathfrak{K}(D)$ by $f_J = (-v)^{-\alpha_J} \tilde{f}_J$ and $e_J : \mathfrak{K}(D) \to \mathfrak{K}(V_{J,D})$ by $e_J = (-v)^{-\alpha_J} \tilde{e}_J$. We show that

(h) $f_J : \mathfrak{K}(V_{J,D}) \to \mathfrak{K}(D), e_J : \mathfrak{K}(D) \to \mathfrak{K}(V_{J,D})$ restrict to group homomorphisms $\mathfrak{K}_0(V_{J,D}) \to \mathfrak{K}_0(D), \mathfrak{K}_0(D) \to \mathfrak{K}_0(V_{J,D})$ denoted again by f_J, e_J .

It is enough to prove the following statement. If x is a canonical basis element of $\mathfrak{K}(V_{J,D})$ (resp. $\mathfrak{K}(D)$), then $f_J(x)$ (resp. $e_J(x)$) is an **N**-linear combination of canonical basis elements of $\mathfrak{K}(D)$ (resp. $\mathfrak{K}(V_{J,D})$). This is immediate from (c), (d).

Now, one checks easily that $r_! r^* : \mathcal{D}(Z_{\emptyset,D}) \to \mathcal{D}(Z_{\emptyset,D})$ restricts to a functor $\mathcal{D}^{cs}(Z_{\emptyset,D}) \to \mathcal{D}^{cs}(Z_{\emptyset,D})$. (Note that, if $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}, \mathcal{L} \in \lambda$ and $w\underline{D}\lambda = \lambda$, then $r_! r^*(\underline{\dot{\mathcal{L}}}_w) = \underline{\dot{\mathcal{L}}}_w$ for $w \in \mathbf{W}_J$ and $r_! r^*(\underline{\dot{\mathcal{L}}}_w) = 0$ for $w \in \mathbf{W} - \mathbf{W}_J$.) It follows that the \mathcal{A} -linear map $gr(r_! r^*) : \mathfrak{K}(Z_{\emptyset,D}) \to \mathfrak{K}(Z_{\emptyset,D})$ (denoted by ρ_J) is well defined.

Let $\mathfrak{K}(C)^D$, η be as in 41.7. Define an \mathcal{A} -linear map $\tilde{\rho}_J : \mathfrak{K}(C)^D \to \mathfrak{K}(C)^D$ by $[w; \underline{D}\lambda]' \mapsto [w; \underline{D}\lambda]'$ if $w \in \mathbf{W}_J, \lambda \in \mathfrak{s}, w\underline{D}\lambda = \lambda$ and $[w; \underline{D}\lambda]' \mapsto 0$ if $w \in \mathbf{W} - \mathbf{W}_J, \lambda \in \mathfrak{s}, w\underline{D}\lambda = \lambda$. From the definitions we see that

(i) $\rho_J \eta(x) = \eta \tilde{\rho}_J(x)$ for all $x \in \mathfrak{K}(C)^D$.

42.2. We define an \mathcal{A} -linear map $\mathbf{d} : \mathfrak{K}(D) \to \mathfrak{K}(D)$ by

$$\mathbf{d}(x) = \sum_{J; J \subset \mathbf{I}; \epsilon(J) = J} (-1)^{|J_{\epsilon}|} f_J e_J(x)$$

where f_J, e_J are as in 42.1(h) and J_{ϵ} is as in 38.1. Now:

(a) Let A be a character sheaf on D. Then $\mathbf{d}(A) = \pm A'$ where A' is a character sheaf on D. Moreover, \pm and A' are the same as in 38.11(a).

For any $J \subset \mathbf{I}$ such that $\epsilon(J) = J$ let $\mathcal{K}(V_{J,D})$ be as in 38.9. We shall identify $\mathfrak{K}(V_{J,D})/(v-1)\mathfrak{K}(V_{J,D}) = \mathcal{K}(V_{J,D})$ as abelian groups in such a way that the image of A_1 (a character sheaf on $V_{J,D}$) in $\mathfrak{K}(V_{J,D})/(v-1)\mathfrak{K}(V_{J,D})$ is identified with the basis element A_1 of $\mathcal{K}(V_{J,D})$. From the definitions we see that the homomorphisms

$$\mathfrak{K}(D)/(v-1)\mathfrak{K}(D) \to \mathfrak{K}(V_{J,D})/(v-1)\mathfrak{K}(V_{J,D}) \to \mathfrak{K}(D)/(v-1)\mathfrak{K}(D)$$

induced by e_J, f_J in 42.1(h) are then identified with the homomorphisms

$$e_{J,\mathbf{I}}: \mathcal{K}(D) \to \mathcal{K}(V_{J,D}), f_{J,\mathbf{I}}: \mathcal{K}(V_{J,D}) \to \mathcal{K}(D)$$

in 38.2, 38.3. It follows that the endomorphism of $\mathfrak{K}(D)/(v-1)\mathfrak{K}(D)$ induced by $\mathbf{d} : \mathfrak{K}(D) \to \mathfrak{K}(D)$ is identified with the homomorphism $\mathcal{K}(D) \to \mathcal{K}(D)$ denoted in 38.10(a), 38.11 again by \mathbf{d} . Hence we have $\mathbf{d}(A) = \pm A' + (v-1)x$ (in $\mathfrak{K}(D)$) where \pm, A' are as in 38.11(a) and $x \in \mathfrak{K}(D)$. From 42.1(h) we see that $\mathbf{d}(A) \in \mathfrak{K}_0(D)$. Since $\pm A' \in \mathfrak{K}_0(D)$, we see that $(v-1)x \in \mathfrak{K}_0(D)$. Since $\mathfrak{K}_0(D) \cap (v-1)\mathfrak{K}(D) = 0$, we have (v-1)x = 0 and x = 0. This proves (a).

42.3. We have $H = H_D \oplus H'_D$ where H_D (resp. H'_D) is the \mathcal{A} -submodule of H_n spanned by $\{\tilde{T}_w 1_{\underline{D}\lambda}; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}, w\underline{D}\lambda = \lambda\}$ (resp. by $\{\tilde{T}_w 1_{\underline{D}\lambda}; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}, w\underline{D}\lambda \neq \lambda\}$). Equivalently,

$$H_D = \sum_{\lambda \in \underline{\mathfrak{s}}} \mathbf{1}_{\lambda} H \mathbf{1}_{\underline{D}\lambda} \subset H, \ H'_D = \sum_{\lambda, \lambda' \in \underline{\mathfrak{s}}; \lambda \neq \lambda'} \mathbf{1}_{\lambda'} H \mathbf{1}_{\underline{D}\lambda} \subset H.$$

Recall that $\omega : \mathfrak{K}(C) \xrightarrow{\sim} H$ is defined in 40.7(b). Define an \mathcal{A} -linear map $\tilde{\omega} : H \to \mathfrak{K}(C)^D$ by

$$\widetilde{\omega}(y) = \omega^{-1}(y) \text{ if } y \in H_D,
\widetilde{\omega}(y) = 0 \text{ if } y \in H'_D.$$

Then $\eta \tilde{\omega}(y) \in \mathfrak{K}(Z_{\emptyset,D})$ is well defined for any $y \in H$. Here η is as in 41.7.

Let $n \in \mathbf{N}_{\mathbf{k}}^*$. Let $H_{n,D} = H_D \cap H_n$. Note that $H_{n,D}$ is the \mathcal{A} -submodule of H_n spanned by $\{\tilde{T}_w \mathbb{1}_{\underline{D}\lambda}; w \in \mathbf{W}, \lambda \in \mathfrak{s}_n, w\underline{D}\lambda = \lambda\}.$

For $J \subset \mathbf{I}$ such that $\epsilon(J) = J$ we define an \mathcal{A} -linear map $\rho_{J,n} : H_{n,D} \to H_{n,D}$ by

$$\begin{split} \tilde{T}_w 1_{\underline{D}\lambda} &\mapsto \tilde{T}_w 1_{\underline{D}\lambda} \quad \text{if } w \in \mathbf{W}_J, \lambda \in \underline{\mathfrak{s}}_n, w\underline{D}\lambda = \lambda, \\ \tilde{T}_w 1_{\underline{D}\lambda} &\mapsto 0 \quad \text{if } w \in \mathbf{W} - \mathbf{W}_J, \lambda \in \underline{\mathfrak{s}}_n, w\underline{D}\lambda = \lambda. \end{split}$$

We have the following result.

Lemma 42.4. For any $y \in H_{n,D}$ we have $\mathbf{d}(\mathfrak{f}\eta\tilde{\omega}(y)) = \mathfrak{f}\eta\tilde{\omega}(\delta(y))$ where

$$\delta = \sum_{J \subset \mathbf{I}; \epsilon(J) = J} (-1)^{|J_{\epsilon}|} \delta_J$$

with $\delta_J: H_{n,D} \to H_{n,D}$ given by

$$\delta_J(y) = \rho_{J,n}(\sum_{u \in \mathbf{W}^J} \tilde{T}_{u^{-1}} y \tilde{T}_{\epsilon_D(u)})$$

(the sum in the right-hand side is computed in H_n but it belongs to $H_{n,D}$).

Applying 37.2 with K, K', J repaced by \emptyset, J, \mathbf{I} and with $A' \in \mathcal{D}^{cs}(Z_{\emptyset,D})$ we obtain

$$\mathfrak{e}_{J,\mathbf{I}}\mathfrak{f}A' \approx \{\mathfrak{f}_{\emptyset,J}\Phi_u A'[[-m_u]]; u \in \mathbf{W}^J\}$$

(in $\mathcal{D}(Z_{J,D})$, with $\Phi_u : \mathcal{D}(Z_{\emptyset,D}) \to \mathcal{D}(Z_{\emptyset,D})$ as in 37.1 and $m_u = \alpha_J - \lambda(u)$ where $\alpha_J = \dim \mathcal{P}_J$. Applying here s^* we obtain

$$s^* \mathfrak{e}_{J,\mathbf{I}} \mathfrak{f} A' \approx \{ s^* \mathfrak{f}_{\emptyset,J} \Phi_u A'[[-m_u]]; u \in \mathbf{W}^J \}.$$

We replace $s^* \mathfrak{e}_{J,\mathbf{I}}$ by \tilde{e}_J (see 42.1(f)) and we apply $\tilde{f}_J = \mathfrak{f}_{J,\mathbf{I}} s_!$ (see 42.1(e)); we obtain

$$\hat{f}_J \tilde{e}_J \mathfrak{f} A' \approx \{\mathfrak{f}_{J,\mathbf{I}} s_! s^* \mathfrak{f}_{\emptyset,J} \Phi_u A'[[-m_u]]; u \in \mathbf{W}^J \}.$$

Using now 42.1(g) we obtain

$$\tilde{f}_J \tilde{e}_J \mathfrak{f} A' \approx \{\mathfrak{f}_{J,\mathbf{I}} \mathfrak{f}_{\emptyset,J} r_! r^* \Phi_u A'[[-m_u]]; u \in \mathbf{W}^J\}.$$

Here we replace $f_{J,\mathbf{I}}\mathfrak{f}_{\emptyset,J}$ by \mathfrak{f} (see 36.4(b)). This (or rather its mixed analogue) gives rise to the following equality in $\mathfrak{K}(D)$:

$$\tilde{f}_J \tilde{e}_J \mathfrak{f}(x') = \sum_{u \in \mathbf{W}^J} v^{2m_u} \mathfrak{f} \rho_J \Phi_u(x')$$

for any $x' \in \mathfrak{K}(Z_{\emptyset,D})$, or equivalently

$$f_J e_J \mathfrak{f}(x') = \sum_{u \in \mathbf{W}^J} v^{2m_u - 2\alpha_J} \mathfrak{f} \rho_J \Phi_u(x').$$

Taking $x' = \eta(x)$ where $x \in \mathfrak{K}(C)_n^D$ (see 41.7) and using 41.7(b) we obtain

$$(v^{2}-1)^{2\mathbf{r}}f_{J}e_{J}\mathfrak{f}\eta(x)$$

$$=\sum_{u\in\mathbf{W}^{J}}\sum_{\lambda\in\underline{\mathfrak{s}}_{n}}v^{-2l(u)}\mathfrak{f}\rho_{J}\eta([u^{-1};\lambda]'*x*[\epsilon_{D}(u);\underline{D}(u^{-1}\lambda)]')$$

and using 42.1(i),

$$(v^{2}-1)^{2\mathbf{r}} f_{J} e_{J} \mathfrak{f} \eta(x)$$

= $\sum_{u \in \mathbf{W}^{J}} \sum_{\lambda \in \underline{\mathfrak{s}}_{n}} v^{-2l(u)} \mathfrak{f} \eta \tilde{\rho}_{J}([u^{-1};\lambda]' * x * [\epsilon_{D}(u);\underline{D}(u^{-1}\lambda)]')$

for any $x \in \mathfrak{K}(C)_n^D$. Here we replace x by $\tilde{\omega}(y)$ where $y \in H_{n,D}$ and $\tilde{\rho}_J|_{\mathfrak{K}(C)_n^D}$ by $\tilde{\omega}|_{H_{n,D}}\rho_{J,n}\omega_{\mathfrak{K}(C)_n}$; using 40.7(b) we obtain:

$$f_{J}e_{J}\eta\tilde{\omega}(y) = \sum_{u\in\mathbf{W}^{J}}\sum_{\lambda\in\underline{s}_{n}}\eta\tilde{\omega}\rho_{J,n}(\tilde{T}_{u^{-1}}1_{\lambda}y\tilde{T}_{\epsilon_{D}(u)}1_{\underline{D}(u^{-1}\lambda)})$$
$$= \eta\tilde{\omega}\rho_{J,n}(\sum_{u\in\mathbf{W}^{J}}\tilde{T}_{u^{-1}}y\tilde{T}_{\epsilon_{D}(u)}).$$

The lemma is proved.

42.5. As in 34.12 let \mathfrak{U} be the subfield of $\overline{\mathbf{Q}}_l$ generated by the roots of 1. Let $\Phi: H_n^D \to \mathcal{A} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ be as in 34.12 (a special case of a definition in 34.1) and let $\Phi^1: H_n^{D,1} \to \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ be the specialization of Φ for v = 1 (see 34.12(b)). Let $\tilde{\mathcal{A}} = \mathfrak{U}[v, v^{-1}]$, let $H_n^{D,\tilde{\mathcal{A}}} = \tilde{\mathcal{A}} \otimes \mathcal{A} H_n^D$ and let $\Phi^{\tilde{\mathcal{A}}}: H_n^{D,\tilde{\mathcal{A}}} \to \tilde{\mathcal{A}} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ be the homomorphism obtained from Φ by extending the scalars from \mathcal{A} to $\tilde{\mathcal{A}}$.

Let E be an $H_n^{D,1}$ -module of finite dimension over \mathfrak{U} . Since Φ^1 is an isomorphism of \mathfrak{U} -algebras (see 34.12(b)) we may regard E as an $\mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ -module E^{∞} via $(\Phi^1)^{-1}$. By extension of scalars, $\tilde{\mathcal{A}} \otimes_{\mathfrak{U}} E^{\infty}$ is naturally a module over

$$\tilde{\mathcal{A}} \otimes_{\mathfrak{U}} (\mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,iy}) = \tilde{\mathcal{A}} \otimes_{\mathbf{Z}} H_n^{D,iy}$$

and this can be regarded as an $H_n^{D,\tilde{\mathcal{A}}}$ -module $E^{\tilde{\mathcal{A}}}$ via $\Phi^{\tilde{\mathcal{A}}}$. Let $J \subset \mathbf{I}$ be such that $\epsilon(J) = J$. Let $H_{J,n}^D$ be the \mathcal{A} -algebra of H_n^D generated by $1_{\lambda}, \lambda \in \underline{\mathfrak{s}}_n$ by $\tilde{T}_w, w \in \mathbf{W}_J$ and by $\tilde{T}_{\underline{D}}$. Note that $\{\tilde{T}_{w\underline{D}'}1_{\lambda}; w \in \mathbf{W}_J, \underline{D}' =$ power of $\underline{D}\}$ is an \mathcal{A} -basis of $H_{J,n}^D$. Let $H_{J,n}^{D,1} = \mathfrak{U} \otimes_{\mathcal{A}} H_{J,n}^D$ where \mathfrak{U} is regarded as an \mathcal{A} -algebra via $v \mapsto 1$. Let $H_{J,n}^{D,\tilde{\mathcal{A}}} = \tilde{\mathcal{A}} \otimes_{\mathcal{A}} H_{J,n}^{D}$. Note that $H_{J,n}^{D,\tilde{\mathcal{A}}}$ is naturally a subalgebra of $H_n^{D,\tilde{\mathcal{A}}}$. Hence $E^{\tilde{\mathcal{A}}}$ may be regarded as an $H_{J,n}^{D,\tilde{\mathcal{A}}}$ -module $(E^{\tilde{\mathcal{A}}})_J$. This $H_{I,n}^{D,\tilde{\mathcal{A}}}$ -module may be induced to an $H_{n}^{D,\tilde{\mathcal{A}}}$ -module

$$\mathrm{IND}((E^{\tilde{\mathcal{A}}})_J) := H_n^{D,\tilde{\mathcal{A}}} \otimes_{H_{J,n}^{D,\tilde{\mathcal{A}}}} E_J^{\tilde{\mathcal{A}}}.$$

Next, $H_{J,n}^{D,1}$ is naturally a subalgebra of $H_n^{D,1}$. Hence E may be regarded as an $H_{J,n}^{D,1}$ -module E_J . This $H_{J,n}^{D,1}$ -module may be induced to an $H_n^{D,1}$ -module $\operatorname{ind}(E_J) := H_n^{D,1} \otimes_{H_{I_n}^{D,1}} E_J.$ Define an $H_{J,n}^{D,\tilde{\mathcal{A}}}$ -module $(\operatorname{ind}(E_J))^{\tilde{\mathcal{A}}}$ in terms of $\operatorname{ind}(E_J)$

in the same way as $E^{\tilde{\mathcal{A}}}$ was defined in terms of E. By extension of scalars from $\tilde{\mathcal{A}}$ to $\mathfrak{U}(v)$ (the quotient field of $\tilde{\mathcal{A}}$), $\mathrm{IND}((E^{\tilde{\mathcal{A}}})_J)$, $(\mathrm{ind}(E_J))^{\tilde{\mathcal{A}}}$ give rise to $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$ -modules $\mathfrak{U}(v) \otimes_{\tilde{\mathcal{A}}} \mathrm{IND}((E^{\tilde{\mathcal{A}}})_J)$, $\mathfrak{U}(v) \otimes_{\tilde{\mathcal{A}}} (\mathrm{ind}(E_J))^{\tilde{\mathcal{A}}}$. We show that

(a) these two $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$ -modules are isomorphic.

Since $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$, $H_n^{D,1}$ are (finite dimensional) semisimple algebras (see 34.12) it follows by standard arguments that it is enough to show that $\mathrm{IND}((E^{\tilde{\mathcal{A}}})_J)$, $(\mathrm{ind}(E_J))^{\tilde{\mathcal{A}}}$ become isomorphic $H_n^{D,1}$ -modules under the specialization v = 1. First we note that under the specialization v = 1, $E^{\tilde{\mathcal{A}}}$ becomes the $H_n^{D,1}$ -module E. (This is because the specialization of $\Phi^{\tilde{\mathcal{A}}}$ at v = 1 cancels $(\Phi_1)^{-1}$.) In particular, the specialization of $(\mathrm{ind}(E_J))^{\tilde{\mathcal{A}}}$ for v = 1 is $\mathrm{ind}(E_J)$. Moreover, from the definition of induction, the specialization of $\mathrm{IND}((E^{\tilde{\mathcal{A}}})_J)$ for v = 1 is the same as $\mathrm{ind}(E'_J)$ where E' is the specialization of $E^{\tilde{\mathcal{A}}}$ for v = 1, that is, E' = E. This proves (a).

Lemma 42.6. We preserve the setup of 42.5. Let $\mathfrak{U}(v) \otimes_{\tilde{\mathcal{A}}} E^{\tilde{\mathcal{A}}}$, $\mathfrak{U}(v) \otimes_{\tilde{\mathcal{A}}} (\operatorname{ind}(E_J))^{\tilde{\mathcal{A}}}$ be the $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$ -module obtained from $E^{\tilde{\mathcal{A}}}$, $(\operatorname{ind}(E_J))^{\tilde{\mathcal{A}}}$ by extension of scalars from $\tilde{\mathcal{A}}$ to $\mathfrak{U}(v)$. Let $y \in H_{n,D}$. We have

$$\operatorname{tr}(\delta_J(y)\tilde{T}_{\underline{D}},\mathfrak{U}(v)\otimes_{\tilde{\mathcal{A}}}E^{\tilde{\mathcal{A}}})=\operatorname{tr}(y\tilde{T}_{\underline{D}},\mathfrak{U}(v)\otimes_{\tilde{\mathcal{A}}}(\operatorname{ind}(E_J))^{\tilde{\mathcal{A}}}).$$

Let $H_{J,n}$ be the \mathcal{A} -subalgebra of H_n defined in 31.8. Define an \mathcal{A} -linear map $p_J : H_n \to H_{J,n}$ by $p_J(\tilde{T}_z \mathbf{1}_\lambda)) = \tilde{T}_z \mathbf{1}_\lambda$ if $z \in \mathbf{W}_J, \lambda \in \underline{\mathfrak{s}}_n, \ p_J(\tilde{T}_z \mathbf{1}_\lambda) = 0$ if $z \in \mathbf{W} - \mathbf{W}_J, \lambda \in \underline{\mathfrak{s}}_n$. We show that

(a) $p_J(\tilde{T}_u h') = \delta_{u,1} h'$ if $u \in \mathbf{W}^J, h' \in H_{J,n}$.

We may assume that $h' = \tilde{T}_b 1_{\lambda}, b \in \mathbf{W}_J, \lambda \in \underline{\mathfrak{s}}_n$. Then $p_J(\tilde{T}_u \tilde{T}_b 1_{\lambda}) = p_J(\tilde{T}_{ub} 1_{\lambda}) = \delta_{u,1} \tilde{T}_{ub} 1_{\lambda} = \delta_{u,1} \tilde{T}_b 1_{\lambda}$, as required.

We show that

(b) $p_J(hh') = p_J(h)h'$ for any $h \in H_n, h' \in H_{J,n}$.

We may assume $h = \tilde{T}_u \tilde{T}_b 1_\nu$, $h' = \tilde{T}_a 1_\lambda$, $u \in \mathbf{W}^J$, $a, b \in \mathbf{W}_J$, $\lambda, \nu \in \underline{\mathfrak{s}}_n$. We must show that $p_J(\tilde{T}_u \tilde{T}_b 1_\nu \tilde{T}_a 1_\lambda) = p_J(\tilde{T}_u \tilde{T}_b 1_\nu) \tilde{T}_a 1_\lambda$. If $u \neq 1$, both sides are zero by (a). If u = 1, both sides are $\tilde{T}_b 1_\nu \tilde{T}_a 1_\lambda$. This proves (b).

By 34.13(a) we have

(c) $p_{\emptyset}(\tilde{T}_x\tilde{T}_{x'}1_{\lambda}) = \delta_{xx',1}$ for $x, x' \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n$.

For $u, u' \in \mathbf{W}^J, \lambda \in \underline{\mathfrak{s}}_n$ we write $\tilde{T}_{u^{-1}}\tilde{T}_{u'}1_{\lambda} = \sum_{a \in \mathbf{W}} f_a \tilde{T}_a 1_{\lambda}$ where $f_a \in \mathcal{A}$. For $a' \in \mathbf{W}_J$ we have

$$\tilde{T}_{a'^{-1}u^{-1}}\tilde{T}_{u'}1_{\lambda} = \tilde{T}_{a'^{-1}}\tilde{T}_{u^{-1}}\tilde{T}_{u'}1_{\lambda} = \sum_{a \in \mathbf{W}} f_a \tilde{T}_{a'^{-1}}\tilde{T}_a 1_{\lambda}$$

Applying p_{\emptyset} to this and using (c) gives $f_{a'} = \delta_{u',ua'} = \delta_{a',1}\delta_{u,u'}$ so that

$$p_J(\tilde{T}_{u^{-1}}\tilde{T}_{u'}1_\lambda) = \sum_{a \in \mathbf{W}_J} f_a \tilde{T}_a 1_\lambda = \delta_{u,u'} \tilde{T}_1 1_\lambda.$$

Since this holds for any $\lambda \in \underline{\mathfrak{s}}_n$ we have

(d) $p_J(\tilde{T}_{u^{-1}}\tilde{T}_{u'}) = \delta_{u,u'}\tilde{T}_1.$ Let $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n, u \in \mathbf{W}^J$. We have

$$\tilde{T}_w 1_\lambda \tilde{T}_u = \sum_{u' \in \mathbf{W}^J, a \in \mathbf{W}_J} c_{w, u, u', a, \lambda} \tilde{T}_{u'} \tilde{T}_a 1_{u^{-1}\lambda}$$

where $c_{w,u,u',a,\lambda} \in \mathcal{A}$ are uniquely determined. It follows that

$$\tilde{T}_{u^{-1}}\tilde{T}_w 1_{\lambda} \tilde{T}_{\epsilon(u)} = \sum_{u' \in \mathbf{W}^J, a \in \mathbf{W}_J} c_{w,\epsilon(u),u',a,\lambda} \tilde{T}_{u^{-1}} \tilde{T}_{u'} \tilde{T}_a 1_{\epsilon(u)^{-1}\lambda}.$$

Applying p_J and using (b),(d) we obtain

$$p_J(\tilde{T}_{u^{-1}}\tilde{T}_w 1_\lambda \tilde{T}_{\epsilon(u)}) = \sum_{u' \in \mathbf{W}^J, a \in \mathbf{W}_J} c_{w,\epsilon(u),u',a,\lambda} p_J(\tilde{T}_{u^{-1}}\tilde{T}_{u'}) \tilde{T}_a 1_{\epsilon(u)^{-1}\lambda}$$

(e)
$$= \sum_{u' \in \mathbf{W}^J, a \in \mathbf{W}_J} c_{w,\epsilon(u),u',a,\lambda} \delta_{u,u'} \tilde{T}_a 1_{\epsilon(u)^{-1}\lambda} = \sum_{a \in \mathbf{W}_J} c_{w,\epsilon(u),u,a,\lambda} \tilde{T}_a 1_{\epsilon(u)^{-1}\lambda}.$$

Let $(e_i)_{i \in X}$ be a basis of the free $\tilde{\mathcal{A}}$ -module $E^{\tilde{\mathcal{A}}}$. For $a \in \mathbf{W}_J, \lambda \in \underline{\mathfrak{s}}_n$ we have $\tilde{T}_a \mathbf{1}_{\lambda} \tilde{T}_{\underline{D}} e_i = \sum_{i' \in X} \tilde{c}_{a,\lambda,i,i'} e_{i'}$ where $\tilde{c}_{a,\lambda,i,i'} \in \tilde{\mathcal{A}}$.

Since $H_n^{D,\tilde{\mathcal{A}}}$ is a free right $H_{J,n}^{D,\tilde{\mathcal{A}}}$ -module with basis $\{\tilde{T}_u; u \in \mathbf{W}^J\}$, we see that $\{\tilde{T}_u \otimes e_i; u \in \mathbf{W}^J, i \in X\}$ is a basis of the free $\tilde{\mathcal{A}}$ -module $\operatorname{ind}((E^{\tilde{\mathcal{A}}})_J)$.

Let $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n, u \in \mathbf{W}^J$ be such that $w\underline{D}\lambda = \lambda$. In $\mathrm{IND}((E^{\widetilde{\mathcal{A}}})_J)$ we have

$$T_w \mathbf{1}_{\lambda} T_{\underline{D}}(T_u \otimes e_i) = (T_w \mathbf{1}_{\lambda} T_{\epsilon(u)} T_{\underline{D}}) \otimes e_i$$

= $\sum_{u' \in \mathbf{W}^J, a \in \mathbf{W}_J} c_{w,\epsilon(u),u',a,\lambda} (\tilde{T}_{u'} \tilde{T}_a \mathbf{1}_{\epsilon(u)^{-1}\lambda} \tilde{T}_{\underline{D}}) \otimes e_i$
= $\sum_{u' \in \mathbf{W}^J, a \in \mathbf{W}_J} c_{w,\epsilon(u),u',a,\lambda} \tilde{T}_{u'} \otimes (\tilde{T}_a \mathbf{1}_{\epsilon(u)^{-1}\lambda} \tilde{T}_{\underline{D}} e_i)$
= $\sum_{u' \in \mathbf{W}^J, a \in \mathbf{W}_J, i' \in X} c_{w,\epsilon(u),u',a,\lambda} \tilde{c}_{a,\epsilon(u)^{-1}\lambda,i,i'} \tilde{T}_{u'} \otimes e_{i'}.$

Hence, using (e),

$$\operatorname{tr}(\tilde{T}_w 1_{\lambda} \tilde{T}_{\underline{D}}, \operatorname{IND}((E^{\tilde{\mathcal{A}}})_J)) = \sum_{u \in \mathbf{W}^J, a \in \mathbf{W}_J, i \in X} c_{w,\epsilon(u),u,a,\lambda} \tilde{c}_{a,\epsilon(u)^{-1}\lambda,i,i}$$

$$= \sum_{u \in \mathbf{W}^J, a \in \mathbf{W}_J} c_{w,\epsilon(u),u,a,\lambda} \operatorname{tr}(\tilde{T}_a 1_{\epsilon(u)^{-1}\lambda} \tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}})$$

$$= \sum_{u \in \mathbf{W}^J} \operatorname{tr}(\sum_{a \in \mathbf{W}_J} c_{w,\epsilon(u),u,a,\lambda} \tilde{T}_a 1_{\epsilon(u)^{-1}\lambda} \tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}})$$

$$= \operatorname{tr}(p_J(\sum_{u \in \mathbf{W}^J} \tilde{T}_{u^{-1}} \tilde{T}_w 1_\lambda \tilde{T}_{\epsilon(u)}) \tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}})$$

$$= \operatorname{tr}(\rho_{J,n}(\sum_{u \in \mathbf{W}^J} \tilde{T}_{u^{-1}} \tilde{T}_w 1_\lambda \tilde{T}_{\epsilon(u)}) \tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}}) = \operatorname{tr}(\delta_J(\tilde{T}_w 1_\lambda) \tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}}).$$

Thus we have

$$\operatorname{tr}(\delta_J(\tilde{T}_w 1_\lambda) \tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}}) = \operatorname{tr}(\tilde{T}_w 1_\lambda \tilde{T}_{\underline{D}}, \operatorname{IND}((E^{\tilde{\mathcal{A}}})_J)) = \operatorname{tr}(\tilde{T}_w 1_\lambda \tilde{T}_{\underline{D}}, (\operatorname{ind}(E_J))^{\tilde{\mathcal{A}}})$$

where the second equality follows from 42.5(a). Since the elements $\tilde{T}_w 1_{\lambda}$ as above generate the \mathcal{A} -module $H_{n,D}$, the lemma follows.

42.7. Let \mathcal{V} be the **Q**-vector subspace of $\mathbf{Q} \otimes \operatorname{Hom}(\mathbf{k}^*, \mathbf{T})$ spanned by the coroots. Let $\mathcal{V}_{\mathbf{R}} = \mathbf{R} \otimes_{\mathbf{Q}} \mathcal{V}$. The kernels of the roots $\mathcal{V}_{\mathbf{R}} \to \mathbf{R}$ a hyperplane arrangement which defines a partition of $\mathcal{V}_{\mathbf{R}}$ into facets in a standard way. Let \mathcal{F} be the set of facets. Now the orbits of \mathbf{W} on \mathcal{F} are naturally indexed by the various subsets J

of **I**. This gives a partition $\mathcal{F} = \bigcup_{J \subset \mathbf{I}} \mathcal{F}_J$. For example, \mathcal{F}_{\emptyset} consists of all Weyl chambers. If $F \in \mathcal{F}_J$, then F is homeomorphic to a real affine space of dimension $|\mathbf{I} - J|$ hence we have $H_c^i(F) = 0$ if $i \neq |\mathbf{I} - J|$ and $H_c^{|\mathbf{I} - J|}(F) = \Lambda^{|\mathbf{I} - J|}[F]$; here we write $H_c^i(?)$ instead of $H_c^i(?, \mathbf{R})$, [F] denotes the vector subspace of $\mathcal{V}_{\mathbf{R}}$ in which F is open dense and $\Lambda^{|\mathbf{I} - J|}[F]$ is the top exterior power of [F]. Note that $[F] = \mathbf{R} \otimes_{\mathbf{Q}} ([F]_{\mathbf{Q}})$ for a well-defined **Q**-subspace $[F]_{\mathbf{Q}}$ of \mathcal{V} . For any \underline{D} -orbit η on the set of subsets of \mathbf{I} let $\mathcal{V}_{\mathbf{R}}^{\eta} = \bigcup_{J \in \eta} \bigcup_{F \in \mathcal{F}_J} F \subset \mathcal{V}_{\mathbf{R}}$ and let $r_{\eta} = |\mathbf{I} - J|$ for some/any $J \in \eta$. We have $H_c^i(\mathcal{V}_{\mathbf{R}}^{\eta}) = 0$ if $i \neq r_{\eta}, H_c^{r_{\eta}}(\mathcal{V}_{\mathbf{R}}^{\eta}) = \bigoplus_{J \in \eta} \bigoplus_{F \in \mathcal{F}_J} \Lambda^{r_{\eta}}[F]$. Note also that $H_c^i(\mathcal{V}_{\mathbf{R}}) = 0$ if $i \neq |\mathbf{I}|$ and $H_c^{|\mathbf{I}|}(\mathcal{V}_{\mathbf{R}}) = \Lambda^{|\mathbf{I}|}\mathcal{V}_{\mathbf{R}}$. The \mathbf{W}^D -action on \mathbf{T} induces a linear action of \mathbf{W}^D on $\mathcal{V}_{\mathbf{R}}$. This action restricts for any η to a \mathbf{W}^D -action on $H_c^{|\mathbf{I}|}(\mathcal{V}_{\mathbf{R}}) = \Lambda^{|\mathbf{I}|}\mathcal{V}_{\mathbf{R}}$. The long cohomology exact sequences attached to the partition $\mathcal{V}_{\mathbf{R}} = \bigcup_{\eta} \mathcal{V}_{\mathbf{R}}^{\eta}$ show that $(-1)^{|\mathbf{I}|}H_c^{|\mathbf{I}|}(\mathcal{V}_{\mathbf{R}}) = \sum_{\eta} (-1)^{r_{\eta}}H_c^{r_{\eta}}(\mathcal{V}_{\mathbf{R}}^{\eta})$ in the Grothendieck group of representations of \mathbf{W}^D over \mathbf{R} , that is,

$$\Lambda^{|\mathbf{I}|}\mathcal{V}_{\mathbf{R}} \oplus \bigoplus_{\eta; r_{\eta} = |\mathbf{I}| + 1} \bigoplus_{\text{mod } 2} (\bigoplus_{J \in \eta} \bigoplus_{F \in \mathcal{F}_{J}} \Lambda^{r_{\eta}}[F])$$
$$\cong \bigoplus_{\eta; r_{\eta} = |\mathbf{I}| \mod 2} (\bigoplus_{J \in \eta} \bigoplus_{F \in \mathcal{F}_{J}} \Lambda^{r_{\eta}}[F])$$

as representations of \mathbf{W}^D over \mathbf{R} . All real representations in this formula come naturally from representations of \mathbf{W}^D over \mathbf{Q} . Hence the previous formula remains valid (as representations of \mathbf{W}^D over \mathbf{Q}) if $\mathcal{V}_{\mathbf{R}}$, [F] are replaced by \mathcal{V} , $[F]_{\mathbf{Q}}$ and the exterior powers are taken over \mathbf{Q} . Tensoring both sides (over \mathbf{Q}) by \mathfrak{U} (as in 42.5) we obtain

(a)
$$\Lambda^{|\mathbf{I}|} \mathcal{V}_{\mathfrak{U}} \oplus \bigoplus_{\eta; r_{\eta} = |\mathbf{I}| + 1} \bigoplus_{\text{mod } 2} (\bigoplus_{J \in \eta} \bigoplus_{F \in \mathcal{F}_{J}} \Lambda^{r_{\eta}}[F]_{\mathfrak{U}})$$
$$\cong \bigoplus_{\eta; r_{\eta} = |\mathbf{I}| \mod 2} (\bigoplus_{J \in \eta} \bigoplus_{F \in \mathcal{F}_{J}} \Lambda^{r_{\eta}}[F]_{\mathfrak{U}})$$

as representations of \mathbf{W}^D over \mathfrak{U} ; here $\mathcal{V}_{\mathfrak{U}} = \mathfrak{U} \otimes_{\mathbf{Q}} \mathcal{V}$, $[F]_{\mathfrak{U}} = \mathfrak{U} \otimes_{\mathbf{Q}} [F]_{\mathbf{Q}}$ and the exterior powers are taken over \mathfrak{U} . We may view (a) as an isomorphism of $H_n^{D,1}$ -modules: the \mathbf{W}^D -modules in (a) may be viewed as $H_n^{D,1}$ -modules via the algebra homomorphism $H_n^{D,1} \to \mathfrak{U}[\mathbf{W}^D]$ given by $\tilde{T}_w \mapsto w$ for $w \in \mathbf{W}^D$, $\mathbf{1}_\lambda \mapsto 0$ for $\lambda \neq \lambda_0$, $\mathbf{1}_{\lambda_0} \mapsto \mathbf{1}$ (here λ_0 is the neutral element of the abelian group \mathfrak{s}_n ; see 28.1). We define an \mathfrak{U} -linear map $\Delta : H_n^{D,1} \to H_n^{D,1} \otimes H_n^{D,1}$ by $\Delta(\tilde{T}_w) = \tilde{T}_w \otimes \tilde{T}_w$ for $w \in \mathbf{W}^D$ and $\Delta(\mathbf{1}_\lambda) = \sum_{\lambda_1, \lambda_2 \in \mathfrak{s}_n; \lambda_1 \lambda_2 = \lambda} \mathbf{1}_{\lambda_1} \otimes \mathbf{1}_{\lambda_2}$ for $\lambda \in \mathfrak{s}_n$. (Here we use the abelian group \mathfrak{s}_n is the set of \mathfrak{S}_n .

We define an \mathfrak{U} -linear map $\Delta : H_n^{D,1} \to H_n^{D,1} \otimes H_n^{D,1}$ by $\Delta(\tilde{T}_w) = \tilde{T}_w \otimes \tilde{T}_w$ for $w \in \mathbf{W}^D$ and $\Delta(1_\lambda) = \sum_{\lambda_1, \lambda_2 \in \underline{\mathfrak{s}}_n; \lambda_1 \lambda_2 = \lambda} 1_{\lambda_1} \otimes 1_{\lambda_2}$ for $\lambda \in \underline{\mathfrak{s}}_n$. (Here we use the abelian group structure on $\underline{\mathfrak{s}}_n$, a subgroup of $\underline{\mathfrak{s}}$; see 28.1.) This makes $H_n^{D,1}$ into a Hopf algebra. (Note that the analogous formulas do not make H_n^D into a Hopf algebra.) It follows that for any two $H_n^{D,1}$ -modules E_1, E_2 , the \mathfrak{U} -vector space $E_1 \otimes E_2$ is naturally an $H_n^{D,1}$ -module.

Now let E be an $H_n^{D,1}$ -module of finite dimension over \mathfrak{U} . Then we can take the tensor product of each $H_n^{D,1}$ -module in (a) with E and we obtain an isomorphism of $H_n^{D,1}$ -modules

$$E \otimes \Lambda^{|\mathbf{I}|} \mathcal{V}_{\mathfrak{U}} \oplus \bigoplus_{\eta; r_{\eta} = |\mathbf{I}| + 1 \mod 2} X_{\eta} \cong \bigoplus_{\eta; r_{\eta} = |\mathbf{I}| \mod 2} X_{\eta}$$

G. LUSZTIG

where $X_{\eta} = E \otimes \bigoplus_{J \in \eta} \bigoplus_{F \in \mathcal{F}_J} \Lambda^{r_{\eta}}[F]_{\mathfrak{U}}$. Applying to this the functor $E \mapsto E^{\tilde{\mathcal{A}}}$ (see 42.5), we deduce an isomorphism of $H_n^{D,\tilde{\mathcal{A}}}$ -modules

$$(E \otimes \Lambda^{|\mathbf{I}|} \mathcal{V}_{\mathfrak{U}})^{\tilde{\mathcal{A}}} \oplus \bigoplus_{\eta; r_{\eta} = |\mathbf{I}| + 1 \mod 2} X_{\eta}^{\tilde{\mathcal{A}}} \cong \bigoplus_{\eta; r_{\eta} = |\mathbf{I}| \mod 2} X_{\eta}^{\tilde{\mathcal{A}}}$$

We deduce that for $y \in H_{n,D}$ we have

(b)
$$\operatorname{tr}(y\tilde{T}_{\underline{D}}, (E \otimes \Lambda^{|\mathbf{I}|} \mathcal{V}_{\mathfrak{U}})^{\tilde{\mathcal{A}}}) = \sum_{\eta} (-1)^{r_{\eta} + |\mathbf{I}|} \operatorname{tr}(y\tilde{T}_{\underline{D}}, X_{\eta}^{\tilde{\mathcal{A}}}).$$

We have $X_{\eta} = \bigoplus_{J \in \eta} X^J$ where $X^J = E \otimes (\bigoplus_{F \in \mathcal{F}_J} \Lambda^{r_{\eta}}[F]_{\mathfrak{U}})$. Assume first that η consists of at least two subsets of **I**. Then each X_J is stable

Assume first that η consists of at least two subsets of **I**. Then each X_J is stable under $H_n^{D,1}$ and is mapped by $\tilde{T}_{\underline{D}}$ into $X_{J'}$ with $J \neq J'$. From the definitions we have $X_{\eta}^{\tilde{\mathcal{A}}} = \bigoplus_{J \in \eta} \tilde{\mathcal{A}} \otimes_{\mathfrak{U}} X_J$ as an $\tilde{\mathcal{A}}$ -module and each summand $\tilde{\mathcal{A}} \otimes_{\mathfrak{U}} X_J$ is stable under H_n and is mapped by $\tilde{T}_{\underline{D}}$ into a summand $\tilde{\mathcal{A}} \otimes_{\mathfrak{U}} X_{J'}$ with $J \neq J'$. It follows that for our η we have

(c)
$$\operatorname{tr}(y\tilde{T}_{\underline{D}}, X_{\eta}^{\mathcal{A}}) = 0.$$

Next assume that η consists of a single subset J of \mathbf{I} . We have $\underline{D}(J) = J$. Let F_J be the unique facet in \mathcal{F}_J such that F_J is contained in the closure of the dominant Weyl chamber. Then F_J is stable under the the subgroup \mathbf{W}_J^D of \mathbf{W}^D generated by \mathbf{W}_J and \underline{D} and X_η may be identified with $E \otimes (H_n^{D,1} \otimes_{H_{J,n}^{D,1}} (\Lambda^{|\mathbf{I}-J|}[F_J]_{\mathfrak{U}}))$. Here $\Lambda^{|\mathbf{I}-J|}[F_J]_{\mathfrak{U}}$ is regarded as a WW_J^D -module and then is viewed as a $H_{J,n}^{D,1}$ -module via the canonical algebra homomorphism $H_{J,n}^{D,1} \to \mathfrak{U}[\mathbf{W}_J^D]$; thus $\mathbf{1}_\lambda$ acts on it as 1 if $\lambda = \lambda_0$ and as 0 if $\lambda \neq \lambda_0$. Note that in the \mathbf{W}_J^D -module $\Lambda^{|\mathbf{I}-J|}[F_J]_{\mathfrak{U}}$, \mathbf{W}_J acts trivially (since \mathbf{W}_J acts trivially on $[F_J]_{\mathfrak{U}}$) and \underline{D} acts as multiplication by $(-1)^{|\mathbf{I}-J|-|(\mathbf{I}-J)_\epsilon|}$). Let $X'_\eta = E \otimes (H_n^{D,1} \otimes_{H_{J,n}^{D,1}} \mathfrak{U})$ where \mathfrak{U} is regarded as a $H_{J,n}^{D,1}$ -module coming from the trivial representation of \mathbf{W}_J^D . We see that we may identify X_η, X'_η in a way compatible with the H_n^1 -module structures and so that the action of \tilde{T}_D on X_η^{λ} corresponds to $(-1)^{|\mathbf{I}-J|-|(\mathbf{I}-J)_\epsilon|}$ times the action of \tilde{T}_D on X_η^{λ} corresponds to $(-1)^{|\mathbf{I}-J|-|(\mathbf{I}-J)_\epsilon|}$ times the action of \tilde{T}_D on X_η^{λ} (are sponds to $(-1)^{|\mathbf{I}-J|-|(\mathbf{I}-J)_\epsilon|}$ times the action of \tilde{T}_D on X_η^{λ} corresponds to $(-1)^{|\mathbf{I}-J|-|(\mathbf{I}-J)_\epsilon|}$ times the action of \tilde{T}_D on X_η^{λ} corresponds to $(-1)^{|\mathbf{I}-J|-|(\mathbf{I}-J)_\epsilon|}$ times the action of \tilde{T}_D on X_η^{λ} corresponds to $(-1)^{|\mathbf{I}-J|-|(\mathbf{I}-J)_\epsilon|}$ times the action of \tilde{T}_D on X_η^{λ} in a way compatible with the H_n -module structures and so that the action of \tilde{T}_D on X_η^{λ} corresponds to $(-1)^{|\mathbf{I}-J|-|(\mathbf{I}-J)_\epsilon|}$ times the action of \tilde{T}_D on X_η^{λ} . From the definitions we have $X'_\eta = \operatorname{ind}(E_J)$ (notation of 42.5). We see that for our η we have

(d)
$$\operatorname{tr}(y\tilde{T}_{\underline{D}}, X_{\eta}^{\tilde{\mathcal{A}}}) = (-1)^{|\mathbf{I}-J| - |(\mathbf{I}-J)_{\epsilon}|} \operatorname{tr}(y\tilde{T}_{\underline{D}}, (\operatorname{ind}(E_{J}))^{\tilde{\mathcal{A}}}).$$

From the definitions (34.4) we see that there is a unique $\tilde{\mathcal{A}}$ -algebra homomorphism $\vartheta: H_n^{D,\tilde{\mathcal{A}}}D \to H_n^{D,\tilde{\mathcal{A}}}$ such that

$$\begin{split} \vartheta(\widehat{1}_{\lambda}) &= 1_{\lambda} \text{ for any } \lambda \in \underline{\mathfrak{s}}_{n}, \\ \vartheta(\widehat{T}_{w}) &= (-1)^{l(w)} \widetilde{T}_{w^{-1}}^{-1} \text{ for any } w \in \mathbf{W} \\ \vartheta(\widetilde{T}_{\underline{D}}) &= (-1)^{|\mathbf{I}| - |\mathbf{I}_{\epsilon}|} \widetilde{T}_{\underline{D}}. \end{split}$$
We have $\vartheta^{2} = 1.$

Using ϑ and $E^{\tilde{\mathcal{A}}}$ we can define a new $H_n^{D,\tilde{\mathcal{A}}}$ -module $E^{\tilde{\mathcal{A}},\vartheta}$ with the same underlying $\tilde{\mathcal{A}}$ -module as $E^{\tilde{\mathcal{A}}}$ but with $x \in H_n^{D,\tilde{\mathcal{A}}}$ acting on $E^{\tilde{\mathcal{A}},\vartheta}$ in the same way that $\vartheta(x)$ acts on $E^{\tilde{\mathcal{A}}}$. We show that

(e) under extension of scalars from $\tilde{\mathcal{A}}$ to $\mathfrak{U}(v)$, the $H_n^{D,\tilde{\mathcal{A}}}$ -modules $E^{\tilde{\mathcal{A}},\vartheta}$ and $(E \otimes \Lambda^{|\mathbf{I}|} \mathcal{V}_{\mathfrak{U}})^{\tilde{\mathcal{A}}}$ become isomorphic $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$ -modules.

As in the proof of 42.5(a) it is enough to show that these $H_n^{D,\tilde{\mathcal{A}}}$ -modules become isomorphic $H_n^{D,1}$ -modules under the specialization v = 1. Thus it is enough to show that $E^{\tilde{\mathcal{A}},\vartheta}|_{v=1} \cong E \otimes \Lambda^{|\mathbf{I}|} \mathcal{V}_{\mathfrak{U}}$ as $H_n^{D,1}$ -modules. Now the underlying \mathfrak{U} -vector space of $E^{\tilde{\mathcal{A}},\vartheta}|_{v=1}$ is E but the action of $x \in H_n^{D,1}$ on $E^{\tilde{\mathcal{A}},\vartheta}|_{v=1}$ is the same as the action of $\vartheta_1(x)$ on E. Here $\vartheta_1 : H_n^{D,1} \to H_n^{D,1}$ is the specialization of ϑ_1 for v = 1. Note that $\vartheta_1(1_{\lambda}) = 1_{\lambda}$ for any $\lambda \in \underline{\mathfrak{s}}_n$ and $\vartheta_1(\tilde{T}_w) = \gamma_w \tilde{T}_w$ for any $w \in \mathbf{W}^D$, where $\gamma_w = \pm 1$ is the scalar by which w acts in the \mathbf{W}^D -module $\Lambda^{|\mathbf{I}|} \mathcal{V}_{\mathfrak{U}}$. The desired result follows.

Combining (b),(c),(d),(e) we see that for any $y \in H_{n,D}$ we have

$$(-1)^{|\mathbf{I}|+|\mathbf{I}_{\epsilon}|} \operatorname{tr}(\vartheta(y\tilde{T}_{\underline{D}}), E^{\tilde{\mathcal{A}}}) = \sum_{J \subset \mathbf{I}; \epsilon(J)=J} (-1)^{|J_{\epsilon}|} \operatorname{tr}(y\tilde{T}_{\underline{D}}, (\operatorname{ind}(E_J))^{\tilde{\mathcal{A}}}).$$

Replacing here $(-1)^{|\mathbf{I}|+|\mathbf{I}_{\epsilon}|} \vartheta(y\tilde{T}_{\underline{D}})$ by $\vartheta(y)\tilde{T}_{\underline{D}}$ and using Lemma 42.6 we may rewrite this as

$$\operatorname{tr}(\vartheta(y)\tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}}) = \sum_{J \subset \mathbf{I}; \epsilon(J) = J} (-1)^{|J_{\epsilon}|} \operatorname{tr}(\delta_{J}(y)\tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}})$$

or equivalently (see 42.4) $\operatorname{tr}(\vartheta(y)\tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}}) = \operatorname{tr}(\delta(y)\tilde{T}_{\underline{D}}, E^{\tilde{\mathcal{A}}})$. Since any simple $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$ -module can be obtained by extension of scalars (from $\tilde{\mathcal{A}}$ to $\mathfrak{U}(v)$) from some $E^{\tilde{\mathcal{A}}}$ as above, we deduce that

$$\operatorname{tr}((\delta(y) - \vartheta(y))\tilde{T}_{\underline{D}}, \mathbf{E}) = 0$$

for any simple $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$ -module **E**. Since $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$ is a semisimple algebra, it follows that $(\delta(y) - \vartheta(y))\tilde{T}_{\underline{D}}$ belongs to the $\mathfrak{U}(v)$ -subspace of $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$ spanned by commutators xx' - x'x with $x, x' \in \mathfrak{U}(v) \otimes_{\mathcal{A}} H_n^D$. Hence we have

$$g(\delta(y) - \vartheta(y))\tilde{T}_{\underline{D}} = \sum_{i=1}^{m} g_i(x_i \tilde{T}_{\underline{D}}^{s_i} x_i' \tilde{T}_{\underline{D}}^{1-s_i} - x_i' \tilde{T}_{\underline{D}}^{1-s_i} x_i \tilde{T}_{\underline{D}}^{s_i})$$

with $g \in \mathcal{A} - \{0\}, g_i \in \mathcal{A}, x_i \in H_n, x'_i \in H_n, s_i \in \mathbf{Z}$, that is,

(f)
$$g(\delta(y) - vt(y)) = \sum_{i=1}^{m} g_i(x_i \tilde{T}_{\underline{D}}^{s_i} x'_i \tilde{T}_{\underline{D}}^{-s_i} - x'_i \tilde{T}_{\underline{D}}^{1-s_i} x_i \tilde{T}_{\underline{D}}^{s_i-1}).$$

42.8. We show that for any $y, y' \in H_n$ we have

(a)
$$\mathfrak{f}\eta\tilde{\omega}(yy'-y'\tilde{T}_{\underline{D}}y\tilde{T}_{D}^{-1})=0.$$

Let $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n$. Let $\mathcal{L} \in \lambda$. If $w\underline{D}\lambda = \lambda$, using notation and results in 31.6, 31.7, we have

$$\begin{split} & \mathfrak{f}\eta\tilde{\omega}(v^{l(w)}\tilde{T}_w1_{\underline{D}\lambda}) = gr(K_{\mathbf{I},D}^{w,\mathcal{L}}) \\ & = \sum_A \chi_v^A(K_{\mathbf{I},D}^{w,\mathcal{L}}) = \sum_A \tilde{\zeta}^A(v^{l(w)}\tilde{T}_w1_{\underline{D}\lambda}\tilde{T}_{\underline{D}}) = \sum_A \zeta^A(v^{l(w)}\tilde{T}_w1_{\underline{D}\lambda}\tilde{T}_{\underline{D}}) \end{split}$$

(the last equation comes from 31.7(e); A runs over the objects in \hat{D} up to isomorphism such that $\zeta^A \neq 0$.) The equation

$$\mathfrak{f}\eta\tilde{\omega}(v^{l(w)}\tilde{T}_w1_{\underline{D}\lambda}) = \sum_A \zeta^A(v^{l(w)}\tilde{T}_w1_{\underline{D}\lambda}\tilde{T}_{\underline{D}})$$

holds also if $w\underline{D}\lambda \neq \lambda$ (in this case both sides are 0). It follows that

$$f\eta \tilde{\omega}(x) = \sum_{A} \zeta^{A}(x\tilde{T}_{\underline{D}}) \text{ for any } x \in H_{n}.$$

We deduce

$$\mathfrak{f}\eta\tilde{\omega}(yy'-y'\tilde{T}_{\underline{D}}y\tilde{T}_{\underline{D}}^{-1})=\sum_{A}(\zeta^{A}(yy'\tilde{T}_{\underline{D}})-\zeta^{A}(y\epsilon(y)\tilde{T}_{\underline{D}}))=0$$

where the last equality follows from 31.8. This proves (a).

Proposition 42.9. Let $y \in H$. We have $\mathbf{d}(\mathfrak{f}\eta\tilde{\omega}(y)) = \mathfrak{f}\eta\tilde{\omega}(\vartheta(y)) \in \mathfrak{K}(D)$ with $\mathbf{d}: \mathfrak{K}(D) \to \mathfrak{K}(\Delta)$ as in 42.2.

If $y \in H'_D$ (see 42.3), both sides of the desired equality are 0. (Note that ϑ maps H_D into itself and H'_D into itself.) Hence we may assume that $y \in H_D$. We can assume that $y \in H_n$ where $n \in \mathbf{N}^*_{\mathbf{k}}$. Then $y \in H_{n,D}$. By 42.4 it is enough to show that $\mathfrak{fn}\tilde{\omega}(\delta(y) - \vartheta(y)) = 0$. Let g, g_i, x_i, x'_i, s_i be as in 42.7(f). Since $g \neq 0$, it is enough to show that $\mathfrak{gfn}\tilde{\omega}(\delta(y) - \vartheta(y)) = 0$ or that $\mathfrak{fn}\tilde{\omega}(g(\delta(y) - \vartheta(y))) = 0$. Using 42.7 it is enough to show that

$$\eta \tilde{\omega} \left(\sum_{i=1}^{j} g_i \left(x_i \tilde{T}_{\underline{D}}^{s_i} x_i' \tilde{T}_{\underline{D}}^{-s_i} - x_i' \tilde{T}_{\underline{D}}^{1-s_i} x_i \tilde{T}_{\underline{D}}^{s_i-1} \right) = 0.$$

Hence it is enough to show that

$$\mathfrak{f}\eta\tilde{\omega}(x\tilde{T}^{s}_{\underline{D}}x'\tilde{T}^{-s}_{\underline{D}}-x'\tilde{T}^{1-s}_{\underline{D}}x\tilde{T}^{s-1}_{\underline{D}})=0$$

for any $x, x' \in H_n$ and any $s \in \mathbb{Z}$. We have

m

$$x\tilde{T}^s_{\underline{D}}x'\tilde{T}^{-s}_{\underline{D}} - x'\tilde{T}^{1-s}_{\underline{D}}x\tilde{T}^{s-1}_{\underline{D}} = (z - \tilde{T}^{-s}_{\underline{D}}z\tilde{T}^s_{\underline{D}}) + (z'x' - x'\tilde{T}_{\underline{D}}z'\tilde{T}^{-1}_{\underline{D}})$$

where $z = x\tilde{T}_{\underline{D}}^{s}x'\tilde{T}_{\underline{D}}^{-s} \in H_n$ and $z' = \tilde{T}_{\underline{D}}^{-s}x\tilde{T}_{\underline{D}}^{s} \in H_n$. Hence it is enough to show that $\mathfrak{f}\eta\tilde{\omega}(z'x'-x'\tilde{T}_{\underline{D}}z'\tilde{T}_{\underline{D}}^{-1}) = 0$ (see 42.8(a)) and

(a)
$$\mathfrak{f}\eta\tilde{\omega}(z-\tilde{T}_{\underline{D}}^{-s}z\tilde{T}_{\underline{D}}^{s})=0$$

for any $z \in H_n$. This follows from 41.6(c).

References

- [BBD] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982). MR0751966 (86g:32015)
- [De] P. Deligne, La conjecture de Weil, II, Publ.Math. I.H.E.S. 52 (1980), 137-252. MR0601520 (83c:14017)
- [G] V. Ginzburg, Admissible modules on a symmetric space, Astérisque 173-174 (1989), 199-255. MR1021512 (91c:22030)
- [Gr] I. Grojnowski, Character sheaves on symmetric spaces, Ph.D. thesis, MIT, 1992.
- [L3] G. Lusztig, Character sheaves, I, Adv. Math. 56 (1985), 193-237; II, vol. 57, 1985, pp. 226-265; III, vol. 57, 1985, pp. 266-315; IV, vol. 59, 1986, pp. 1-63; V, vol. 61, 1986, pp. 103-155. MR0792706 (87b:20055); MR0806210 (87m:20118a); MR0825086 (87m:20118b); MR0866163 (87m:20118d)
- [L9] G. Lusztig, Character sheaves on disconnected groups, I, Represent. Theory. (electronic) 7 (2003), 374-403; II, vol. 8, 2004, pp. 72-124; III, vol. 8, 2004, pp. 125-144; IV, vol. 8, 2004, pp. 145-178; Errata, vol. 8, 2004, pp. 179-179; V, vol. 8, 2004, pp. 346-376; VI, vol. 8, 2004, pp. 377-413; VII, vol. 9, 2005, pp. 209-266; VIII, vol. 10, 2006. MR2017063 (2006d:20090a); MR2048588 (2006d:20090b); MR2048589 (2006d:20090c); MR2048590 (2006d:20090d); MR2077486 (2005h:20111); MR2084488 (2005h:20112); MR2133758 (2006e:20089)
- [L14] G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Studies, vol. 107, Princeton Univ. Press, 1984. MR0742472 (86j:20038)

- [L10] G. Lusztig, Parabolic character sheaves, I, Moscow Math. J. 4 (2004), 153-179. MR2074987 (2006d:20091a)
- [MV] I. Mirković, K. Vilonen, Characteristic varieties of character sheaves, Invent. Math. 93 (1988), 405-418. MR0948107 (89i:20066)

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139