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CHARACTER SHEAVES ON DISCONNECTED GROUPS, IX

G. LUSZTIG

ABSTRACT. We associate a two-sided cell to any (parabolic) character sheaf.
We study the interaction between the duality operator for character sheaves
and the operation of “twisted induction”.

INTRODUCTION

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k. This paper is a part of a series
[LI] which attempts to develop a theory of character sheaves on G.

One of the main constructions in [L3] (going back to [L14]) was a procedure which
to any character sheaf on G° associates a certain two-sided cell in an (extended)
Coxeter group. A variant of this construction (restricted to “unipotent” character
sheaves) was later given by Grojnowski [Gi]. Here we give a construction which
generalizes that in [L3] (and takes into account the approach in [Gr]) which to any
(parabolic) character sheaf on Z; p associates a certain type of two-sided cell.

The paper is organized as follows. In Section 40 we study certain equivariant
sheaves on G°/U* x GO/U* (where U* is the unipotent radical of a Borel in G°)
under the convolution operation. Some results in this section are implicit in [L14]
Ch.1]. In Section 41 we study the character sheaves on Zy p (where D is a connected
component of G) by connecting them with sheaves on G°/U* x G°/U*. We use
this study to attach a two-sided cell to any character sheaf on Z;p. (See 41.4.)
In Section 42 we study the interaction between the duality operation d (see 38.10,
38.11) and the functor fp 1 (see 36.4). The main result in this section is Proposition
42.9 which contains [L3, III, Cor. 15.8(b)] as a special case (with G = G°,v = 1).

Notation. We fix a 1-dimensional Q;-vector space V with a given isomorphism
Ve2 2 Q1) (Tate twist of Q;). For n € N we set Q;(n/2) = V&". For
n € Z,n < 0 let Q;(n/2) be the dual space of Q;(—n/2). If X is an algebraic
variety and A € D(X),n € Z, we write A(n/2) instead of A® Q;(n/2) and A[[n/2]]
instead of A[n](n/2). (When n is even, this agrees with the notation in [LI) II,
p. 73].)

CONTENTS

40. Sheaves on G°/U* x G°/U*.
41. Character sheaves and two-sided cells.
42. Duality and the functor fg r.
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40. SHEAVES ON GO/U* x G°/U*

40.1. Let A = Z[v,v™!]. Let H (resp. H) be the A-module consisting of all formal
(resp. finite) linear combinations Zwew,Aes aw’ATwl)\ with a, » € A. Note that
H is naturally an A-submodule of H with A-basis {wa\;w € W,\ € s}. For
any n € Ny, the A-submodule of H spanned by {Toly;w e W\ e s, } may be
naturally identified with H,, (see 31.2(a)). There is a unique A-algebra structure
on H in which the product of two elements

h = E aw’)\Twl,\, h, = E a;)/’)\/Tw/].,\/
weW, \Es w' €W, N €s

as above is hh/ = by, Ty1, where for any v € s,

yeEW,ves
, ~ o~ ~
E aw7w171l,a,w/7VTwTw/1V = E by,yTyly
w,w €W yeEW

is computed in the algebra structure of H,, for any n such that v € s,,. Thus
H becomes an associative algebra with 1; H is a subalgebra (without 1) and, for
n € Ny, H, is a subalgebra (with a different 1) with the algebra structure as in
31.2.

Now in the definition of H given above, although T),1, is defined, the elements
Ty, 15 are not defined separately (as was the case in H,,). To remedy this we set
T, = Y s Toly € H (for w e W) and 1, = Ti1, € H (for A € s). Then Toly is
the product of Tw, 1, in the algebra H. Note that T3 is the unit element of H and
the following equalities hold in H:

1,1y =1y for A €5,1,15 =0 for A 75 N in S;

T Ty = Ty for w,w’ € W such that [(ww') = I(w) + I(w');

Twly = 1yaTy for w € W, X\ € s;

T?2=T, 4 (v—v"1) D AEssEW T.1, for s € L.

By a standard argument we see that

(a) H is exactly the A-algebra defined by the generators T,,1; (w € W, X € 5)
and the relations:

(T 1) (T 1x) = 0 if w,w’ € W, AN € 5,0/ N # A,

(Twlw/)\/ (Tw/l)\/) = Tww/l)\/ if w, w' € W, A, N e s, l(ww’) = l(’LU) + l(w’),

(Tsls,\:)(fsl)\/) = Tllx—l—(v—v_l)cfslx ifsel, N €swherec=1forse Wy
and ¢ =0 for s ¢ Wy.

40.2. Let R, RT be as in 28.3. The following result is well known:

(a) If w € W, € RT and s, is as in 28.3, then we have [(wsy) > l(w) if and
only if w(a) € RT.

Let A € 5. Let Ry, R;\F,WA,HA be as in 34.2. We write V) instead of Vf (as in
34.4 with D = GY). We show that

(b) if w € W, then wW \ contains a unique element wy of minimal length; it is
characterized by the property wy(RY) C R*.
Let wy be an element of minimal length in wW . Let a € R;\r. Then l(w184) >
l(wy). Since l(w184) = l(w1) +1 mod 2 we see that [(wis,) > l(wy). By (a) we
have wy (o) € RT. Thus, wq(RY) C RT. Now let u € W, — {1}. We pick a € R}
such that u(a)~! € Rj\'; then wiu(a)~t € RY. If wiu has minimal length in wW
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then by an earlier part of the argument applied to wiu instead of w; we have
wiu(a) € RT, a contradiction. We see that w; is the unique element of minimal
length in wW . It remains to show that if u € W satisfies wju(R)) C RT, then
u = 1. If u # 1, then by an earlier part of the argument we have wju(a)~! € R
for some a € R}, a contradiction. This proves (b).

We show that

(¢) if s €I and w € W has minimal length in wW y, then either (i) sw has
minimal length in swW  or (i) w™lsw € Wy.

There is a unique 8 € R* such that s(3)~! € RT. Assume that (i) does not hold.
By (b) there exists a € R} such that sw(a)~! € R*; moreover, w(a) € R*. Hence
w(a) = B. We have w=1(3) = a € Ry, hence w™lsw € W) and (ii) holds. This
proves (c).

For z € W) let T2, ¢} € Hy be as in 34.2 . Then ¢} = Y eWs p?/,sz)) where
Py . € Z[v™"] are uniquely defined.

For any w € W, X € s there is a unique element of H which is equal to ¢, » € Hj,
(see 34.4) for any n such that A € s,,; we denote this element again by ¢, . We
have cun = D ew 7Tw/7w,)\Tw/1)\ where 7,/ 2 € Z[v™!] are uniquely defined.
Note that {cy r;w € W, X € s} is an A-basis of H.

Now:

(d) Let w,w' € W. We write w = wyz,w’ = w}z" where wy has minimal length
in wWy, wi has minimal length in wW'Wy and 2,2 € Wy. If wy # w), then
T wx = 0. If wy = Wi, then Ty w2 :p;’z.

From the definitions we see that if wA # w'A, then my 4w x = 0. Thus we may
assume that wA = w’X. We choose a sequence s, sa,...,s, in I such that w\ =
WA= 58.87_1...8INF Sp_1...8INF - £ SN F# N

We show that for k € [0,7], SgSg—1 - ..s1 has minimal length in spsg_1...51Wi.
We argue by induction. For & = 0 the result is obvious. Assume now that k €
[1,r]. Since sg_1...s1 has minimal length in sx_1...s; W) and sgsk_1...81\ #
Sk—1.--..81A, we see from (c) that s;Sg_1 . ..s1 has minimal length in sgsk—1...51 W
as required.

In particular, s.s,_1...s1; has minimal length in s,s,._1...51W ). Since wA =
SpSp_1...81A we have w = $,8,_1...S1h1hy where hy € V), ho € W,. Then both
wy and $,-8,_1 ...81h1 have minimal length in 5,51 ...51hi W) = wW ) = w1 W;
using (b) we deduce that s,.s,_1...s51h1 = wy. Hence s1...5.w = s1...8w1z =
hiz. Similarly, sy ...s.w’ = hiz’ where h} € V.

From the results in 34.7-34.10 we see that Tw/w,x = P35 w10 = Phyar oy o
Using hi,h} € V) and the definitions (34.2) we see that pﬁ,lz,7hlz =0if hy # b}
and p,AL,lz,mZ =p2 . if hy = hj.

It remains to show that we have w; = w) if and only if hy = h}. We have
SpSp_1...8] = hflwl and similarly s.s,_1...s1 = (h})"'w}. Hence hflwl =
(hy)~1w}. We see that wy = w} if and only if hy = h}. This proves (d).

For w' <win W, A € s and i € Z we define N; 4, € Z by

(€) Tw wr = plw)=l(w) Yiez N; wr w0, that is,

’ .
P e = 0 S N0
i€Z
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if wW'Wy =wW), and z, 2’ are as in (d), then
Ni,w’,w,)\ =0 if wlw)\ 7& IUW)\.

Note that N; , w,x is 0 unless 7 is even.

40.3. Let B* € B. Let U* = Upg~ and let T be a maximal torus of B*. Let
r =dimT. Let Wp = NgoT/T. We identify T = T, Wy = W as in 28.5. For any
w € W we denote by w a representative of w in NgoT.

Let C' = G°/U* x G°/U*. We have a partition C = |, cyw Cw Where

Cw = {(hU*,0'U*) € C;h~'h' € B*iB*}.
For w € W let d,, = dim C,, and let
Cw = {(RU*,W'U*) € C;h"'W' € B*wB*}
(closure in G%). Now C,, is an irreducible variety and we have a partition Cyp =
Uw';w'gw Cy with C,, smooth, open dense in C,,.
Define vy, : B*wB* — T by vu,(g) = t where g € U*wtU* with ¢t € T. Define
Y Cy — T by Y(RU*, W U*) = v (R71R).
For L € s we set L, = ¥*L, a local system on C,. (Using 28.1(c) we see

that the isomorphism class of ¢*L is independent of the choice of w.) Let Eﬁu =
I1C(Cy, Ly) € D(Cy)-

40.4. For w € W, L € s let L, = juwilw, L) = juiLl where j, : C» — C,
Jw : Cp — C are the inclusions. Let C be the full subcategory of D(C) whose
objects are the simple perverse sheaves on C' which are equivariant for the GO x T xT
action

(a) (z,t,t') : (RU*,R'U*) — (zht"U*, xh/t'"U*)
on C (for some n € Ni) or equivalently, are isomorphic to £ [d,,] for some £ € s
and some w € W. Let D(C) be the subcategory of D(C') whose objects are those
K € D(C) such that for any j, any simple subquotient of ? H/ K is in C.

If w,L are as above, then £, € D(C). Indeed this constructible sheaf is
equivariant for the action (a) (for some n), hence so is each PH7(L,,).

We have a diagram C' x C < (G°/U*)3 2 C where

T(hlU*,hQU*,th*) = ((hlU*,hQU*), (hQU*,th*)),
S(hlU*, hQU*, h3U*) = (hlU*, h3U*)

We define a bi-functor D(C) x D(C) — D(C) by A, A — Ax A" = sir*(AKR A’).
The “product” A x A’ is associative in an obvious sense. We show that

(b) A, A’ — A x A’ restricts to a bi-functor D°*(C) x D**(C) — D*(C).
Let A, A’ € D(C). To show that Ax A" € D*(C) we may assume that A, A" € C.
Then each PH7(A x A’) is equivariant for the action (a) (for some n). This proves

(b).
40.5. For w' <win W, A€ s, £L € XA and i € Z we show that
(a) HI(LE) e, = (L (—i/2))BNiw wa,

(Both sides are 0 unless ¢ is even.)
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Let
éw = (h7h’) c GO % GO;h—lh/ c B*’UJB*} « k*7
Cw = {(h, 1) € G* x G* "W € B*iB"} x k*.
Now é’w is an irreducible variety and we have a partition Co = Uw/;,w/gw C\ with

¢, smooth, open dense in Cy,. Define d: Cp — Cu, d : Coy — Ch by (h, ', z) —
(RU*, R'U*). Let Lo = d* Ly, a local system on C,. Let EHU = IC(C’w,Zw). Since
d,d are principal U* x k*-bundles, it is enough to show that

(b) HI(LL)|a,, = (Lur(—i/2))ONewr o,
(Both sides are 0 unless ¢ is even.)

We choose k € Hom(T,k*), € € s(k*) such that £ 2 k*E; see 28.1(c).
Now B* acts on (B*wB*) x k* and on (B*wB*) x k* by

tiu: (g,2) = (9(ti) 7' k(t1)2)

where t; € T, u € U*. Let P& = ((B*B*) xk*)/B*, PPt = ((B*wB*) xk*)/B*.
Now P% is a smooth open dense subvariety of the irreducible variety P* and
Pr = Uwwrowr<w P 18 a partition. The morphism (B*wB*) x k* — k* given by
(9,2) + k(7s5(g))z factors through a morphism ¢ : P% — k*. Let &% = ¢*€, a
local system of rank 1 on P%. Let £5F = IC(P£, &) € D(PY). From [L14] 1.24]
we see that

(€) HH(ER o, & (€5 (~1/2) PN,
(Both sides are 0 unless ¢ is even.) - -

We can find n € Nj. such that £ € s,,(k*). Define ¢ : Cw — Py, c:Cp — Py
by (h,h',z) — B* —orbit of (h~1h’, 2™). Now ¢, c are locally trivial fibrations with
smooth fibres of pure dimension. Hence (b) follows from (c) provided that we can

show that ¢*&F, = L. for w' < w. We may assume that w = w’. We have a
commutative diagram

Pi S Cpxk* —4 O,

qbl ¢'l wl

K krxkr 4

with ¢, 1, ¢, d as above, ¢'(h, 1/, 2) = (k(yo(R™IH)), 2), (2, 2) = 2’2", d' (¢, 2) =
2. Using this and the definitions we have L, = ¢'*d'*E, ¢*&, = ¢**E. Tt
remains to show that d’*€ = ¢/*£. This expresses the fact that £ is equivariant for
the k*-action z; : z — 2]’z on k* which follows from £ € s,,(k*). This proves (b),
hence (a).

40.6. Let w,w’' € W, L, L € 5. Weset L =L, = L., € D°(C). Let
X = {(hU*, hoU*, h3U*) € (G°JU*)3; hi hy € B*WwB*, hy 'hs € B*w' B*},
X = {(mU*, hyB* h3U*) € G°JU* x G°/B* x G°JU*;
hithy € B*wB*, hy hs € B*w'B*}.
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We have a commutative diagram with a cartesian square

where f is given by (hlU* hoU*, haU*) — (h U*, ha B*, h3U™*),

flis (t, ") — Ad(w') "L (t)t,

7 is (hU*, hoU*, haU*) v (t,t') with hy *hy € U*itU*, hy *hy € U*i/'t'U*,

7is (hiU*, haB*, h3U*) — Ad(uw') "1 (¢t)t' with ¢,t" as in the definition of 7,

5 is (hU*, haB*, hsU*) s (hiU*, hsU*).
From the definitions we have L = &, fi7*(£L X £'). Using the diagram above, we
have L = 617" f{ (LK L£’). From the definitions we see that either (i) or (ii) below
holds:

(i) £ 2 (Ad(w')"1)*£" and f{(LR L) = 0;
(i) £ = (Ad(w') 1)L and LR L = f'*L'.

If (i) holds, then K = 0. If (ii) holds, then, as in 32.16, we have
RLRL) = ff"L =L@ fiQ = {L @ H (fIQi)[—e].e € Z},
L' @HE(fiQ)[—e] = {L'(r—e),...,L (r—e), ((er e) copies) }.

Setting L = &,7*(L’), it follows that

Lﬁ{L(re)[e],...,L(re)[e],(< g )copies),eGZ}.

2r —e
We now consider L for certain choices of w,w’. B
If w,w" satisfy l(ww') = l[(w) + I(w'), then & restricts to an isomorphism X —

Cpuw and L = L.
Now assume that a, &, s, are as in 28.3 and that w = w’ = s, € I. We have

L= {]u‘imu €W}

where j, : C, — C is the inclusion and L, = jiL. Let X, = 67 1(C,). Then
L, = o7 (L") where 6, : X, — Cy, T : Xy — T are the restrlctlons of 7, 7.

If u ¢ {1,84}, then X, =0 and L, = 0. If u = 1, then &, : X,, — C, is an affine
line bundle and 7;(L') = 6% L!,; hence G, 7, (L") = dwai L), = L [[-1]]. If u = 34,
then 7, : X, — C, is a principal k*-bundle and either (iii) or (iv) below holds:

(iii) a* £’ % Q; and G,7(L') = 0,

(iv) &*L' = Q and 7} (L") = 55 L.,

If (iv) holds, then, as in case (ii) above, we have
GuTi (L) =6uoiLl, = L) @6.,Q = {L, @ H(6..Q1)[—¢€], e € Z},

L @H(G,Q1) €] = {L,(1—e),....L.(1—e),( (2 i e) copies) }.
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40.7. In this subsection we assume that k is an algebraic closure of a finite field.
Now the A-module £(C) is defined as in 36.8 (the character sheaves on C are taken
to be the objects in C).

For (w,\) € W x s, let [w; A] be the basis element of £(C) given by £ [[dy,/2]];
we choose £ € A and we regard £,,, £ as mixed complexes on C' whose restriction
to Cy, is pure of weight 0; then gr(L,,), gr(£%,) are defined in £(C) as in 36.8. We
denote these elements of &(C) by [w; A/, [w; \]'* respectively. From 40.5(a) we see
that

(a) (=v)® [w; A = [w; N = 32 cw iz Niww a0 [w's A in &(C)
where N; w2 is as in 40.2(e).

Let 7, s be as in 40.4. By 40.4(b), sir* : D(C x C) — D(C) restricts to a functor
D(C x C) — D*(C) where the character sheaves on C x C' are by definition
complexes of the form AKX A’ with A € C,A' € C. Hence the A-linear map
gr(sir*) : R(C x C) — R(C) or equivalently K(C) ® 4 R(C) — R(C) is well defined.
(We have canonically &(C x C) = R(C) @4 R(C).) We write £ * & instead of
gr(sir*)(§ K ¢') where &, & € &(C). Note that £,&' — £ x &' defines an associative
A-algebra structure on £(C').

Let w,w’ € W, A\, X € 5. From 40.6 we see that

if WX # N\, then [w; A" * [w'; N] =0 in R(C);

if w'N =X and l(ww') = [(w) + 1(w'), then [w; A * [w', N] = (v? — 1) [ww’; N’
in R(C);

if s €1 and sN = X, then [s; ] x [s, N']' = (v* — D)F(02[1; ] + (v? — 1)c[s; N])
where c =1 for s € Wy and ¢ =0 for s ¢ W .

Using this and (a), 40.1(a), 40.2(e), we see that

(b) the unique A-linear isomorphism w : R(C) — H (H as in 40.1) given by
[w, A" = 0" T, 15 for w € W, X € s, satisfies w([w, A]) = (—v) %! ®@e, 5 for
w e W, Xins and w(z x2') = (v? — 1) w(x)w(a’) for any x, 2" € K(O).

40.8. For w,w’ € W and A, X € s we have ¢, xCyr x = Zyewﬁyeéfy;‘j’y)‘?wl’xcy,,\
in the algebra H. Here 'y;”);j\?w/”\/ € A. We have:

(a) 'y;”’;j\wlﬂ\l € N[v,v71].
By the arguments in 34.4-34.10 (with D = G°) this is reduced to the analogous

(well-known) statement for the structure constants of the algebra HY with its basis
(c)) (see 34.2).

w

40.9. For any J C I let H; be the A-submodule of H spanned by {c, ;w €
W, A € s} or equivalently by {wa\; w € Wy, X\ €s}. From the definitions we see
that H; is a subalgebra of H. For any J C I,J’ C I we define a relation <; ;- on
W X s as follows. We say that (y,v) <75 (w, ) if there exist w1 € W ;,we € Wy,
A1, A2 € s such that in the expansion (in the algebra H)

Cwq, 1 Cw ACwa Ny = Z Gy’ ! Cy! p!
y'eEW,v'es
(with ay ,» € A) we have a,, # 0.

Using the associativity of the product in H, the fact that H;, H; are sub-
algebras of H and 40.8(a), we see that < j is transitive. Using the formula
ClLwACw,AC1,A = Cyw,x We see that it is reflexive. Thus, it is a preorder. Let
~ g+ be the equivalence relation attached to <jj; thus, (y,v) ~jz5 (w,A) if
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(y,v) =g (w,A) and (w,A) <y (y,v). The equivalence classes for ~; ; are
called (J, J')-two-sided cells. The (I,I)-two-sided cells in W x s are also called
two-sided cells.

40.10. Let w,w',w” € W, L,L',L" € 5. Weset K = L, * L}« L, € D=(C).
Let
X = {(hU*, hoU*, hsU* , hyU*) € (G°JU*);
hi'hy € B*wB*, hy 'hy € B*W'B*, hy'hy € B*W'B*},
an irreducible variety. Let Xy be the smooth open dense subset of X defined by
the condition h; 'hy € B*i'B*. Define o : X — C by
(hlU*, hQU*, th*, h4U*) = (hlU*, h4U*)
Define 7: Xg - T x T x T by
(hlU*, hQU*, h3U*, h4U*) = (t, t/, t”)
with hythy € U*tU*, hy "hy € Uw/'t'U*, hy ' hy € U*0"t"U*.
Let F = 7*(LX L' K L"), a local system on Xo. Then F* := IC(X,F) € D(X)
is deﬁne_d and we have K = o FE.
Let X (resp. Xo) be the the variety of all (hiU*, ho B*, h3B*, haU*) € G°/U* x
G°/B* x G°/B* x G°/U* that satisfy the same equations as those defining X (resp.

Xo). Note that X is irreducible and Xy is an open dense smooth subset of X. We
have a cartesian diagram

X f 7. C

—
—>><|

£
=

TxTxT —1— T

where Xy — X, Xg — X are the obvious imbeddings,

£, fo are given by (haU*, hoU*, haU*, haU*) > (hiU*, ha B*, haB*, haU*),

flis (t,t,t") — Ad(w'™") "L (t)Ad (") "L (),

7is (M U*, haB*, h3B* , hyU*) — Ad('w") "1 (t)Ad (")~ (#')t" with t,¢/,t" as
in the definition of 7, & is (h U™, ha B*, h3 B*, haU*) — (hU*, hyU*). Assume that
L2 (Ad(w')~1)*L" and £ =2 (Ad(w”)~1)*L". Then LRL'KL" = f'*L"”. We have
F=1"f*L" = f&7*L". Since f is a principal T x T-bundle and Xy = f~(Xp) it
follows that F# = f*IC(X,7*L"). Note that fiQ; = {H(fiQi)[—¢],2r < e < 4r},

H(fiQu) = {Qu2r —¢),..., Qu(2r — ), (<4r2i e) copies)}.

Hence setting K = ay(IC(X,7*L")) we have
K= O'Qf*IC(X,f'*,C”) = 5;f!f*IC(X,7i*,C/I) = 5’1([0()2,77'*5”) ® f!Ql),
2r

(a) K#{K(Qr—e)[—e},...,K(Zr—e)[—e],((4re

) copies), 2r < e < 4r}.

‘We now show that
(b) if A€ C is such that A4 K, then A4 K.
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We may regard £, L', £ as mixed local systems (with respect to a rational structure
over a sufficiently large finite subfield of k) which are pure of weight 0. Then K, K
are naturally mixed complexes and (a) is compatible with the mixed structures.
For any mixed perverse sheaf P, let P be the subquotient of P of pure weight h.
We can find h € Z such that A 4 PHI(K);, for some j € Z; moreover, we may
assume that h is maximum possible. Note that A 4P HI 4" (K[—4r](—2r))s 42, and
A A PHI' (K[—e](2r — €))pyor for 2r < e < 4r and any j'; hence from (a) we see
that A 4 PH/T(K)j, 9p. In particular, A + K, and (b) is proved.

40.11. Let w,w'L, L', X, X, T be as in 40.6. We set L = QEJ x L8 eD(0). Let
A= L, d,]. We show that

(a) if A 4L, then [w”, '] appears with nonzero coefficient in the expansion of
the product [w, A] x [w’, \'] in terms of the basis ([y,v]) of &(C).

Let

X = {(hU*, hoU*, h3U*) € (G°JU*)3; hi'hy € B*wB*, hy *hs € B*w/'B*},

X = {(mU*, he B*, h3U*) € G°JU* x G°/B* x G°/U*;

hi'hy € B*wB*, hy 'hs € B*u'B*}.

Note that X (resp. X) is naturally an open dense subset of X (resp. X). Define
o X — C by (MU hhU* hyU*) — (hU* h3U*). Define ¢’ : X — C by
(hU*, hoB*, h3U*) — (hiU* hsU*). Let F = 7*(L K L), a local system on X.
Then F* = IC(X,F) € D(X) is defined and we have L = o{F*. We have a

cartesian diagram

TxT - T

where X — X, X — X are the obvious imbeddings, f, f/,7 are as in 40.6 and f is
the obvious map.

Assume first that 40.6(1) holds. Let m’ : T'x X — X be the free T-action
t1 1 (hiU*, hoU* h3U*) — (h U™, hgtl_lU*, h3U*). This restricts to a free T-action
m:T x X — X. Define a free T action mqg : T X (T'xT) =T X T by t1 : (t,t') —
(t7 ', Ad(w") " (t1)t’. Then m,mg are compatible with 7. By our assumption we
have mi(L X L") = Lo ® L X L' where Lo € s(T), Lo % Q. It follows that
m*(F) =& Lo K F. From the properties of intersection cohomology we then have
m'*(F) =2 Lo FE Let r: T x X — X be the second projection. Since Lo € s(T),
Lo 2 Qq, we have r(Lo X F¥) = 0. Hence mm’*(F*) = 0. Since m/, f',r, f’ form
a cartesian diagram we must have f*f'(F*) = 0. Since f’ is a principal T-bundle
we deduce that f{(F¥) = 0. We have L = 5/ f/(F*) hence L = 0. In this case (a) is
clear.

Assume next that 40.6(ii) holds. Then L X L' = f*L' and F = 7*f"*L =
f*7*L'. Since f’ is a principal T-bundle and X = f'~!(X) it follows that F# =
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f*IC(X,7*L"). Note that f{Q; = {H*(f{Qi)[—¢],r < e < 2r},

HE(FQr) = {Qi(r—e),...,Qi(r —e), (( > copies)}.

2r —e

Hence setting L = &{(IC(X,7*L")) we have

7
L=of"ICX,7L) =6 fl f"IC(X, 77 L) = 5{(IC(X,7"L') @ fiQ),

L<{L(r—e)[—e],...,L(r —e)[—€], ((21‘1'_ e) copies),r < e < 2r}.

Since A - L, this shows that A 4 L. We regard £’ as a pure local system of weight
0. Then L = &{(IC(X,7*L')) is again pure of weight 0, since &’ is proper (see
[BBD]). Hence the coefficient with which A appears in the expansion of gr(L) is
a polynomial in —v with coefficients given by the multiplicities of A in the various
PHI(L); in particular, A appears with coefficient # 0 in gr(L). On the other hand,
the arguments above show that [w, \] * [w’, \'] = (v? — 1)*gr(L). It follows that A
appears with coefficient # 0 in [w, A] * [w’, N']. This proves (a).

41. CHARACTER SHEAVES AND TWO-SIDED CELLS

41.1. In this section we preserve the notation of 40.3. We fix a connected compo-
nent D of G and we pick § € NpB* N NpT. We write € instead of ep : W — W.
For w € W we set

Zy'n ={(B,B',2Ug) € Zy p;pos(B, B') = w}.

(This is the same as wle@,D in 36.2.) Define &p : C' — Zy p by (hU*,W'U*) —
(hB*h=Y, W' B*W =Y, /Sh='U}; g-;,-1), a principal T-bundle for the free T-action on
C given by t : (hU*,W'U*) — (htU*,h'(6t6-1)U™).

Since fgl(ZéljD) = Cly, &p restricts to a principal T-bundle £p ,, : Cypy — 2y p-
We have a commutative diagram

¥

T — Cw - Cw

1 i o |
d 2 QU nuU ) xd —1— Z),

where v is as in 40.3,

d = woT,

JFUNawU*w™ ), 8) = (fB*f~1, fuB* 0~ f~1, fsf T Uppes-1),

U natri),s) = (U7, fs071U),

C(t) = w6~ 1t0).

Note that the lower row in the diagram is as in 36.2(a).

Define ¢ : d — T by ¢(wdt) =t where t € T. If £ € s is such that Ad((wd)~1)*L
= £, then pr3*(£) is a local system on G°/(U* NwU*w ™) x d, equivariant for the
T-action to : (f(U* NwU* b~ Y),s) = (fty(U* NwlU*w™ 1), testy ') on GO/(U* N
wU*i™1) x d, which makes j a principal T-bundle. It follows that there is a well-
defined local system L., (of rank 1) on Zy'p such that §* Ly = priv*(L). We show
that

(2) £p w(Lw) = (AA(6™)* L) .
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Since j’ is an isomorphism, it is enough to show that j’*ﬁj{,)w(ﬁ'w) =7 (Ad(6H)*L)w
or that j*£, = j*(Ad(6~1)*L), or that prijc*L = j™*(Ad(6~1)*)L) or that
FrCL = §*p*(Ad(6H)*)L). Tt is enough to show that (*1*L = Ad(5—1)*L.
This follows from Ad(6~1) =u(: T — T.

Let ho, : Z§', — Zy, D, R Z&DHZ@,D be the inclusions (ZKD:Uw';w/gw Zé’f;j

is the closure of Zy;, in Zp p). Let L, = hwgﬁw,éfﬂ = huLE,. Using (a) and the
fact that £p is a principal T-bundle we deduce

(b) €5(L,,) = (AdE1)"L)
(¢) Ep(Lh) = (Ad(1)" L)’ .

Now let D’ be another connected component of G. We pick &' € Np.B* N Np/T.
We have a commutative diagram with a cartesian right square

CxC — (GO/U*)3 — c

EDXED’J Eol fD’DJV

b b
Zy.p X Zy,pr ——— Zo —— Zyp.p'D

where r, s are as in 40.4, Zg, by, by are as in 32.5 (with J = @) and
§o(h U™, hoU™, haU™)
= (mB*hit ha B hy ' ha B hy ' hadhy U, gy o1, had'hy MU, gy, ).

Hence, if A € D(Zy p), A" € D(Zp pr), then £, pbarb] (AR A") = sir* (£, ARE, AT),
or equivalently

(d) §prp(Ax A') = (EpA) * (€, A').
41.2. Let u € W. Let
Y. ={(B,B,g(UsgNUg);
BeB,B €B,gUsNUg) e D/(UsNUg),pos(B, B') = u}
and let ®, : D(Zp p) — D(Zp,p) be the composition hj* where j : Y, — Zy p is
(B,B',g(UpNUp/) +— (B,gBg~',gUg) and h : T, — Z p is
(B,B',g(Up NUg/) + (B',gB'g™", gUg).
(A special case of definitions in 37.1.) Let
Y ={(B,B,B,B,gUp);B' € B,BcB,BeB,B €B,
gUp € D/Ugs,pos(B’, B) = u~",pos(B, B') = e(u),gB'g~' = B'},
s: Y, — Y, (B,B,g{UsNUp)+— (B',B,gBg *,gB'g ", gUp).
Note that s is an isom0r~phism. (We show this only at the level of sets. Define
s:Y —= 7Y, by (B',B,B,B',gUp/) — (B,B,x(Ug NUp/)) where & € D is such

that Bz~ ! = B’, 2Upr = gUpg. This is well defined and clearly an inverse of s.)
It follows that hj* = hyj’* where

b =bs': Y — Zyp is (B, B,B,B,gUp) — (B, B, gUp),
i'=ijs': Y — Zyp is (B,B,B,B,gUp/) + (B, B,zUg)
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and z € D is such that ztBz~! = B,zUp = gUps (then x(UgNUp/) is well defined).
We have a commutative diagram with a cartesian right square

h

c J C C
fDl ¢ EDJV
Zy.p ! T, v Z9.D

where £p is as in 41.1,
C ={(hU*, ho B* ,h3B* , haU*) € (G°/U*)*,
hi'hy € B*a'B* hy'hy € B*ué ' B*},

his (hiU*, hoB*, h3B*, haU*) — (hyU*, haU*), €' is

(hyU*, ho B*, h3B*, haU*)

— (M B*hy ! ha B hy ' hy B hy ', ha B Ryt habhi 'U,, ey 1),
jis (haU*, ho B*, h3B* , hyU*) + (hot~'U*, h3tU*) where t,t € T are given by
hi'thy € U*a=YU*, hy ' hy € U*tsud—1U*.

We see that for A € D(Zy p) we have
Ep®u(A) = Ephii*A = Ephi™ A = """ A = hij*¢H A,

Taking here A = Qij (with w € W, A € §,£ € XA with wDA = ) and using

41.1(c) we obtain 57{,(1)“(@5”) = ﬁ!j*((Ad(é_l)*E)ﬁu) or equivalently f};fbu(ﬂu) =
717" ((Ad(6~1)*L)E)) where

X = {(mU*, hyB*, h3B*, hyU*) € C; hy *hs € B*wB*}
and j/: X — Cy,5 : X — C are the restrictions of j, h. Let

Xo = {(hU*, haB*, hyB*, haU*) € C; hy 'hs € B*wB*}
and let j) : )_(07—> Cy be the restriction of J. Let Fo = j5*(Ad(0~1)*L), a lo-
cal system on Xy. Since j’ is a fibration with smooth connected fibres, we have
7 ((Ad(6~M*L)E) = IC(X, Fy). Thus, g;g@u(éfﬂ) = 6;({0()_(,?0)). From the
definitions we see that Fo = 7*L", hence &,(IC(X, Fo)) = K and

. -4 _

(a) qu)u(éw) =K
where 7*L, K are given as in 40.10 in terms of

(w™ L), (w,Ad(671)* L), (e(u), Ad(sud~1)*Ad(61)* L)
instead of (w, L), (w', L"), (w", L").
41.3. For J C I let DF(C) be the subcategory of D*(C) whose objects are those
K € D(C) such that for any j, any simple subquotient of P H? K is isomorphic to
QEJ for some £ € s and some w € W .

Let J,J' C I. Let K € DS*(C), K’ € DS(C), and let w',w” € W, X, X' € s,
L' eXN L'"e)N. Let A= L, *[d,]. We show that
(a) if (i) A+ K+L. ¥[dy] or (i) A4 L., [dy]*K" or (iii) A= KxL!,*[d]+K’',

then (w”, X") 255 (W', N).
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For the proof we may assume that k is an algebraic closure of a finite field. Then
the results in 40.7 are applicable. We first consider the case (i). In this case we can
find £ € s,w € W such that A - £% [dy] %L, [dw]. By 40.11(a), [w”, \"] appears
with nonzero coefficient in the expansion of the product [w, A] * [w’, \'] in terms of
the basis ([y,v]) of R(C). Applying w (see 40.7(b)) we see that c,»~ x+ appears
with nonzero coefficient in the expansion of the product ¢, xcy.a in terms of the
basis (¢y,,) of H and the desired result follows. Case (ii) is treated in an entirely
similar way. We now consider case (iii). In this case we must have A 4 A"« K’ for
some simple perverse sheaf A’ such that A’ 4 K * L) ,%[d,]. We have A’ = Mg [dy]
where y € W, M € s. Let v be the isomorphism class of M. From case (ii)
applied to A 4 A" x K’ we see that (w”, ") <; - (y,v). From case (i) applied to
A" A KxL!,#[dy] we see that (y,v) <7 (w',\'). Combining these two inequalities
we obtain (w”,\") <75 (w',\'), as desired.

41.4. Let J C I. In the remainder of this section we write f, e instead of fy ; :
D(Zyp — D(Z1p), ¢p,s : D(Zsp — D(Zp p). We note that

(a) if A € D(Z;yp), then fe(A) =2 Alm] @ A" for some m € Z and some A’ €
D(Z;p).
See [G], [MV] for the special case D = G°,J = I and [L.10, 6.6] for the general case.
Now:

(b) Let A be a simple perverse sheaf on Zjp. Then A - §(PH7(e(A))) for some
jEZ.
Assume that this is not true. As in [BBD. p. 142], for any n € Z we have a distin-
guished triangle (P7<,,_1¢A,P7<,eA,PH"(eA)[—n]), hence a distinguished triangle

(F("T<n—1e4),§(*T<neA), f("H" (eA))[=n]).

Using our assumption, we see that A 4 f(P7<,_1¢A4) if and only if A - f(P7<,eA).
Thus we have A - f(Pr<,eA) for some n if and only if A 4 f(Pr<,eA) for any
n. Since Pr<,eA = 0 for some n, we see that A A f(Pr<,eA) for any n. Since
PrcpeA = eA for some n, we deduce that A A feA. This contradicts (a); (b) is
proved.

We show that

(c) if A is a simple perverse sheaf on Zjp, then there exists a simple perverse
sheaf A" on Zy p such that A 4§(A"), A" He(A).

By (b) we can find 4,j € Z such that A 4P H!(f(P)) where P =PHI(e(A)).

Assume that A A PH!(f(A’)) for any simple subquotient A’ of P. We claim
that A A PH(f(P’)) for any subobject P’ of P. We argue by induction on the
length of P’. If P’ has length 1, the claim holds by assumption. If P’ has
length > 2, we can find a simple subobject P’ of P’. We have a distinguished
triangle (f(P"), f(P’),§(P’/P")). Hence we have an exact sequence P H'(f(P")) —
PHU(§(P")) —PH!(f(P'/P")). By the induction hypothesis, we have A A ?H'(j(P")),
A APHY(§(P'/P")). Hence A A PH!(f(P")). This proves the claim. In particular,
A APH!(§(P)), contradicting the definition of i, P.

We see that there exists a simple subquotient A’ of P such that A 4PH(§(A4)).
Then A’ is as required by (c).

Let d,, = dim Zé”,D. Let

() A = £F

=w

(], A” = MEJd,) € Zy.p, £LENM E v.
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Here wD) = A\, yDv = v. Now:

(e) Let A be a character sheaf on Zjp such that A 4 §(A"),A” 4 e(A). Then
(y, Dv) =15 (w, DA).
Since § is proper, f(A’) is a semisimple complex (see [BBD]). Hence f(A') = A[m] &
Ay for some m € Z, A’ € D(Z;,p) and ef(A’) = ¢(A)[m] & ¢(A;). Hence from A"
¢(A) we can deduce A” - ef(A4’). By 37.2 we have ef(A") < {®,(A")[[-mu]];u €
W} where m, are certain integers. Hence for some u € W; we have A” o
@, (AN[[-my]], that is, A” 4 ®,(A") and &5 A [r] 4 5P, (A')[r]. Hence using
41.2(a) we have £ A”[r] 4 K where K is as in the end of 41.2. Thus, Mg[dy] 1K.
Using 40.10(b) we deduce that

ME[d,) 4 Ad() ") AAE )L, (A L)+ Ad(Fas ) AL o

Using this and 41.3(a) we see that (e) holds.
Now:

(f) Let A be a character sheaf on Zj p. In the setup of (d) assume that A 4 §(A’),
A He(A), A4§(A"), A” 4e(A). Then (y,Dv) ~; 5o (w, DN).
Applying (e) to A’, A” we see that (y,Dv) <; 5 (w,DX). Applying (e) to A”, A’
(instead of A’, A”) we see that (w, DA) <; j (y, Dv). Hence (f) holds.

From (c),(f) we see that there is a well-defined map A — c4 from the set of
character sheaves on Z; p (up to isomorphism) to the set of (J, J')-two-sided cells
in W x F where c4 is the unique (J, J')-two-sided cell that contains

#

{(w, D)) € W x s;wDA = A, A (L5 [d,), £ [d.] - A}

(a nonempty set); here £ € A.

41.5. In the setup of 41.4, let A be a character sheaf on Z; p. We show that:

(a) There ezists (w, DX) € ca such that wDA = A, A - f(éi [dw]). If (W', DN') €
W x s is such that w' DN = )\, A f(é;,ﬁ[czwf}), then (w,DN) < (w',DN).
Here L e N\, L € ).

(b) There exists (w, DX) € ca such that wDX = X, ;fu [dw] 7 e(A). If (w',DX) €
W x s is such that w' DN = N, Q-;J,ﬁ[dw/] 4 e(A), then (w',DN) <j4 (w,DN).
Here L e N\, L € ).

Note that (a) follows immediately from 41.4(c),(e) and the definition of c4. Simi-
larly, (b) follows from 41.4(c),(e) and the definition of c4.

41.6. In this subsection we assume that J = I. The A linear map H — H given
by

(a) Twl)\ — Te(w)lg,\ forwe W,\€s

is an A-algebra isomorphism. It carries c,,x t0 Ce(w),pa for any w € W, A € 5. It
induces a bijection ¢ — ¢’ from the set of two-sided cells in W x s onto itself. We
show that

(b) if A is a character sheaf on D, then (ca) =ca.
Consider the automorphism Ad(§) : D — D. From the definitions we see that
for (w,\) € W x s such that wDX = A we have A H f(éi} [dy]) if and only if
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. # _
Ad(571)*A H f(Ad(Q_l)*L'E(w) [dw]). Using this and 41.5(a) we see that

CAd(6-1)*A = (CA)I-

It is then enough to show that Ad(§~1)*A =2 A. By the G°-equivariance of A we
have m*A = ¢*A where m : G° x D — D is (x,g) +— xgz~ ' and ¢: G x D — D
is (z,9) + g. Define r: D — G° x D by r(g) = (697!, g). Then r*m*A = r*q* A
that is, (mr)*A = (gr)*A. We have mr = Ad(d), ¢r = 1, hence Ad(§)*A = A and
Ad(671)*A = A, as required.
Note also that for (w, A) as above we have
S g
(@ADL | @) = FEL ).
Indeed, let K = f(éfv [dw]). Clearly, we have m*K = ¢* K with m, q as above. Then
as in the proof of (b) we see that Ad(0)*K = K. From the definitions we see that
. # N
f(Ad(D™ )L ([ T]) = Ad(6~N)*K. Since Ad(6~1)*K = K, (c) follows.
41.7. In this and the next subsection we assume that k is an algebraic closure of
a finite field. From 41.1(c) we see that £}, : D(Zy p) — D(C) restricts to a functor
D(Zy.p) — D(C), hence, as in 36.8, the A-linear map gr(¢},) : R(Zy. p) — R(C)
is well defined; from 41.1(c) we see also that

(a) gr(€p) (L2 [dw]) = (—v)*[w; DA

for w € W, A € s such that wDA = X and £ € \. From (a) we see that gr(£})
is injective with image equal to £(C)P, the A-submodule of &(C) spanned by
{[w; DA;w € W,\ € s,wD\ = A} or equivalently by {[w;DA;w € W, €
s,wDX = A}. Thus, gr(¢},) defines an isomorphism 7' : &(Zp p) — R(C)P. Let
n= 77/—1.

Let n € Nj. Let &(C)2 be the A-submodule of &(C) spanned by {[w; DAJ;w €
W, €s,,wDA= A} or equivalently by {[w; DA]';w € W, A €5, wDX = A}

Let u,w € W, A € 5, be such that wDX = X and let £ € A\. From 37.3(c) we
see that the A-linear map gr(®,) : R(Zy p) — R(Zy p) is well defined; we denote
it again by ®,. From 40.10(a), 41.2(a) we have

[w™ 5 A [w; DA [ep (u); D(u™ V)] = (0% = 1)* 0 @un([w; DAJ'®),
equality in &(C). If X' € 5,,, N # A, we have (from 40.7) that [u='; N * [w; D) *
[ep(u); D(u™tN)) = 0. Tt follows that

(0* = 1%/ @un(fw, DAI®)) = Y [u™'s N] # [w; DA * [ep(u); D(u™'N)]'.
NEs,

Using this and the definition of £(C)? we see that

(0 = 1) @un(z) = Y [ N) w2 [ep(u); D(u X))
Nes,
for any z € £(C)P. Applying 7 to both sides we obtain
(b) (0* = D)>®y/(2) = > n(fu™ s N @ [ep(u); D X))

NeEs

In

for any z € &(C)P.
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41.8. In the setup of 41.4, let A be a character sheaf on Z;p. From 36.9(b) we
see that the condition that, if (w’, D) € W X g is such that w' DX = X, then we

have A f(é;,,ﬁ [dy]) if and only if A appears with coefficient # 0 in the expansion

of (L., #[dw]) € R(Z;.p) as a linear combination of the canonical basis of £(Z.p).
Hence from 41.5(a) we deduce:

(a) There exists (w, D)) € ca such that wDX = X and A appears with nonzero co-
efficient in f(gfﬂ [dw]) € R(Z1p). If (', DXN') € W x 5 is such that w' DX = ) and

A appears with nonzero coefficient in f(é;,ﬁ[dw/]) € R(Z;p), then (w,DX) =<j
(w',DN'). Here Le N, L € N.

Clearly, property (a) characterizes c4.
41.9. Let J € J' C I and let D’ be another connected component of G. Let
Ao € D(Z;p), A" € D(Z,(5),p’). We show that
(a) fu,0(Ao) * A" = 1§55 (Ao * ecpp(1),ep () A") in D(Zy prD).
Indeed, from the definitions we see that both sides of (a) can be identified with
bic*(Ag X A") where b, ¢ are as in the diagram
Z1p X Zep(yyp <Y L Zy oo

where

Y ={(P,R,R',gUg,g'Ur/); P € P;,RE€ Py, R € Pepyry,

gUr € D/UR,g'Up € D'/Ur,gRg™* = R', P C R},

cis (Pa Ra R/agUR,glUR’) = ((Pa gUP); (R/,QIUR/), b is (Pa Ra R/agURaglUR’) =

(R, 9'gUr).
An entirely similar proof shows that, if A€ D(Zy p), Ay € D(Zc,,(s),p’), then
(b) A*fep(r),enr)(A5) = a0 (g0 Ax Ay) in D(Zyr, b/ D).
41.10. Let ¢ be a two-sided cell in W x s. Let ¢ be the set of all (w,\) € W x s
such that (w,\) <11 (y,v) for some/any (y,v) € c.
If K € D(Zyp), we say that K € D¢ (Zy p) if for any j € Z and simple
subquotient A of P HI(K) satisfies c4 C ¢.
Let D’ be another connected component of G. We show that

(a) ZfK S DgS(Z@)D% K’ S DCS(ZED(J/)7D/), then K = K’ S DgS(Z@)D/D),
We may assume that k is an algebraic closure of a finite field. We may assume
that K € Zy p and cx C €. Then there exists (w, DA\) € cx such that wDX = A,

K 4 f(éfu[cfw]), L € A\ Tt is enough to show that, if A € Zy p/p is such that
A4 K %K', then c; C ¢. Since f(égu [dw]) is a semisimple complex (see the line
after 41.4(e)) we have f(éfv [dy)) = K[m] ® K for some m € Z, K € D(Zp pip). It
follows that f(éi[&w]) * K' =2 K+ K'[m] © K *+ K’ hence A f(éfu[ciw]) x K'. By
41.9(a) we have f(£5 [dw]) * K’ 2 §(£F [du] * e(K7)) hence A 4 §(£5 [dy] * e(K7)).
We deduce that there exists Kj € Zp ps such that A f(éfu [dw] * K}) and K} €
Zy prp such that Kf L5 1dy) * K, A 4 §(KJ). We then have &5, K![r]
€ (L1, [du] * Ky)lx], hence, using 41.1(d), Epp K7l + (5L 1) * oK)
Setting gr (£ p Ki[r]) = [w1, D'DM] € &(O) with (w1, A1) € W X 5 we see, using
41.3(a) that (wy,D'DA1) <11 (w, DA). From A - §(K{/) we see using 41.5(a) that
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cj =11 (w1, D'D);) (that is, some/any element of ¢ 5 is =<r1 (w1, D'DA;)). Using
the transitivity of <y1 we see that ¢ ; <r1 (w, DX). This proves (a).

An entirely similar argument shows that

(b) if K € D(Zy p), K' € D (Zep (.00, then K 5 K' € DE(Zy i)

42. DUALITY AND THE FUNCTOR fp 1

42.1. In this section we fix a connected component D of G. We write ¢ instead of
ep : W — W. We write f instead of fy 1 : D(Zp p — D(Z1,p). We assume that k
is an algebraic closure of a finite field.

Let J C I be such that ¢(J) = J. Recall from 30.3 that V; p = {(P,gUp); P €
P;,gUp € NpP/Up}. As in 30.4 (with J' = I) we consider the diagram Vjp <

Viip %, D where Viip = {(P,g); P € Ps,g € NpP}, cis (P,g) — (P,gUp)
and d is (P,g) — g. Define f; : D(Vyp) — D(D), é; : D(D) — D(Vyp) by
fJA =dic*A,e A" = ¢d* A’. (In the notation of 30.4 we have fJ = fJ,I, €j=€j1.)
Define f; : D(Vyp) — D(D), e; : D(D) — D(Vyp) by f;A = frA[a;/2]],
ejA = éjA[[ay/2]] where oy = dimP;. (In the notation of 30.4 we have f;A =
fi1A(ay/2), e;jA = ej1A(—ay/2). Thus, f;,e; are the same, up to a twist, as
fir,esr.)

From 30.5 (with J' = I) we see that for A € D(V;p), A’ € D(D) we have
canonically

(a) Homp(y, ,)(esA’, A) = Homp(py (4, f7A).
Let CS(Vyp),CS(D) be as in 38.1. From 38.2, 38.3 we see that

(b) fs,ey restrict to functors CS(Vyp) — CS(D), CS(D) — CS(Vyp) denoted
again by fy,ey.
We show that

(c) if A € CS(Vyp) comes from a pure complex of weight 0 with respect to

a rational structure over a finite subfield of k, then f;A (naturally regarded as a
mized complex) is pure of weight 0.

Indeed, the functor ¢* preserves pure complexes of weight 0 since ¢ is smooth with

connected fibres; the functor d; preserves pure complexes of weight 0 since d is

proper (see [Del 6.2.6]) and [[c;/2]] also preserves pure complexes of weight 0.
We show that

(d) if A7 € CS(D) comes from a pure complex of weight 0 with respect to a

rational structure over a finite subfield of k, then e; A’ (naturally regarded as a
mized complex) is pure of weight 0.
Using (b), it is enough to show that for any simple A as in (c¢), the natural action
of Frobenius on the vector space Hompy, ,)(esA’, A) has weight 0. Using (a) we
see that it is enough to show that the natural action of Frobenius on the vector
space Homp(py(A’, f7A) has weight 0. This follows from (c) using (b).

Define an imbedding s : V;p — Z;p by (P,gUp) — (P,P,gUp). From the
definitions we see that

(e) f7:D(Vyp) — D(D) is the composition D(Vyp) <> D(Z;p) a1, D(D),

(f) &5 : D(D) — D(Vy.p) is the composition D(D) SEAN D(Z;p) LN D(Vyp).
Let Y = {(B,B',gUB) € Zy p;pos(B,B’) € Wy} and let v : Y — Zj p be the
inclusion. From the definitions we have

(2) s15"fo,s = fo,sm7* : D(Zy,p) — D(Zsp).
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Note that V;p =1Z; p (see 36.2); hence the “character sheaves” on V;p ='Z; p
are defined as in 36.8 and D°*(V; p = D**(1Z; p)) is defined as 36.8. In particular,
RV, p) = &(*Z, p) is defined. Let Ro(Vyp) = P, ZA C K(Vy,p) where A runs
through the character sheaves on V;p (up to isomorphism).

From (b) we see that f;,é; restrict to functors D (Vy p) — D(D), D*(D) —
D (V. p), hence the A-linear maps gr(f;) : &(Vyp) — R&(D), gr(és) : AD) —

R(Vy.p) are well defined; we denote them by fj,€;. Define f; : R(Vyp) — R(D)
by fr=(—v)~* fy and ey : R(D) — R(Vyp) by ey = (—v)~*/é;. We show that

(b) fr: RVyp) — R(D), es : R(D) — R(Vyp) restrict to group homomor-
phisms Ro(Vyp) — Ro(D), Ro(D) — Ko(Vy.p) denoted again by fr,e;.

It is enough to prove the following statement. If z is a canonical basis element
of &V p) (resp. R(D)), then fy(x) (resp. ey(x)) is an N-linear combination of
canonical basis elements of &(D) (resp. &(V; p)). This is immediate from (c), (d).

Now, one checks easily that rr* : D(Zy p) — D(Zy p) restricts to a functor
D (Zy p) — D*°(Zp p). (Note that, if w € W, A €5, L € A and wDA = A, then
rr*(L,,) = L, for w e W and rr*(L,,) = 0 for w € W — W.) It follows that
the A-linear map gr(rr*) : R(Zy p) — R(Zp,p) (denoted by ps) is well defined.

Let 8(C)”,n be as in 41.7. Define an A-linear map py : R(C)? — K(C)P
by [w; DA + [w; DA if w € Wy, A € s,wD\ = X and [w; DA — 0if w €
W — W, A €s,wDA = )\ From the definitions we see that

(i) pan(z) = nps(x) for all x € R(O)P.

42.2. We define an A-linear map d : K(D) — K&(D) by

diz)= > (=D)fe;()

J;JCLe(J)=J

where f;,e; are as in 42.1(h) and J, is as in 38.1. Now:

(a) Let A be a character sheaf on D. Then d(A) = + A’ where A’ is a character
sheaf on D. Moreover, £ and A" are the same as in 38.11(a).

For any J C I such that ¢(J) = J let K£(V;p) be as in 38.9. We shall identify
R(Vyp)/(v—1)R(V;p) =K(V;p) as abelian groups in such a way that the image
of A; (a character sheaf on V;p) in K(Vyp)/(v — 1)R&(Vyp) is identified with the
basis element A; of K(V,p). From the definitions we see that the homomorphisms

R(D)/(v = 1)&(D) — &(Vyp)/(v = 1)R(Vy,p) — R(D)/(v — 1)R(D)
induced by ey, f; in 42.1(h) are then identified with the homomorphisms
€JI - IC(D) — ’C(VJ)D), fJ)I : K:(VJ)D) — K(D)

in 38.2, 38.3. It follows that the endomorphism of R(D)/(v — 1)R(D) induced by
d: R(D) — R(D) is identified with the homomorphism K(D) — K(D) denoted in
38.10(a), 38.11 again by d. Hence we have d(A) = £ A’ + (v — 1)z (in K(D)) where
+, A’ are as in 38.11(a) and x € K(D). From 42.1(h) we see that d(A) € Ko(D).
Since +A’ € Ko(D), we see that (v — 1)z € Ro(D). Since Ko(D) N (v—1)K(D) =0,
we have (v —1)x =0 and = = 0. This proves (a).
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42.3. We hawg~ H = Hp & Hj, where Hp (resp. Hp) is the ~.A—submodule of H,
spanned by {Twlpyx;w € W, A € s,wDA = A} (resp. by {Twlpyx;w € W, A €
s, wDA # \}). Equivalently,

Hp = ZmﬁﬂgA CH, H, = Z 1nHlpy C H.
AEs AN ESAEN
Recall that w : R(C) = H is defined in 40.7(b). Define an A-linear map
©: H — &(C)P by
O(y) =w y) ify € Hp,
o(y) =0 ify € Hp.
Then nw(y) € R(Zp p) is well defined for any y € H. Here n is as in 41.7.
Let n € Nj.. Let H, p = Hp N H,. Note that H, p is the A-submodule of H,
spanned by {T,1px;w € W, X €5, wDA = A}
For J C I such that ¢(J) = J we define an A-linear map p;,, : H, p — Hy,p by
Twlg)\ — Twlg)\ ifweWjy e gn,wQ)\ =,
Twlpa— 0 ifwe W—-Wj  AeEs,, wD\ =\
We have the following result.

Lemma 42.4. For anyy € H, p we have d(fno(y)) = fn@(d(y)) where
o= > (=),
JCLe(J)=J
with 65 : H, p — H, p given by
5J(y) - me«( Z Tu_lyTeD(u))
ueEW?
(the sum in the right-hand side is computed in H,, but it belongs to Hy, p).
Applying 37.2 with K, K', J repaced by 0, J,I and with A" € D**(Zy p) we obtain
es1fA < {fo.s@u A [[-mull;u € W}
(in D(Zs,p), with ®, : D(Zp p) — D(Zp p) as in 37.1 and m,, = oy — A(u) where
ay = dimP;. Applying here s* we obtain
s*es1fA = {s%fg s P A [[~my]);u € WYL
We replace s*esy by €; (see 42.1(f)) and we apply f; = fsrs1 (see 42.1(e)); we
obtain
f]é]fA, < {fj,Is!s*f@7J<I>uA/[[—mu]]; (TS WJ}
Using now 42.1(g) we obtain
FresfA < {fafg,rir @y A'[[-m]l;u € W1
Here we replace f;1fg,; by f (see 36.4(b)). This (or rather its mixed analogue) gives
rise to the following equality in R(D):

fresi(a’)y =Y o', (a)

ueWJ
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for any o' € R(Zp p), or equivalently
fresfa’) = ) ¥ gps0, ().
ueEWJ
Taking 2’ = n(z) where x € &(C)L (see 41.7) and using 41.7(b) we obtain
(v? = 1)* fresfn(z)
= Y > o N @ fep(w); D(u” ' N)])
u€WJ \€Es,,
and using 42.1(i),
(v? = 1)* fresfn(z)
= Y > o nps ([ N @ fep(w); D(u”'N)]')
ue€WJ \Es,,

for any z € &(C)P. Here we replace x by &(y) where y € H, p and pilacyp by
@lH, pPInwac)p; using 40.7(b) we obtain:

frestno) = > > m@psn(Tur 15y Tep () pa-13)
ueWJ \€s,,

= m@psn( D TuryTepw):
ueWJ
The lemma is proved.
42.5. As in 34.12 let 4 be the subfield of Q; generated by the roots of 1. Let

®: HP — A®z HP> be as in 34.12 (a special case of a definition in 34.1) and let
ol : HP1 — @z HP> be the specialization of ® for v = 1 (see 34.12(b)). Let

A = Uv, 071, let HDA = A® AHP and let ®A : HPA — A ®z HP> be the
homomorphism obtained from ® by extending the scalars from A to A.

Let E be an HP-1-module of finite dimension over {l. Since ® is an isomorphism
of U-algebras (see 34.12(b)) we may regard E as an U ®z HDP->*_module E* via
(®1)~!. By extension of scalars, A ®y E* is naturally a module over

Aoy (U®z HPW) = Aog HPW
and this can be regarded as an HnD”‘I—module EA via &4,

Let J C I be such that e(J) = J. Let H}, be the A-algebra of H generated
by 1x,A € 5, by Tw,w € Wy and by Tp. Note that {T,p/1x;w € Wy, D' =
power of D} is an A-basis of HD Let Hf;bl =R H}?n where i is regarded as
an A-algebra via v — 1. Let HY T =A®4 H f,jn Note that H?,’LA is naturally a
subalgebra of HP: A Hence EA may be regarded as an HJn —module (E )J. This

anA—module may be induced to an HP “A_module
IND((EA) ;) :== HPA @ 0.4 E4.

Next, Hf;f is naturally a subalgebra of HP:'. Hence E may be regarded as
an Hf;}—module FE;. This H‘?;Ll—module may be induced to an HP'-module

ind(Ey) := HP: 1®HD 1B Define an Hf,jn -module (md(EJ)) in terms of ind(Ey)
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in the same way as EA was defined in terms of E. By extension of scalars from A
to 4(v) (the quotient field of A), IND((EA)J), (ind(EJ))A give rise to U(v) @4 HP-
modules $(v) ® z IND((E“Z‘)J)7 U(w) ® 4 (ind(EJ))A. We show that
(a) these two U(v) ® 4 HEP -modules are isomorphic.

Since U(v) ® 4 HP, HP-! are (finite dimensional) semisimple algebras (see 34.12)
it follows by standard arguments that it is enough to show that IND((E4) 7)s
(ind(F J))“‘i become isomorphic HP>'-modules under the specialization v = 1. First
we note that under the specialization v = 1, EA becomes the HDP-'-module E.
(This is because the specialization of 4 at v = 1 cancels (®;)~ L) In particular,
the specialization of (ind(EJ))A for v = 1is ind(E). Moreover, from the definition
of induction, the specialization of IND((EA)]) for v = 1 is the same as ind(E")
where E’ is the specialization of EA for v = 1, that is, E' = E. This proves (a).

Lemma 42.6. We preserve the setup of 42.5. Let ﬂ(U)@AEA, U(v)® z (ind(E,))4
be the U(v) @4 HP -module obtained from EA, (ind(Ej))* by extension of scalars
from A to (v). Lety € H, p. We have

tr(8,(y)Tp, U(v) ® 5 EA) = tr(yTp, U(v) © 4 (ind(E,))7).

Let Hj, be the A-subalgebra of H,, defined in 31.8. Define an A-linear map
py: H, — HJ7n by pJ(Tzl)\)) =T, 1\,if z€ Wy, ) € S, pJ(Tzl)\) =0if z €
W - W, Aes,. Weshow that

() ps(Tuh') = Sy b’ ifue W/ W € Hy,,.

We may assume that h/ = Ty1y,be Wy N € s,,. Then pJ(TuTbl/\) = pJ(Tubl,\) =
6u71Tubl)\ = 5u71Tbl)\, as required.

We show that

(b) ps(hh') = ps(R)K for any h € H,,h' € Hy,,.

We may assume h = j’uf’blu,h’ = Tgl,\, u € WY a.be Wy, \veEs,. Wemust
show that p; (T, Tp1,Tu1y) = ps(TuTp1,)To1x. If u # 1, both sides are zero by (a).
If w =1, both sides are T;1,7,15. This proves (b).
By 34.13(a) we have
(¢) po(TpTply) = Oppr1 for z, 2’ € W A€ s,
For u,u’ € W’ X\ € 5, we write Ty-1Twly = Yaew fuTo1x where f, € A. For
a’ € W; we have
Ta/—lu—lfu/l)\ - Ta/—lfu—lfu/l)\ - Z faj:'al—ljz‘a].)\.
aeEW
Applying py to this and using (c) gives for = du .y’ = dar,10u,u SO that
pJ(Tuflfu’l)\) = Z faTal)\ = 6u,u/T11)\-
aceEW j
Since this holds for any A € 5,, we have
(d) pJ(Tu—lTu’) = 6u,u’T1'
Let w € W, A€ s,,u € W’. We have

Twl)\Tu = E Cw,u,u’7a,)\Tu’Ta1u—1)\
w' EWJ aeW ;



374 G. LUSZTIG

where ¢y yu 0,0 € A are uniquely determined. It follows that
Tu—lf‘wl/\j—’e(u) = Z Cw,s(u),u/,a,ATu—lTu/Tale(u)—l)\'
u' €W aeW ;

Applying p; and using (b),(d) we obtain

pPJ (Tu—lj—’w 1)\Te(u)) = Z cw,e(u),u’,a,)\pJ(Tu—lfu/)Tale(u)—l)\
W EWJ ,aeW ;5
(e) = Z Cw,e(u),u’,a,)\(su,u’fale(u)—l)\ = Z Cw,e(u),u,a,)\Tale(u)—l)\'
w EWJ aEW aceW

Let (e;)iex be a basis of the free A-module EA. For a € W;, X\ € 5, we have
Tu1xTpei = Y ;e x Cani,i€ir Where q x40 € A.
Since HP A s a free right Hff—module with basis {T,;u € W”}, we see that
{T, ®e;;u e WY i€ X} is a basis of the free A-module ind((EA){).
Let w € W,\ € 5,,,u € WY be such that wDX = \. In IND((E*) ;) we have
To\Tp(Tu ® ;) = (Twlxi(u)fg) ® e

= Z cw,e(u),u’,a,)\(Tu’fals(u)*l)\fg) X e;
uw €W aeW ;

= Z cw,e(u),u’,a,ATu’ & (Tale(u)_l)\TQei)
uw €W aeW ;

= E Cw,e(u),u’ ,a,ACa,e(u) =1 \i,i" Lu’ X e4r.
wWEW aeW 5,i'€X
Hence, using (e),

tr(Tw13Tp, IND((E7) ) = > Cu, () s, A Corse(ar) 1 A
wEWJ ,aeW ;5 i€X

= Z Cw,e(u),u,a,)\tr(,fa]-e(u)—l)\TQa EA)
u€EWY aeW ;

= Z tr( Z Cw,e(u),u,a,)\Ta16(u)_1)\T27EA)
ueEW a€EW

tr(pJ( Z Tu_lfw]-ATs(u))TQaEA)

ueWJ
= tr(psn( >, TurTuwlnTew)Tp, BA) = tr(8(Tw1x) T, EY).
u€EWJ

Thus we have
tr(8;(Tw1x)Tp, BA) = tr(TwlnTp, IND((EA) ) = tr(Tow1zTp, (ind(E,))4)

where the second equality follows from 42.5(a). Since the elements T,1, as above
generate the A-module H,, p, the lemma follows.

42.7. Let V be the Q-vector subspace of Q ® Hom(k*, T) spanned by the coroots.
Let VR = R ®q V. The kernels of the roots Vg — R a hyperplane arrangement
which defines a partition of Vg into facets in a standard way. Let F be the set of
facets. Now the orbits of W on F are naturally indexed by the various subsets J
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of I. This gives a partition 7 = | |, Fs. For example, Fy consists of all Weyl
chambers. If F' € F;, then F is homeomorphic to a real affine space of dimension
I — J| hence we have Hi(F) = 0 if i # [I— J| and H/I(F) = A-7I[F);
here we write H:(?) instead of H:(?,R), [F| denotes the vector subspace of Vg in
which F is open dense and A™=7I[F] is the top exterior power of [F]. Note that
[F] = R®q ([F]q) for a well-defined Q-subspace [F|q of V. For any D-orbit n
on the set of subsets of I let Vi = U, Uper, F C Vr and let r; = [I — J| for
some/any J € . We have H:(Vg) = 0if i # r,, H." (V) = D, Drer, A[F].
Note also that H:(Vg) = 0 if i # [I| and Hll‘(VR) = AUV, The WP-action on
T induces a linear action of W2 on Vg. This action restricts for any n to a WP-
action on Vg and this induces a WP-action on H." (Vg). It also induces a natural

WP-action on HiIl (Vr) = AM'Vg. The long cohomology exact sequences attached
to the partition Vr = |J, Vg show that (—1)|I‘HLI|(VR) = Zn(—l)T"HZ"(V;’L) in
the Grothendieck group of representations of W¥ over R, that is,

AMvee (D B aIF)

mry=|I|+1 mod 2 Jen FEF,;

=~ D (D P A

n;ry=|I| mod 2 Jen FeF;

as representations of W2 over R. All real representations in this formula come
naturally from representations of WP over Q. Hence the previous formula remains
valid (as representations of W2 over Q) if Vg, [F] are replaced by V, [F]q and the
exterior powers are taken over Q. Tensoring both sides (over Q) by Y (as in 42.5)

we obtain
ANMvee P (D D AIFlw

n;rp=|I|+1 mod 2 JeEn FEF,

(a) = D (DD AF

n;rp=|I| mod 2 Jen FeF,

as representations of WP over i; here Vy = U ®q V, [Fly = U ®q [F]q and the
exterior powers are taken over 4. We may view (a) as an isomorphism of HD-!-
modules: the WP-modules in (a) may be viewed as H-'-modules via the algebra
homomorphism HP!' — §[WP] given by Ty, — w for w € WP 15 — 0 for A # g,
15, — 1 (here Ag is the neutral element of the abelian group s,,; see 28.1).

We define an {-linear map A : HP?' — HP' @ HP by A(T,) = Ty, ® T
for w € WP and A(1x) = 33 \ea iaagmn I @ 1y, for A € 5, (Here we use
the abelian group structure on s,,, a subgroup of s; see 28.1.) This makes H?>!
into a Hopf algebra. (Note that the analogous formulas do not make HY into a
Hopf algebra.) It follows that for any two HP-'-modules E, Es, the {-vector space
F1 ® FEs is naturally an H,?’l—module.

Now let E be an HP'-module of finite dimension over . Then we can take the

tensor product of each HP:1-module in (a) with £ and we obtain an isomorphism
of HP-1-modules

Eo Ay @ . X, =  p X,

n;ry=I|+1 mod 2 n;ry=|I] mod 2

n’
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where X, = E® D ¢, Drecr, A" [Flu. Applying to this the functor £ — EA

(see 42.5), we deduce an isomorphism of HP “A_modules

A A~ A
(EeATy)te . D eat= <> D e

n;rp=|I|+1 mod 2 n;rp=|I| mod 2

We deduce that for y € H, p we have

(b) tr(yTp, (B @ ATV ?) = 3~ (—1) ey Tp, X;1).
n
We have X, = D, X7 where X7 = E® (Qper, A [Flu).
Assume first that 7 consists of at least two subsets of I. Then each X is stable
under H_,? 'L and is mapped by Tp into X with J # J’. From the definitions we
have X;,“ = @Jen A®y X, as an A-module and each summand A ®¢ X is stable

under H,, and is mapped by TQ into a summand A ®y X ;s with J # J'. Tt follows
that for our 1 we have

(©) tr(yTp, X7) = 0.
Next assume that 7 consists of a single subset J of I. We have D(J) = J. Let F;
be the unique facet in F; such that F; is contained in the closure of the dominant
Weyl chamber. Then F; is stable under the the subgroup W2 of WP generated
by W, and D and X, may be identified with E @ (H2! R g (A=1E;]g)).
Here AM=7I[F)]y is regarded as a WW P-module and then is viewed as a Hf;ll—
module via the canonical algebra homomorphism H f;ll — U[WPD]; thus 1, acts on
it as 1 if A = Ao and as 0 if A # Ag. Note that in the W% -module A Fyly,
W ; acts trivially (since W acts trivially on [F]y) and D acts as multiplication
by (—1)P=7E1E=Del) - Let X = E @ (HD? ®pp.1 U) where U is regarded as a
Hf;}—module coming from the trivial representation of W",j . We see that we may
identify X, X{7 in a way compatible with the H!-module structures and so that the

II=JI=1I=D)| times the action of Tp on X,

action of Tp on X,, corresponds to (—1)
Using the definitions we see that we may identify X;;i,X;A in a way compatible
with the H,-module structures and so that the action of T on X,;“ corresponds
to (—1)1=/1=10=")el times the action of Tp on X;A. From the definitions we have
X, =ind(E;) (notation of 42.5). We see that for our  we have

(d) tr(yIp, X;1) = (~ 1)1 Delgr(y T (ind(E)) 7).

From the definitions (34.4) we see that there is a unique A-algebra homomorphism
9+ HPAD — HPA such that

J(1)) =1, for any A € 5,

HTy) = (—1)““”11;,11 for any w € W,

I(Tp) = (~1)1-1ITp.
We have 92 =1. i i

Using ¥ and E* we can define a new HP*-module EA"? with the same under-
lying A-module as EA but with = € H,’?’A acting on EAY in the same way that
J(x) acts on EA. We show that
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(e) under extension of scalars from A to U(v), the H,?7A—modules EAY and
(E @ AMVy)A become isomorphic U(v) @4 HE -modules.
As in the proof of 42.5(a) it is enough to show that these H?*-modules become
isomorphic H,? Imodules under the specialization v = 1. Thus it is enough to
show that EA”9|1,:1 ~ B Ay, as H/?’l-modules. Now the underlying -vector
space of E“‘Lﬁ|v:1 is E but the action of = € H,’?’l on E“‘Lﬁ|v:1 is the same as the
action of ¥;(z) on E. Here ¥, : HP' — HD:! is the specialization of 9; for v = 1.
Note that ¥;1(15) = 1, for any A € s,, and ﬁl(Tw) = %JTw for any w € WP, where
Yw = %1 is the scalar by which w acts in the WP-module AMVy. The desired
result follows.

Combining (b),(c),(d),(e) we see that for any y € H,, p we have

(~)IH ey Tp), B = Y () (yTp, (ind(E,)7).
JCLie(J)=J

Replacing here (—1) ‘I|+‘If|19(yTQ) by ﬁ(y)TQ and using Lemma 42.6 we may rewrite
this as

w@(u)Tp, B = 3 (1) (6s()Tp, B
JCLie(J)=J
or equivalently (see 42.4) tr(d(y)Tp, EA) = tr(6(y)Tp, EA). Since any simple
U(v) ®4 Hf—module can be obtained by extension of scalars (from A to H(v))
from some E4 as above, we deduce that

tr((5(y) — 9(y)) T, E) = 0
for any simple U(v) ® 4 HP-module E. Since {(v)® 4 HP is a semisimple algebra, it

follows that (6(y) —9¥(y))Tp belongs to the {(v)-subspace of (v) ®4 HY spanned
by commutators zz’ — 2’z with x,2’ € U(v) ® 4 HP. Hence we have

9(0(y) =0\ Tp = > gi(x:i TyaiTh % — 2Ty " T}
i=1
with g € A—{0},9; € A,x; € Hy, 2, € Hp, s; € Z, that is,

m

(f) g(6(y) —vt(y)) = gilwi Ty aiT* — afTh *a Ty "),
=1

42.8. We show that for any y,y’ € H, we have

(a) fna(yy' — y'ToyTp") = 0.
Let w e W, A €5,. Let L € A If wDX = A, using notation and results in 31.6,
31.7, we have

fno (' Ty 1py) = gr(Ki's)
=Y xMEPR) =) A Ty lpaTp) =Y ¢ T 1paTp)
A A A
(the last equation comes from 31.7(e); A runs over the objects in D up to isomor-
phism such that ¢4 # 0.) The equation
o (' Ty 1py) = > ¢ T, 1paTp)
A
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holds also if wDA # A (in this case both sides are 0). It follows that

fnw(x) = ZCA(QJTQ) for any x € H,.
A
We deduce

fna(yy’ —y'ToyTp") = > (¢ yy'Tn) — ¢ (ye(y)Tn)) = 0
A
where the last equality follows from 31.8. This proves (a).

Proposition 42.9. Let y € H. We have d(fn@(y)) = fnw(I(y)) € R(D) with
d: &(D) — R(A) as in 42.2.

If y € H}, (see 42.3), both sides of the desired equality are 0. (Note that ¢ maps
Hp into itself and Hp, into itself.) Hence we may assume that y € Hp. We can
assume that y € H,, where n € Nj.. Then y € H,, p. By 42.4 it is enough to show
that fno(d(y) — I(y)) = 0. Let g, gi, x4, ), s; be as in 42.7(f). Since g # 0, it is
enough to show that gfn@(d(y) — I(y)) = 0 or that fno(g(d(y) —I(y))) = 0. Using
42.7 it is enough to show that

m
fncb(z gi(:ciTBx;Té‘” - xéTéﬁSixiTgfl) =0.
i=1

Hence it is enough to show that
fmb(xféx’jzs - x’TéﬁSmfﬁfl) =0
for any x,z’ € H, and any s € Z. We have
xTﬁx’Tés - x'TéﬁSxfE*l = (z — Tészfﬁ) + (2’2" — x'TQz'Tél)
where z = xf’éx’ ~Q_S € H, and 2/ = Tg_sffé € H,. Hence it is enough to show
that fno(z'z" — x’TQz’TQ_I) =0 (see 42.8(a)) and
(a) fno(z — Tészfﬁ) =0
for any z € H,,. This follows from 41.6(c).
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