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Abstract: A procedure is presented for characterising the effects of varying finite substrate/ground plane size on the gain

properties of microstrip antennas by means of Gaussian process regression (GPR). Two kinds of microstrip antenna were

considered, namely a probe-fed patch antenna on both thin and thick dielectric substrates, and an L-probe-fed patch on a

thick air substrate. CST Microwave Studio was used to generate training and test data for the GPRmodels. Frontal E and H-

plane gain patterns could be predicted with normalised root-mean-square errors (RMSEs) of <1.8% for the thin-substrate

probe-fed patch and the L-probe-fed patch; for the thick-substrate probe-fed patch, RMSEs were 2.1 and 2.8% for the two

principal plane gain patterns, respectively. Furthermore, the GPR models could predict patterns at least two orders of

magnitude faster than it took to obtain them via direct simulation in CST. Such models are expected to be useful in

CAD-based environments for rapidly obtaining estimates of substrate/ground-plane size effects on gain characteristics

in lieu of time-consuming full-wave simulations.

1 Introduction

Full-wave electromagnetic simulation (e.g. method of moments,
finite element method) is widely used in microwave antenna
analysis and design. High-fidelity simulations can characterise
antenna performance very accurately, but are usually
computationally costly. This fact becomes very important for tasks
that require multiple analyses of the antenna under consideration,
such as design optimisation and statistical analyses. Noteworthy is
the case of global optimisation by means of metaheuristics (e.g.
genetic algorithms [1]) that can require many thousands of
high-fidelity simulations of candidate geometries of the antenna
being designed. In view of these considerations, fast but
nevertheless accurate models that serve as surrogates for full-wave
simulations of antenna performance characteristics have become an
essential part of procedures that involve multiple analyses. After
training on suitably selected input–output data samples, properly
constructed surrogate models exhibit good generalisation capability,
i.e. they permit reliable prediction of antenna behaviour for input
variables that were not presented to the model during training.

In the recent past, surrogate modelling of especially the input
characteristics of antennas (e.g. S11 as a function of geometry
dimensions and frequency) has received attention; modelling
techniques have included neural networks [2], adaptive neuro-fuzzy
inference systems [3], Gaussian process regression (GPR) [4, 5],
and Bayesian support vector regression [6]. Higher-level properties
of input characteristics have also been modelled. Such studies have
dealt with resonant frequency modelling by neural-network-based
methods [7, 8] and GPR [9]; resonant input impedance modelling
using support vector machines [10]; and impedance bandwidth
modelling by neural networks (e.g. [11]). Fewer studies have
attempted to model antenna radiation properties, especially
radiation patterns. Examples involving microstrip antennas (the
focus of the present study) include the modelling of resonant
frequency gains (single-valued) as a function of dual-band antenna
geometry by means of neural networks [12], and modelling of the
co-polar radiation pattern of a circular microstrip antenna by means
of adaptive neuro-fuzzy inference systems [3].

In the present work, GPR [13] – which previously was shown to
be effective in modelling highly non-linear antenna S11 responses

[3, 4] – is demonstrated to be an accurate and effective tool for
modelling the effects of finite substrate/ground-plane size on the
far-field gain characteristics of microstrip antennas, in particular
frontal E- and H-plane gain patterns; front-to-back ratios are also
considered. Several studies (e.g. [14–16]) have found significant
effects of finite substrate size on antenna radiation patterns –

perhaps most notable ripples – and in certain cases on input
characteristics [16]. Even so, it appears as if there have been
hardly any attempts to formally construct surrogate models that
can account for such effects (e.g. none of [2–12] included
substrate/ground-plane dimensions as model input variables; in
[17] however, a neural network was used to model self- and
mutual-admittances of a monopole array as they varied with
ground-plane dimensions, amongst other variables).

The emphasis here is on global surrogate models that aim to
provide reliable predictions over all of the design space (as
opposed to local models that only aim to make accurate
predictions in subregions of the design space as required by
iterative optimisation algorithms). Application areas of global
models include statistical analyses, parametric optimisation, and
rapid evaluation within CAD frameworks. Consider for example
an antenna engineer who needs to design a microstrip antenna
subject to certain surface area constraints. A fast model of the sort
developed here would provide the engineer with a swift estimate
of the effect on radiation performance of the size of the substrate/
ground plane permitted by the currently available real estate, and
assess detrimental effects (if any) that would result if the original
substrate/ground plane were to be adapted in order to meet
externally imposed restrictions on its shape (for instance, it might
be required that the length of the substrate along one axis in the
plane be longer than the length along the orthogonal axis). To
obtain such estimates from a model would be significantly faster
than a direct simulation approach; it has been observed that even
for time-domain-based solvers (e.g. [18]), the accurate simulation
of antennas on finite ground planes can be time-consuming.

The paper is organised as follows. Section 2 briefly describes
the theory of GPR based on [13]. Section 3 gives details of the
construction and evaluation of GPR models for characterising the
effect of finite substrate/ground-plane sizes on the frontal gain
patterns of microstrip antennas; gain front-to-back ratios are also
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considered. Verification examples involving two antennas are
presented, namely a probe-fed microstrip patch antenna on both
thin and thick dielectric substrates backed by a ground plane [14],
and an L-probe-fed microstrip patch antenna on a thick
ground-plane-backed air substrate [19]. Results are given that
confirm the soundness of the present modelling approach.
Conclusions are presented in Section 4.

2 Background to GPR

Gaussian processes (GPs) are stochastic processes that can be
described in terms of a generalisation of the multivariate Gaussian
probability distribution [20] to functions. Formally, a GP is a set
consisting of an infinite number of random variables of which any
finite subset has a joint Gaussian distribution (as follows from the
properties of the multivariate Gaussian distribution [13]).

In practice, regression with GPs can be carried out via standard
operations performed on multivariate Gaussian distributions.
Generally, GPR is significantly easier to apply to modelling
problems than artificial neural networks since it requires
optimisation of much less parameters than the number of weights
in a neural network that typically needs to be learned (in GPR the
number of parameters to optimise is of the order of the input
vector length).

In the present work, it is of interest to learn a mapping between a
set of variables that include the geometry of an antenna and a certain
elevation angle (the azimuth angle is assumed to be fixed), and the
gain of the antenna in that direction. Hence, the modelling
problem requires that a training data set of n input–output pairs,
{(xi, yi)|i = 1, …, n} be set up, where input vectors xi are
comprised of geometry dimensions and an angle, and scalar target
responses yi are gain values. A test data set consisting of n* input–
output pairs {(xi*, yi*)|i = 1, …, n*} that are not included amongst
the training data is compiled in a similar manner.

TheGPR framework [13] specifies that then training outputs (one for
each input vector xi) be modelled by random variables [ f1… fn]

T = [ f
(x1)… f(xn)]

T, and the n* test outputs by random variables [ f1*…
fn*]

T = [ f(x1*)… f(xn*)]
T, with f(†) a GP. As noted above, a GP can

be interpreted as a generalisation of the Gaussian distribution to
functions. This implies a distribution with an infinitely long mean
vector m that is represented by a mean function m(x); and an
infinitely large covariance matrix with entries given by a covariance
function k(x, x′); f(x) can be viewed as a point under this multivariate
distribution. The mean function is defined as m(x) = E[ f(x)];
the covariance function gives the covariance between outputs f(x)
and f(x′) in terms of inputs x and x

′, and is defined as k(x, x′) =E[( f
(x)−m(x))( f(x′)−m(x′))], where E(X ) is the expected value of the
random variable X [13] [in practice k(x, x

′) is calculated from
covariance functions as discussed below].

The first step in making predictions is to assume a zero-mean
Gaussian distribution over the n training outputs and n* test

outputs [13]. This gives the prior distribution

f

f
∗
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≏ N 0,
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where N(a, b) is a Gaussian (normal) distribution with mean vector a
and covariance matrix b (the notation indicates that the multivariate
point on the left is sampled from the normal distribution on the
right); X and X* are matrices containing the training and test input
vectors; and K(X, X*) is a n × n* sub-matrix of covariances
calculated between all pairs of training and test outputs (other
sub-matrices are defined in a comparable manner). Given that the
training outputs y are known, the (multivariate Gaussian) posterior
distribution can be computed, i.e. the distribution of the test
outputs f * conditioned on y. The mean vector p and covariance
matrix Σ of this distribution is given by [13]

p = K(X∗, X )K(X , X )−1
y (2)

S = K(X∗, X∗)− K(X∗, X )K(X , X )−1
K(X , X∗) (3)

Referring to the above antenna modelling problem, p contains the
gain predictions, in other words the most likely values of the test
outputs associated with the test input vectors. The diagonal of Σ

contains the variances of the predictions that are indicative of the
confidence in the predictions [13].

Since the covariance functions determine the prior and posterior
distributions’ covariance matrices, they specify the broad class of
GPs that will be favoured by the distributions. In the present work,
four standard covariance functions are considered, namely the
rational quadratic covariance function, and three Matérn class
covariance functions [13]. The rational quadratic is given by the
following equation
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while the three Matérn class covariance functions are
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In (4)–(7)
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(8)

where xk and xk
′ are the kth components of input vectors x and x

′ in
the D-dimensional input space, and {tk|k = 1,…, D}, σf, and α are
hyperparameters to be optimised during training. In particular,
training involves minimisation of the negative log marginal
likelihood (the Gaussian likelihood [13] is used here)

log p(y|X ) = − 1

2
y
T
K

−1
y− 1

2
log |K| − n

2
log 2p (9)

where K is the n × n matrix K(X, X ). Following training, the size of
any hyperparameter tk will be inversely proportional to the influence
on the regression of component k of the input vectors [cf. (8)]. This
property is referred to as automatic relevance determination, and can
be viewed as a form of automatic feature selection.

Fig. 1 Top and side views of antennas

a Probe-fed microstrip patch antenna on ground-plane-backed single-layer dielectric

substrate (Antenna 1)

b L-probe-fed microstrip patch antenna on ground-plane-backed air substrate (Antenna

2)
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3 Implementation and results

3.1 Probe-fed microstrip patch antenna (Antenna 1)

Fig. 1a shows the geometry of a probe-fed rectangular patch antenna
on a single-layer dielectric substrate backed by a ground plane with
the same footprint. The patch length and width was L andW, and the
ground plane/dielectric substrate dimensions were Dx and Dy in the x
and y directions, respectively. The substrate had a dielectric constant
ɛr of 4.34, and a loss tangent of 0.02 [14]. The probe feed was
positioned at yf = 3.6 mm. Two substrate heights were considered,
representing electrically thin and thick dielectrics, respectively:
h = 0.8 mm = 0.028ld, and h = 4.02 mm = 0.14ld (ld was the
wavelength in the dielectric at the operating frequency of 5.02 GHz).

Given a particular substrate thickness, the aim was to establish
whether E (j = 90°) and H (j = 0°)-plane frontal gain patterns
(i.e. corresponding to the half-space z > 0) could be accurately
modelled as a function of varying ground-plane dimensions Dx

and Dy, and patch size L and W. Hence, the design vector was

u = [Dx Dy L W]T, and the design space was specified by the

variable ranges 0.5l0≤Dx≤ 3l0, 0.5l0≤Dy≤ 3l0, 12.6 mm≤ L≤
15.4 mm, and 8.64 mm≤W≤ 10.56 mm (l0 was the free-space
wavelength at the operating frequency). Since GPR allows for
single model outputs only, separate models had to be set up for
the gain in each of the principal planes.

Training data were set up as follows. For each substrate thickness,
design vectors u were selected from the design space using latin
hypercube sampling (LHS); 70 design vectors were selected in the
thin-substrate case, and 100 in the thick substrate case. Given a
particular principal plane model, ten elevation angles (i.e. θ

values) per geometry were randomly selected from the range
−90°≤ θ≤ 90° such that elevation angles in general differed from
geometry to geometry. This resulted in n training input vectors of
the form {xi = [uTi ui]

T = [DxiDyiLiWiui]
T | i = 1, . . . , n}, with n

= 700 and 1000 for the thin and thick substrate cases, respectively.
The corresponding target outputs yi were gain values in the E or H
planes – denoted below as GE and GH – that were obtained via
simulation at the operating frequency by using the time-domain
solver in CST Microwave Studio [18]. Test data for each substrate
consisted of 20 new LHS-selected geometries with 61 equally
spaced elevation angles per geometry, giving n* = 1220 test data
points. (In order to verify the simulation setup, the radiation
patterns of a case study [14] involving a probe-fed rectangular
patch antenna with L = 14 mm and W = 9.6 mm on three different
sizes of the above thin substrate – l0 × l0, 1.5l0 × 1.5l0, and
3l0 × 3l0 – were simulated using the CST time-domain solver.
The radiation patterns obtained agreed well with the measured
patterns in [14, Figs. 10–12].)

Next, four candidate Gaussian process models were trained for each
of theGE andGH patterns associatedwith the two substrate thicknesses,
eachmodel using a different covariance function from (4)–(7) (i.e. for h
= 0.8 mm, four models were trained for the GE pattern and four for the
GH pattern; and likewise for h = 4.02 mm). Throughout, a Gaussian
likelihood function and a prior with a zero-mean function was
assumed. From each group of four models, the model which
produced the lowest negative log marginal likelihood (9) was
selected as the optimal model, and used to make predictions on the
test data. In both the GE and GH cases for each substrate thickness,
the models employing the rational quadratic covariance function
produced the lowest negative log marginal likelihood.

Fig. 2 Comparison of simulated (_____) and predicted (- - -) radiation patterns for Antenna 1 test geometry (h = 0.028ld): Dx= 83.14 mm= 1.39l0, Dy= 118.70

mm= 1.99l0, L = 14.13 mm, and W= 10.55 mm

a E-plane pattern

b H-plane pattern

Fig. 3 Comparison of simulated (_____) and predicted (- - -) radiation patterns for Antenna 1 test geometry (h = 0.028ld): Dx= 114.04 mm= 1.91l0,

Dy= 132.78 mm= 2.22l0, L = 14.39 mm, and W= 10.20 mm

a E-plane pattern

b H-plane pattern
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Table 1 summarises the models’ predictive accuracies in terms of
percentage root-mean-square-errors (RMSEs) normalised to the test
target ranges, and linear correlation coefficients R (calculated from
test targets and predictions). Accuracies were high given the large
variations in planar dimensions (and consequently shape) of the
substrate, with RMSEs of 1.751 and 1.750% for GE and GH,
respectively, in the thin-substrate case, and RMSEs of 2.130 and
2.811% in the thick-substrate case. The somewhat lower accuracies
obtained in the latter case – viewed in conjunction with the fact
that more training points were used compared with the
thin-substrate case, as described above – suggest that gain patterns
become more difficult to predict as substrate height increases. In
this regard it is notable that E-plane patterns as a function of
elevation angle exhibit greater asymmetry with increased substrate
height, as can be seen from a comparison of Figs. 2–4 with
Figs. 5–7 (described next).

Figs. 2–4 give simulated and predicted patterns (E andH planes) for
threegeometries from the test data set for the thin-substrate case, namely
Dx= 83.14 mm= 1.39l0, Dy = 118.70 mm= 1.99l0, L = 14.13 mm,
W = 10.55 mm; Dx = 114.04 mm = 1.91l0, Dy = 132.78 mm= 2.22l0,
L = 14.39 mm, and W = 10.20 mm; and Dx= 164.62 mm= 2.76l0,
Dy = 161.15 mm = 2.70l0, L = 14.92 mm, and W = 9.31 mm. The
agreement between simulated and predicted patterns is quite good,
and E-plane pattern ripples are well accounted for (recall that none of
the above geometry configurations were included amongst the
training data). Likewise, results for three thick-substrate test
geometries are shown in Figs. 5–7, again confirming the goodness of
the models’ fit to the data.

A secondary investigative aim was to model gain front-to-back
ratio as a function of geometry. In view of the complexity of the
variation of back-radiated patterns with geometry and direction,
the number of training geometries were increased to 120 for each
substrate thickness; as before they were generated via LHS and
simulated in CST to obtain the training outputs (i.e. ratios of gains
in the directions θ = 0° and θ = 180°). Test data were the 20 test
geometries considered previously and their front-to-back ratios.
For each substrate, four Gaussian process models were trained,
each using a different covariance function (4)–(7) (input vectors
were of the form xi = u

T
i = [Dxi Dyi Li Wi]

T ). In the thin-substrate
case, the Matérn covariance function with n = 5/2 produced the

lowest negative log marginal likelihood and a predictive error of
2.69% (R = 0.9962) on the test front-to-back ratios. For the h =
0.14ld substrate, the rational quadratic covariance function
performed best, yielding a front-to-back ratio of 6.5% (R =
0.9861). The lower accuracies of front-to-back ratio predictions
(compared with frontal pattern predictive accuracies) suggest that
front-to-back ratio varies in a highly non-linear manner with
antenna and substrate dimensions, and that difficulty of modelling
becomes more pronounced as substrate height increases.

3.2 L-probe-fed microstrip patch antenna on thick air
substrate (Antenna 2)

The geometry of a rectangular patch antenna fed by an L-probe on a
finite ground plane with an air substrate [19] is shown in Fig. 1b. The
patch dimensions wereWx andWy, and the ground-plane dimensions
were Dx and Dy. The height h of the patch above the ground plane
was 7 mm, while the vertical and horizontal segments Lv and Lh of
the probe were 5 and 10 mm, respectively. The radius of the probe
was R = 0.5 mm.

As before, the aim was to construct Gaussian process models of
the E- and H-plane frontal (z > 0) gain patterns with ground plane
and patch dimensions as geometry variables, as well as a model of
the front-to-back ratio. The design vector was u = [Dx Dy Wx Wy]

T;
the design space was defined by the variable ranges 0.75l0≤Dx≤

3l0, 0.75l0≤Dy≤ 3l0, 27 mm≤Wx≤ 33 mm, and 23.4 mm≤
Wy≤ 28.6 mm, where l0 was the free-space wavelength at the 4.3
GHz operating frequency.

Training data input vectors were based on 100 design vectors
selected from the design space using LHS, and 8 randomly selected
elevation angle values θ per geometry randomly picked from the
range −90°≤ θ≤ 90° for the GH model. Given the greater
complexity of the GE patterns (see Fig. 3), ten random θ values per
geometry were selected. Hence, the total number of training input
vectors of the form xi = [uTi ui]

T
= [Dxi Dyi Wxi Wyi ui]

T were 1000
and 800 for the GE and GH models, respectively. Training outputs
were the corresponding gain values GE or GH simulated using the
CST time-domain solver. Test data were 25 new LHS-selected
geometries with 181 equally spaced elevation angles per geometry
(n* = 4525). To verify the simulation setup, a case study [19]
involving a rectangular patch antenna with Wx = 30 mm, Wy = 26
mm, and E = 2 mm on a l0 × l0 ground plane was simulated using
the CST time-domain solver (other geometry variables were the
same as described above). Good agreement was observed between
the CST radiation patterns and the measured patterns [19, Fig. 3].

As before, four candidate Gaussian process models were trained
for each of the GE and GH patterns corresponding to the
covariance functions (4)–(7). In both the GE and GH cases, the
rational quadratic covariance function produced the lowest
negative log marginal likelihood.

Table 1 Predictive errors of GP models on test antenna gain patterns

Antenna 1 Antenna 2

h = 0.028ld h = 0.14ld h = 0.1l0

GE GH GE GH GE GH

RMSE,% 1.751 1.750 2.130 2.811 1.755 1.088
R 0.9977 0.9958 0.9942 0.9920 0.9973 0.9991

Fig. 4 Comparison of simulated (_____) and predicted (- - -) radiation patterns for Antenna 1 test geometry (h = 0.028ld): Dx= 164.62 mm= 2.76l0,

Dy= 161.15 mm= 2.70l0, L = 14.92 mm, and W= 9.31 mm

a E-plane pattern

b H-plane pattern
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Table 1 presents the models’ predictive results. Normalised RMSEs
were 1.755 and 1.088% for the GE and GH models, respectively, with
correlation coefficients of 0.9973 and 0.9991. In Figs. 8–10,
CST-simulated and GP-predicted patterns (E and H planes) are
given for three test geometries, namely Dx= 192.63 mm= 2.76l0,
Dy = 206.87 mm = 2.97l0, Wx = 27.72 mm, Wy = 25.39 mm; Dx=
203.82 mm= 2.92l0, Dy = 60.80 mm= 0.87l0, Wx = 28.90 mm, and
Wy = 25.26 mm; and Dx= 128.89 mm= 1.85l0, Dy = 88.50 mm=

1.27l0, Wx = 28.22 mm, and Wy = 28.26 mm. Agreement between
simulated and predicted patterns is seen to be good.

For front-to-back ratio modelling, training data were 175 geometries
generated by LHS serving as input vectors, with training targets the
associated ratios of gains. Test data were the front-to-back ratios of
the above 25 test geometries. Four Gaussian process models were
trained, each using a different covariance function (4)–(7). The
rational quadratic covariance function yielded the lowest negative log

Fig. 5 Comparison of simulated (_____) and predicted (- - -) radiation patterns for Antenna 1 test geometry (h = 0.14ld): Dx= 147.38 mm= 2.47l0, Dy= 35.95

mm= 0.60l0, L = 13.14 mm, and W= 8.74 mm

a E-plane pattern

b H-plane pattern

Fig. 6 Comparison of simulated (_____) and predicted (- - -) radiation patterns for Antenna 1 test geometry (h = 0.14ld): Dx= 73.58 mm= 1.23l0, Dy= 85.56

mm= 1.43l0, L = 13.68 mm, and W= 9.61 mm

a E-plane pattern

b H-plane pattern

Fig. 7 Comparison of simulated (_____) and predicted (- - -) radiation patterns for Antenna 1 test geometry (h = 0.14ld): Dx= 124.31 mm= 2.08l0, Dy= 140.91

mm= 2.36l0, L = 13.93 mm, and W= 9.56 mm

a E-plane pattern

b H-plane pattern

5



marginal likelihood on this data, and a predictive error of 1.724% (R =
0.9976) on the test front-to-back ratios was achieved.

4 Conclusions

A notable deficiency in contemporary antenna modelling literature
has been a lack of studies aimed at modelling the effects of finite
substrate/ground-plane size on the gain patterns of microstrip
antennas, even though the importance of such effects is well

known. The present work has shown that GPR can accurately
model such effects as manifested in the frontal E- and H-plane
gain patterns of microstrip patch antennas on electrically thin and
thick substrates, allowing for substantial variation in the planar
dimensions of the substrate/ground plane (from 0.5 to 3l0 along
each dimension). After training (a once-off process), a Gaussian
process model can predict these patterns a great deal faster than
they were to be obtained by direct simulation using a full-wave
simulator, such as the CST time-domain solver. For example,
while CST simulation of test cases such as those represented in

Fig. 8 Comparison of simulated (_____) and predicted (- - -) radiation patterns for Antenna 2 test geometry with Dx= 192.63 mm= 2.76l0, Dy= 206.87 mm=

2.97l0, Wx= 27.72 mm, and Wy= 25.39 mm

a E-plane pattern

b H-plane pattern

Fig. 9 Comparison of simulated (_____) and predicted (- - -) radiation patterns for Antenna 2 test geometry with Dx= 203.82 mm= 2.92l0, Dy= 60.80 mm=

0.87l0, Wx= 28.90 mm, and Wy= 25.26 mm

a E-plane pattern

b H-plane pattern

Fig. 10 Comparison of simulated (_____) and predicted (- - -) radiation patterns for Antenna 2 test geometry with Dx= 128.89 mm= 1.85l0, Dy= 88.50 mm=

1.27l0, Wx= 28.22 mm, and Wy= 28.26 mm

a E-plane pattern

b H-plane pattern
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Figs. 2–10 took between 80 s and 7 min each (depending on
ground-plane size), the corresponding GP model predictions took a
fraction of a second (on a 3.412 GHz Intel Core i7-3770 CPU
with 8 GB RAM). Modelling of front-to-back ratios was also
considered; best results were achieved for the air-substrate
L-probe-fed patch, and for the thin-substrate probe-fed patch. It is
anticipated that Gaussian process models of the sort described
above could be used to good effect in CAD environments where
rapid estimates of substrate/ground-plane size on gain patterns are
required.
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