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Abstract

We report on the optimisation of amorphous molybdenum silicide thin film growth for
superconducting nanowire single-photon detector (SNSPD) applications. Molybdenum silicide was
deposited via co-sputtering from Mo and Si targets in an Ar atmosphere. The superconducting
transition temperature (Tc) and sheet resistance (Rs) were measured as a function of thickness and
compared to several theoretical models for disordered superconducting films. Superconducting and
optical properties of amorphous materials are very sensitive to short- (up to 1 nm) and medium-range
order (∼1–3 nm) in the atomic structure. Fluctuation electron microscopy studies showed that the
films assumed an A15-like medium-range order. Electron energy loss spectroscopy indicates that the
film stoichiometry was close to Mo83Si17, which is consistent with reports that many other A15
structures with the nominal formula A3B show a significant non-stoichiometry with A:B > 3:1.
Optical properties from ultraviolet (270 nm) to infrared (2200 nm) wavelengths were measured via
spectroscopic ellipsometry for 5 nm thick MoSi films indicating high long wavelength absorption.
We also measured the current density as a function of temperature for nanowires patterned from a
10 nm thick MoSi film. The current density at 3.6 K is 3.6 × 105A cm−2 for the widest wire studied
(2003 nm), falling to 2 × 105A cm−2 for the narrowest (173 nm). This investigation confirms the
excellent suitability of MoSi for SNSPD applications and gives fresh insight into the properties of the
underlying materials.

Keywords: superconducting thin films, superconducting nanowire single-photon detector,
amorphous superconductor, molybdenum silicide

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the pioneering work of Buckel et al on the super-
conductivity of amorphous Bi deposited on a cryogenically
cooled substrate [1], amorphous superconducting materials
have been the subject of numerous experimental and theor-
etical research studies [2–4]. Initially, non-transition pure-
metal-based amorphous superconductors were explored in
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detail [4, 5]. Though amorphous phase or structural disorder
enhances the superconducting properties of such materials,
they are structurally stable only at very low temperatures
(<20 K). The superconducting properties of transition metals
(TMs) and metal-based alloys have become an area of
growing interest [6, 7]. Studies of TM-based amorphous alloy
materials have shown that their superconducting properties
are clearly affected by variations in their composition and
amorphous character (e.g. through enhancement or suppres-
sion of the superconducting transition temperature); however,
a clear advantage of TM alloys is the stability of the amor-
phous structure, even on cycling between room temperature
and cryogenic temperatures. Potential applications in the field
of superconducting detectors [8] or vortex memory devices
[9] have motivated detailed investigations of TM-based
amorphous superconductors. Several theoretical models have
also been proposed to explain the subtle interplay between
disorder and the superconducting to normal state transition,
whilst correlating superconductivity to other material char-
acteristics (e.g. sheet resistance and thickness) [10–12],
which can be used to describe the physical properties of
amorphous thin film systems. Optimisation of amorphous
superconducting thin films for specific superconducting
detector applications along with exploration of the relation-
ship between superconductivity and various empirical mat-
erial parameters remains an interesting problem.

Recently, several amorphous TM-based Type II super-
conducting materials (MoSi, MoGe and WSi) have been
demonstrated to be highly promising alternative base mate-
rials for superconducting nanowire single-photon detector
(SNSPD or SSPD) fabrication [13]. SNSPDs play a sig-
nificant role as an enabling technology in advanced photon
counting applications [14]. Emerging applications of these
detectors include quantum key distribution [15], quantum
computing [16], characterisation of quantum emitters [17],
space-to-ground communications [18], integrated circuit
testing [19] and single oxygen luminescence dosimetry for
laser based cancer treatment [20]. Although polycrystalline
NbN and NbTiN thin films have hitherto been the most
widely used materials for SNSPD fabrication [21, 22],
amorphous superconductors can offer various advantages
[23]. They do not have strict substrate requirements and also
have lower superconducting gap energies [24], giving a
higher intrinsic single-photon detection efficiency at longer
wavelengths. Although they have lower critical current den-
sity due to lower free carrier concentration, this also leads to a

larger hotspot size during absorption of an incident pho-
ton [25].

A lower superconducting band gap (2Δ0) corresponds to
a lower superconducting transition temperature (Tc), accord-
ing to the Bardeen–Cooper–Schrieffer relation [26]:

k T2 3.53 . 1B0 cD = ( )

Molybdenum silicide, with a composition of Mo75Si25, has
a bulk Tc of∼7.5 K [27], which is comparatively high for a TM-
based superconducting material. On the other hand, its bulk
superconducting energy gap is ∼2.28meV [27] which is less
than half of the energy gap of NbN (4.9meV) [24]. As we can
see from table 1, amorphous alloys such as WSi (the most
commonly used amorphous thin film for high efficiency
SNSPDs) or NbSi have very low bulk Tc. Hence, an expensive
and complicated cooling system is required to run WSi based
SNSPDs below 1K in order to achieve high single-photon
detection efficiency and low timing jitter. MoSi has a Tc > 4K
even in the thin film form, though its superconducting band gap
is comparable to that of WSi. So, it could be an ideal base
material for high performance SNSPDs which can be operated at
a temperature >2 K using relatively cheap, less complex closed-
cycle cryogenic systems [27]. Due to its low density of intrinsic
pinning centres and larger Ginzburg–Landau parameter, MoSi is
also an attractive material for flux-avalanche related applica-
tions [28].

SNSPDs fabricated from WSi amorphous thin films have
demonstrated a system detection efficiency (SDE) of greater
than 90% [8]. The first MoSi-based SNSPD was reported to
achieve 18% efficiency at 1200 nm wavelength by Korneeva
et al [33]. Verma et al have recently shown that by integrating
detectors in an optical cavity, an enhanced efficiency of 87%
at 1542 nm can be obtained with a 76 ps timing jitter [34, 35].

In this study, we have explored the growth and optimisation
of amorphous MoSi thin films, in terms of the desirable super-
conducting properties for SNSPD fabrication. This work is built
on a previous study of thick MoSi films [23]. Molybdenum
silicide films were deposited using DC magnetron sputtering
with argon plasma. Superconducting transition temperature was
measured using a four-point measurement inside a closed-cycle
Gifford–McMahon cryo-cooler (base temperature ∼3K) [36].
The variation of superconducting properties with sheet resistance
and film thickness has been compared with several theoretical
models. The material parameters extracted from these models
concur with the amorphous and homogenously disordered nat-
ure of these films.

Table 1. Comparison of the superconducting properties of amorphous TM-based materials with those of the conventional SNSPD
material NbN.

NbN MoSi MoGe WSi NbSi

Bulk Tc (K) 16 [29] 7.5 [24] 7.4 [27] 5 [27] 3.1[30]
Thin film Tc (K) (Thickness (nm)) 8.6 (3 nm) [29] 4.2 (4 nm) [24] 4.4 (7.5 nm) [27] 3.7 (4.5 nm) [27] 2 (10 nm) [31]
Band gap 2Δ0 (meV) 4.9 [24] 2.28 [24] 2.2 [27] 1.52 [27] 0.94
Critical current density
Jc (MA cm−2

) (measurement
temperature (K))

2–4 (4.2 K) [29] 1.1–2.5
(1.7 K) [32]

1.2
(250 mK) [27]

0.8
(250 mK) [27]

0.14
(300 mK) [31]
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Recent studies have identified the important role played
by microstructure and short or medium-range order in
amorphous materials in determining their physical properties,
including superconducting characteristics [37, 38]. Here, we
report on a detailed investigation of the properties of amor-
phous MoSi. For the first time, fluctuation electron micro-
scopy (FEM) has been used to investigate the local structural
ordering of amorphous superconducting MoSi films. FEM
shows that the films deposited in accordance with the opti-
mised growth recipe (leading to the maximum Tc) assumes an
A15-like structure over the range of a few atomic spacings,
whilst there is no long-range crystallographic order. Electron
energy loss spectroscopy (EELS) analysis was also per-
formed, indicating the film stoichiometry was close to
Mo83Si17. This differs slightly from the compositions reported
by other groups: Mo80Si20 or Mo75Si25 [33, 34].

The complex refractive index of MoSi films has been
measured using variable angle spectroscopic ellipsometry
(VASE). This aids the simulation of optical absorption in
SNSPDs. Critical current density is another important factor
governing the performance of SNSPDs. We have measured the
transport properties including the temperature dependence of
critical current density in nanowires patterned from these MoSi
thin films via electron beam lithography (EBL) and reactive ion
etching (RIE).

2. Methods

In this section we introduce the principal experimental tech-
niques used. Results are presented and discussed in the
corresponding parts of section 3.

2.1. Thin film growth

Amorphous thin films can be created using various techniques
e.g. sputtering [39, 40], particle irradiation [41], ion-mixing or
ion-implantation [42], liquid quenching [43], atomic layer
deposition [44] and electron-beam evaporation [45]. Amongst
these methods, sputter deposition is the most useful fabrica-
tion technique for growing high quality superconducting thin
films for nanoscale device applications. In this study, MoSi
films were grown on various substrates in a load-locked
ultrahigh vacuum (base pressure <5 × 10−9 Torr) sputter
deposition system. Films were co-sputtered from Mo (99.99%
purity, supplier: International Advanced Materials) and Si
(99.999% purity, supplier: Kurt J Lesker Company Ltd) tar-
gets in an argon plasma environment. Both the targets had a
diameter of 3 inches (i.e. a surface area of 45.54 cm2

).
The molybdenum target was sputtered using a DC power

supply in constant current mode and the silicon target with an
impedance matched radio frequency (RF) power supply. The
distance between the targets and the substrate was 100mm,
mounted at an angle of 5° to the vertical in a confocal config-
uration. According to the specifications provided by the system
manufacturer (Plassys Bestek, France (http://plassys.com)),
combined with substrate rotation, at this distance the deposition is
most uniform over a large area (maximum wafer diameter

150mm). Except where specifically noted, all depositions were
carried out with the substrate at room temperature. The substrate
holder was rotated at a speed of 60 rotations per minute during
deposition for better uniformity of the film growth. At the
beginning of each deposition cycle, 30 sccm of argon was
introduced in the process chamber keeping the throttle valve
fixed at 80° (this sets total chamber pressure at 0.2 Pa). An
approximate estimate of the composition of the films can be
made from the deposition rate of each target. Film thickness has
been measured by creating a step profile with the help of an ink
pen before the film growth and measuring height of the step in
atomic force microscopy. For a selection of samples, the mea-
surement of film thickness has been cross checked in scanning
transmission electron microscopy (STEM). Film growth was
initially optimized on silicon substrates. Silicon has an advanced
and mature fabrication technology and is an attractive substrate
material for various SNSPD applications at telecommunication
wavelength, including integrated quantum photonics [46] and
self-aligned detectors [47].

Prior to each sample deposition, both targets were pre-
sputtered for one minute to stabilise deposition conditions. At
first, the discharge current of the Mo target was fixed at a
specific value. Then, the RF power of Si target was varied
keeping other conditions unchanged in order to tune the
composition of MoSi films. In subsequent deposition runs, the
same process was repeated for several fixed discharge current
values for the Mo target, keeping other parameters unchan-
ged. In the literature there are several definitions of Tc. We
define it as the temperature at which resistance of the film
(measured via a four-point current biased measurement) dis-
appears or falls to zero in the R versus T curve.

2.2. Analysis of structure and composition

In order to better understand the atomic structure and compo-
sition of our MoSi films, we have employed a suite of advanced
scanning transmission electron microscopy (STEM) techniques.
A standard focussed ion beam (FIB) lift-out technique was used
to prepare thinned samples for STEM analysis [48].

In order to study the amorphous structure in a thin film
just a few nm thick, FEM was the only practical technique
[49, 50]. This, in the Voyles and Muller formulation, requires
the collection of large datasets of diffraction patterns from
small sample volumes, typically collected using STEM with a
probe size of the order of 1–2 nm.

EELS spectrum imaging (SI) was performed to analyse the
composition of the films using a JEOL ARM200F transmission
electron microscope operated at 200 kV equipped with a probe
aberration corrector and a Gatan GIF Quantum ER spectrometer/
energy filter. The probe convergence angle was 29mrad and the
spectrometer acceptance angle was 36mrad, and all datasets were
acquired in DualEELS mode, with an energy range for the high
loss set to include the Si–K and Mo-L2,3 edges.

2.3. Variable angle spectroscopic ellipsometry (VASE)

Accurate measurement of optical constants is crucial to the
simulation of optical absorption in SNSPDs and is a key to
integrating these devices with complex optical structures
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(such as cavities, nanoantennas and waveguides). The com-
plex refractive index of two of our MoSi films has been
evaluated at room temperature using a J A Woollam and Co.
VASE instrument. The spectral range of the VASE mea-
surement was from 270 to 2200 nm wavelength.

2.4. Nanowire patterning of MoSi thin films

Along with the superconducting transition temperature, critical
current (Ic) is another crucial parameter influencing the perfor-
mance of superconducting devices. Typically, an optimal
operation point for an SNSPD is set by the application of a bias
current just below the critical current value of the specific device
at the given operating temperature. Hence, a higher critical
current density (Jc) is desirable for high sensitivity, low noise
photon detection. We have surveyed the temperature dependence
of the critical current density in a nanowire patterned from a
MoSi thin film.

A 10 nm thick MoSi film has been patterned into nano-
wires of various design widths from 200 nm to 2 μm using a
two-step EBL process. All EBL processes were carried out
using a Vistec VB6 EBL tool at 100 keV. The first EBL step
was used to define alignment markers and contact pads. After
development, a 75 nm thick gold (with 15 nm Ti adhesion
layer) layer was deposited by electron beam evaporation and
lift-off. Nanowires were fabricated in the second EBL step.
After that, nanowire patterns were transferred into the MoSi
film by RIE using CF4 gas.

3. Results and discussion

3.1. Analysis of superconducting properties of MoSi films

3.1.1. Growth and optimisation of MoSi. Figure 1(a)
summarises the variation of Tc of 20 nm thick MoSi films
deposited on silicon substrates as a function of Si target power,
for several different Mo discharge currents. Deposition time was
adjusted for each deposition cycle in such a way that the film
thickness remains constant. Figure 1(b) shows the normalised
resistance versus temperature curves for the 20 nm thick MoSi
films deposited with 0.3 A discharge current applied at Mo
target. Both the figures indicate that an optimal film composition
has been achieved, with a Tc of 7.3 K (and a RRR of 0.95) for a
0.3 A Mo target discharge current and 125W Si target RF
power. For this optimised growth condition the film deposition
rate was 0.138 nm s−1, i.e. 2 min 45 s of deposition time was
used to grow the 20 nm thick film.

3.1.2. Modelling of observed variation of transition temperature

with film thickness. Ultrathin (<10 nm) superconducting
films are required for SNSPD fabrication. Degradation of
superconducting properties with a reduction in film thickness is
a well known phenomenon, predicted by standard theories [51]
and widely reported in literature. Once film thickness reaches a
value comparable to the coherence length of the material,
superconducting properties start to degrade sharply. Figure 2(a)
shows how the properties of MoSi films change with film

thickness. For a 5 nm thick film, we obtain a Tc of 5.5 K
(RRR = 0.8). RRR increases with film thickness. Thinner films
also have a greater sheet resistance as expected. Several
theoretical models have been reported to explore the correlation
between Tc, film thickness and sheet resistance and to explain
the degradation of superconductivity with reduction in
thickness. Finkel’stein modelled the Tc as a function of sheet
resistance (Rs) for disordered superconducting materials (with
no explicit dependence on thickness) [12]. According to this
model:

exp , 2
T

T

X

X

r1

1

1 2
c

co

g= -
+( )( ) ( )

where:

T k XLn ; 3B

r

rco
2

4
1

g t= =
g+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ħ( ) ( )

and:

r Re 2 . 42 2
s= p ħ( ) ( )

Here Tco denotes the bulk superconducting transition
temperature, ħ is the reduced Planck’s constant, e is the
elementary charge and γ is a fitting parameter. Figure 2(b)
shows a plot of Tc versus Rs plot for our films. The fit with
equation (2) was obtained by optimising Tco and γ. Tc data is
fitted in the Finkel’stein model with Tco = 7.8 K and
γ = 7.66 ± 0.1. Such a high value of the free fitting
parameter γ would be consistent with the proposition that
our films are strongly disordered. (For amorphous MoGe

Figure 1. MoSi thin film growth optimisation: (a) Tc of 20 nm thick
MoSi films deposited on silicon substrates as a function of power
applied at the silicon target (optimum Tc has been achieved for a
0.3 A Mo target discharge current and 125 W Si target RF power;
film compostion has been estimated through the deposition rate of
the targets). (b) Normalised resistance versus temperature curve of
20 nm thick MoSi Films deposited with 0.3 A discharge current
applied at the Mo target.
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Graybeal et al reported a value of 8.2 for the same parameter
[52].) This suggests that the suppression of superconductiv-
ity due to fluctuation of Cooper pairs can be neglected
because of the amorphous nature of the film.

From these values of Tco and γ we extract the mean
scattering time t = 4.61 × 10−16 s for the 5 nm thick MoSi
film, with a measured resistivity of 235.2 μΩ cm. Using this
mean scattering time we can estimate an electron density
n = 3.24 × 1022 /cm3, diffusion constant D = 0.21 ×
10−4m2 s−1 and a mean free path of 0.2 nm (assuming the
free electron mass equals the rest mass of the electron). The
free electron density is about 10 times lower than that
reported in literature for NbN (for 6 nm thick NbN 1.26 ×
1023 /cm3

[53]) as expected for MoSi. The Ioffe–Regel
parameter (kfl) calculated based on a free electron model gives
a value of 5.6 which is another indication of a homogeneously
disordered film. However, our estimated value of kfl is 2–3
times higher than the measured value of IR parameters which
have been reported for strongly disordered films in the
literature (2.6 for 5 nm thick TiN [54]). This higher value may
be due to inaccuracy in the approximation of electron density
from our data fit. Also, Graham et al have shown that for
some amorphous materials, the metal-insulator transition may
be observed at a much higher value (around kfl ∼ 5.2 for
amorphous indium oxide [55]). Instead of kfl ∼ 1 they
proposed kfl ∼ π as the Ioffe–Regel criteria [55]. We also note
(table 2) that both the free electron concentration and the

Ioffe–Regel parameter show a gradual increase with film
thickness.

Although the comparison of Tc versus Rs data with the
Finkel’stein model has given realistic values for various physical
parameters of MoSi films, this model was actually initially
proposed for two-dimensional films (where the film thickness is
less than the mean free path of the electron). For films that have
a thickness larger than their mean free path (which is the
case here), it includes a correction factor in the expression
for mean scattering time d l ;2*t t= ( ) for film thickness
d = 5 nm, assuming a mean free path l = ∼0.2 nm, we find
thatt= 0.1844 × 10−16 s and D = 0.0084 × 10−4m2 s−1. This
value of the diffussion coefficient is much smaller than the value
reported in literature [56]. Thus, we did not take into
consideration the correction factor here. The extraction of
selected physical parameters from alternative measurements and

Figure 2. Variation of superconducting transition temperature with film thickness and comparison with theoretical models: (a) R versus T
curve of MoSi film with three different thicknesses deposited at room temperature (Mo target discharge current: 0.3 A, Si target RF

power: 125 W) (b) Tc versus Rs curve and its fit with Finkel’stein model (
T

T

c

co
= exp(γ) X

X

r1

1

1 2+
-

⎡
⎣

⎤
⎦ [12]); Tco = 7.8 K and γ = 7.66 ± 0.1

(c) Simonin model fit for Tc versus 1/d curve (Tc = Tco(1−dc/d) [11]); Tco = 7.5 ± 0.15 K and dc = 1.46 ± 0.15 nm (d) Tcd versus Rs curve
with its fit to the universal scaling law proposed by Ivry et al (Tcd = ARs

−B
[10]); A = 29436 ± 487 and B = 1.14 ± 0.03.

Table 2. Free electron concentration ne, Ioffe–Regel parameter (kfl)
and Tc of MoSi films with four different thicknesses d.

d (nm) Tc (k) ne (1022/cm3
) kfl

5 5.5 3.24 5.25
6 5.8 3.36 5.34
8 6.15 3.46 5.49
10 6.4 3.49 5.54
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comparing them with our results may be helpful for more
accurate modelling.

Simonin [11] derived a simple model based on
Ginzburg–Landau theory describing the correlation between
Tc and film thickness resulting in

T T d d1 . 5c co c= -( ) ( )

The fitting parameter dc is called the critical thickness.
Figure 2(c) shows a plot of Tc versus 1/d and shows how
equation (5) is fitted with the data. The data point related to
the 20 nm thick film (thickest of the set) deviates from the fit,
but the rest of the data fit well with a least squares fit using a
Tco = 7.5 ± 0.15 K and dc = 1.46 ± 0.15 nm (theoretically,
this is the thickness below which the superconducting
properties of the films will disappear). These values are in
good agreement with literature [57]. Critical thickness can be
related to the BCS interactional potential V by dc = 2a/N(0)V
where N(0) is the density of states at Fermi level and a is the
Thomas–Fermi screening length. From Osofsky et al [57], we
obtain N(0)V = 0.086 and a ∼ 0.06 nm for MoSi. Hence, dc
∼ 1.4 nm.

Ivry et al [10] proposed an empirical universal scaling
law which takes into account the effects of both d and Rs on
Tc. According to this law, film thickness, sheet resistance and
transition temperature scale as Tcd(Rs) and leads to the

following power law:

T d AR . 6B
c s= - ( )

Figure 2(d) depicts how the universal scaling law fits to
the MoSi growth data. Values of the fitting parameters are
A = 29436 ± 487 and B = 1.14 ± 0.03 As discussed by Ivry
et al [10], for amorphous films B is greater than one.

One can see a clear and accurate trend when we plot Tcd
as a function of Rs (figure 2(d)). For amorphous films,
dependence on sheet resistance dominates over the thickness
dependence. This is why the data point corresponding to the
thickest film deviates from the Simonin model fit [11]. At the
same time, the Finkel’stein model [12] fits more quantatively
with all the data points (figure 2(b)). The universal scaling
law takes into consideration both the effects of sheet
resistance and thickness. Hence, it provides a far more
accurate fit for our MoSi data. A higher value of the fitting
parameter B also suggests that the film is amorphous which
dominates the sheet resistance dependence.

3.2. Analysis of atomic structure and composition using STEM

It can be seen from the previous reports that a slight mod-
ification of the optimised deposition conditions (e.g. substrate
cooling or HF treatment of substrates) measurably affects the
superconducting properties of MoSi films in various ways
[23]. Such variations in the deposition environment influence
the short range structural ordering of an amorphous film.
Bieger et al [58] concluded that the superconducting prop-
erties of amorphous materials are sensitive to short range
order, based on resistivity measurements. In the crystalline
state, Mo3Si with an A15 structure has a very low bulk Tc
(∼1.3 K) [59]. Lattice disorder promotes its superconducting
properties to a large extent [60, 61]. The effect of material
properties on superconducting transition temperature can be

described by McMillan’s Parameter (given by λ = ;
N J

M w

0 2

2

( )⟨ ⟩

⟨ ⟩

where N(0) is the density of states at the Fermi level, w2á ñ
denotes average phonon frequency, M is ion mass and J2á ñ is
the average electron–phonon coupling matrix) [62]. Lattice
disorder increases Tc due to an enhancement in N(0) and
weakening of the phonon mode. The electron–phonon cou-
pling matrix J2á ñ is a function of the structure factor. Hence,
any modification in short range structural order or ‘amor-
phous nature’ will influence McMillan’s parameter and the
superconducting properties. It is, consequently, crucial to
investigate the local structural ordering of amorphous MoSi
films, although preferably with more direct methods.

Diffraction patterns were collected from the MoSi thin
film sample for the purpose of FEM analysis using a Medipix-
3 active pixel detector attached to our JEOL ARM200F at the
35 mm camera port [63]. The illumination of the microscope
was adjusted by turning the objective lens off and working in
aberration-corrected Lorentz mode [64] to produce small
probe convergence angles to increase resolution in reciprocal
space. In the scans recorded, several thousand diffraction
patterns were acquired from the layer at about 1 nm step size,
as well as diffraction patterns from the areas above (gold) and

Figure 3. Fluctuation electron microscopy (FEM) of 5 nm thick
MoSi film: (a) Variance plot of diffracted intensity; (b) diffraction
pattern obtained from one pixel in the MoSi film; (c) model of
A15 crystal structure: in the cubic unit cell 2 Si atoms (Red) occupy
(0, 0, 0) and (1/2, 1/2, 1/2) positions whereas 6 Mo atoms (Green)
are situated at (1/4, 0, 1/2); (1/2, 1/4, 0); (0, 1/2, 1/4); (3/4, 0,
1/2); (1/2, 3/4, 0); and (0, 1/2, 1/4) positions.
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below (silicon), which were used for calibration of the dif-
fraction patterns. A typical diffraction pattern recorded from
the 5 nm thick MoSi film is shown in the figure 3(b). The
variance of all patterns from the central portion of the layer
was calculated as a function of q (=2πk = 4πsinθ/λ) using
the method of Hart et al [65]. A small broad peak in the
variance occurs at a q value of around 1.8 Å−1, while larger
peaks are visible around ∼2.85 Å−1 and ∼4.6 Å−1. Super-
imposing the locations of diffraction peaks for both poly-
crystalline body-centered cubic (bcc) Mo and A15 structured
Mo3Si, the observed variance plots (figure 3(a)) have broad
peaks where crystalline Mo3Si would have sharp peaks and
do not match well to metallic Mo.

Figure 4 shows a high angle annular dark field STEM
image of a FIB cross section of the layer structure: some gold
is evaporated onto the top of the film to protect it from Ga
ion-implantation damage during FIB preparation. The data-
sets obtained from the EELS SI were quantified using the
Elemental Quantification plugin for Digital Micrograph,
which is a model-based EELS fitting routine, which includes
explicit account for multiple scattering when working with
DualEELS datasets. The cross sections for EELS quantifica-
tion were the Hartree-Slater cross sections provided by Gatan.

The results of the quantification are shown in figure 4 as a
graph of Mo and Si percentages in a line trace from the
substrate into the film. It is clearly seen that the Mo content in
the film peaks at the centre at about 83%, before a little excess
Si is found at the surface.

This composition of 83% Mo and 17% Si is slightly
different from the composition of the MoSi thin films usually
reported in the literature for superconducting detector fabri-
cation. However, in a previous study Bosworth et al [23]
reported Mo83Si17 as the optimised composition for amor-
phous MoSi thin films in terms of superconducting properties.
They showed that Tc for a 100 nm thick MoSi film decreases
sharply if Si content in the film stoichiometry exceeds 17%.
Zhao et al [66] demonstrated that a 1 μm thick MoSi film
deposited on a liquid nitrogen cooled substrate achieve a
maximum Tc when the Si content is around 15.8%. So, the
‘Mo-rich’ composition of the thin films we have optimised
has already been mentioned in previous reports. Optimum
composition of the film can also be influenced by config-
uration of the deposition systems. Overall, the STEM analysis
has shown the existence of an A15-like atomic structure over
a short or medium atomic range (less than 2 nm, corresp-
onding to the probe size) and a slightly ‘Mo-rich’ off-stoi-
chiometric composition (83:17 instead of the stoichiometric
75:25) in the MoSi films.

3.3. Measurement of optical constants for MoSi from UV to

infrared wavelengths

Figure 5 presents the measurement of optical constants of
amorphous MoSi films. All the films were grown at room
temperature. We used plasma-enhanced chemical vapour

Figure 4. Investigating the composition of uncapped co-sputtered
MoSi films via electron energy loss spectroscopy (EELS): (a) dark
field image of the focussed ion beam (FIB) cross section of MoSi
film, with the scan area indicated by the black box (coloured
elemental map shows the silicon substrate, MoSi film and gold layer
deposited on top of the film. The Si substrate in the lower part of the
figure; the MoSi film is a horizontal band through the middle and the
gold layer on the top added to protect the film during FIB
sectioning). (b) Averaged elemental percentage composition from
bottom to top (from the substrate across the film). An error bar has
been added across the position axis to indicate the resolution or step
size of the scan (1 nm).

Figure 5. Complex refractive index measurement for 5 nm thick
MoSi films using variable angle spectroscopic ellipsometry (VASE).
(a) Refractive index measurement of MoSi film with a Si cap and
MoSi film without a Si cap; (b) extinction coefficient measurement
of MoSi film with a Si cap and MoSi film without a Si cap.
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deposition to deposit a 390 nm thick layer of SiO2 on several
silicon substrates. For the first sample, we sputtered a 5 nm
thick MoSi film on top of this substrate. For the second, we
grew a 5 nm thick MoSi film with a protective Si capping
layer (∼4 nm thick) on top. Both the films have been
deposited following the optimised recipe described in
section 3.1 (these films have a Tc of 5.3 K with a RRR 0.83).
As reported elsewhere [32], during the SNSPD device fabri-
cation process, environmental contact may affect the super-
conducting properties of the films by surface oxidation. The
presence of the capping layer may help to prevent possible
degradation of the film during fabrication and atmospheric
exposure. It should be noted that the silicon capping layer
does not influence the superconducting properties of the MoSi
film (we have verified this by low temperature testing).
However the optical properties may be changed due to the
presence of the capping layer.

The SiO2 layer underneath the MoSi film acts as a
transparent layer below the absorbing films and helped to
break parameter correlation between optical constants and
film thickness by interference enhancement during VASE
measurement. The ellipsometric data was modelled with
several Lorentz oscillators. From the figure 5, it is clear that
MoSi films have a high extinction coefficient (k), leading to
high optical absorption across the infrared range. The pre-
sence of the Si capping layer slightly enhances the extinction
coefficient. The enhancement in absorption coefficient due to
the Si capping layer is more pronounced for λ < 600 nm. This
wavelength range is well above the gap energy of Si, so the Si
is acting as an additional absorbing layer. Over the IR range a
slight enhancement in k for the Si capping is still noticeable.
Hence, the use of thin MoSi films in superconducting
detectors will lead to higher optical efficiency of the devices.
We can also see that the k(λ) curve of MoSi shows a con-
tinuous sharp increase even in the higher wavelength region
(1500–2200 nm). Hence, MoSi can serve as an optically
efficient material for mid-infrared SNSPD detectors.

3.4. Transport properties of patterned superconducting MoSi

nanowires

The superconducting properties of MoSi nanowires were
investigated in a closed-cycle cryostat based on a two stage
pulsed tube cooler. The base operating temperature of the
cryostat is 3.5 K.

I–V curves for the device were recorded using a four-
point measurement setup. A Keithley 238 current source was
used to bias the device. The device is connected to the
measurement circuit using SMA coaxial cables. While
recording current-voltage characteristics, the compressor of
the cryostat was turned on and off, allowing the cryostat
temperature to vary between 3.5 and 6.5 K (monitored closely
with a silicon diode thermometer). The cryostat took 2 min
and 35 s to warm up from its base temperature to 6.5 K. At a
given temperature, critical current increases with wire width
as expected. Critical current density was calculated using the
cross sectional area of each nanowire. Figure 6 depicts the
variation of critical current density with measurement

temperature for different wire widths. Scanning electron
microscopy (SEM) was used to measure the accurate wire
width after fabrication. The 2003 nm wide wire showed a
critical current density of 0.36MA cm−2 at 3.6 K. For a Type
II superconductor, dependence of critical current on temper-
ature in the dirty limit can be described by the relations
[67, 68]

I T I 0 tanh 7
T T

k T
c c

0 2 B

= D
D

D⎡
⎣

⎤
⎦( ) ( ) ( )

( )

( )

( )

and

T 0 tanh 1.82 1.018 1 , 8
T

T

0.51
cD = D -

⎡
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⎡
⎣

⎤
⎦

⎤
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where Ic(T) and TD( ) denotes the measured critical current
and superconducting energy gap at the specific measurement
temperature and 0D( ) is the energy gap at absolute zero.
We fitted critical current versus temperature data from
MoSi nanowires to the above equations using I 0 ,c( ) Tc and
2 0D( ) as the fitting parameters. Figures 7(a) and (b)
demonstrate how Tc and the values of superconducting band
gap obtained from the curve fitting vary over the nanowire
width.

It is evident that all the nanowires (2003–173 nm width)
show a similar trend of superconducting transport properties.
Tc is slightly depressed with decreasing wire width (from
6.23 to 5.94 K). Though critical current decreases con-
sistently with wire width (as expected) all the nanowires
show a common trend of variation in critical current density
with temperature (figure 6). Also, at any specific measure-
ment temperature there is a slow reduction in critical current
density values with decreasing wire width. The nanowire of
2003 nm width shows a critical current density of 0.36MA cm−2

measured at 3.6 K. The thinnest nanowire (173 nm wide) shows
a comparatively lower Jc of 0.2MA cm−2. This deviation along

Figure 6. Transport measurement of nanowires patterned in a 10 nm
thick MoSi thin film: critical current density versus temperature
curve of nanowires having different widths (widths of the nanowires
have been corrected from SEM inspection).
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with the fluctuation in values of Jc in the rest of the nanowires
can be explained by inhomogeneity caused during the nanowire
fabrication. Close SEM inspection indicates the edges of the
nanowires may be damaged with redeposition of etch debris and
e-beam resist which would lead to a reduction in the super-
conducting cross-section. This effect would be strongest (pro-
portionately to the width) in the narrowest wires. The
superconducting band gaps of the nanowires based on our thin
films are much smaller than the bulk energy gap of MoSi
(∼2.26meV) reported in literature [27]. For wire width
>458 nm 2Δ(0) assumes a value ∼1.87meV; for the 173 nm
wide nanowire it drops to 1.77meV.

Lita et al [27] reported a critical current density of
∼1.3 MA cm−2 at 250 mK for a 1 μm wide nanowire pat-
terned on a 6.3 nm thick MoSi film. Korneeva et al [32]
have showed critical current density varies from 1.1 to
2.5 MA cm−2 for nanowire patterned meander devices on
4 nm thick MoSi films measured at 1.7 K. Although we
report lower critical current density values here, we are
measuring in a significantly higher temperature range (3.6 K
and above).

To date we have reported a low temperature photo-
response map recorded at 350 mK (corresponding to a
maximum SDE, inclusive of optical coupling losses, of
approximately 5% at 1550 nm wavelength under the
perpendicular illumination condition) from a waveguide
integrated SNSPD fabricated on a 10 nm thick MoSi
thin film deposited at the University of Cambridge with a
similar composition (Mo83Si17) [69]. At present we are
exploring the optical response of full SNSPD devices fab-
ricated based on the MoSi films we have optimised in this
study.

4. Conclusion

We have carried out a comprehensive study of the super-
conducting, structural and optical properties of co-sputtered
amorphous molybdenum silicide thin films. We have opti-
mised MoSi film growth and demonstrated a Tc of 5.5 K for a
5 nm thick film. By comparing our transition temperature
measurement data with several theoretical models (Finkel’-
stein, Simonin and Ivry) we find that the room temperature
sheet resistance is strongly linked to the resulting Tc of the
amorphous films. We have employed advanced STEM tech-
niques including FEM to reveal that the film consists of short
range nano crystalline structure which is similar to an A15
Mo3Si structure. Based on the sputter deposition rates, the
composition of the film is closer to 83:17 than 75:25. This is
typical of A15 structures and could be due to either a sig-
nificant vacancy population on the corner of B (Si) sites of
A3B (Mo3Si) structure, or alternatively substitution of A (Mo)
atoms on some of the B (Si) sites [70]. We note that amongst
the groups studying amorphous superconductors for SNSPDs,
some report success with co-sputtered films [35], whereas
others have chosen sputtering from a single alloy target [34].
It would be of considerable interest to apply the FEM tech-
nique in order to compare co-sputtered material with alloy
target sputtered material, and to identify how best to achieve
precise control of amorphous texture. VASE studies have also
been carried out to determine the complex refractive index of
uncapped and Si capped MoSi films. This data is important
for integrating MoSi SNSPD into advanced optical structures
such as waveguides and cavities and tailoring devices for
specific wavelengths in future. Finally, transport properties
including critical current and its dependence on temperature
have been evaluated after nanowire patterning (in range of
2003 nm width down to 173 nm width) in a 10 nm thick film.
The current density measured at 3.6 K (in the range 0.36 to
0.2 MA cm−2, diminishing with wire width) indicates nano-
wires are suitable for SNSPD operation at elevated temperature.
This work has important implications in the optimisation of
MoSi films for next generation SNSPDs, for realisation of
uniform large area SNSPD focal plane arrays and for integration
with advanced optical architectures such as quantum photonic
waveguide circuits.
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