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Abstract

Triple negative breast cancer (TNBC) is regarded as the most aggressive breast cancer
subtype with poor overall survival and lack of targeted therapies, resulting in many patients
with recurrent. The insight into the detailed biochemical composition of TNBC would help
develop dedicated treatments. Thus, in this study Fourier Transform Infrared microspectro-
scopy combined with chemometrics and absorbance ratios investigation was employed to
compare healthy controls with TNBC tissue before and after chemotherapy within the same
patient. The primary spectral differences between control and cancer tissues were found in
proteins, polysaccharides, and nucleic acids. Amide I/Amide Il ratio decrease before and
increase after chemotherapy, whereas DNA, RNA, and glycogen contents increase before
and decrease after the treatment. The chemometric results revealed discriminatory features
reflecting a clinical response scheme and proved the chemotherapy efficacy assessment
with infrared spectroscopy is possible.

Introduction

Triple-negative breast cancer (TNBC) is the most aggressive epithelial breast tumor, diagnosed
in approximately 10-20% of all breast cancer patients [1]. TNBC is immunohistochemically
negative for the protein expression of the estrogen receptor (ER) and progesterone receptor
(PR), and lack of overexpression/gene amplification of hormone epi-dermal growth factor
receptor 2 (HER?2) is observed [2]. Approximately 70% of triple-negative breast cancer patients
fail to achieve a pathologic complete response after chemotherapy due to the lack of targeted
therapies for this subtype [3]. Besides, TNBC is associated with a significantly worse overall
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survival, and compared to the Luminal A subtype, the risk of death, recurrence, or metastasis
is several times higher [4].

TNBC has been investigated with different diagnostic approaches, including physical and
optical techniques [5-10]. Many of these require stains and labels to enhance contrast and thus
can interfere with the actions of small metabolites and drugs. Besides, many of the available
methods are time-consuming and incommodious. In contrast, vibrational spectroscopy,
including Fourier transform infrared (FTIR) absorption, allows for detailed characterization
of biological materials without using complicated sample preparation procedures or additional
reagents [11, 12]. FTIR spectroscopy has been extensively used for different medical applica-
tions such as cancer research [13-15], stem cells [16], inflammatory diseases [17, 18], and
more. The purpose of the current study was to monitor chemo-therapy in four female patients
with the diagnostic approach developed based on the focal plane array (FPA) FTIR microspec-
troscopy and chemometric techniques to find spectral markers of treatment effectiveness.

Material and methods
Material

The study was conducted under the Institutional Review Board (Protocol No. KBET/6/06/2014)
from June 2014 at the University of Rzeszow. All used in this study experimental protocols were
approved by the Institutional Ethics Committees of the University of Rzeszow and were carried
out following the approved guidelines. Informed consents were obtained from all subjects. The
study was conducted based on formalin-fixed paraffin embedded (FFPE) breast tissue samples
obtained through core biopsy from two healthy controls (breast reduction procedures) and four
TNBC female patients before and after preoperative chemotherapy with different stages of malig-
nancy. Characteristics of all patients are presented in S1 Table. FFPE breast cancer tissue sections
of only tumor mass were microtomed into 5 um thick sections and fixed on CaF2 substrates
(Crystran, UK.). Our previous works proved that the material preparation methodology is suit-
able for FTIR spectroscopy and paraffin fixation did not alter chemometrics results [13, 19]

Methods

Experiment was performed at the IRM beamline in Australian Synchrotron. As reported previ-
ously [13], spectra were collected in transmission mode within 4000-800cm " spectral region
using a Bruker Hyperion 2000 FTIR microscope equipped with a liquid-N2 cooled 64 x 64 ele-
ment FPA detector and 15x objective lens, coupled to a Vertex 70/70v FTIR spectrometer. Each
spectral image encompasses a 32 x 32 array of spectra resulting from binning the signal from
each square of 4 detectors and a single spectrum in each FTIR image stands for molecular infor-
mation acquired from 10,6 um x 10,6 pm area of the sample. Such approach enables fast scanning
of large areas, which is more suitable for future clinical applications. Spectral images were col-
lected with 4 cm™ spectral resolution with 64 co-added scans, Blackman-Harris 3-Term apodiza-
tion, Power-Spectrum phase correction, and a zero-filling factor of 2 using OPUS 7.2 imaging
software (Bruker). The areas on the breast tissue samples were selected based on their corre-
sponding H&E stained sections, targeting the areas of cancer nests. The spectral selection was
based on pre-processed chemical image and only spectra that corresponded to cancer tissue were
selected for further analysis. Schematic presentation of spectral selection is presented on Fig 1.

FPA-FTIR images were analyzed using Cytospec v. 1.4.02 (Cytospec Inc., Boston, MA,
USA). Spectra embedded in each image were first denoised using the PCA approach (10 PCs),
and quality screened to keep only high-quality spectra with a minimum S/N ratio of 100.
Selected spectra were subsequently converted into the second derivative using the Savitzky-
Golay algorithm with 3 polynomial order and 13 smoothing points.

PLOS ONE | https://doi.org/10.1371/journal.pone.0264347 March 9, 2022 2/16


https://doi.org/10.1371/journal.pone.0264347
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI
https://datadryad.org/stash/share/UknZsrjZWsWazFKAMCKYQXavpj87uDCSzVY2A74tzJI

PLOS ONE Unravelling the TNBC with vibrational spectroscopy

Fig 1. Schematic illustration of spectral pre-processing of tissue before (top) and after (bottom) chemotherapy. Presented: (a,f) microscopic images
of H&E stained sections, scale bars: 100 um; (b,g) OPUS images, scale bars: 100 um; (c,h) FTIR chemical images of protein distribution using integrated
area under amide I band (1710-1600 cm™); (d,i) denoised and quality-tested FTIR chemical images; (e,j) corresponding hierarchical cluster analysis

images. Spectra for further analysis were chosen based on acquired HCA maps-cluster corresponding to selected ROI were included into final PCA set.

https://doi.org/10.1371/journal.pone.0264347.g001

Data analysis

Spectral peaks were selected based on the second derivative spectra. For more objective,
non-bias investigation, raw spectra were first normalized, baseline corrected, and aver-
aged (OPUS Software). Subsequently, the resultant spectra were transformed into a sec-
ond derivative (Savitzky-Golay algorithm, The Unscrambler 10.3 software, CAMO
Software AS., Oslo, Norway), and all minima (wavenumbers) were precisely identified. To
exclude the contribution of paraffin, only 1700-1495cm™" and 1350-950 cm ™' regions were
used in the final analysis. In an attempt to estimate absorbance ratios for each experimen-
tal group, the curve fitting was performed in the spectral regions 1700-1495 cm ™ and
1350-950 cm ™', and the absorbance values of selected underlying bands were determined.
Additionally, the sum of bands assigned to amide I (1700-1600 cm’™, Al), amide II (1600-
1500 cm™, AII), and amide III-nucleic acids (1350-950 cm™', LWN) regions were deter-
mined. Subsequently, the following absorbance ratios were calculated: AI/AII, Ph1/LWN,
Ph2/LWN, RNA/LWN, GLYCO/LWN, and DNA/LWN. Selected ratio values were ana-
lyzed using Statistica 13.0 (TIBCO Software Inc 2017). Principal component analysis
(PCA) was performed using The Unscrambler™ 10.5 software package (CAMO Software
AS., Oslo, Norway). Extended Multiplicative Signal Corrected (EMSC) second derivative
spectra were combined into one set to investigate similarities and differences of the
healthy breast tissues and tissues before and after the course of chemotherapy. Subse-
quently, PCA with 7 PCs, using the NIPALS algorithm, was performed separately for each
degree of malignancy.

Results
Spectral description

Figs 2-5 represents EMSC-corrected, second derivative averaged spectra obtained from
healthy breast tissue (Fig 2), and tissue before (a) and after (b) chemotherapy (Figs 3-5). To
examine the peaks positions the second derivative sets were used. All collected spectra are
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Fig 2. Healthy control averaged spectrum. EMSC-corrected 2nd derivative spectra of healthy control breast tissue with assigned minima.

https://doi.org/10.1371/journal.pone.0264347.9002

typically composed of peaks attributed to proteins, lipids, and nucleic acids. The minima
observed within a region 1690-1630 cm ! are assigned to o-helix (1661 cm™), B-sheet (1695,
1637 cm™) and B- turn (1681 cm) structures of amide I, with the majority of amide I proteins
formed in a-helix structure [13, 14, 16, 20]. The most pronounced contrast between healthy
control and before versus after chemotherapy was noted in the tissue with a G3 degree of
malignancy (Fig 5). In G3 tumor stage before chemotherapy, the peaks located in amide I
region (1681 cm™, 1661 cm™, 1637 cm™") are shifted towards lower wavenumber by 4 cm™,
with the most pronounced change of the peak assigned to aggregated B-sheet, shifted by 7 cm’
' In the G3 after chemotherapy, these peaks return to the position similar to healthy control
(Fig 5b). Of interest is a minimum also attributed to B-sheet conformation (1643 cm™), found
only in the G3 tumor stage before chemotherapy (Fig 5a). Less noticeable lesions were noted
in G2 (Fig 4) and G1 (Fig 3) cancer stage.

A similar pattern have been observed in the amide II region (1590-1510 cm™) [21-25]. In
the case of G3 tumor stage before chemotherapy the peaks arise from C — N stretching coupled
to N — H bending vibrations of amide II (1566 cmY) [21]andC=C stretching vibrations of
tyrosine (1512 cm™) [24, 25] are shifted towards higher wavenumber by 5cm™ and 4 cm™
respectively (Fig 5a). Of interest is the minimum attributed to perpendicular modes of a-helix
and parallel-chain B-sheet from amide II, found at 1540 cm™* [23]. This band is shifted towards
higher wavenumber by 6 cm™ for all tumor stages before chemotherapy (Figs 3-5a), whereas
after chemotherapy observed shifts are less pronounced (Figs 3-5b).

The examination of a lower wavenumber region reveal more pronounced differences not
only in G3, but also in G1 and G2 cancer stage, with the most noticeable changes in minima
arise from DNA, RNA and glycogen. Of note is also a minimum assigned to wagging vibra-
tions of side chain in collagen (1334 cm™) [15], shifted towards higher wavenumber by 5 cm™
for G1 (Fig 3), 7 cm™ before and 6 cm ™" after chemotherapy for G2 and G3 degree of malig-
nancy (Figs 4 and 5). The peak assigned to asymmetric stretching of phosphodiester groups
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Fig 3. TNBC grade 1 averaged spectra. EMSC-corrected 2nd derivative spectra of TNBC grade 1 breast tissue before (a) and after (b) preoperative
chemotherapy with assigned minima.

https://doi.org/10.1371/journal.pone.0264347.9003

(1229 cm™) [26] experienced the most significant changes. It is shifted towards higher wave-
number by 7 cm™! before and 6 cm-1 after chemotherapy for G1 and G2 tumor stage (Figs 3
and 4), with even more pronounced shift of 9 cm™ before and 5 cm™ after treatment for G3
cancer stage (Fig 5). For the minimum assigned to (C — O) stretching vibrations from DNA
(1062 cm™) [20, 27] a shift by 5 cm’! towards lower wavenumber were observed only in TNBC
G3. The next affected peak is associated with PO;* asymmetric stretching from RNA (1122
cm™') [15]. It is shifted towards higher wavenumber by 4 cm™ for all tumor grades before che-
motherapy, whereas there are no significant change in the spectra of tissues after chemother-
apy in compare to healthy control. Similar changes occur for the peak assigned to (C — O)
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Fig 4. TNBC grade 2 averaged spectra. EMSC-corrected 2nd derivative spectra of TNBC grade 2 breast tissue before (a) and after (b) preoperative
chemotherapy with assigned minima.
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stretching vibrations of glycogen (1158 cm™) [15] shifted towards lower wavenumber by 4 cm®
"in all tumor stages before chemotherapy, and returning to healthy control wavenumber val-
ues after treatment. Of note is another peak associated with glycogen (1043 cm™) found only
in healthy control and tissues after chemotherapy (Figs 2-5b). Also, the peak associated with
oligosaccharides (1143 cm™) can be found only in healthy control and after chemotherapy tis-
sue in G1 and G3 tumor stage.

The summary of assigned wavenumbers, together with their biological origin, label and
appropriate reference are reported in Table 1.
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Fig 5. TNBC grade 3 averaged spectra. EMSC-corrected 2nd derivative spectra of TNBC grade 3 breast tissue before (a) and after (b) preoperative
chemotherapy with assigned minima.
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Absorbance ratios calculation

The statistical analysis of the absorbance area ratios for healthy control, before and after che-
motherapy patients in G1-G3 tumor stages are presented on Fig 6.

Amide I/ Amide II ratio (1700-1500 cm™). The amide I / amide II ratio, reflecting the
assessment of protein secondary structure [28], is presented on Fig 6a. For patients with G1
and G2 cancer stages the ratio before and after chemotherapy significantly decreases
(G1&G2BF = 1,62+0,005; G1&G2AF = 1,67+0,018), but in both cases the difference between
ratios of healthy control and after treatment is less pronounced (HC = 1,71). For G3 tumor
stage, the ratio increases before and decreases after chemotherapy (G3BF = 1,74;
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Table 1. Summary of mean values of wavenumbers (cm™) seen in FTIR spectra of TNBC and control breast tissue. For each peak the vibrational mode and the label

are reported.

Peak (cm™) Shifts Band assignment Label Ref.

HC G1 G2 G3
bf af bf af bf af
1695 1694 | 1694 | 1693 | 1693 | 1688 | 1995 Amide I: aggregated B-sheet structure Al [14, 16]
1681 1680 | 1680 | 1680 | 1680 | 1676 | 1679 Amide I: B-turn structure [14, 16]
1661 1659 | 1658 | 1659 | 1658 | 1657 | 1664 Amide I: o-helix structure [13,20]
1637 1637 | 1637 | 1638 | 1638 | 1641 | 1636 Amide I: B-sheet structure [14, 16]
1593 1593 | 1591 | 1592 | 1593 | 1590 | 1595 C =N N - H vibrations of adenine [20]
1566 1566 | 1567 | 1566 | 1567 | 1571 | 1565 das(N — H) and vs(C — N) vibrations of Amide II All [21]
1553 1553 | 1553 | 1553 - 1549 | 1555 v(C - O) and 8(N — H) vibrations of Amide II [22]
1540 1546 | 1545 | 1546 | 1544 | 1546 | 1545 Amide II: 3(N — H) coupled to v(C — N) vibrational mode [23]
Amide II: perpendicular modes of a-helix and parallel-chain B-sheet
1512 1512 | 1512 | 1513 | 1513 | 1516 | 1513 C = C stretching vibrations from tyrosine [24, 25]
1334 1339 | 1339 | 1341 | 1340 | 1341 | 1340 w(CH,) vibrations of side chain in collagen L [15]
1313 1314 | 1314 | 1313 | 1311 | 1311 | 1314 w(CH,) vibration from glycine w [15]
1280 1284 | 1282 | 1283 | 1283 | 1282 | 1283 Amide III band components of proteins N [27]
1229 1236 | 1235 | 1236 | 1235 | 1238 | 1234 VaS(PO;) from DNA Phl [26]
1202 1202 | 1202 | 1202 | 1203 | 1202 | 1202 vas(PO, ) from DNA [20]
1173 1172 | 1171 | 1172 | 1172 | 1171 | 1172 v(C - O) and §(C — O) from C — OH group (glycogen) GLYCO [15]
1158 1155 | 1159 | 1155 | 1158 | 1154 | 1159 v(C — O) from polysaccharides [15]
1143 - 1143 - - - 1145 Phosphate & oligosaccharides [20]
1122 1126 | 1124 | 1124 | 1125 | 1125 | 1125 vas(PO;”) from RNA RNA [15]
1106 1105 | 1102 | 1108 | 1103 - 1108 v(CO), v(CC), ring (polysaccharides) [20]
1082 1083 | 1083 | 1082 | 1082 | 1084 | 1083 vs(PO;) from DNA Ph2 [22]
1062 1064 | 1063 | 1061 | 1064 | 1067 | 1061 vs(C — O) from DNA; one of the triad peaks of nucleic acids DNA [20, 27]
(along with 1031 and 1081 cm™)
1043 - 1047 - 1044 - 1046 vs(CO — O — C) from polysaccharides GLYCO [22]
1030 1031 | 1033 | 1031 | 1033 | 1030 | 1031 | C— OH deformation of nucleic acids; one of the triad peaks of nucleic acids DNA [20, 21]
(along with 1060 and 1081 cm™)

Abbreviations: G1-G3 = TNBC grades 1-3; HC = healthy control; bf = before chemotherapy; af = after chemotherapy; vs = symmetric stretch; vas = asymmetric stretch;

8 = in-plane deformation (bend); w = wagging vibration.

https://doi.org/10.1371/journal.pone.0264347.t001

G3AF = 1,61). The above findings are associated with an additional minimum attributed to B-

sheet conformation (1643 cm™), found only in G3 before chemotherapy (Fig 5a).
Amide III and nucleic acids (1350-950 cm™). The following results for ratios unravelling
the amide IIT and nucleic acids formations in compare to healthy control have been achieved:
Ph1/LWN ratio (amount of phosphate groups in proteins [29]) significantly increase (Fig 6b);
Ph2/LWN ratio (amount of phosphate groups in nucleic acids [30]) significantly increase (Fig
6¢); RNA/LWN ratio (RNA amount [31, 32]) significantly increase (Fig 6e); DNA/LWN
(DNA amount [33]) significantly increase (Fig 6f). All the above ratios show a similar pattern
for all three TNBC degrees of malignancy: the values before and after chemotherapy signifi-
cantly increase, however the values after chemotherapy are closer to healthy control group.
Moreover, the differences between healthy control and TNBC become more extensive with
each tumor stage.
Interestingly, GLYCO/LWN ratio values, indicating the amount of carbohydrates [30], sig-
nificantly decrease before and significantly increase after the treatment (Fig 6d). Such massive
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https://doi.org/10.1371/journal.pone.0264347.g006
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https://doi.org/10.1371/journal.pone.0264347.g007

difference is associated with the glycogen peak observed at 1043 cm™, absent in the tissues’
spectra before chemotherapy in all cancer stages (Figs 3-5a).
All discussed ratios presented as mean * SD are summarized in S2 Table.

Principal component analysis (PCA)

The PCA analysis was performed using two spectral ranges: 1700-1495 cm™* and 1350-950
cm’, covering spectral features characteristic for proteins, lipids, carbohydrates, and nucleic
acids. Initially, PCA was conducted on the entire spectral set (Fig 7) and subsequently repeated
on separated spectral groups, divided by a TNBC degree of malignancy (S1 Fig).

The PC scores plot presents a distinct separation of healthy control and cancer tissue spec-
tral clusters (Fig 7a). The PC loadings plot (Fig 7b) shows the amide I band region attributable
to proteins (1700-1630 cm™) [34] was heavily loaded for PC1, revealing separation of healthy
control and malignant tissues with 33% explained variance. The negative PCI loadings respon-
sible for differentiation of healthy control from TNBC were found at 1700 cm™ (C - 0), 1667
cm’! (amide I anti-parallel B-sheet), 1634 cm™ (amide I p-sheet), and 1538 cm ' (amide II). The
positive PC1 loadings, explaining TNBC differentiation, were found at 1653 cm ™' (amide I o.-
helix) and 1547 cm™* (amide IT perpendicular modes of o-helix and parallel-chain B-sheet).

In the lower wavenumber region the loadings responsible for distinction are located at 1330
cm (collagen), 1225 cm! (DNA), 1200 cm™ (DNA), 1171 cm™ (glycogen), 1126 cm! (RNA),
1036 cm™, and 1029 cm™ (DNA) [35]. These findings appear to be in accordance with spectra
(Figs 2-5) and ratios (Fig 6) examination, showing that proteins are most sensitive to mutation
during carcinogenesis [25, 36], and nucleic acids play a substantial role in the process of tumor
formation [37, 38].

In an attempt to separate spectral sets of before (BF) and after (AF) chemotherapy,
we examined further PCs in the same PCA analysis. We did not notice distinct separa-
tion along PC2, PC3, and PC4 (see S2 Fig). However, going to further PCs, we found
that PC5 (3% explained variance) shows a specified cluster pattern, with the loadings

PLOS ONE | https://doi.org/10.1371/journal.pone.0264347 March 9, 2022 10/16


https://doi.org/10.1371/journal.pone.0264347.g007
https://doi.org/10.1371/journal.pone.0264347

PLOS ONE

Unravelling the TNBC with vibrational spectroscopy

of the AF cluster separation similar to the loadings of healthy control distinction. In
the higher wavenumber region (1720-1495 cm™'), negative loadings responsible for
AF spectra separation can be found at 1702 cm™ (C - 0), 1658 cm™" (amide I),

1638 cm™ (amide I B-sheet), and 1540 cm™ (amide II), whereas positive loadings arise
from amide I (1645 cm™; 1629 cm™), and amide IT (1553 cm™') can explain BF spectral
cluster distinction.

In the lower wavenumber region (1350-950 cm™"), the cluster of AF is distinguished
by negative loadings arise from DNA (1216 cm™'; 1168 cm™'; 1014 cm™'), and the set of
BF by strong positive loading attributed to symmetric stretching vibrations of the
phosphate group from DNA (1082 cm™).

Discussion and conclusions

Vibrational spectroscopy techniques are increasingly applied for progression modeling in dif-
ferent cancer subtypes due to their ability to create label-free molecular fingerprint definition
of crucial biological molecules. Spectral features of treatment effectiveness can be assessed con-
cerning clinical responsiveness as well as in comparison to healthy control using both super-
vised and unsupervised analytical methods [39, 40]. Our previous studies reported a
correlation between cancer tissue and FTIR spectral assessment [15, 41]. They proved the
FTIR and multivariate data analysis approach is a suitable tool for detecting the changes of bio-
chemical makeups that are the key to the treatment response. We also found that FPA-FTIR
coupled to PCA can be helpful in the assessment of chemotherapy efficacy [13]. Nevertheless,
comparison before-after chemotherapy within the same patient significantly reduces the infer-
ence for the general population. Indifference, our present study compared the combined sets
of healthy control and patients before and after treatment. Additionally, we prepared a detailed
spectral description and analyzed absorbance ratios defined previously to discuss aspects of
impairment in ovarian endometriosis [42]. In our study amide I/ amide II ratio for G1 and G2
cancer stages shows a similar decrease before and increase after chemotherapy. The most
affected seem to be G3 patient, showing protein secondary structure increase before and
decrease after chemotherapy. The raw spectra examination revealed that the amide II protein
region is emphasized before chemotherapy, but this imbalance disappears after treatment.
These findings are also confirmed by PCA, which showed increased presence of amide I -
sheet conformations in the spectra before chemotherapy, stabilizing after the treatment in all
three cancer grades. The relationship between the protein amount and carcinogenesis has
been demonstrated by many researchers [43-47]. In cancer cells, protein functions are dis-
turbed [44], and metabolic pathways impair proper cell growth [45, 46].

Observations of the lower wavenumber region also provide evidence for mutagenic aberra-
tions [47-54]. It has been previously found that the differences in DNA and RNA oscillation
frequency play a substantial role in healthy/breast cancer spectra discrimination [48]. These
could be explained by a number of factors: (1) increased DNA content, possibly associated
with necrosis and apoptosis of cancer cells [49]; (2) the presence of PO, stretching vibrations,
possibly attributed to DNA damage caused by reactive oxygen species [50]; (3) accelerated
metabolism of DNA/RNA in cancer cells, resulting in oscillatory deformations of the peak of
C — H of adenine, higher in patients with cancer [51, 52]; (4) the presence of tumor-derived
circulating DNA, found in blood plasma [53, 54].

In the presented study, the ratios of Ph2, RNA, GLYCO, and DNA are increased in the
group before and decreased after, approaching the values of healthy control. The most interest-
ing is GLYCO/LWN ratio, indicating the amount of carbohydrates [31]. It is significantly
decreased before and increased after chemotherapy, and this massive difference is associated
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with the absence of one of the carbohydrates peak (1043 cm™) in all cancer spectra before the
treatment. These findings coincide with available knowledge about the so-called “Warburg
effect” [55], explaining higher glucose metabolism noticed in cancer cells during the neoplastic
process.

When discussing the lower wavenumber region, G2 patient treatment response needs to be
further investigated. In the PCA scores plot (S1a and S1b Fig), the distinct separation of before
and after clusters is visible. However, the loadings plot reveals an increased amount of DNA
and RNA remain in spectra after chemotherapy. The examination of nucleic acid ratios shows
almost no change in RNA (Fig 6¢), and the least distinctive DNA ratio change (Fig 6d and 6f)
for the spectral clusters after treatment. Luckily, the chemotherapy for this patient was success-
ful, but the above findings indicate that the tissue of patient G2 after chemotherapy still pos-
sesses the most biochemical features of the malignant tissue than those investigated in this
study G1 and G3.

Indeed, our research has several limitations, which surely decrease its robustness. Firstly,
the long-term follow-up information about each patient would be invaluable to prove our find-
ings. In this experiment, all patients are alive without recurrence or metastases, and thus we
cannot present results for unsuccessful chemotherapy, which would be an invaluable insight
into the usefulness of our approach. Considering the above, we cannot define the sensitivity
and specificity of our method to determine a prognostic result. Secondly, the paraffin sample
fixation might impact the results of the analysis. However, FFPE is a standard procedure for
histopathology, and analyzed in this manuscript samples are scarce since they came from the
same patient before and after chemotherapy. In an attempt to avoid fixation impact to spectral
description and chemometric results, we excluded the paraffin bands.

Finally, the number of patients in our present experiment was too small to draw a definite
conclusion. However, the availability of these samples is strongly limited due to the necessity
of obtaining tissue twice from the same patient: before and after the full course of chemother-
apy. Unfortunately, patients often die during chemotherapy or refuse to sign the consent for
the second material collection. Therefore, a small number of samples precludes sophisticated
statistical methods, together with test power evaluation; therefore, statistical inference is lim-
ited. The above conclusion suggests that it is essential to perform further studies with more
samples to make the results significant for clinical practice. Still, together with previous results
[13, 41], we demonstrated the treatment efficacy estimation is possible by examining the raw
spectrum and applying different chemometric approaches alone. However, like other research-
ers, we suggest using different approaches combined to reveal various spectral aspects and
obtain fundamental information about the disease’s nature.

Supporting information

S1 Fig. PCA results performed reflecting TNBC degree of malignancy. PCA scores (a, ¢, €)
and loadings (b, d, f) plots showing projections against the first 3 PCs with the inclusion of
datasets of healthy control (green) and G1 (a, b), G2 (c, d) and G3 (e, f) TNBC degree of malig-
nancy.

(TIF)

S2 Fig. PCA results of TNBC combined spectral set and healthy control. PCA scores show-
ing projections against PC1/Pc2/PC3 (a) and PC1, PC2, PC4 (b).
(TIF)

§1 Table. Clinicopathological characteristics of all patients.
(DOCX)
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S2 Table. Absorbance ratios of healthy control and TNBC spectra.
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