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Flavonoids are one of the most important classes of natural products having a wide variety of biological activities. There is wide
interest in a range of medical and dietary applications, and having a rapid, reliable method for structural elucidation is essential.
In this study a range of flavonoid standards are investigated by chip-based negative ion nanospray mass spectrometry. It was found
that the different classes of flavonoid studied have a combination of distinct neutral losses from the precursor ion [M-H]− along
with characteristic low-mass ions. By looking only for this distinct pattern of product ions, it is possible to determine the class of
flavonoid directly. This methodology is tested here by the analysis of a green tea extract, where the expected flavonoids were readily
identified, along with quercetin, which is shown to be present at only about 2% of the most intense ion in the spectrum.

1. Introduction

Flavonoids are an important class of dietary natural products
with a range of biological activities, such as antioxidant,
UV-protection, antiparasitic, anti-inflammatory, and anti-
fungal [1–6]. The flavonoids are subcategorised into eight
different classes with some of the compounds also exhibiting
possible beneficial properties such as health-promoting and
anticancer activities [7]. The common C6-C3-C6 structural
core for all flavonoids arises from the shikimate (C6-C3) and
acetate (C6) biosynthetic pathways. In their review, Williams
and Grayer pointed out that the theoretical number of pos-
sible flavonoid structures (with hydroxyl, methoxyl, methyl,
isoprenyl benzyl, and sugar substituents) is enormous, and
many new natural flavonoids are still to be isolated [8]. Until
now, more than 9000 different flavonoids have been isolated.
The majority were isolated and identified employing classical
phytochemical procedures, and there is no doubt that many
more new flavonoids remain to be discovered [8].

Many analytical methodologies have been developed
to detect and quantify flavonoids, mostly using high-
performance liquid chromatography with UV-VIS spectral

detection. However, identification of flavonoids, as well as
other natural products, through hyphenated systems (LC-
UV) is limited since a complete chromatographic resolution
for all chromophores is required to be sure that the correct
conclusion is reached [9, 10]. Mass spectrometry (MS) with
electrospray ionisation (ESI) has emerged as a complemen-
tary method for high sensitivity, selectivity, and fast analysis
of natural products [11], such as sesquiterpene lactones [12]
and alkaloids [13]. Among all mass spectrometry techniques,
electrospray ionisation tandem mass spectrometry (ESI-
MS/MS) using low-energy collision-induced dissociation
(CID) has been the technique of choice for such studies
through the technique’s ability to analyse natural products
with medium to high polarities [14].

Nanospray ionisation is an improvement over traditional
ESI for the analysis of low volume low concentration samples
[15]. With nanospray, it is possible to obtain mass spectra
from picogram quantities of material with little sample
clean-up being required. Standard nanospray uses disposable
tips and as a result has problems with signal reproducibility
between tips and difficulties with coupling to HPLC. With
the development of automated “chip-based” nanospray
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Figure 1: The structures of the flavonoids analysed. (1) Quercetin
(molecular weight = 302); (2) Myricetin (molecular weight = 318);
(3) Apigenin (molecular weight = 270); (4) Luteolin (molecular
weight = 286); (5) Naringenin (molecular weight = 272); (6)
Hesperetin (molecular weight = 302); (7) Catechin (molecular
weight = 290) and (8) Epigallocatechin (molecular weight = 306).

systems, using arrays of uniform nanospray needles, the
technique is becoming much more important [16]. In “chip-
based” nanospray, the analyte solution is sprayed from a
conductive pipette tip pressed against the rear of the chip
using a small gas pressure and low voltage to create the spray.
Each nanospray needle in the array is used only once to avoid
contamination.

In recent years, nanospray ionisation has been applied
to the analysis of natural products, but there are still some
doubts about the applicability of the technique for the analy-
sis of small molecules. Analysis of retinal, carotenoids, and
xanthophylls showed some significant differences between
the ions observed between nanospray and electrospray
ionisation [14, 17, 18]. These results could be correlated to
differences in the source design and ionisation conditions for
nanospray and open up a new area of research in natural
product chemistry. Based upon these previous studies and
the increasingly recognised importance of flavonoids in
the human diet along with the increase in metabolomic
studies, the purpose of this study is to establish a sound
basis for the ionisation and fragmentation of four agly-
cone flavonoid classes (Figure 1) in negative ion nanospray
ionisation. The application and power of the technique to
“real world” samples is exemplified with the identification of

medium-polarity flavonoids from a simple extract of green
tea without employing any prior sample preparation, clean-
up, or chromatography.

2. Experimental

2.1. Materials. The flavonoid standards (Figure 1) were
isolated as previously described [19] or obtained from
Sigma-Aldrich (United Kingdom). Solutions of the analytes
(approximetely 0.1 mg/mL) in 100% HPLC-grade methanol
(Fisher Scientific) were prepared immediately prior to the
analysis. The green tea sample was obtained from a local
supermarket. A few grains were dissolved in 100% methanol
with the sample centrifuged (13,000 rpm, 5 mins) prior to
the analysis.

2.2. Instrumentation. Nanospray ionisation analyses were
performed on a QStar-XL quadrupole-time-of-flight hybrid
instrument (Applied Biosystems, Warrington, UK) using
a NanoMate HD automatic chip-based nanospray system
(Advion Biosciences, Norwich, UK). Instrument control,
data acquisition, and data processing were performed
through the Analyst QS version 1.1 software (Applied Biosys-
tems, Warrington, UK). NanoMate control was through
the ChipSoft software (Advion Biosciences, Norwich, UK).
The NanoMate was set for 5 µL of solution to be aspirated
and sprayed through a NanoMate 400 chip at 1.45 kV
with a nitrogen back pressure of 0.4 psi. QStar acquisition
parameters were ion source gas flow rate, 50; curtain gas flow
rate, 20; ion spray voltage, 2700 V; declustering potential,
75 V; focusing potential, 280 V; declustering potential 2, 15 V.
CID-MS/MS was performed at a collision energy in the range
from −20 to −40 eV. The ion source gas, curtain gas, and
collision gas were all nitrogen.

3. Results and Discussion

The compounds quercetin (flavonol, 1), apigenin (flavone,
3), naringenin (flavanone, 5), and hesperetin (flavanone,
6) (Figure 1) were used as standards to study their ability
to produce high-intensity, stable-deprotonated molecule
signals in negative ion mode nanospray ionisation. 100%
HPLC methanol proved to be an excellent solvent for these
studies with stable ion signals being produced for up to 20
minutes (Figure 2). This is essential as it allows for a number
of tandem mass spectrometry (MS/MS) experiments to be
performed on the same sample without any adjustments or
tuning of the nanospray source. Use of methanol resulted
in no observed methylation reactions as has previously been
described for other natural products [20]. Over the range of
source conditions used, all the aglycone flavonoids produced
an intense and stable spray for at least 15 minutes from
single 5 µL analyte solution aspirations. This demonstrates
the possibility to work with more complex flavonoid samples
and allows for setting up automatic MS/MS acquisitions
from a batch analysis.

Following on from the ion formation studies, the sys-
tematic investigation was continued to determine the best
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Figure 2: Demonstration of the stability of the chip-based
nanospray infusion. The data shows plots of total ion count (from
5 µL aspirations) versus time for [M-H]− ions. Plot (a) is for
hesperetin over a 20 minute run. The onset of nanospray is at about
30 s into the run with about 15 minutes of highly stable spray. After
15 minutes, the spray is less stable until the spray breaks down at
about 19.5 minutes. Plot (b) is of luteolin, quercetin, naringenin,
and hesperetin over a 1-minute run demonstrating intersample
reproducibility.

CID collision energies required for effective product ion
formation whilst eliminating unwanted gas-phase interac-
tions. Collision energies from −20 to −40 eV resulted in
good product ion spectra, with, as expected, more product
ions being observed at higher voltages (more negative). A
collision energy of around −35 eV was determined to result
in the “best” product ion spectra (Figure 3). Examination
of the spectra revealed high levels of complexity with
many competing fragmentation routes. The main neutral
molecules lost from the [M-H]− ions consisted of a combina-
tion of H2O, CO, CO2, and/or H2CCO (Figure 3). A detailed
analysis of all the spectra indicates that a combination of
a specific order of neutral eliminations occurs along with
the presence of a series of diagnostic low-mass product
ions for each of the flavonoid classes analysed (Table 1 and
Figure 3) resulting in the quick and reliable method for the
identification of the flavonoid class. The diagnostic low-
mass product ions result from ring contraction reactions
which follow the same mechanisms as previously reported

Table 1: Table of the characteristic sequences of neutral losses, from
their corresponding [M-H]− precursor ions and characteristic low-
mass product ions, for the four flavonoid classes analysed in this
study.

Flavonoid
class

Characteristic
neutral losses

Characteristic
productions

Flavonols
(1 and 2)

−28, −44, −18 151, 125, 107

Flavones
(3 and 4)

−28, −44,
−44, −28, −42

151, 121, 107

Flavanones
(5 and 6)

−18, −44,
−44, −18, −42

151, 125, 107

Flavanols
(7 and 8)

−18, −44,
−44, −18, −42

137, 125, 109

for flavonoids in negative mode ESI [21]. All of the flavonoids
(except the flavanols) have the previously described ions
at m/z 151 and 107 [21], whereas the flavanols catechin
and epigallocatechin (with no oxidation at carbon 3, but
following a similar ring contraction mechanism) result in the
product ions at m/z 137 and 109. Also, all of the flavonoids
except the flavones have an ion at m/z 125, and the flavones
have an ion at m/z 121.

The flavanone hesperetin has a methoxyl substitution at
the aromatic ring and showed elimination of a methyl radical
(•CH3) similar to that previously reported for mycosporine-
like amino acids [22] and some other flavonoids [23].
Observation of this behaviour in nanospray allows the easy
distinguishing of methoxylated flavonoids with identical
molecular mass, for example, when screening plant extracts
for flavonoid composition as previously report in ESI [23].
Increasing the collision energy for hesperetin results in
an almost complete fragmentation of the radical ion, but
allows for the observation of a loss of 16 mass units. An
unusual CH4 elimination has been previously described
for heterocyclic aromatic amines which is proposed to
be due to a gas-phase ion-molecule aromatic-nucleophilic
substitution between β-carbolines and water vapour [24].
With hesperetin, the loss of 16 is suggested to be due to CH4

elimination involving the methoxyl group and the ortho-
hydroxyl group. Figure 4 shows the expansion of two product
ion spectra of hesperetin at different collisional energies,
clearly showing the competing losses of •CH3 and CH4. The
mechanism for loss of •CH3 proceeds through homolytic
cleavage as previously described [22, 23]. The mechanism for
water elimination from ortho-substituted aromatic esters is
well known in electron ionisation. In this case we suggest that
a similar cyclic rearrangement through homolytic cleavage is
occurring, but involving the hydroxyl substitution, resulting
in a stable quinonic ion (Figure 4). Both of these mecha-
nisms, when taken together, are very useful for the structure
elucidation of disubstituted flavonoids.

The analysis of a green tea extract in methanol was
performed to demonstrate the utility of the technique.
The analysis was performed without any chromatography
or sample cleanup. The negative ion nanospray spectrum
(Figure 5) is very complicated with a considerable number
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Figure 3: The negative ion nanospray product ion spectra of the eight flavonoids studied. Spectrum (a) is of quercetin, 1: (precursor ion
(PI) m/z 301), (b) myricetin, 2: (PI m/z 317), (c) apigenin, 3: (PI m/z 269), (d) luteolin, 4: (PI m/z 285), (e) naringenin, 5: (PI m/z 271), (f)
hesperetin, 6: (PI m/z 301), (g) catechin, 7: (PI m/z 289), and (h) epigallocatechin 8: (PI m/z 305).
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Figure 4: Enlargements of negative ion nanospray product ion spectra of hesperetin at low (a) and high (b) collision energies. The
competition between losses of •CH3 and CH4 is clearly observed. At higher collision energy, the radical ion (m/z 286) has fragmented
further to leave the quinonic ion (m/z 285) intact. The mechanism of formation of the two ions is shown in the inserts.

of ions over a wide mass range. Some of the observed
masses (m/z 289, 305 and 317) match to the flavonoid
standards already analysed in this study, and analysis of the
MS/MS spectra (data not shown) of these proved them to
be the expected flavonoids present in green tea: catechin,
7, (flavanol), epigallocatechin, 8, (flavanol) and myricetin,
2, (flavonol). Other intense peaks (m/z 441 and 457) are
gallate flavonoids not considered in this initial study. To
test the detection limit of the technique, the peak at m/z
301 was studied further (see Figure 5). This peak occurs at

approximately 2% of the most abundant ion in the spectrum,
but performing MS/MS for about 1 minute still produced a
good intensity product ion spectrum (Figure 5). A thorough
study of this spectrum reveals an almost identical series of
peaks to that of the flavonol quercetin, 1 (Figure 2). The
differences between the two spectra are probably down to the
different collision energies used. Quercetin is one of the most
biologically active flavonoids and is more normally found in
citrus fruits. The confirmation of the presence of quercetin
in green tea (even at the low levels in this particular sample)
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Figure 5: Negative ion nanospray spectra of the green tea extract. Spectrum (a) is the total extract recorded over a wide m/z range. Spectrum
(b) is an enlargement of (a) to show the peak at m/z 301 at approximately 2% of the intensity of the most intense ion in spectrum (a).
Spectrum (c) is the product ion spectrum of m/z 301 which clearly demonstrates the sensitivity of the technique.

is a highly significant result and a powerful demonstration of
the sensitivity and application of this methodology.

4. Conclusions

In this initial study, the application of chip-based negative
ion nanospray is demonstrated for the analysis of a series
of flavonoid standards. The best spectra where produced
from 100% HPLC methanol. MS/MS analysis of four of

the classes of flavonoids have shown that they have a
different, characteristic sequences of neutral losses from
their corresponding [M-H]− precursor ions in combination
with distinctive lower mass product ions. The application
of this methodology is demonstrated for the analysis of a
green tea extract where the expected flavonoids (catechin,
epigallocatechin, and myricetin) were easily identified, along
with the unexpected presence of quercetin (at approximately
2% of the most intense ion).
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