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27 Abstract

28 Introduction: Selection of resistant malaria strains occurs when parasites are exposed to inadequate 

29 antimalarial drug concentrations. The proportion of uncomplicated falciparum malaria patients at risk 

30 of being sub-optimally dosed with the current World Health Organization (WHO) recommended 

31 artemisinin-based combination therapies (ACTs) is unknown. This study aims to estimate this 

32 proportion and the excess number of treatment failures (recrudescences) associated with sub-optimal 

33 dosing in Sub-Saharan Africa.

34 Methods: Sub-populations at risk of sub-optimal dosing include wasted children <5 years of age; 

35 patients with hyperparasitaemia; pregnant women; people living with HIV; and overweight adults. 

36 Country-level data on population structure were extracted from openly accessible data sources. 

37 Pooled adjusted Hazard Ratios for PCR-confirmed recrudescence were estimated for each risk group 

38 from published meta-analyses using fixed-effect meta-analysis.

39 Results: In 2020, of 153.1 million uncomplicated P. falciparum malaria patients in Africa, the largest 

40 risk groups were the hyperparasitaemic patients (13.2 million, 8.6% of uncomplicated malaria cases) 

41 and overweight adults (10.3 million, 6.7% of uncomplicated cases). The excess total number of 

42 treatment failures ranged from 323,247 for a 98% baseline ACT efficacy to 1,292,987 for a 92% 

43 baseline ACT efficacy. 

44 Conclusion: An estimated 1 in nearly 4 people with uncomplicated confirmed P. falciparum malaria in 

45 Africa are at risk of receiving a sub-optimal antimalarial drug dosing. This increases the risk of 

46 antimalarial drug resistance and poses a serious threat to malaria control and elimination efforts. 

47 Changes in antimalarial dosing or treatment duration of current antimalarials may be needed and new 

48 antimalarials development should ensure sufficient drug concentration levels in these sub-

49 populations that carry a high malaria burden.

50

51
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52 Introduction

53 In 2021, the World Health Organization (WHO) Africa region alone accounted for approximately 234 

54 of the estimated 247 million malaria cases and 96% of the estimated 619,000 malaria deaths 

55 worldwide. Four sub-Saharan Africa countries contributed to about half of the total burden of cases. 

56 Increasing investment in malaria control and the scaling up of artemisinin-based combination 

57 treatment (ACT) deployment led to a steady decline of 27% in the incidence of malaria cases between 

58 2000 and 2015. Since the number of malaria cases is rising again, most of the increase occurring in the 

59 African region [1]. The COVID-19 pandemic seriously disrupted healthcare systems and alongside the 

60 direct impact on malaria control programmes, in most endemic countries, access to health care 

61 remains challenging for many patients; the 2022 WHO World Malaria Report estimates that an 

62 additional 13.4 million cases and 63,000 deaths worldwide were due to disruptions during the 

63 pandemic [1]. 

64 Plasmodium falciparum (Pf) is responsible for most cases of severe malaria and the majority of malaria 

65 deaths. The continuous reduction in malaria deaths prior to the pandemic, 37% since 2000, persisted 

66 despite the increasing number of cases observed. This success might be attributed to the widespread 

67 availability of intravenous artesunate followed by an ACT for the treatment of severe malaria [2, 3].

68 Following the emergence and spread of Pf resistant strains to sequential monotherapies, namely 

69 chloroquine in the 1960s, followed by sulfadoxine-pyrimethamine in the 1980s [4, 5], and then 

70 mefloquine in the 1990s [6], the ACTs became the WHO recommended first-line treatment for 

71 uncomplicated Pf malaria in 2006 [7]. Since its introduction, artemisinin resistance has been reported 

72 in 2007 in Southeast Asia and in Eastern India [8-10]. Resistance to the partner drugs associated with 

73 the artemisinin derivatives is of high concern in these regions, leaving very few therapeutic options 

74 [11, 12]. With the recent confirmation of independent foci of clinically significant artemisinin 

75 resistance emerging on the African continent, specifically in Uganda, Rwanda and Eritrea, and low 
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76 PCR-adjusted efficacy including in Burkina Faso and Angola, artemisinin and/or partner drug resistance 

77 could threaten malaria control and elimination efforts across the continent [13]. 

78 Resistance can arise as a consequence of spontaneous changes in the genetic structure of the parasite 

79 which provides a competitive advantage allowing it to survive the treatment even when the patient 

80 receives recommended doses of ACTs [5]. Another scenario conducive for the selection of resistant 

81 parasite strains is inadequate drug exposure [14] or sub-optimal-dosing, a situation where parasites 

82 are exposed to an insufficient drug concentration and/or for an inadequate duration to clear the 

83 infection [5]. Reduced drug exposure can occur for various reasons including prescription of an 

84 inadequate dose (lower than the manufacturer’s recommended dose), poor patient adherence, poor-

85 quality medicines (either sub-standard or falsified medicines with reduced active ingredients), or 

86 inadequate absorption (e.g. acute vomiting shortly after drug administration) [15, 16]. These 

87 contributory factors may be avoidable. Absorption, distribution or metabolism of the drug, can also 

88 differ among specific groups of patients so that taking the same recommended dose in mg/kg body 

89 weight can lead to differing drug exposure [14]. 

90 As control efforts in Africa result in reduced transmission and case burden of infection, acquired 

91 immunity is waning, increasing the risk of more severe forms of the disease as well as resistant strains 

92 emerging and surviving in non-immune patients [17]. In the absence of alternatives to artemisinin 

93 based antimalarials in the near future, protecting the efficacy of available ACTs by identifying patient 

94 groups at high risk of receiving inadequate dosing and finding ways to optimise their treatment is 

95 paramount for the success of disease control and elimination. 

96 The current WHO guidelines for malaria [14] identify five groups of population at risk of sub-optimal 

97 dosing: (i) malnourished children <5 years of age, (ii) pregnant women, (iii) overweight adults, (iv) 

98 patients with uncomplicated hyperparasitaemia, (v) patients co-infected with HIV or TB. WHO states 

99 that for these groups “data on antimalarial drug efficacy are still limited and insufficient evidence 

100 exists to warrant dose modification”. Close monitoring of these sub-groups is strongly recommended 

101 as the risk for treatment failure and/or development of severe malaria with standard drug dosing is 
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102 increased. However, the current WHO protocol for “methods for surveillance of antimalarial drug 

103 efficacy” recommends excluding severely malnourished children, cases of uncomplicated 

104 hyperparasitaemia, pregnant women and people living with HIV (PLHIV) from Therapeutic Efficacy 

105 Studies (TES) [18, 19]. Consequently, current ACT dosage regimens optimised from trials conducted 

106 initially in healthy adults and well-nourished children, must be extrapolated to these excluded 

107 populations [20].

108 This study aims to estimate the proportion of uncomplicated Pf malaria cases in endemic African 

109 countries at risk of receiving sub-optimal dosing of oral ACTs and to estimate the fraction of treated 

110 patients likely to fail treatment because of sub-optimal dosing. 

111

112 Methods

113 African countries with a malaria transmission intensity estimated at one or more cases per 1000 

114 population in 2020 [21] were included. Malaria risk was considered four times higher in rural areas 

115 than urban settings based on published entomological inoculation rate estimates. Proportion of risk 

116 groups within malaria patient population was assumed to be the same as in the overall country 

117 population, but the difference in malaria prevalence between urban and rural areas was accounted 

118 for. Levels of malaria endemicity were categorised as hypo-endemic if Pf rate in children aged 2-9 

119 years of age was ≤10%; meso-endemic if parasite rate was 11-50%; or hyperendemic if >50%. 

120 Malnutrition was defined as wasting (z-score weight-for-height<-2SD), overweight as body-mass index 

121 (BMI) > 25kg/m2, hyperparasitaemia as >100,000 parasites per microliter. Details of data sources, 

122 variables extracted and variables derived are provided in supplementary material p2-8.

123 As ACT coverage and adherence was not available across all sub-populations, 100% coverage of and 

124 adherence with ACTs was assumed. 
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125 Estimation of failure rates on ACTs for sub-population of interest 

126 Absolute and relative estimates of PCR-confirmed recrudescence were extracted from published 

127 meta-analyses or systematic literature reviews, searched for on Epistemonikos (supplementary 

128 material p9). Two additional systematic reviews were conducted to collate necessary data to support 

129 this analysis: one on the efficacy of ACTs in PLHIV (Prospero registration CRD42018089860, study 

130 ongoing), and another in non-pregnant, overweight or obese adults (Prospero registration 

131 CRD42018090521, available in supplementary material p10-12). 

132 Where available, fixed-effect pooled estimates from meta-analyses’ Hazard Ratios (HR) were 

133 calculated by risk group of interest. Otherwise, risk of treatment failure was derived from individual 

134 studies and a sensitivity analysis was performed assuming HR range 1.2-2.0. A 2-8% range of 

135 hypothetical treatment failure rates in adequately dosed patients was considered, given the current 

136 resistance data available from Africa and WHO recommendations to change drug policy if Adequate 

137 Clinical and Parasitological Response (ACPR) rate falls below 90% [18].

138

139 Results

140 Number of malaria cases

141 Of 154.6 million confirmed cases, 153.1 million were estimated to be due to uncomplicated malaria 

142 of which 37.4 million (24.4%) were in children <5 years of age, 56.1 million (36.6%) in those 5-14 years 

143 of age, and 59.6 million (39.0%) in adults >14 years. Country-specific extracted data are provided in 

144 supplementary material p12-19. Patients with hyperparasitaemia (13.2 million, 8.6% of uncomplicated 

145 malaria cases) and overweight adults (10.3 million, 6.7% of uncomplicated cases) were the largest risk 

146 groups in all regions and endemicity areas. Malaria in wasted children was estimated to reach 2.5 

147 million, representing 1.6% of all uncomplicated cases. There were 6.4 million uncomplicated cases in 

148 pregnant women, 4.2% of total malaria burden and 10.7% of cases in adult population. The highest 
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149 proportions of PLHIV and of pregnant women at increased risk of sub-optimal dosing were in East 

150 Africa (1.5% and 2.9%, respectively), while wasted children were predominant in meso-endemic 

151 regions (2.4% vs. 0.1% in hypo-endemic areas), Table 1. 

152

153 Table 1. Number (in millions) of uncomplicated malaria cases per sub-population at increased risk 

154 of sub-optimal dosing.

Wasted 

(in <5 

years)

Pregnancy 

(in females 

>14 years)

Overweight

(in >14 

years)

PLHIV

(in all ages)

Hyperparasitaemia

(in all ages)

Total N 2.5 6.4 10.3 1.9 13.2

41 African 

countries

% 1.6 4.2 6.7 1.2 8.6

By region

Northern Africa N <0.1 0.1 0.2 <0.1 0.1

(1 country) % 0.0 0.1 0.1 0.0 0.1

East Africa N 0.5 2.9 4.7 1.5 5.2

(15 countries) % 0.3 1.9 3.1 1.0 3.4

West Africa N 1.1 2.0 3.6 0.2 4.8

(15 countries) % 0.7 1.3 2.4 0.1 3.1

Central Africa N 0.9 1.4 1.8 0.2 3.1

(9 countries) % 0.6 0.9 1.1 0.1 2.0

Southern Africa N <0.1 <0.1 <0.1 <0.1 <0.1

(1 country) % 0.0 0.0 0.0 0.0 0.0

By endemicity1

Hypo-endemic N 0.1 1.0 2.0 0.3 1.5
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(16 countries) % 0.1 0.7 1.3 0.2 0.9

Meso-endemic N 2.4 5.4 8.3 1.6 11.7

(25 countries) % 1.5 3.5 5.4 1.0 7.7

155 Percentages are in total of uncomplicated cases. The list of countries by region and by endemicity 

156 areas are reported in supplementary material p12-13.

157 1 Hypo-endemicity: Plasmodium falciparum (Pf) prevalence in 2-9 years old <10%; Meso-endemicity: 

158 Pf prevalence in 2-9 years old 11-50%. No country was reported as hyper-endemic in 2020. 

159 In <5 years: children under 5 years old; in >14 years: adults aged 15 years and older.

160

161 Distribution of estimated malaria cases across risk groups varied between countries (Fig. 1 and 

162 supplementary material p17-19). The proportion of PLHIV with malaria varied between <0.1 and 4.4% 

163 in all countries except Zimbabwe and Namibia, where this sub-population harboured an estimated 7.9 

164 and 8.0% of all uncomplicated Pf cases respectively. The proportion of overweight adults varied 

165 between 10 and 32% of adults with uncomplicated Pf malaria. Proportion of wasted children among 

166 children under 5 years with uncomplicated Pf malaria was the highest in South Sudan (24%) and 

167 Djibouti (30%), (supplementary material p19). 

168

169 Fig 1. Number (in million) of estimated uncomplicated Pf malaria cases by country and region, 

170 showing sub-population distribution with increased risk of sub-optimal dosing.

171

172 Number of treatment failures

173 The systematic review identified five IPD meta-analyses which provided HR estimates for 

174 hyperparasitaemic patients (PRISMA flow diagram in supplementary material p9), and individual 

175 studies provided estimates for PLHIV (n=4) and malnourished children <5 years of age (n=1), Table 2. 
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176 No relevant studies were identified for overweight or obese patients (supplementary material p10-

177 12) nor pregnant women. 

178

179 Table 2. Risk of treatment failure by age group and sub-population at increased risk of sub-optimal 

180 dosing used in calculation of the excess number of malaria infections.1

Risk groups Hazard Ratios [95%CI] References to IPD meta-analyses or individual 

studies

<5 years

Hyperparasitaemic 1.50 [1.21-1.86] 

(Pooled)

WWARN A-L Dose Impact SG, 2015 (PMID 

25788162)

Saito M, 2020 (PMID 32530424)

WWARN DP SG, 2013 (PMID 24311989)

WWARN AS-AQ SG, 2015 (PMID 25888957)

PLHIV 1.5 

(from individual 

studies in Uganda and 

Zambia)

Kajubi R, 2016 (PMID 5170492)

Kamya MR 2006 (PMID 1925269)

Parikh S, 2016 (PMID 4946019)

Van Geertruyden JP, 2006 (PMID 16960779)

Wasted 1.41 [1.07; 1.86] Stepniewska K, 2016 (65th annual meeting ASTM&H, 

conference paper)

None of these 1.0

5 to 14 years

Hyperparasitaemic 1.50 [1.21-1.86] 

(Pooled)

WWARN A-L Dose Impact SG, 2015 (PMID 

25788162)

Saito M, 2020 (PMID 32530424)

WWARN DP SG, 2013 (PMID 24311989)
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WWARN AS-AQ SG, 2015 (PMID 25888957)

PLHIV 1.5 

(from individual 

studies in Uganda and 

Zambia)

Kajubi R, 2016 (PMID 5170492)

Kamya MR 2006 (PMID 1925269)

Parikh S, 2016 (PMID 4946019)

Van Geertruyden JP, 2006 (PMID 16960779)

None of these 1.0

>14 years

Hyperparasitaemic 1.50 [1.21-1.86] 

(Pooled)

WWARN A-L Dose Impact SG, 2015 (PMID 

25788162)

Saito M, 2020 (PMID 32530424)

WWARN DP SG, 2013 (PMID 24311989)

WWARN AS-AQ SG, 2015 (PMID 25888957)

PLHIV 1.5 

(from 2 individual 

studies)

Kajubi R, 2016 (PMID 5170492)

Kamya MR 2006 (PMID 1925269)

Parikh S, 2016 (PMID 4946019)

Van Geertruyden JP, 2006 (PMID 16960779)

Overweight 1.5 (Assumed)

Pregnant 1.5 (Assumed)

None of these 1.0

181 1 HR for treatment failure associated with hyperparasitaemia or with HIV was assumed to be the same 

182 across all age groups. 

183

184 At drug efficacy of 98%, 95% and 92%, the expected number of PCR-corrected treatment failures 

185 (recrudescences) were estimated as: 3.1, 7.6 or 12.3 million, and the number of excess rates as 0.4, 

186 1.1 or 1.4 million, respectively (assuming HR=1.5 for pregnant women and overweight patients). The 

187 largest contribution to the excess number of treatment failures came from hyperparasitaemic patients 
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188 (44.2%), (Table 3, Fig. 2, supplementary material p20). Overweight adults, pregnant women, and PLHIV 

189 contributed to 23.6%, 14.6%, and 4.7% of excess failures, respectively, which, in a sensitivity analysis, 

190 changed to 12.7%, 7.8%, 2.5% (HR=1.2 assumed) and to 33.0%, 20.4%, 6.6% (HR=2.0 assumed), 

191 respectively. Wasted children contributed to 12.9% excess failures.

192

193 Table 3: Excess failures (in millions) estimations in different risk groups, assuming different 

194 treatment failure rates and a range of assumed Hazard Ratios (HR) for PLHIV, pregnant women, and 

195 overweight adults.

Main Analysis Sensitivity analysis

Assumed HR=1.5 

for PLHIV, Overweight, 

Pregnant

Assumed HR=1.2 

for for PLHIV, 

Overweight, Pregnant

Assumed HR=2 

for for PLHIV, 

Overweight, Pregnant

Risk groups

2% 

failure

5% 

failure

8% 

failure

2% 

failure

5% 

failure

8% 

failure

2% 

failure

5% 

failure

8% 

failure

<5 years

Hyperparasitaemic 0.096 0.240 0.384 0.096 0.240 0.384 0.096 0.240 0.384

PLHIV 0.002 0.006 0.009 0.001 0.002 0.004 0.005 0.011 0.018

Wasted 0.056 0.140 0.225 0.056 0.140 0.225 0.056 0.140 0.225

sub-total for <5y 0.154 0.386 0.618 0.153 0.382 0.613 0.157 0.391 0.627

5-14 years

Hyperparasitaemic 0.057 0.143 0.228 0.057 0.143 0.228 0.057 0.143 0.228

PLHIV 0.001 0.004 0.006 0.001 0.001 0.002 0.003 0.007 0.012

sub-total for 5-14y 0.058 0.147 0.234 0.058 0.144 0.230 0.060 0.150 0.240

>14 years

Hyperparasitaemic 0.039 0.098 0.157 0.039 0.098 0.157 0.039 0.098 0.157
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PLHIV 0.017 0.042 0.067 0.007 0.017 0.027 0.034 0.084 0.135

Overweight 0.103 0.257 0.411 0.041 0.103 0.164 0.205 0.514 0.822

Pregnant 0.064 0.159 0.255 0.025 0.064 0.102 0.127 0.318 0.509

sub-total for >14y 0.223 0.556 0.890 0.112 0.282 0.450 0.405 1.014 1.623

Overall TOTAL failures 0.435 1.089 1.742 0.323 0.808 1.293 0.622 1.555 2.490

196

197

198 Fig 2. Estimated number of excess treatment failures in millions for different baseline treatment 

199 efficacy assuming Hazard Ratio (HR) of 1.2, 1.5 and 2.0 in patients living with HIV (PLHIV), 

200 overweight adults, and pregnant women.

201

202 Three of the five IPD meta-analyses consistently identified that children <5 years of age with 

203 uncomplicated malaria but without the above-mentioned risk factors were also at the increased risk 

204 of treatment failure when compared to adults (HR 2.68 [95%CI: 1.87-3.85], supplementary material 

205 p21-24) and were associated with an estimated additional number of failure rates of 1.050 - 4.202 

206 million for ACPRs between 98% and 92%.

207

208 Discussion

209 This study estimated that nearly one in four uncomplicated Pf malaria patients in Africa are within a 

210 sub-population of patients considered at risk of sub-optimal ACT dosing by the WHO [1]. We estimated 

211 that excess annual treatment failures could range between 0.32 to 1.29 million, 0.44 to 1.09 million 

212 and 0.62 to 2.49 million individuals in the five identified sub-populations with an ACPR of 98%, 95% 

213 and 92%, respectively.

214 Until optimised dosage regimens are defined for these groups, the close monitoring of treatment 

215 response in all those at risk of sub-optimal dosing will become paramount to successfully limit the 
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216 emergence and spread of artemisinin- and partner drug- resistant parasite strains on the African 

217 continent. This is especially important at a time when clinically significant artemisinin resistance has 

218 been confirmed in at least three African countries [13] and when acquired immunity is waning in 

219 regions successfully controlling the overall malaria burden [17]; and is part of the new WHO strategy 

220 to minimize the threat and impact of antimalarial drug resistance in Africa [13].

221 Patients with uncomplicated hyperparasitaemia accounted for 13.2 million, or 8.6%, of estimated 

222 uncomplicated malaria cases and are the largest contributor of estimated excess treatment failures. 

223 In this study uncomplicated hyperparasitaemia was defined as >100,000 parasites/µL, based on two 

224 meta-analyses defining this as the threshold for an increased risk of treatment failure [22, 23] and its 

225 proportion based on a meta-analysis on 56,000 individual patients’ data that included 29 African 

226 countries in low, moderate, and high malaria transmission areas [24]. This proportion however may 

227 be an underestimation as patients with this level of parasitaemia are often excluded from 

228 uncomplicated malaria clinical trials [19]. Patients with uncomplicated hyperparasitaemia and without 

229 other clinical signs of severity are an important reservoir of de-novo resistance [25]. Additionally, 

230 inadequate treatment may aggravate the patient’s clinical condition and increase risk of death [26]. 

231 Although severely ill hyperparasitaemic patients are likely to be hospitalised and treated parentally, 

232 recognising a patient with isolated uncomplicated hyperparasitaemia is challenging as diagnosis is 

233 usually made by qualitative malaria rapid diagnostic tests and without microscopic confirmation of 

234 parasite density. These patients are thus likely to receive a standard oral ACT dosage regimen that 

235 may be insufficient to reduce their high parasite biomass thus increasing the risk of recrudescence 

236 [25]. Once the diagnosis of uncomplicated hyperparasitaemia is made then the treatment remains 

237 problematic as evidence to date to support, e.g. increasing the ACT duration, is insufficient [14, 27]. 

238 Malaria and undernutrition often coincide in Africa, where approximately 1 in 3 children under 5 years 

239 of age are underweight, supplementary material p25. The risk of malaria and treatment failure 

240 according to nutritional status remains complex [28]. Furthermore, malnutrition may worsen the 

241 severity of malaria and increase the risk of malaria deaths [29] and acutely undernourished (wasted) 
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242 children are at an increased risk of ACT treatment failure [30]. This is reflected within the current WHO 

243 malaria treatment guidelines when referring to children “malnourished” as being at risk of sub-optimal 

244 dosing. In 2019, a year prior to the COVID-19 pandemic, an estimated 12.7 million children <5 years 

245 of age in Africa were acutely malnourished, of whom 3.5 million were considered severely wasted 

246 (weight-for-height Z-score <-3SD) and at higher risk of infection, complications and death [31]. The 

247 many social, economic, and health-related disruptions triggered by the COVID-19 pandemic alongside 

248 the current food shortage due to the war in Ukraine aggravate the nutritional status of an additional 

249 1.46 million children in Africa [32]. The present study estimates that 2.5 million moderately (weight-

250 for-height Z-score <-2SD) wasted children <5 years of age suffer from uncomplicated malaria; unless 

251 they present with danger signs or complications from their malnutrition status, these children are 

252 likely to be treated with ACTs including those in nutrition rehabilitation [33]. There is strong evidence 

253 from studies conducted in Mali and Niger that severely wasted children, treated with a full course of 

254 artemether-lumefantrine and high-fat nutritional supplements, have decreased drug exposure and a 

255 higher risk of reinfection compared to those who are well-nourished [34]. Importantly, even mild 

256 wasting (weight-for-height Z-score <-1SD) increases the risk of treatment failure to the above 

257 estimates underestimate the total effects of wasting on ACT treatment failure [30]. Furthermore, in 

258 the WWARN individual pharmacokinetic-pharmacodynamic data analysis of patients treated with 

259 artemether-lumefantrine, underweight (weight-for-age Z score <-2 SD) children under 3 years of age 

260 had a 23% [95%CI 1; 41] lower day 7 lumefantrine concentration [35] and underweight African children 

261 <3 years of age had a higher risk of treatment failure (HR 1.66 [95%CI 1.05; 2.63]) compared to 

262 adequately-nourished children of the same age [23]. Improving our understanding of the complex 

263 interactions between nutritional status, antimalarial drug absorption and ACT efficacy is paramount 

264 to improve clinical management of these patients and avoid preventable treatment failures and 

265 increasing antimalarial resistance. 

266 In this study, persons who are overweight accounted for an estimated 10.3 million, or 6.7% of all 

267 estimated uncomplicated malaria cases, the second largest risk group. The pharmacological profile of 
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268 lipophilic antimalarial drugs in overweight or obese people may be altered. One small recent 

269 pharmacokinetic study on healthy males showed non-significantly lowered artemether-lumefantrine 

270 plasma drug concentrations with higher body-weight, but was likely underpowered with only 7 

271 overweight and 3 obese participants included [36]. Publications evaluating their risks of sub-optimal 

272 dosing [37], recrudescence or even severity are still too sparse to provide reliable estimates of effect, 

273 which is expected to vary with both the degree of obesity, antimalarial used, and level of immunity 

274 among adults enrolled. One study conducted in Sweden retrospectively reviewed medical charts of 

275 patients hospitalised with falciparum malaria and concluded that median body mass index (BMI) in 

276 patients with severe malaria was significantly higher (29.3 kg/m2) than for those with uncomplicated 

277 malaria, concluding obesity (BMI ≥30 kg/m2) was significantly associated with severe malaria at 

278 diagnosis [38]. A study by Hatz et al. in 165 non-immune adults reported a decreased artemether-

279 lumefantrine day-28 parasitological cure rate (93.4% [95%CI 85.3; 97.8] in patients ≥65 kg compared 

280 to those <65 kg (100% [95%CI 92.5; 100]) [39]. In principle, dosing of ACTs should be based on a target 

281 mg/kg body weight dose, but ACTs are mostly available as pre-packaged treatments based on a single 

282 adult weight-band (e.g. artemether-lumefantrine dosage is identical for anyone weighing ≥35 kg) [14]. 

283 Increasing the treatment dose or prolonging the treatment regimen [40] for overweight patients could 

284 be feasible; however, it may be challenging in some primary health care contexts. As malaria 

285 transmission intensity decreases, the age distribution of malaria morbidity and mortality burden 

286 expands, with increased prevalence of malaria in the adult population. In parallel an increase in the 

287 prevalence of overweight/obesity in African adults has also been observed [41-43]. Therefore, 

288 improving diagnosis and treatment in older age groups remains relevant to advance elimination and 

289 delay resistance [44]; thus overweight adults should be actively included in dose optimization studies 

290 to provide data on this important population.

291 PLHIV could contribute to 1.2% of all estimated uncomplicated malaria cases and between 2.6% and 

292 6.6% of estimated excess failures. As antiretroviral therapy (ART) coverage increases [45] together 

293 with a shift towards dolutegravir-based ARTs that have fewer drug-drug interactions [46], PLHIV may 
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294 become less at risk of sub-optimal ACT dosing with standard 3-day regimen; this risk remains however 

295 for those receiving rifampicin-based tuberculosis treatment or efavirenz-based ARTs [47, 48]. 

296 Furthermore, PLHIV have higher parasites densities and children infected with HIV have been reported 

297 having slower parasite clearance than HIV-free children [49]. A recent review on the role of HIV 

298 infection on malaria transmission suggests a higher risk of re-infection in population infected with HIV-

299 1 [50].

300 The current WHO Malaria guidelines for treating uncomplicated malaria in pregnancy recommend 

301 that artemether-lumefantrine should be used in all trimesters [14]. However, artemether-

302 lumefantrine, the most widely used ACT in Africa, had a lower PCR-corrected cure rate compared to 

303 other ACTs in a large IPD meta-analysis evaluating the efficacy and tolerability of ACTs in pregnancy 

304 [51], which could be attributed to changes in the pharmacokinetics of lumefantrine during pregnancy 

305 resulting in lower drug concentration compared to non-pregnant population [52]. Longer artemether-

306 lumefantrine regimens have been tested in Thailand and in the Democratic Republic of Congo, with a 

307 higher Day-7 lumefantrine concentration compared to the standard 3-day regimen but did not show 

308 increase ACPRs [53]. Further studies to optimise antimalarial drug treatment in pregnancy are needed, 

309 as are harmonised antimalarial therapeutic efficacy assessments in pregnancy studies [54]. 

310

311 Study limitations and assumptions

312 This study provides an estimate of the significant magnitude of the population at risk of sub-optimal 

313 dosing living in 41 African countries; those estimates are based on the latest malaria and population 

314 data openly available and are derived from several sources with some assumptions. Assumptions 

315 made to evaluate the number of treatment failure and the proportion of excess treatment failure for 

316 each sub-population evaluated. Estimates have been calculated assuming an equal risk for everyone 

317 in a population sub-group and an equal risk by age category within that sub-group. The estimated 

318 incidence of severe malaria cases from 2015 was applied to calculate uncomplicated episodes from 

319 the 2020 total malaria data reported by WHO although malaria trends were decreasing until 2019. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.24.23290481doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290481
http://creativecommons.org/licenses/by/4.0/


17

320 Recent IPD meta-analysis were not available for each population category nor were exclusively 

321 evaluating treatment failure risk in Africa. Risks of treatment failure associated with multiple factors 

322 could not be evaluated (e.g., hyperparasitaemia in pregnancy). Because sub-group populations and 

323 malaria endemicity levels were extracted at country level, granularity of risk may have been lost 

324 including level of transmission or impact of seasonality. We did not account for the quality of 

325 antimalarials (either substandards or falsified), the impact of other co-morbidities on the drug 

326 absorption, the impact of drugs other than antiretrovirals e.g. antituberculosis drugs or the true 

327 adherence to the treatment. We believe that the majority of our assumptions are likely to 

328 underestimate the true overall impact of under-dosing, so provide a “best case” scenario. 

329

330 Conclusion

331 This study estimates that nearly 1 in 4 people with uncomplicated confirmed malaria in Africa are at 

332 risk of sub-optimal antimalarial drug dosing. This is the first attempt to quantify this issue, which poses 

333 a serious threat to malaria control efforts. Adequate antimalarial drug dosing is essential for both 

334 maximising cure rates and the prevention or delay of resistance emergence or its expansion. 

335 Optimised drug dosing or longer treatment duration of currently used ACTs may be needed in those 

336 at risk of sub-optimal antimalarial drug dosing. The largest contribution to the excess number of 

337 treatment failures came from hyperparasitaemic patients. A malaria diagnosis that includes a 

338 quantitative or semi-quantitative parasite count at all levels of health care would be of great public 

339 health value to identify patients with uncomplicated hyperparasitaemia who should receive an 

340 adapted treatment. New antimalarials should be evaluated to provide sufficient drug concentrations 

341 not only in otherwise healthy adults, but also to all at risk sub-populations that carry a high malaria 

342 burden.  

343
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