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ABSTRACT: A 1349 nucleotide fragment of the RNA2 from a nodavirus affecting Atlantic halibut Hip- 
poglossus hippoglossus was characterised and the nuclotide sequence (accession no, AJ245641) was 
employed to develop an optimal reverse-transcriptase polymerase chain reaction (RT-PCR) detection 
assay. The sequenced part of the RNA2 of Atlantic halibut nodavirus (strain AH95NorA) was highly 
similar in organisation to that of the RNA2 of striped jack nervous necrosis virus (SJNNV), and com- 
prised features common to all nodaviruses. These characteristics confirmed that the virus that causes 
viral encephalopathy and retinopathy (VER) in Atlantic halibut is a nodavirus. The nucleotide 

sequence of the 1349 nucleotide fragment of Atlantic halibut nodavirus RNA2 was 80% identical to the 
RNA2 of SJNNV. The T2 region (830 nucleotides) of the RNA2 of Atlantic halibut nodavirus shared 
98% of the nucleotide sequence when compared with the homologous region of barfin flounder ner- 
vous necrosis virus (BFNNV), while the nucleotide sequence identity to SJNNV in this region was 76 %. 

Phylogenetic analysis based on the nucleotide sequences of the T4 region (421 nucleotides) of Atlantic 
halibut nodavirus and of other fish nodaviruses revealed a close relationship to the nodaviruses of the 

barfin flounder clad that have been found in other cold-water species (Pacific cod Gadus macro- 
cephalus and barfin flounder Verasper mosen). The nucleotide sequence of the RNA2 of Atlantic hal- 
ibut nodavirus included some features that differ from that of SJNNV. The ORF of the RNA2 of Atlantic 
halibut nodavirus lacked 6 nucleotides through a slngle deletion and a 5-nucleotide deletion, separated 
by 4 nucleotides. The 3'-non-encoding region contained a 21 nucleotide insert and a 3 nucleotide dele- 
tion when compared with SJNNV. In comparison with the RNA2 of SJNNV, the 3'-non-encoding region 
showed a nucleotide sequence identity of 84.5%. A primer set based on the Atlantic halibut nodavirus 
nucleotide sequence was employed in order to design an optimal RT-PCR. The detection limit of the 
PCR was 10 to 100 copies of plasrnid, while the detection limit of the RT-PCR assay was 100 to 1000 
copies of in vitro transcribed viral RNA. 
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INTRODUCTION 

The viruses of the Nodaviridae are pathogenic to 

insects and fish. Fish nodaviruses cause the disease 

viral encephalopathy and retinopathy (VER), also 

known as viral nervous necrosis (VNN), which affects 

a variety of farmed marine teleosts (Munday & Nakai 

1997) and often results in high mortality, particularly in 

the larval and juvenile stages. VER is characterised by 

the high neurovirulence of the fish nodaviruses, and 
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lesions comprised of cellular vacuolation and neuronal 

degeneration may be found in the brain, retina, spinal 

cord and ganglia. 

Most of our knowledge of the structure and molecu- 

lar biology of the Nodaviridae has been obtained from 

studies of viruses isolated from insects (for review see 

Schneeman et al. 1998). The virions are unenveloped 

and have icosahedral capsids with diameters ranging 

from 25 to 30 nm. Their genomes consist of 2 molecules 

of messenger sense RNA, both of which are encapsi- 

dated in the same virion. RNAl (3.1 kb) carries a gene 

that encodes the putative RNA-dependent RNA poly- 

merase (Protein A). RNA2 (1.4 kb) contains a main 

open reading frame encoding the capsid protein pre- 

cursor a,  which is cleaved to the capsid proteins P and 

y during viral maturation in insect nodaviruses. In 

addition, a subgenomic transcript of RNAI, RNA3, 

which encodes a non-structural protein (Protein B) ,  is 

present in the infected cell. 

The nucleic acids and structural proteins of the 

nodaviruses affecting striped jack Pseudocaranx den- 

tex (striped jack nervous necrosis virus [SJNNV]), 

European sea bass Dicentrarhcus labrax (D. labrax 

encephalitis virus [DlEV]) and barramundi L. calcar- 

ifer (Lates calcarifer encephalitis virus [LcEV]) have 

been partially characterised (Mori et  al. 1992, Comps 

et al. 1994) and these viruses belong to the Noda- 

viridae. The complete RNA2 of SJNNV and DlEV have 

been sequenced, and like insect nodaviruses they con- 

tain a main open reading frame that encodes the cap- 

sid protein (Nishizawa et al. 1995, Delsert et al. 1997). 

Although fish nodaviruses seem to be highly similar to 

insect nodaviruses in the organisation of genomic RNA 

and in other physical properties, the RNA2 of insect 

and fish nodaviruses share a low nucleotide sequence 

identity (Nishizawa et al. 1995, Delsert et  al. 1997). 

Furthermore, capsid protein processing seems to differ 

between the groups, supporting the notion that fish 

nodaviruses possess unique features and constitute a 

group distinct from the insect nodaviruses (Delsert 

et al. 1997). Comparisons between the nucleotide se- 

quences of a variable region (T4) of the viral capsid 

protein gene of more than 20 nodavirus strains showed 

that these may, according to this criterion, be divided 

into 4 major clads: the striped jack clad, the redspotted 

grouper clad, the tiger puffer clad and the barfin floun- 

der clad (Nishizawa et al. 1997). The RNA2 of a noda- 

virus from European sea bass from the Mediterranean 

was found to have a sequence 99.5% identical to that 

of viruses of the redspotted grouper clad found in 

Japan (Sideris 1997), while a nodavirus affecting Euro- 

pean sea bass from the Atlantic coast of France (Thiery 

et al. 1999) could not be assigned to any of these clads. 

The significance of the genetic diversity among fish 

nodaviruses is unclear. Although it has been demon- 

strated that nodaviruses with distinct genomes may 

infect the same teleost species (Nishizawa e t  al. 1997, 

Thiery et al. 1999), evidence of a restricted host range 

or adaptation to different temperature optima has been 

presented (Totland et al. 1999). , 
Since 1995, incidences of high mortality associated 

with a nodavirus-like agent have been reported from 

juvenile rearing facilities for Atlantic halibut Hippo- 

glossus hippoglossus in Norway. The virus detected in 

Atlantic halibut is morphologically indistinguishable 

from other fish nodaviruses, and it cross-reacts with 

polyclonal antisera raised against SJNNV and DlEV 

(Grotmol et al. 1997). The primary aim of the present 

study was to further characterise the virus by investi- 

gating its genetic relationship to other fish nodaviruses 

by comparing the sequences of their capsid protein 

genes, and by characterising a recombinant partial 

capsid protein. 

In diagnostic, epidemiologic and scientific work sen- 

sitive and reliable detection methods for nodavirus are 

essential. A reverse-transcriptase polymerase chain 

reaction (RT-PCR) (Nishizawa et al. 1994) has been 

designed to detect SJNNV, but this method has proved 

to be suboptimal for other nodavirus strains (Thiery et 

al. 1999). In addition, it is possible to detect certain 

nodavirus strains by means of a fish cell line (SSN-1) 

derived from striped snakehead Channa striatus 

(Frerichs et al. 1996), but the Atlantic halibut nodavirus 

does not replicate efficiently in these cells (Grotmol 

unpubl. results). The second aim of our study was to 

utilise the RNA2 sequence acquired to develop a sen- 

sitive RT-PCR for detection of the nodavirus affecting 

Atlantic halibut, thus expanding the repertoire of diag- 

nostic tools available. 

MATERIALS AND METHODS 

Virus source. Dead and moribund Atlantic halibut 

juveniles were collected from a commercial rearing fa- 

cility in the western part of Norway during an outbreak 

of high acute mortality. The fish were stored a t  -80°C. 

Histopathological and irnrnunohistochemical examina- 

tion revealed lesions typical of VER as described by 

Grotmol et al. (1997). Eyes and brains were dissected 

free and used as source of viral RNA. The nodavirus 

strain from this outbreak was denoted AH95NorA. As a 

positive control, striped jack larvae infected with SJNNV 

strain SJ93Nag (Nishizawa et al. 1997) were utilised. 

RT-PCR amplification and cloning. Total RNA was 

extracted from the brains and eyes of the Atlantic hal- 

ibut and from whole striped jack larvae (75 mg of tis- 

sue) using ~r izo l@ Reagent (Life Technologies, New 

York, USA) according to the protocol provided by the 

manufacturer. Target region 2 (T2) of the capsid pro- 
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Atlantic halibut nodavirus RNA2 
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Fig. 1 Schematic map of the nodavirus RNA2, RT-PCR 
products and corresponding primers 

tein genes (Fig. 1) of the 2 nodaviruses were amplified 

using an RNA-PCR kit (Perkin Elrner, CT, USA) as 

described by Nishizawa et al. (1994) using the modi- 

fied primers F1 exp (5'-aaacatatg-GGATTTGGACGT- 

GCGACCAA-3') and R3 exp (5'gctaagcttca-CGAGT- 

CAACACGGGTGAAGA-3'). The sense primer F1 exp 

(nt 155-174) included 6 additional nucleotides as a 

Linker composing the Nde I recognition site in addition 

to the initiation codon (atg), while the antisense 

primer, R3 exp, had 11 additional nucleotides of linker 

containing the Hind I11 recognition site and termina- 

tion codon. Target region 6 (T6) (Fig. 1) was amplified 

using the sense primer VNN-F5 (5'-ATGGTACGCAA- 

AGGTGA-3') and antisense primer VNN-R3 (5'GGC- 

CATTTAACCACATG-3') (Nakai et al. 1995). The RT- 

PCR procedure was performed as above with the 

exception of a higher concentration of MgC12 (2.5 mM) 

and an annealing temperature of 50°C. The amplified 

products were analysed by 1.5 % agarose gel electro- 

phoresis. The T2 and T6 regions were cloned into the 

pCR-Script SK(+)  vector using the pCR-Script cloning 

kit (Stratagene Inc., CA, USA) utilising the manu- 

facturer's protocol, and the plasmids were denoted 

pAHT6 and pAHT2, respectively. 

Sequence determination. The cloned PCR products 

were sequenced by means of the AB1 dye primer cycle 

sequencing kit (Perkin Elrner), an automatic thermal 

cycler and the AB1 auto sequencer A737-36, used ac- 

cording to the manufacturer's recommended proce- 

dures. The sequences were obtained by sequencing 

serveral cDNA clones in both directions according to 

standard procedures and the sequences were assem- 

bled and analysed with the Mac Dnasis program 

(Hitachi Software Engineering, CA, USA). 

Sequence alignment and phylogenetic analysis. The 

sequence of the T2 region was compared with pre- 

viously published homologous sequences of SJNNV, 

the tiger puffer nervous necrosis virus (TPNNV), red- 

spotted grouper nervous necrosis virus (RGNNV) and 

barfin flounder nervous necrosis virus (BFNNV) (Nishi- 

zawa et al. 1995). A dendrogram based on the T4 

sequence (Fig. 1) of the nodavirus from Atlantic halibut 

and the T4 sequences of 25 other fish nodaviruses 

(Nishizawa et al. 1997) was generated using the 

Clustral W (Thompson et al. 1994) and the TreeView 

(Roderic 1996) computer programs. 

Design of RT-PCR detection. Based on the sequence 

of the RNA2 from AH95NorA, new primers were 

designed using the VectorNTI software (InforMax, 

Bethesda, USA). These primers, designated AH95-F1 

(5'-AGTGCTGTGTCGCTGGAGTG-3') and AH95-R1 

(5'-CGCCCTGTGTGAATGTTITG-3'), generate a PCR 

fragment of 341 b p  (T7) (Fig. 1). The PCR Optimisation 

Kit from Boehringer Mannheim (Ingelheim, Germany) 

was used to optimise the reaction regarding MgC12 

concentration and pH. The result was the following 

procedure for the RT reaction: 1 p1 of RNA isolated 

by the TriZol method described above was added to 

9 p1 RT-reaction mix containing (final concentrations) 

50 mM KCl, 10 mM Tris-HC1 (pH 8.3), 5 mM MgCl,, 

10 pM Random Hexamer primers (Perkin Elmer), 2 mM 

each of dATP, dCTP, dGTP, dTTP, 1 unit RNase in- 

hibitor (Perkin Elmer) and 2.5 units MuLV RT (Perkin 

Elmer). The mixture was incubated at 22OC for 10 min, 

at 42°C for 5 min, and finally at 95OC for 10 min. 

For the PCR, 10 p1 of the RT reaction fluid was added 

to 40 p1 PCR reaction mix containing 50 mM KC1, 

10 mM Tris-HC1 (pH 8.3), 1.25 mM MgC12, 0.25 pM of 

each of the primers AH95-Fl/AH95-RI, and 1.25 units 

AmpliTaq DNA polymerase (Perkin Elmer). The mix- 

ture was heated to 95'C for 2 min, and then submitted 

to 30 cycles each of 50 S at 95, 56 and 72OC, respec- 

tively. Finally, the reaction was heated to 72°C for 

5 min and then cooled to 4°C. An aliquot of 7 p1 of the 

reaction volume was added to sample buffer and run 

on a 1 % agarose gel in TBE buffer using standard 

methods (Sambrook et al. 1989). 

Sensitivity of the PCR amplification. From a starting 

concentration of 1 pg pl-l, the plasmid pAHT6 was 10- 

fold serial diluted. Samples containing from 101° to less 

than 1 copy of the plasmid molecule were subjected to 

PCR, employing similar conditions as for the RT-PCR 

described above. Samples of 7 p1 of the 50 p1 reaction 

volumes were then subjected to 1 % agarose gel elec- 

trophoresis in TBE buffer. 

In vitro transcription of viral RNA. The plasmid 

pAHT6 was linearised by Bgl I1 digestion (Fig. 2) and 

purified by means of a Qiaquick Nucleotide Removal 

kit (Qiagen, Basel, Switzerland). RNA was in vitro 

transcribed using T? polymerase and the RiboMAX 

Large Scale Production System from Promega (Madi- 

son, WI, USA) according to the procedure supplied by 

the manufacturer, except that the RNA at the final 

step was purified using TriZol. The RNA was treated 

with DNase and the presence of template DNA was 

controlled by PCR. The concentration of RNA was de- 

termined by measuring the optical density at 260 nm 
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Fig. 2. (above and facing page) Alignment of the cDNA nucleotide sequence and the deduced amino acid sequence of the RNA2 
from the nodavirus strains SJOri (Nishizawa et al. 1995) and AH95NorA constructed by the Clustral W program. *Nucleotides or 
amino acids identical to those in the same positions in SJOri. (-) Nucleotide gaps. Asp75 (D75) is in bold and represents a cat- 
alytic residue conserved among all nodaviruses. Two stretches of Arg residues also common to all nodaviruses are m r l i n e d  
and in bold, and are assumed to participate in the binding of the genomic RNA to the internal capsid wall. The Bgl I1 site where 

the in vitro RNA transcription terminated is indicated and underlined. The Genbank accession number is A5245641 

a n d  t h e  number  of RNA molecules ml-' w a s  calcu- 

la ted.  T h e  RNA w a s  s tored in T E  buffer ( p H  8.0) a t  

-80°C. 

Sensitivity of t h e  RT-PCR assay. Ten-fold dilutions of 

in vitro transcribed RNA, starting with 108 copies of 

RNA molecules sample- ' ,  w e r e  subjected to the  RT- 

PCR amplification a s  described above.  Random primers 

w e r e  used  for t h e  RT reaction a n d  AH95-Fl/AH95-R1 

for t h e  PCR amplification. Samples  of 7 p1 of t h e  50 p1 

reaction volumes w e r e  subjected to 1 % agarose  ge l  

electrophoresis i n  TBE buffer. 

Expression of recombinant  T2 protein. T h e  T2 insert 

of t h e  pAH95T2 w a s  exer ted  b y  applying Nde I a n d  

H i n d  I11 restriction enzymes  with recognition sites in the  

linker sequences  of t h e  forward a n d  reverse PCR 

primers. T2 exerts w e r e  Ligated into a n  expression vector 
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plasmid, PET-25b (+) (Novagen, WI, USA), using the 

DNA Ligation High I t  (Toyobo, Osaka, Japan) ac- 

cording to the manufacturer's instructions. The resulting 

plasmid construct was denoted pAHT2 exp. The plasmid 

was used to transform Escherichia coli (BL21) and clones 

containing the expression plasmid with the partial cap- 

sid protein gene ORF (T2 region) were cultured in LB 

medium (1 % Bacto-tryptone, 0.5 % Bacto-yeast extract, 

l % NaC1, pH 7.4) with 50 pg rnl-' ampicillin. The cells 

were induced by resuspension in fresh LB medium 

containing 50 pg rnl-' ampicillin and 1 mM isopropylthio 

P-D-galactoside (IPTG). Following incubation at 37°C for 

3 h, the cells were washed and resuspended in 50 mM 

Tris-HC1 (pH 8.0) - 2mM EDTA solution. After addition 

to 100 pg ml-' lysozyme and 0.1 % (V/V) Triton X-100, 

the cell suspension was incubated at 30°C for 15 rnin and 

then sonicated until the solution lost its viscosity. The in- 

soluble fraction containing the induced T2 expression 

protein was washed twice by centrifugation (12 000 X g, 

15 min, 4°C) and resuspended into 50 mM Tris-HC1 

(pH 8.0) - 2mM EDTA solution. 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

and Western blot. The insoluble protein fraction from the 

induced BL21 cells and uninduced controls was subrnit- 

ted to SDS-PAGE (12 % gel) under the reducing condi- 

tions of Laemrnli (1970) and the relative amount of re- 

combinant protein from both SJ93Nag and AH95NorA 

was analysed by gel scanning and the Molecular Analy- 

sis Software (Bio-Rad, CA, USA), and found to be nearly 

identical. The Western blot was performed by electro- 

blotting the proteins to nitrocellulose membranes as 

described by Towbin et al. (1979). The membranes were 

incubated at  room temperature for 2 h with a polyclonal 

rabbit antiserum against SJNNV and positive pro- 

tein bands were visualised by alkaline phosphatase- 

conjugated antibodies, bromochloroindolyl phosphate 

(X-phosphate) and nitroblue tetrazolium (NBT). 

RESULTS 

Nucleotide sequence 

The sequenced fragment of the RNA2 from the At- 

lantic halibut nodavirus (strain AH95NorA) was highly 

similar in organisation to that of the SJNNV RNA2, and 

seemed to contain 1 main open reading frame (ORF) 

(Figs. 1 & 2). Comparison with the nucleotide sequence 

of the 1349 base fragment from the Atlantic halibut 

nodavirus indicated an 80% identity to the nucleotide 

was identified (Fig. 2). This residue represents part of a 

catalytic site which is involved in capsid protein cleav- 

age in insect nod.aviruses. TWO stretches of arginine 

residues common to all nodaviruses were also identi- 

fied. These basic residues are assumed to participate in 

the binding of the genomic RNA to the internal capsid 

wall. Adjacent to these arginines a number of other 

negatively charged amino acid residues were present. 

The nucleotide sequence of the RNA2 of Atlantic hal- 

ibut nodavirus contained a number of features that dif- 

fer from that of SJOri. From nucleotide 716 (referring 

to SJOri, Fig. 2), the Atlantic halibut nodavirus lacked 

6 nucleotides, consisting of a single deletion and a 

5-nucleotide deletion, separated by 4 nucleotides 

(Fig. 2). In the codons between nucleotide 225 and 

nucleotide 260, l l out of 12 codons had base substitu- 

tions in the third position which resulted in only 1 alter- 

ation in the amino acid sequence. The 3'-non-encoding 

region contained an additional 21 nucleotides from 

position 11 12 and a 3-nucleotide deletion from position 

1255 when compared to SJOri. In comparison with the 

RNA2 of SJOri the 3'-non-encoding region showed a 

nucleotide sequence identity of 84 .S %. 

The T2 region (830 nucleotides) of the Atlantic halibut 

nodavirus RNA2 had a nucleotide sequence that was 

practically identical (98.4 %) to that of the T2 region of 

the BFNNV, while the nucleotide sequence identity to 

the SJNNV in this region was 76% (Table 1). When 

the T4 region (421 nucleotides) of the Atlantic halibut 

nodavirus was compared with 25 other nodavirus 

strains, the nucleotide sequence identity ranged from 

66 to 98%, while the identity in the deduced amino 

acid sequence ranged from 70 to 97 % (Table 2). The 

T4 nucleotide sequence from the Atlantic halibut strain 

showed identities of 97.9 and 98.2% to nodavirus 

strains from barfin flounder and Pacific cod, respec- 

tively, while the identity to the strains of the striped 

jack group was approximately 66% (Table 2). In the 

molecular dendrogram the Atlantic halibut nodavirus 

formed a clad together with the nodaviruses from 

barfin flounder and Pacific cod (Fig. 3). 

Table 1. Nucleotide and amino acid sequence s d a r i t i e s  

of the T2 region of the Atlantic halibut nodavirus (AH95NorA) 

and nodavirus strains from other teleosts (data from Nishi- 

zawa et al. 1995). (SJNNV = striped jack nervous necrosis 

virus; TP = tiger puffer; BF = barfin flounder; JF = Japanese 

flounder; RG = red spotted grouper) 

AH95NorA 
Nucleotide level Amino acid level 

in position 75 (D75) that is common to all nodaviruses 

sequence of the RNA2 of the SJNNV (strain SJOri, 

Nishizawa et al. 1996) (Fig. 2) .  In the ORF a nucleotlde 

sequence identity of 78.7 % to SJOri was found. In the 

deduced amino acid sequence an aspartic acid residue 

SJNNV 75.51 
TPNNV 75.96 

BFNNV 
JFNNV 

98.43 
82.77 

RGNNV 82 29 
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Table 2. Nucleohde and predicted amino acid sequence identity of the T4 region of the Atlantic halibut nodavirus to other 

fish nodaviruses (data from Nishizawa et al. 1997). The different nodavirus strains are shown In the same order as in Fig. 3 from 

top to bottom 

Fig. 3. The molecular dendrogram deduced from analysis of the T4 nucleotide sequence of 26 fish nodavirus stralns based on data 

from Nishizawa et al. (1997). The dendrogram was built by the neighbour joint criteria with the Clustral W and TreeV~ew 1.0 pro- 

grams. The lengths of horizontal branches are proportional to the number of nucleotide substitutions, and the scale bar length 

indicates 0.1 nucleotide replacements site-'. Boxes indcate the major clads. From above: tiger puffer clad, striped jack clad, 

barfin flounder clad and red-spotted grouper clad. Note the Atlantic halibut nodavirus in the clad with strains from the barfin 

flounder and the Pacific cod 

Virus Source Sequence identity (%) to AH95NorA at. 

strain Nucleotide level Amino acid level 
P - - P P  

TP93Kag Tiger puffer Takifugu rubripes (Japan) 68.7 73 4 

JF95Hok Japanese flounder Paralichthys olfvaceus (Japan) 68.7 71.9 

SJOri Striped jack Pseudocaranx dentex (Japan) 66.7 71.1 

SJ91Nag Striped jack Pseudocaranx dentex (Japan) 66.4 71.1 

RS95Hir Red sea bream Pargus major (Japan) 66.1 70.3 

SJ92Nag Striped jack Pseudocaranx dentex (Japan) 66.1 70.3 

SJ93Nag Striped jack Pseudocaranx dentex (Japan) 66.1 70.3 

SJ94Nag Striped jack Pseudocaranx dentex (Japan) 66 1 70.3 

BF93Hok Barfin flounder Verasper moseri (Japan) 97.9 96.0 

PC96Hok Pacific cod Gadus macrocephalus (Japan) 98.2 96.8 

Ba94Aus Barramundi Lates calcanfer (Australia) 74.5 84.1 

JF93Hir Japanese flounder Paralichthys olivaceus (Japan) 75.9 85.7 

MR94Tha Malabar reef cod Epinephelus malabaricus (Thailand) 75.3 86.5 

RG940ka Redspotted grouper Epinephelus akaara (Japan) 76.9 86.5 

JF94 Wak Japanese flounder Paralichthys oljvaceus (Japan) 76.9 86.5 

JF950it Japanese flounder Paralichthys olivaceus (Japan) 76.9 86.5 

RG91Tok Redspotted grouper Eplnephelus akaara (Japan) 76.9 86.5 

SB95Ita Sea bass Dicentrarchus labrax (Italy) 76.6 85.7 

Umb95Ita Umbrina Umbrina sp. (Italy) 76.9 86.5 

SG94Oit Sevenband grouper Epinephelus septemfasclatus (Japan) 76.9 85.7 

JF95Tok Japanese flounder Paralichthys olivaceus (Japan) 76.9 85.7 

KG950it Kelp grouper Epinephelus moara (Japan) 77.7 86.5 

JF95Sag Japanese flounder Paralichthys olivaceus (Japan) 77.2 86.5 

PA940it Purplish ambe jack  Senola dumerilj (Japan) 77 4 86.5 

JS95Shi Japanese sea perch Lateolabrax japonicus (Japan) 77.2 86.5 

T F 9 3 K a g  

I JF95Hok 

AH95NorA - Atlant~c hallbut nodav~rus 

Ba94Aus 

0 1 

I JF93Hlr 
MR94Tha 
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RT-PCR detection assay 

Serial dilution of the plasmid pAHT6 showed that 10 

to 100 copies sample-' could be detected by the PCR 

amplification (Fig. 4A). Agarose gel electrophoresis of 

in vitro transcribed viral RNA revealed 1 major band 

with the expected molecular weight (Fig. 4B). Serial 

dilution of the in vitro transcribed viral RNA revealed 

that the lower detection limit of the RT-PCR detection 

assay was 100 to 1000 RNA copies sample-' (Fig. 4C). 

SDS-PAGE and Western blot 

SDS-PAGE analysis showed that the expression pro- 

teins from the T2 region of both the Atlantic halibut 

and the SJNNV (SJ93Nag) had a molecular mass of 

approximately 32 kDa (Fig. 5A). In Western blotting 

the anti-SJNNV serum reacted with the striped jack 

virus T2 expression protein and showed a weaker 

cross-reaction with the Atlantic halibut virus T2 ex- 

pression protein (Fig. 5B). Uninduced controls did not 

react in the Western blot (data not shown). 

DISCUSSION 

Sequence analysis 

Viral encephalopathy and retinopathy (VER) in 

larval and juvenile Atlantic halibut associated with a 

nodavirus-like agent has been reported previously 

(Grotmol et al. 1997, 1999). The significant level of 

nucleotide sequence identity between the RNA2 of the 

Atlantic halibut nodavirus and SJNNV confirms that 

these virus strains are closely related and that the 

causative agent of VER in the Atlantic halibut, as 

in other teleost species (Nishizawa et al. 1995, 1997, 

Delsert et a1 1997, Munday & Nakai 1997, Sideris 1997, 

Thiery et al. 1999) is a nodavirus. 

Phylogenetic analysis based on the nucleotide se- 

quence of the T4 region, which has high nucleotide 

sequence variability between strains, indicates that 

the Atlantic halibut nodavirus is closely related to the 

nodaviruses of the barfin flounder clad (Nishizawa et 

al. 1997). This clad comprises nodaviruses found in 

Pacific cod Gadus macrocephalus and barfin flounder 

Verasper mosen, which are also cold-water species. 

The nodaviruses within this clad are found in Pacific 

and Atlantic Oceans, respectively. One possible expla- 

nation of this phenomenon is that the nodavirus strains 

that belong to the barfin flounder clad may be adapted 

to replication at low temperature through selection 

and may have spread naturally among cold-water spe- 

cies in the oceans of the northern hemisphere. Alterna- 

tively, the nodavirus may have moved from the Pacific 

to the Atlantic Ocean or vice versa in the process of fish 

exports or through other human activities. Although it 

cannot be excluded, it is not probable that the BFNNV 

and AH95NorA, which have nearly identical nucleo- 

tide sequences (98.4 %) in the T2 region, have evolved 

independently in Japan and Norway. Further charac- 

terisation of the complete genomes and mutation rates, 

but also possible host ranges or temperature adapta- 

Fig. 4. Agarose gel electrophoresis. (A) Sensitivity of PCR using serial dilutions of the plasmid pAHT6 as template. The number of 

plasmid copies per reaction for each lane was as follows: (1) 10", (2) log, (3) 108, (4) lo7, (5) 106, (6):105, (7) lo4, (8) lo3, (9) 102 M: 
DNA marker 0x1 74 Hae 111. (B) In vitro transcribed viral RNA. (C) Sensitivity of the RT-PCR assay using in vitro transcribed viral 

RNA as template The number of RNA copies per reaction for each lane was as follows: (1) 108, (2) 107, (3) 10" (4)  105, (5) 104, 

(6) 10" ( (7)  10'. M: DNA marker 0x174 Hae 111 
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Fig. 5 (A)  12% SDS-polyacrylamide gel stained with Coo- 

massy brilliant blue (CBB). (B) Western blot uslng anti-SJNNV 

rabbit serum. M:  molecular size marker, 1.  expressed T2 pro- 

tein of SJNNV, 2: expressed T2 protein of Atlantic halibut 

nodavirus. Note the 2 bands in the Western blot, which proba- 

bly represent a monomer and a dirner form of the T2 expres- 

slon proteins 

tions of the fish nodaviruses is necessary for a more 

thorough understanding of their relationship and epi- 

demiologies. 

As in the SJNNV, the RNA2 of Atlantic halibut 

nodavirus possesses a long 3'-non-encoding tail which, 

when compared to the sequence of the SJOri, is con- 

served and may imply an important functional or struc- 

tural role of this region in fish nodaviruses. 

RT-PCR assay 

At present nodaviruses may be detected using RT- 

PCR (Nishizawa et  al. 1994, Thiery et al. 1999), im- 

munological methods such as immunohistochemistry 

(Grotmol et al. 1999) or ELISA (Arimoto et  al. 1992) and 

the striped snake head (SSN-1) cell line (Frerichs et al. 

1996). The latter method may detect some nodavirus 

strains, but the Atlantic halibut nodavirus, for instance, 

does not replicate efficiently in these cells (Grotmol 

unpubl. results). The detection of viral genomes using 

RT-PCR may be hampered by the high degree of speci- 

ficity of the method. The presence of sequence varia- 

tion within fish nodaviruses may result in mismatches 

between the primers and the sequences of their puta- 

tive binding sites, causing variation in sensitivity or 

even failure of detection (Nishizawa et al. 1996, Thiery 

et al. 1999). Established RT-PCR methods (Nishizawa 

et al. 1994, Thiery et al. 1999) are  based on specific 

nodaviral genomes and may be suboptimal for other 

nodaviruses. Our results indicate that there are mis- 

matches between published primers and the genome 

of the Atlantic halibut nodavirus, necessitating a more 

specific RT-PCR assay. The problems associated with 

the specificity of RT-PCR detection of fish nodaviruses 

may be solved in the future if primers can be con- 

structed that match highly conserved regions of the 

genomes, for instance if these are  present within 

RNA 1. 

SDS-PAGE and Western blot 

The recombinant proteins encoded by the T2 region 

reacted with antiserum raised against SJNNV but the 

protein derived from the Atlantic halibut nodavirus 

seemed to have a lower affinity to the antiserum. The 

positive reaction with the T2 expression protein in the 

Western blot experimentally confirms the putative 

ORF of the capsid protein gene within the RNA2. Cur- 

rent knowledge of the nodavirus genome does not per- 

mit the identification of genetic components relating to 

specific viral phenotypical features, but the existence 

of phenotypical differences between the 2 strains 

(SJ93Nag and AH93NorA) has been experimentally 

demonstrated in infection trials (Totland et al. 1999). 

The difference in staining intensity between the re- 

combinant proteins of the 2 nodavirus strains is most 

likely due  to differences in epitopes and may suggest 

the existence of serotypes within the Nodaviridae. 

Further studies are needed to determine whether dif- 

ferences between the capsid proteins of individual 

nodavirus strains are related to host range or other 

nodavii-a1 phenotypical features. 
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