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Cyanobacterial blooms occur in lakes worldwide, producing toxins that pose a serious public health
threat. Eutrophication caused by human activities and warmer temperatures both contribute to
blooms, but it is still difficult to predict precisely when and where blooms will occur. One reason that
prediction is so difficult is that blooms can be caused by different species or genera of cyanobacteria,
which may interact with other bacteria and respond to a variety of environmental cues. Here we used
a deep 16S amplicon sequencing approach to profile the bacterial community in eutrophic Lake
Champlain over time, to characterise the composition and repeatability of cyanobacterial blooms, and
to determine the potential for blooms to be predicted based on time course sequence data. Our
analysis, based on 135 samples between 2006 and 2013, spans multiple bloom events. We found that
bloom events significantly alter the bacterial community without reducing overall diversity,
suggesting that a distinct microbial community—including non-cyanobacteria—prospers during
the bloom. We also observed that the community changes cyclically over the course of a year, with a
repeatable pattern from year to year. This suggests that, in principle, bloom events are predictable.
We used probabilistic assemblages of OTUs to characterise the bloom-associated community, and to
classify samples into bloom or non-bloom categories, achieving up to 92% classification accuracy
(86% after excluding cyanobacterial sequences). Finally, using symbolic regression, we were able to
predict the start date of a bloom with 78–92% accuracy (depending on the data used for model
training), and found that sequence data was a better predictor than environmental variables.
The ISME Journal (2017) 11, 1746–1763; doi:10.1038/ismej.2017.58; published online 19 May 2017

Introduction

Cyanobacterial blooms occur in freshwaters systems
around the world and are both a nuisance and a
public health threat (Zingone and Oksfeldt
Enevoldsen, 2000; Paerl and Otten, 2013). These
blooms are defined by a massive accumulation of
cyanobacterial biomass, formed through growth,
migration and physical–chemical forces (Paerl,
1996). In temperate eutrophic lakes, blooms tend to
occur annually, specifically during the summer
when water temperatures are warmer (Kanoshina
et al., 2003; Havens, 2008). The frequency and
intensity of these blooms is increasing over time
(Johnson et al., 2010; Posch et al., 2012), likely due to

increased eutrophication, climate change and
increased nutrient input from human activities
(O’Neil et al., 2012; Winder, 2012).

Attempts have been made to predict blooms using
hydrodynamic-ecosystem models (Allen et al., 2008;
Wang et al., 2014), artificial neural networks models
(Maier and Dandy, 2000, 2001; Wei et al., 2001), or
statistical models such as on linear regression
(Dillion and Rigler, 1974; Onderka, 2007). Never-
theless, these models have been limited in their
ability to accurately predict cyanobacterial dynamics
(Downing et al., 2001; Taranu et al., 2012), perhaps
because they mainly used abiotic factors (for exam-
ple, temperature, pH, nutrients and so on) to predict
blooms, while largely ignoring biotic factors
(Recknagel et al., 1997; Downing et al., 2001; Oh
et al., 2007). It is known that cyanobacteria interact
with their biotic environment in a variety of ways,
ranging from predator–prey interactions to
mutualistic interactions (Rashidan and Bird, 2001;
Eiler and Bertilsson, 2004; Berg et al., 2008; Li et al.,
2012; Mou et al., 2013; Louati et al., 2015;
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Woodhouse et al., 2016). Biotic factors, such as the
composition of the surrounding bacterial commu-
nity, could therefore help refine bloom prediction.
Previous studies have predicted the distribution of
other bacteria based on community structure (Larsen
et al. 2012; Kuang et al., 2016) but to our knowledge
this has not been attempted to predict freshwater
cyanobacterial blooms. Prediction based on biotic
factors is attractive because the composition of the
microbial community can be thoroughly measured
through culture-independent, high-throughput
sequencing, whereas it is not always clear which
are the relevant (or most predictive) abiotic factors
that should be measured. Moreover, the microbial
community composition may contain information
about both measured and unmeasured abiotic
variables, insofar as these variables impact the
community.

For bloom prediction based on biotic factors to be
successful, there must be some degree of repeatability
in the changes to lake bacterial community composi-
tion that precede blooms. Several studies have shown
that many aquatic microbial communities are tempo-
rally dynamic (Pernthaler et al., 1998; Höfle et al.,
1999; Lindstrom, 2000; Crump et al., 2003; Kent et al.,
2004; Shade et al., 2007; Kara et al., 2013; Fuhrman
et al., 2015), often with repeatable patterns of com-
munity structure (Fuhrman et al., 2006; Fuhrman
et al., 2015; Cram et al., 2015). Recent studies have
tracked the dynamics of microbial communities in
bloom-impacted lakes using culture-independent
sequencing methods (Eiler et al., 2012; Li et al.,
2015; Woodhouse et al., 2016a). Li et al. (2015) found
that a bloom-impacted lake returned to its initial
community composition after a period of one year.
However, all these studies were carried out over one
year or less, making it difficult to generalise the results
and make robust predictions. As highlighted by
Fuhrman et al. (2015) data should be collected over
several consecutive years to assess the repeatability of
bacterial community dynamics and to assess if
community structure follows a predictable pattern,
and over what time scales.

Blooms can be operationally defined in numerous
ways. A classic definition is simply when algal
biomass is high enough to be visible (Reynolds and
Walsby, 1975). Other bloom definitions rely on
chlorophyll concentrations (⩾20 μg l− 1), or domi-
nance of cyanobacteria (450%) over other phyto-
plankton (Molot et al., 2014). An attractive
alternative is to view cyanobacterial blooms as a
biological disturbance, measurable by their impact
on the surrounding microbial community (Shade
et al., 2012). Blooms can have a major impact on the
microbial community through both direct (for exam-
ple, microbe-microbe interactions) and indirect
effects (for example, changes to lake chemistry).
For example, blooms can reduce carbon dioxide
concentrations, increase pH and alter the distribu-
tion of biomass across the length and depth of a lake
(Verspagen et al., 2014; Sandrini et al., 2016). Such

bloom-induced changes in water chemistry could
then impact the structure and diversity of microbial
communities (Bouvy et al., 2001; Eiler and
Bertilsson, 2004; Bagatini et al., 2014; Li et al.,
2015; Woodhouse et al., 2016a). For example, as
cyanobacteria decompose, they release metabolites
that can be utilised by other taxa, such as Cytopha-
gaceae (Rashidan and Bird, 2001; O’Neil et al., 2012),
which we therefore expect to be observed in
association with blooms. Positive associations have
been observed between the genus Phenylobacterium
or members of the order Rhizobiales with the
cyanobacterial genus Microcystis (Louati et al.,
2015). However, the reasons for these interactions,
as well as their repeatability (over time) and general-
ity (across different lakes) remain unknown.

Here, we present an 8-year time course study of the
bacterial community structure of a large eutrophic
North American lake, Lake Champlain, where
cyanobacterial blooms are observed nearly every
summer. Samples were collected from 2006 to 2013
and analysed using high-throughput 16S amplicon
sequencing. We tracked the bacterial community
composition in 135 time course samples to deter-
mine how the community varies over time and how
it is impacted by blooms. Considering blooms as a
disturbance to the surrounding microbial commu-
nity (Shade et al. 2012), we defined bloom events as
a relative abundance of cyanobacteria above which
community diversity begins to decline. Blooms are
characterised both by a dominance of cyanobacteria,
but also a characteristic surrounding bacterial com-
munity. We show that the community composition
does not vary considerably from year to year, but
does vary within a year, on time scales of days to
months. As a result, community dynamics are
largely repeatable from year to year, and are in
principle predictable. Finally, exploiting the repea-
table dynamics of the lake community, we showed
that bloom events can be predicted several weeks in
advance based on the microbial community compo-
sition, with slightly greater accuracy than predic-
tions based on abiotic factors.

Materials and methods

Sampling
A total of 150 water samples were collected from the
photic zone (0–1metre depth) of Missisquoi Bay, Lake
Champlain, Quebec, Canada (45°02'45''N, 73°07'58''W).
Between 12 and 27 (median 17) samples were
collected each year, from 2006 to 2013, between April
and November of each year. Samples were taken from
both littoral (78 samples) and pelagic (72 samples)
zones (Supplementary Methods). Between 50 and
250ml of lake water was filtered depending on the
density of the planktonic biomass using 0.2-μm
hydrophilic polyethersulfone membranes (Millipore).
Physico-chemical measurements, as described in
Fortin et al. (2015), were also taken during most
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sampling events (Supplementary File: File_S1_Envir-
onmental_Table.txt). These environmental data
included water temperature, average air temperature
over one week, cumulative precipitation over one
week, microcystin toxin concentration, total and
dissolved nutrients (phosphorus and nitrogen).
Details of the sampling protocol are described in
Supplementary Methods.

DNA extraction, purification and sequencing
DNA was extracted from frozen filters by a combina-
tion of enzymatic lysis and phenol-chloroform
purification as described by Fortin et al. (2010).
Each DNA sample was resuspended in 250 μl of TE
(Tris–Cl, 10mM; EDTA, 1mM; pH 8) and quantified
with the PicoGreen dsDNA quantitation assay (Invi-
trogen, Burlington, ON, Canada). DNA libraries for
paired-end Illumina sequencing were prepared using
a two-step 16S rRNA gene amplicon PCR as
described in Preheim et al. (2013). We amplified
the V4 region, then confirmed the library size by
agarose gels and quantified DNA with a Qubit v.2.0
fluorometer (Life Technologies, Burlington, ON,
Canada). Libraries were pooled and denatured as
described in the Illumina protocol. We performed
two sequencing runs using MiSeq reagent Kit V2
(Illumina, San Diego, CA, USA) on a MiSeq instru-
ment (Illumina). Each run included negative controls
and two mock communities composed of 16S rRNA
clones libraries from other lake samples (Preheim
et al., 2013). Details of the library preparation
protocol are described in Supplementary Methods.

Sequence analysis and OTU picking
Sequences were processed with the default parameters
of the SmileTrain pipeline (https://github.com/almlab/
SmileTrain/wiki/; Supplementary Methods) that com-
bined reads quality filtering, chimera filtering, paired-
end joining and, de-replication using USEARCH
(version 7.0.1090, http://www.drive5.com/usearch/)
(Edgar, 2010), Mothur (version 1.33.3) (Schloss et al.,
2009), Biopython (version 2.7) and custom scripts.
SmileTrain also incorporates a de novo distribution-
based clustering: dbOTUcaller algorithm (Preheim
et al., 2013) (https://github.com/spacocha/dbOTUcal
ler, version 2.0), which was performed to cluster
sequences into Operational Taxonomic Units (OTUs)
by taking into account the sequence distribution across
samples. The OTU table generated was then filtered
using filter_otus_from_otu_table.py QIIME scripts
(Caporaso et al., 2010) (version 1.8, http://qiime.org/)
to remove OTUs observed less than 10 times, mini-
mising false positive OTUs (Supplementary Table 1).
Fifteen samples with less than 1000 sequences were
removed from the OTU table using filter_samples_
from_otu_table.py QIIME script, yielding a final data
set of 135 samples. Taxonomy was assigned post-
clustering using a two different approaches: (i) the
latest 97% reference OTU collection of the GreenGenes

database (release 13_8, August 2013, ftp://greengenes.
microbio.me/greengenes_release/gg_13_5/gg_13_8_otu
s.tar.gz; http://greengenes.lbl.gov), using assign_
taxonomy.py QIIME script (default parameters), and
(ii) a combination of GreenGenes and a freshwater-
specific database (Freshwater database 2016 August 18
release; Newton et al., 2011), using the TaxAss method
(https://github.com/McMahonLab/TaxAss, access
date: September 13th 2016). Taxonomy information
was then added to the OTU table using the biom add-
metadata scripts (http://biom-format.org/). We
removed OTUs that were not prokaryotes but still
present in the database (Cryptophyta, Streptophyta,
Chlorophyta and Stramenopiles orders). A total of
7 321 195 sequences were obtained from our 135 lake
samples, ranging from 1392 to 218 387 reads per
sample, with a median of 47 072. This data set was
clustered into 4061 OTUs. Of these OTUs, 4053 were
observed in littoral samples and 4042 in pelagic
samples, with 4034 in common to both sites, 19
unique to littoral and 8 to pelagic.

To evaluate the quality of the SmileTrain OTU
picking pipeline used and estimate the potential
false positive OTUs generated by the approach used,
we compared the number and identity of OTUs
obtained for two different mock communities that
were generated from plasmids containing 16S rRNA
sequences from a clone library as described on
Preheim et al. (2013). SmileTrain (using the dbO-
TUcaller algorithm) recovered 100% of the expected
OTUs in the mock community, i.e we found a perfect
match between 16S sequences from the library and
the OTU representative sequences generated post-
clustering. However we also found some false
positives (Supplementary Table 1). We removed
OTUs represented by fewer than 10 sequences in
total to minimise false positives using filter_otus_
from_otu_table.py QIIME script. (Supplementary
Table 1). After this filtering, we still recovered 97%
for Mock10 and 100% for Mock11. Details of the
post-sequencing computational pipeline are
described in Supplementary Methods, and R scripts
(for analyses described here and below) are in
Supplementary File 2 (File_S2_R_scripts.txt).

Diversity analysis
To calculate the alpha diversity, indexes known for
their robustness to sequencing depth variation were
used: Shannon diversity (Shannon and Weaver,
1949), evenness (the equitability metric calculated
in QIIME as: Shannon diversity/log2(number of
observed OTUs)), and Balance-Weighted-abundance
Phylogenetic Diversity (BWPD) (McCoy and Matsen,
2013). To assess the impact of variable sequencing
depth on these diversity measures, rarefaction curves
were made with multiple rarefactions from the
lowest to the deepest sequencing depth, at intervals
of 3000 sequences, with replacement and 100
iterations (Supplementary Figure 1) using parallel_
multiple_rarefactions.py, parallel_alpha_diversity.
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py and collate_alpha.py QIIME scripts. Alpha diver-
sity metrics were then calculated using the mean of
the 100 iterations of the deepest sequencing depth
for each sample (McMurdie and Holmes, 2014). This
approach was used to avoid losing data and to
estimate alpha diversity as accurately as possible. The
Shannon index (OTU richness and evenness) and
Equitability (evenness) were calculated using QIIME
scripts as described above. The BWPD index that
captures both the phylogeny (summed branch length)
and the relative abundance of species was
calculated using the guppy script with fpd subcom-
mand (http://matsen.github.io/pplacer/generated_rst/
guppy_fpd.html). Boxplots and statistical analyses
were performed with IBM SPSS version 22.

To calculate the beta diversity between groups of
samples (for example, months or seasons), we used a
non-rarefied OTU table to calculate two metrics that
are robust to sequencing depth variation: weighted
Unifrac (Lozupone et al., 2007) and Jensen-Shannon
divergence (JSD) (Fuglede and Topsoe, 2004;
Preheim et al., 2013). We used the phyloseq
R package (version 1.19.1) (McMurdie and Holmes,
2013) (https://joey711.github.io/phyloseq/) to first
transform the OTU table into relative abundance
(defined here as the counts of each OTU within a
sample, divided by the total counts of all OTUs in
that sample) then to calculate the square root of each
metric (JSD or weighted UniFrac) and finally to
perform principal coordinates analysis (PCoA)
(Gower, 1966). As we observed potential arch effects
with sqrt(JSD), we decided to use Nonmetric multi-
dimensional scaling (NMDS, from the phyloseq
package that incorporates the metaMDS() function
from the R vegan package, Oksanen et al., 2010.
R package version 2.4-1) (Shepard, 1962; Kruskal,
1964) plots. A square root transformation is neces-
sary here to transform weighted Unifrac (non
Euclidean metric) and JSD (semi-metric) into Eucli-
dean metrics (Legendre and Gallagher, 2001). Differ-
ences in community structure between groups (for
example, bloom vs non-bloom samples) were tested
using: (i) analysis of similarity (Clarke, 1993) using
the anosim() function. The non-parametric Analysis
of Similarity (ANOSIM; Clarke, 1993) has been used
to test if the similarity among group sample is greater
than within-group sample. If the anosim() function
returns an R value of 1, this indicates that the groups
do not share any members of the bacterial commu-
nity. (ii) Differences in community structure between
groups was also tested using permutational multi-
variate analysis of variance (PERMANOVA;
Anderson, 2001) with the adonis() function. Both
ANOSIM and PERMANOVA tests can be sensitive to
dispersion, so we first tested for dispersion in the
data by performing an analysis of multivariate
homogeneity (PERMDISP, Anderson, 2006) with
the permuted betadisper() function. In our analysis,
we observed a significant dispersion effect when
cyanobacterial sequences were included. The dis-
persion effect makes the PERMANOVA and

ANOSIM results difficult to interpret. Dispersion
mostly disappeared when we removed the cyano-
bacterial sequences, meaning that cyanobacteria
were in part responsible for the differences in
dispersion between groups. PERMANOVA, PERM-
DISP and ANOSIM were performed using the R
vegan package (Oksanen et al., 2010. R package
version 2.4-1), with 999 permutations. Beta diversity
analyses were also performed using a rarefied OTU
table (rarefied to 10 000 reads per sample) and
similar results were observed (data not shown).
Phylogenetic trees used for phylogenetic analysis
were built using FastTree (version 2.1.8, Price et al.,
2009) (http://meta.microbesonline.org/fasttree/).
Three other tree inference methods were tested,
yielding similar results to FastTree (Supplementary
Methods).

Bloom definition and K-means partitioning
Only a small subset of our samples were associated
with estimates of cyanobacterial cell counts. We
therefore estimated the relative abundance of cyano-
bacteria based on 16S rRNA gene amplicon data,
which was significantly (but imperfectly) correlated
with in situ cyanobacterial cell counts from a limited
number of samples (Supplementary Figure 6,
adjusted R2 = 0.336; F1,50 = 27.46, Po0.001). The
reason for the imperfect correlation is that, even
when their absolute numbers are low, cyanobacteria
can still dominate the community in relative terms.

To define cyanobacterial blooms, we followed the
biological pulse disturbance definition described in
Shade et al. (2012). Specifically, we defined a critical
threshold of cyanobacterial relative abundance
above which the Shannon diversity of the commu-
nity begins to decline sharply, consistent with a
major ecological disturbance (Supplementary
Figure 2). The decline in diversity is most pro-
nounced when cyanobacteria make up 20% or more
of the community, so we defined samples with 20%
cyanobacteria or more as ‘bloom samples’
(Supplementary Table 7).

As an alternative and completely independent
way of binning samples, we used the K-means
partitioning algorithm (MacQueen, 1967), implemen-
ted with the function cascadaKM() from the vegan
package in R, with 999 permutations. The OTU table
was first transformed by Hellinger transformation
(Rao, 1995) as advised in Legendre and Legendre
(1998) by using the decostand(x, method= ‘hellin-
ger’) function from R vegan package. OTU tables are
generally composed of many zeros (as is the case for
our data), which is inappropriate for the calculation
of Euclidean distance. Hellinger transformation is a
method to avoid this problem by down-weighting
low-abundance OTUs (Legendre and Gallagher,
2001). We tested the partitioning of the 135 samples
into 2 to 10 groups, based on the microbial commu-
nity composition. The Calinski-Harabasz index
(Caliński and Harabasz, 1974) was used to determine
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that our samples naturally clustered into two groups
(Supplementary Figure 3) and bloom samples
(defined as above) were all found in a single K-means
group (Supplementary Figure 5). This suggests that
the lake samples are naturally divided into two
groups and that cyanobacteria are a major distin-
guishing feature between groups.

Changes in community composition over time
In order to investigate microbial community varia-
tion over time, we first analysed the change in
Bray-Curtis dissimilarity over years. We performed
separated analyses for littoral and pelagic OTU
tables, after filtering out singleton OTUs only
observed in one sample. This yielded 3491 OTUs
for littoral samples and 3371 OTUs for pelagic
samples. These two OTU tables were transformed
to relative abundances before analysis. We calcu-
lated the Bray-Curtis dissimilarity between all pairs
of samples using the QIIME script beta-diversity.py.
We verified that distribution of Bray-Curtis dissim-
ilarity across samples was approximately normal.
Then, we used a custom script (Supplementary File:
‘File_S2_R_scripts.txt’) to group the samples based
on the amount of time (years) separating them and to
plot the mean dissimilarity of samples against their
separation in time. Error bars were determined by
calculating the standard error of the mean.

In a second approach, we used multivariate
regression tree analyses (Breiman et al. 1984;
De’ath, 2002) with different time scales: year, season,
month, week and day of the year. The goal here is to
identify the temporal variables that best explain the
variation in microbial community composition. An
analysis was performed for each temporal variable
(year, season, month or DoY) using the function
mvpart() and rpart.pca() from the R mvpart package
(Therneau and Atkinson, 1997; De'ath, 2007). Before
analysis, the OTU table was Hellinger transformed
(Rao, 1995) as advised in Ouellette et al. (2012). This
approach is particularly useful to investigate both
linear and non-linear relationships between commu-
nity composition and a set of explanatory variables
without requiring residual normality (Ouellette
et al., 2012). After 100 cross-validations (Breiman
et al. 1984), we plotted and pruned the tree using the
1-SE rule (Legendre and Legendre, 2012) to select the
least complex model, avoiding overfitting. We then
used the function rpart.pca() from mvpart package to
plot a PCA of the MRT.

Taxa–environment relationships
To investigate taxa–environment relationships, we
performed a redundancy analysis (RDA; Rao, 1964)
that searches for the linear combination of explana-
tory variables (the matrix of abiotic environmental
data) that best explains the variation in a response
matrix (the OTU table). The OTU table was trans-
formed by Hellinger transformation (Rao, 1995)

as advised in Legendre and Legendre (1998).
The explanatory (environmental) matrix was first
log-transformed then z-score standardised using
the function decostand(x, method= ’standardise’)
because different environmental parameters are in
different units. The environmental matrix variables
included: total phosphorus in μg/l (TP), total nitro-
gen in mg/l (TN), particulate phosphorus in μg/l (PP,
the difference between TP and DP), particulate
nitrogen in mg/l (PN, the difference between TN
and DN), soluble reactive phosphorus in μg/l (DP),
dissolved nitrogen in mg/l (DN), 1-week-cumulative
precipitation in mm, 1-week-average air temperature
in Celsius and microcystin concentration in μg/l.
The functions corvif(x) (Zuur et al., 2009) and
cor(x, method= ’pearson’) (the Pearson correlation;
Bravais, 1844; Pearson, 1896) from the R stats
package were applied to assess colinearity among
explanatory variables (Supplementary Table 2).
Based on these correlation tests, we concluded that
TP and TN were highly correlated with PP and PN,
respectively, so TP and TN were removed. RDA was
performed using the rda(scaling = 2) function from
the R vegan package. To determine the significance
of constraints, we used the anova.cca() function from
the R vegan package (Supplementary Table 4A).
Finally, we performed another RDA with all possible
interactions between variable (except for Microcys-
tin that is more a consequence of the bloom) to test
if interactions between environmental variables
could better explain the cyanobacterial bloom.
The significance of the interactions is shown
Supplementary Table 4B. Both RDAs were per-
formed on a reduced data set (a subset of 74 samples
for which environmental data were available;
see Supplementary File: File_S1_Environmental_
Table.txt).

Differential OTU abundance analysis
To identify genera and OTUs associated with
blooms, we used the ALDEx2 R package (version:
1.5.0 (Fernandes et al., 2013)). We used the aldex()
function to perform a differential analysis with
Welsh’s t-test and 128 Monte Carlo samples. ALDEx2
uses the centred log-ratio transformation to avoid
compositionally issue. Taxa (OTUs or genera) with a
Q-value below 0.05 after Benjamini-Hochberg cor-
rection were considered biomarkers. The top 25
biomarkers (with the highest differential scores) are
listed in Supplementary Table 8.

Bloom classification
To classify bloom and non-bloom samples
(Supplementary Table 7), we used the Bayesian
inference of microbial communities (BIOMICO) model
described by Shafiei et al. (2015). This supervised
machine learning approach infers how OTUs are
combined into assemblages and how combinations
of these assemblages differ between bloom and non-
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bloom samples. An assemblage here is defined as a
set of co-occurring OTUs. We defined bloom samples
as described above, and trained the model with two
different approaches: (i) with 2/3 of the total data,
selected at random and (ii) with two distinctive
years: 2007, a year with only a short-lived fall bloom
and 2009, a year in which Fortin et al. (2015)
observed a high biomass of cyanobacteria during the
summer. In the training stage, BIOMICO learns how
OTU assemblages contribute to community structure
and what assemblages tend to be present during
blooms. In the testing stage, the model classifies the
rest of the data (not used during training) and we
assess accuracy as the percentage of correctly
classified samples. To assess the performance of
BIOMICO relative to a random classifier, we approxi-
mated a random classifier using a binomial distribu-
tion with correct classification probability of 0.5.

Bloom prediction
We attempted to predict the timing of blooms using
sequence or environmental data. As many OTUs or
genera may have such low abundances that they
might be missed in some samples and might also
increase the probability of finding spurious correla-
tions, we pre-filtered the OTU table by removing taxa
with summed relative abundances (over the 135
samples) lower than an arbitrary threshold of 0.1.
Our goal was to predict the timing of the next bloom,
using sequencing and/or environmental data from
samples taken before a bloom event. Samples taken
during a bloom were not used in these analyses.
Thus, we used 21 samples with full environmental
information when the analysis included these vari-
ables and 54 samples when the analysis did not
require the environmental variable. We defined the
time (in days) from each non-bloom sample to the
next bloom sample of the year as the dependent
variable. In these analyses, we used either OTUs,
genera, or environmental data, as predictor variables.
We also calculated the trend in all predictor
variables from one sample to the next by subtracting
the latter values from the former and dividing by the
number of days that separated the two sample dates.
In this way, we obtained a trend value for each
predictor variable.

Genetic programming, in the form of symbolic
regression (SR) (Koza, 1992), is a particular deriva-
tion of genetic algorithms that searches the space of
mathematical equations without any constraints on
their form, hence providing the flexibility to repre-
sent complex systems, such as lake microbial
communities. Contrary to traditional statistical tech-
niques, symbolic regression searches for both the
formal structure of equations and the fitted para-
meters simultaneously (Schmidt and Lipson, 2009).
There are however some caveats associated with SR.
First, as with any other regression technique, over-
fitting may occur and measures that correct for
model complexity, such as the Akaike information

criterion (AIC) should be used to compare equations.
Second, contrary to standard regression techniques,
there are no standard ways to interpret SR equations.
Finally, SR suffers from the same limitations of
evolutionary algorithms in general. In many cases
the algorithm may get stuck in local minima of the
search space, requiring time (or even a restart with
different parameters) to find the global minimum.
We used the software Eureqa (http://www.nutonian.
com/products/eureqa/, version 1.24.0) to implement
SR, using 75% of the data for model training and
25% for testing. As building blocks of the equations
we used all predictor variables (including trends),
random constants, algebraic operators (+, − , ÷, × )
and analytic function types (exponential, log and
power). As no a priori assumptions regarding
relationships between terms could be made, the
search was fully unbounded. Given the inherent
stochasticity of the process, ten replicate runs were
conducted for each analysis. All runs were stopped
when the percentage of convergence was 100,
meaning that the formulas being tested were similar
and were no longer evolving. Each run produces
multiple formulas along a Pareto front (Cardoso et al.
2015). For each formula, we calculated the AIC and
the corrected AIC (Burnham and Anderson, 2002) for
small sample sizes. Based on Eureqa complexity
(number of parameter) and Eureqa fit score (model
accuracy), multiple formulae were selected from
each of the ten runs (Supplementary File:
File_S3_SR_table.xlsx). The formula with the lowest
AICc for each analysis was retained and considered
the ‘best’ formula (Table 2).

Results

Defining and characterising blooms
To survey microbial diversity over time, we analysed
135 lake samples sequenced to an average depth of
54 231 reads per sample (minimum of 1000 reads per
sample) and clustered the sequences into 4061 OTUs.
Rarefaction curves showed that this depth of sequ-
encing provided a thorough estimate of community
diversity (Supplementary Figure 1). To assess the
repeatability and predictability of cyanobacterial
blooms, we first needed to define bloom events.
Instead of defining blooms based on cyanobacterial
cell counts, we used a definition based on the extent to
which the bloom disturbs the community. Above 20%
cyanobacteria, Shannon diversity begins to decline
sharply (Supplementary Figure 2). We therefore used
a 20% cutoff to bin our samples into ‘bloom’ or ‘non-
bloom’ (Supplementary Table 7).

Based on our definition, bloom samples necessarily
have lower Shannon diversity than non-bloom sam-
ples (Figure 1). More surprisingly, bloom samples had
significantly (Mann–Whitney test, U=814, Po0.001)
higher phylogenetic diversity (BWPD) compared with
non-bloom samples (Figure 1a). These result suggests
that cyanobacterial blooms lead to (i) an increase in
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phylogenetic diversity by adding additional, relatively
long cyanobacterial branches to the phylogeny and
(ii) a decrease of taxonomic evenness due to the
dominance of cyanobacteria. However, when we
repeated the same analysis after removing all cyano-
bacterial OTUs, we found that blooms did not alter
the diversity of the remaining (non-cyanobacterial)
community (Figures 1d–f). These exploratory alpha
diversity analyses prompted us to investigate how
community composition changed between bloom and
non-bloom samples and over time.

Despite their limited impact on the diversity of the
non-cyanobacterial community, we found that blooms
clearly alter the community composition of the lake.
Using weighted UniFrac distances to assess differences
in community composition, we observed a separate
grouping of bloom and non-bloom samples (Figure 2a).
However, the difference in community composition
could not be assessed with PERMANOVA statistics
because bloom and non-bloom samples were differently
dispersed (Supplementary Table 6). When we removed
the Cyanobacteria counts and re-normalised the OTU
table (Figure 2b), we still observed a significant, but less
pronounced difference between bloom and non-bloom
samples (PERMANOVA, R2=0.035; Po0.001; ANOSIM
R=0.211; Po0.01; PERMDISP P=0.084; Supplemen-
tary Table 6). We observed the same trend using another
beta diversity metric, JSD (Supplementary Table 6;
Supplementary Figure 7). These results suggest that
even excluding Cyanobacteria (the bloom-defining
feature), the bloom community still differs to some
extent from the non-bloom community.

Abiotic factors associated with blooms
A subset of our samples was associated with
environmental measurements that might explain

bloom events. We performed an RDA to identify
environmental variables that could explain how
bloom and non-bloom samples are grouped and
found particulate nitrogen (PN), particulate phos-
phorus (PP), microcystin concentration and to a
lesser extent soluble reactive phosphorus (DP), to be
most explanatory of the bloom (Supplementary
Figure 8; adjusted R2 = 0.273; ANOVA, F7,66 = 4.919,
Po0.001). DN and temperature explain less variation
and act in opposing directions (Pearson correlation=
−0.18), perhaps because higher temperatures favour
the growth of microbes that rapidly consume
dissolved nitrogen (Hong et al., 2014). Together,
these environmental variables explain ~ 25% of the
microbial community variation (axis 1: 18.5%; axis
2: 6.9%) suggesting that unmeasured biotic or abiotic
factors are needed to explain the remaining ~ 75% of
the variation. We also explored the ability of
interactions among environmental variables to
explain variation, but despite the modest increase
in R2 to 0.34 (to be expected given the added
variables) we did not observe any significant inter-
actions (Supplementary Table 4B).

Community dynamics vary more within than between
years
We next asked how the lake microbial community
varied over time, at scales ranging from days to years.
As described above, samples can be partially
separated according to season (spring, summer or
fall) based on weighted UniFrac distances (Figure 2).
However, seasons differed significantly in their
dispersion (with summer samples visibly more
dispersed in Figure 2), violating an assumption of
PERMANOVA and ANOSIM tests and preventing us
from determining whether samples varied more by
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Figure 1 Comparison of alpha diversity between bloom and non-bloom states. Three alpha diversity metrics were employed: (a) BWPD,
(b) the Shannon index and (c) the Shannon evenness (equitability) to compare alpha diversity between bloom (black) and non-bloom (grey)
samples. We repeated the same analysis after removing Cyanobacteria. Comparisons were performed using a Mann–Whitney test
(*Po0.05, **Po0.01, ***Po0.001).
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months, seasons or years (Supplementary Table 6).
However, it is visually clear from Figure 2 that bloom
samples explain much of the variation in summer
community composition.

To more clearly track changes in community
composition over time (temporal beta diversity), we
calculated the Bray-Curtis dissimilarity between
pairs of samples separated by increasing numbers
of years. We did not observe any tendency for the
community to become more dissimilar over time,
suggesting a long-term stability of the bacterial
community on the time scale of years in both the
littoral (linear regression, F(1,1999) = 1.171, P40.05)
and pelagic sampling sites (linear regression,
F(1,2078) = 0.8467, P40.05; Supplementary Figure 4).
Consistently, even though years differed signifi-
cantly in their dispersion (PERMDISP Po0.05),
community composition remained relatively similar
from year to year. (Weighted Unifrac: ANOSIM
Ro0.1, Po0.010; PERMANOVA R2 = 0.011,
P=0.098).

To further explore temporal signals in the data, we
used a multivariate regression tree (MRT) approach
to determine how community structure varies
over time scales of days to years. Consistent with
the stable Bray-Curtis similarity over years
(Supplementary Figure 4), we found that year-to-
year variation explains very little of the variation in
community structure (R2 = 0.027; Supplementary
Table 5). Week of the year explained the most the
community variation (R2 = 0.274; Figure 3;
Supplementary Table 5), followed closely by day
(R2 = 0.254; Supplementary Table 5) and month
(R2 = 0.216; Supplementary Table 5). Even though
weeks explained the most variation, much of this
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variation is captured at longer time scale of months.
Figure 3 shows how the regression tree roughly
divides samples by season: Split 1 (red) corresponds
to samples taken before May 12 (early spring), split 2
(green) to samples taken between May 12 and June
23 (late spring), split 3 (yellow) to samples taken
after October 6 (fall), split 4 (blue) to samples taken
between June 23 and July 14 (early summer), split 5
(cyan) to samples taken between July 14 and August
11 (mid-summer) and split 6 (purple) to samples
taken between August 11 and October 6 (late
summer). The PCA ordination based on MRT
(Figure 3b) shows that community dynamics appear
to be somewhat cyclical, returning to roughly the
same composition each year. Different times of year
are characterised by different sets of OTUs, for
example AcI-B1 and PnecB in early summer and
Microcystis and Dolichospermum in mid-summer.

To determine if the variation observed during
summer (Figures 2 and 3) could be driven by
cyanobacterial bloom events, we repeated the MRT
analyses after removing all cyanobacterial
sequences. Similar MRT results were obtained after
removing cyanobacteria, suggesting that the entire
bacterial community, not just cyanobacteria, are
responsible for temporal variation (Supplementary
Table 5). Together, these results show how bacterial
community dynamics follow an annually repeating,
cyclical pattern and that both cyanobacteria and
other bacteria contribute to the dynamics.

Blooms are repeatably dominated by Microcystis and
Dolichospermum
To explore potential biological factors involved in
bloom formation, we attempted to identify taxo-
nomic biomarkers of bloom or non-bloom samples,
at the genus and OTU levels. To do so, we performed
a differential analysis using ALDEx2 to identify the
genera or OTUs that are most enriched in
bloom samples. We found several significant bio-
markers and as expected, the strongest bloom
biomarkers belonged to the phylum Cyanobacteria
(Supplementary Table 8). The two strongest OTU-
and genus-level biomarkers were Microcystis
(Microcystacae) and Dolichospermum (Nostocaceae,
previously named Anabaena), both genera of
Cyanobacteria.

Blooms can be accurately classified based on non-
cyanobacterial sequence data
Given the observation that bloom samples have
distinct cyanobacterial and non-cyanobacterial com-
munities (Figure 2), we hypothesised that blooms
could be classified based on their bacterial commu-
nity composition. We trained a machine learning
model (BIOMICO) on a portion of the samples and
tested its accuracy in classifying the remaining
samples (Methods). BIOMICO was able to correctly
classify samples with ~92% accuracy (Table 1). T
ab

le
1

B
lo
om

cl
as
si
fi
ca
ti
on

re
su

lt
s

T
ra
in
in
g
se
t

T
es
ti
n
g
se
t

C
la
ss
if
ic
at
io
n

ac
cu

ra
cy

Fa
ls
e

p
os
it
iv
es

Fa
ls
e

n
eg

at
iv
es

T
ru
e

n
eg

at
iv
es

T
ru
e

p
os
it
iv
es

95
%

co
n
fi
d
en

ce
in
te
r-

va
lo

f
ra
n
d
om

cl
as
si
fi
er

P
-v
al
u
e
(r
ea

l
cl
as
si
fi
er

d
if
fe
rs

fr
om

ra
n
d
om

)

2/
3
of

al
l
sa
m
p
le
s

1/
3
of

al
l
sa
m
p
le
s

91
.8
4%

4
0

33
12

36
–
64

%
8.
22

5
×
10

−
1
0

20
07

&
20

09
sa
m
p
le
s

A
ll
ot
h
er

sa
m
p
le
s

92
.5
2%

8
0

73
26

40
–
60

%
o
2.
2
×
10

−
1
6

2/
3
of

al
l
sa
m
p
le
s,

w
it
h
-

ou
t
cy

an
ob

ac
te
ri
a

1/
3
of

al
l
sa
m
p
le
s,

w
it
h
-

ou
t
cy

an
ob

ac
te
ri
a

85
.7
1%

6
1

31
11

36
–
64

%
3.
62

5
×
10

−
0
7

20
07

&
20

09
sa
m
p
le
s,

w
it
h
ou

t
cy

an
ob

ac
te
ri
a

A
ll
ot
h
er

sa
m
p
le
s,

w
it
h
-

ou
t
cy

an
ob

ac
te
ri
a

83
.1
8%

9
9

72
17

40
–
60

%
1.
78

1
×
10

−
1
2

W
e
u
se
d
a
su

p
er
vi
se
d
m
ac
h
in
e
le
ar
n
in
g
ap

p
ro
ac
h
(B
io
M
ic
o)

to
d
et
er
m
in
e
if
sa
m
p
le
s
ca
n
be

cl
as
si
fi
ed

in
to

bl
oo

m
bi
n
s
ba

se
d
on

m
ic
ro
bi
al

as
se
m
bl
ag
es

(M
et
h
od

s)
.
A
cc
u
ra
cy

w
as

ca
lc
u
la
te
d
as

th
e

p
er
ce
n
ta
ge

of
co

rr
ec
tl
y
cl
as
si
fi
ed

sa
m
p
le
s
(t
ru
e
p
os
it
iv
es
+
tr
u
e
n
eg
at
iv
es
)
re
la
ti
ve

to
th
e
to
ta
l
n
u
m
be

r
of

sa
m
p
le
s
in

th
e
te
st
in
g
se
t.
T
h
e
95

%
co

n
fi
d
en

ce
in
te
rv
al
s
of

a
ra
n
d
om

cl
as
si
fi
er

(M
et
h
od

s)
an

d
th
e
P
-v
al
u
es

(t
h
at

th
e
re
al

cl
as
si
fi
er

d
if
fe
rs

fr
om

ra
n
d
om

)
ar
e
al
so

sh
ow

n
.

Cyanobacterial blooms in an 8-year amplicon
N Tromas et al

1754

The ISME Journal



T
ab

le
2

P
re
d
ic
ti
n
g
bl
oo

m
ti
m
in
g
w
it
h
sy
m
bo

li
c
re
gr
es
si
on

(S
R
)

P
re
d
ic
to
r
va

ri
ab

le
s

B
es
t
re
sp

on
se

fo
rm

u
la

d
ay

s
to

bl
oo

m
R
2

C
om

p
on

en
ts

N
u
m
be

r
of

sa
m
p
le
s
u
se
d

M
ea

n
sq
u
ar
ed

er
ro
r

A
IC

C
or
re
ct
ed

A
IC

O
T
U

18
.2
64

+
21

79
.3
37

×
f_
_C

ry
om

or
p
h
ac
ea

e_
g_

u
n
cl
as
si
fi
ed

_s
eq

43
6+

20
07

.0
48

×
f_
_

O
xa

lo
ba

ct
er
ac
ea
e_

g_
u
n
cl
as
si
fi
ed

_s
eq

41
3*

*
0.
80

5
4

54
11

7.
54

0
26

5.
40

6
26

6.
22

2

G
en

er
a

19
.7
80

+
20

57
.6
52

×
f_
O
xa

lo
ba

ct
er
ac

ea
e_

g_
u
n
cl
as
si
fi
ed

*+
70

3.
60

6
×
f_

A
rm

at
im

on
ad

ac
ea
e_

g_
u
n
cl
as
si
fi
ed

—
25

99
.9
09

×
ge

n
u
s_
A
rc
ob

ac
te
r-

75
98

.1
06

×
ge
n
u
s_
R
ic
ke

tt
si
el
la

0.
78

2
6

54
13

1.
13

4
27

5.
31

6
27

7.
10

3

O
T
U

15
.9
41

+
49

77
4.
28

5
×
tr
en

d
(f
_C

er
as
ic
oc

ca
ce
ae

_
g_

u
n
cl
as
si
fi
ed

_s
eq

54
8)

+
25

11
.8
38

×
f_
_O

xa
lo
ba

ct
er
ac

ea
e_

g_
u
n
cl
as
si
fi
ed

_s
eq

41
3*

*
0.
82

6
4

21
83

.8
45

10
1.
00

8
10

3.
50

8

G
en

er
a

21
.1
85

+
26

46
.3
33

×
f_
O
xa

lo
ba

ct
er
ac

ea
e_

g_
u
n
cl
as
si
fi
ed

*—
13

32
3.
21

2
×
tr
en

d
(g
en

u
s_
F
la
vo

ba
ct
er
iu
m
)—

16
28

8.
05

8
×
o_

E
ll
in
32

9_
g_
u
n
cl
as
si
fi
ed

0.
91

4
5

21
31

.7
76

82
.6
33

86
.6
33

E
n
vi
ro
n
m
en

ta
l
d
at
a

11
4.
01

7+
19

2.
66

3
×
tr
en

d
(M

ea
n
T
)+
13

7.
16

8
×
D
N
—
0.
41

3
×
P
P
—
6.
91

5
×
M
ea
n
T
—

22
3.
71

2
×
D
N
×
tr
en

d
(M

ea
n
T
)—

51
.4
24

×
D
N

2
0.
82

8
8

21
63

.4
93

10
3.
17

0
11

5.
17

0

O
T
U

+
E
n
vi
ro
n
m
en

ta
l

d
at
a

15
.9
41

+
49

77
4.
28

5
×
tr
en

d
(f
_C

er
as
ic
oc

ca
ce
ae

_
g_

u
n
cl
as
si
fi
ed

_s
eq

54
8)

+
25

11
.8
38

×
f_
_O

xa
lo
ba

ct
er
ac

ea
e_

g_
u
n
cl
as
si
fi
ed

_s
eq

41
3*

*
0.
82

6
4

21
83

.8
45

10
1.
00

8
10

3.
50

8

G
en

er
a
+
E
n
vi
ro
n
-

m
en

ta
l
d
at
a

23
.3
53

+
23

89
.3
49

×
f_
O
xa

lo
ba

ct
er
ac

ea
e|
_g

_u
n
cl
as
si
fi
ed

*—
13

32
3.
21

2
×

tr
en

d
(g
en

u
s_
F
la
vo

ba
ct
er
iu
m
)—

16
28

8.
05

7
×
o_

E
ll
in
32

9_
g_
u
n
cl
as
si
fi
ed

0.
92

3
5

21
28

.3
75

80
.2
56

84
.2
56

A
bb

re
vi
at
io
n
s:

A
IC
,
A
ka

ik
e
in
fo
rm

at
io
n
cr
it
er
io
n
;
O
T
U
,
O
p
er
at
io
n
al

T
ax

on
om

ic
U
n
it
s.

T
h
e
be

st
fo
rm

u
la

fo
u
n
d
by

S
R
is

sh
ow

n
fo
r
ea
ch

ca
te
go

ry
of

p
re
d
ic
to
r
va

ri
ab

le
s.

S
R
w
as

p
er
fo
rm

ed
on

tw
o
d
at
a
se
ts
.
F
ir
st
,
O
T
U
s
an

d
ge
n
er
a
w
er
e
u
se
d
as

p
re
d
ic
to
r
va

ri
ab

le
s,

u
si
n
g
th
e
m
ax

im
u
m

n
u
m
be

r
of

n
on

-b
lo
om

sa
m
p
le
s
(N

=
54

).
S
ec
on

d
,i
n
or
d
er

to
d
et
er
m
in
e
th
e
im

p
ac
t
of

in
cl
u
d
in
g
en

vi
ro
n
m
en

ta
l
d
at
a
as

p
re
d
ic
to
r
va

ri
ab

le
s,

w
e
u
se
d
on

ly
sa
m
p
le
s
w
it
h
a
fu
ll
se
t
of

m
et
ad

at
a
(N

=
21

).
(*
/*
*
in
d
ic
at
e
O
T
U
s/
ge
n
er
a
fo
u
n
d
m
u
lt
ip
le

ti
m
es

in
S
R

fo
rm

u
la
s)
.
T
ax

a
ob

se
rv
ed

re
p
ea
ta
bl
y
in

al
l
fo
rm

u
la
e
ar
e
sh

ow
n
in

bo
ld
.

Cyanobacterial blooms in an 8-year amplicon
N Tromas et al

1755

The ISME Journal



Such high accuracy is expected because blooms are
defined as having 420% cyanobacteria, so the
model should be able to easily classify samples
based on cyanobacterial abundance.

In a more challenging classification task, BIOMICO

was able to classify samples with 83–86% accuracy
after excluding cyanobacterial sequences. This result
supports the existence of a characteristic non-
cyanobacterial community repeatably associated with
the bloom. Two different training approaches (Meth-
ods) yielded similar classification accuracy, both
significantly better than random (Table 1), but found
different bloom-associated assemblages. When we
compared the best assemblages obtained with the
two different trainings, focusing only on the 50 best
OTU scores, only 11 OTUs were found in both
trainings (Supplementary Table 9). This result suggests
that data can be classified into bloom or non-bloom
samples, but different assemblages (containing differ-
ent sets of OTUs) can be found with similarly high
classification accuracy (Supplementary Table 9). This
is consistent with a general lack of repeatability at
the level of individual OTUs, but that there exist
combinations of OTUs (Supplementary Table 8) that
are characteristic of blooms.

Blooms can be predicted by sequence data
The existence of microbial taxa and assemblages
characteristic of blooms suggests that blooms could,

in principle, be predicted based on amplicon
sequence data. We therefore used symbolic regres-
sion (SR) to model the response variable ‘days until
bloom’ as a function of OTU- or genus-level relative
abundances, their interactions and their trends over
time (Methods). To achieve true prediction, not
simply classification, we used only samples col-
lected before each bloom event in order to predict
the number of days until a bloom sample (that is,
bloom samples themselves were not used). We based
our analysis on 54 samples, ranging from 7 to
112 days before a bloom sample. Due to limitations
in the resolution of sampling (approximately
weekly), we cannot know the exact start date of a
bloom, only the first date sampled. Using OTUs or
genera, we were able to predict the timing of the next
bloom event with 80.5% or 78.2% accuracy on
tested data, respectively (Table 2). Using a subset of
21 samples with a full complement of environmental
data, we were able to compare the predictive power
of sequence data (OTU or genus level) versus
environmental data. Predictions based on genus-
level sequence data clearly outperformed predictions
based on environmental data. Predictions based on
OTU-level sequence data explained less variance
than predictions based on genera, consistent with
OTUs being more variable and less reliable bloom
predictors than higher taxonomic units.

All models tend to overshoot when based on
samples taken closer to the bloom (that is, negative
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Figure 4 Oxalobacteraceae and seq413 decline while Microcystis and Dolichospermum increase as a bloom event approaches.
We plotted the relative abundance of relevant taxa from 112 to 7 days before a bloom sample. Oxalobacteraceae (genus unclassified)
and the OTU seq413 (Oxalobacteraceae, genus unclassified or Polynucleobacter PnecC) are relatively abundant long before a bloom event
and gradually decline as bloom events approach. Microcystis and Dolichospermum are the two most dominant bloom-forming
cyanobacteria.
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residuals) and tend to predict bloom events too soon
when based on samples farther from the bloom
(Supplementary Figure 9). One taxon—a member of
the order Burkholderiales in the family Oxalobacter-
aceae (unknown genus; Greengenes taxonomy) was
consistently found in every predictive formula
(Table 2). At the OTU level, seq413 (Table 2) is
assigned to Oxalobacteraceae by Greengenes (with
67% confidence) but to Polynucleobacter C-subclus-
ter (with 99% confidence) based on TaxAss, a
freshwater-specific database (Supplementary Table
10). While Microcystis and Dolichospermum are
dominant closer to bloom events, seq413 showed
the opposite pattern, decreasing in relative abun-
dance as the bloom approaches (Figure 4). The fact
that seq413, but not Microcystis or Dolichospermum,
appears in the predictive equations suggests that the
decline in Oxalobacteraceae/seq413 is detectable
before the increase in Cyanobacteria. Indeed,
seq413 appear to decline before Microcystis or
Dolichospermum increase (Figure 4). However, the
predictive analyses were done at the OTU or genus
level, such that Cyanobacteria were not treated as
one entity (that is, one variable in predictive
equations). It is therefore possible that the decline
in seq413 was driven by a total increase in the sum of
all Cyanobacteria, none of which could be detected
individually. To test this possibility, we repeated the
SR analysis after merging Cyanobacteria into a single
variable and found that Cyanobacteria were never
found in any predictive equation. This is consistent
with Oxalobacteraceae/PnecC declining before Cya-
nobacteria increase. Hence, changes in the microbial
community provide information about impending
blooms before they occur.

Discussion

We used a deep 16S rRNA amplicon sequencing
approach to profile the bacterial community in Lake
Champlain over eight years, spanning multiple
cyanobacterial blooms. We sequenced with suffi-
cient depth that bacterial diversity estimates reached
a plateau (Supplementary Figure 1) and proposed a
bloom definition based upon cyanobacterial relative
abundance in 16S data. Although there is no
consensus bloom definition, the World Health
Organization has proposed guidelines, based on
cyanobacterial cell density, to connect blooms to
potential health risks (WHO|Guidelines for safe
recreational water environments, 2003). We found
that, while cyanobacterial relative abundance in 16S
data is significantly correlated with cyano-
bacterial cell density, the correlation is imperfect
(Supplementary Figure 6) because cyanobacteria can
have high relative abundance without achieving a
high absolute cell density. Our bloom definition,
based on relative, not absolute abundance is there-
fore more a measure of how cyanobacteria impact

their surrounding bacterial community than a direct
measure of human health risks.

Our results should be interpreted in light of four
methodological caveats. First, the OTU data are
compositional, such that only the relative OTU
abundances are meaningful and the relative abun-
dances are non-independent (Gloor and Reid, 2016).
As a result, removing certain OTUs or taxa (for
example, Cyanobacteria, as discussed in the para-
graph below) does not remove their influence on the
rest of the data. For some purposes, corrections for
compositionality can be performed (for example,
ALDEx performs a centred log transform before
inferring differentially abundant OTUs). BioMico
might identify OTUs that are not truly associated
with blooms, but that are falsely correlated with
OTUs that are truly associated. However, this is not a
major problem because the goal of BioMico is bloom
classification, not identification of bloom-associated
OTUs. A similar logic applies to prediction with SR:
if the goal is pragmatic prediction, whether the
predictive taxa are biologically meaningful (or mere
artefacts of compositionality) is irrelevant. In reality,
the fact that SR repeatably converged on equations
with the same taxa (Table 2) suggests that these taxa
are indeed biologically meaningful. The second
caveat is that the same data was used to define
blooms and also to classify/predict blooms, which
could be considered circular reasoning. However,
the bloom definition was based on a univariate
summary of the data (Shannon diversity), while
BioMico classification uses the multivariate data (the
relative abundance of each OTU across samples).
Therefore, circularity is limited because blooms were
defined based on one feature of the data (a decline in
Shannon diversity) and classification was based on a
different feature (OTU identities). For the prediction
task, circularity was limited because only non-bloom
samples were used to predict the timing of a bloom
event. The third caveat is that phylogenetic measures
of alpha and beta diversity (BWPD and UniFrac,
respectively) rely on a phylogenetic tree, which
may be inaccurate. However, trees inferred using
FastTree, ML or neighbour-joining gave very
similar results (Supplementary Methods), so we
expect tree errors to have a limited impact on our
conclusions. The fourth caveat is that the choice
of OTU calling will influence the number and
identify of OTUs. We used a distribution-based
OTU caller (Preheim et al., 2013), which uses the
distribution of OTUs across samples to reduce the
number of false positive OTUs (for example, due to
sequence errors). Other methods, such as DADA2
(Callahan et al., 2016), oligotyping or minimum
entropy decomposition (Eren et al., 2013, 2015), are
similarly able to de-noise 16S data, while calling
OTUs at fine taxonomic resolution (for example,
99% rather than 97% identity). In the future, these
methods could be used to analyse bloom dynamics at
finer taxonomic resolution than the 97% cutoff
used here.
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Our results suggest that blooms decrease commu-
nity diversity because of an increase in the relative
abundance of cyanobacteria, not due to a reduction
in the diversity of other bacteria. This result is
based on an analysis of three diversity measures,
before and after removing cyanobacterial sequences
(Figure 1). Before removing Cyanobacteria, bloom
samples clearly have lower Shannon diversity and
evenness compared with non-bloom samples (this is
true by definition, based on the nature of our bloom
definition). After removing Cyanobacteria, there is
no apparent difference in diversity or evenness.
Removing cyanobacterial reads does not remove
their influence on other OTUs, because of the
dependence structure of compositional data (Gloor
and Reid, 2016; Morton et al., 2017). However, even
if removing Cyanobacteria creates a bias in the rest of
the data, the same bias is introduced in both bloom
and non-bloom samples alike, so the comparison
should remain valid. The removal of cyanobacterial
reads is analogous to the common practice of first
removing eukaryotic reads from 16S data and
continuing all subsequent analyses on bacterial reads
only. The data set as a whole is biased by the
removal of eukaryotes (that is, the data becomes a
'subcomposition') but all samples have the same bias,
so it is still possible to compare among samples.
Regardless, these diversity comparisons (Figure 1)
were exploratory in nature and served as an entry
point for more detailed beta diversity analyses,
classification and prediction.

Consistent with our current knowledge of tempe-
rate lakes (Crump and Hobbie, 2005; Shade et al.,
2007), we found that community structure varied
more within years than between years (Figures 2 and
3; Supplementary Figure 4; Supplementary Tables 5
and 6). In agreement with previous observations in
eutrophic lakes (Shade et al., 2007), Lake Champlain
appears to return to a steady-state (Supplementary
Figure 4; Supplementary Table 5), despite the
biological disturbance induced by dramatic bloom
events. Various studies have already shown temporal
patterns in microbial community structure (Höfle
et al., 1999; Lindstrom, 2000; Crump et al., 2003;
Shade et al., 2007; Kara et al., 2013; Fuhrman et al.,
2015), but ours does so in the context of cyanobac-
terial blooms.

The RDA results (Supplementary Figure 8) are
consistent with many previous studies describing
the environmental factors responsible for blooms
(Owens and Esaias, 1976; Hecky and Kilham, 1988).
For example, cyanobacterial growth is optimal at
higher temperatures, between 15 and 30 °C (Konopka
and Brock, 1978). We confirmed that cyanobacterial
blooms are correlated with and likely respond to
nutrient concentrations, as previously described
(Fogg, 1969; Jacoby et al., 2000; Paerl and
Huisman, 2008; Paerl and Huisman, 2009; Fortin
et al. 2015; Isles et al., 2015). Dissolved nitrogen and
temperature were negatively correlated, which could
be explained by the fact that the lake becomes

enriched in nitrates during spring, when tempera-
tures are lower and rain and drainage bring nutrients
into the lake (Shade et al., 2007; Fortin et al., 2015).
Another explanation would be that in the spring,
before most of the bloom events occur, the majority
of the nitrogen is dissolved, but when cyanobacteria
and other phytoplankton increase in abundance
over the summer, nitrogen becomes concentrated
in particulate forms within cells. We found that
measured abiotic variables explained only a part
(~25%) of the variation between bloom and non-
bloom samples. Including interactions between vari-
ables in the model increased the adjusted R2 to
~ 35%; however no significant interactions were
found (Supplementary Table 4B). The rest of the
variation could be explained by unmeasured vari-
ables, such as different nitrogen species, water
column stability and mixing (although Missisquoi
Bay is shallow (~2–5m) and likely never stratified),
or time-lagged variables. More variance might also be
explained with a larger data set containing more
samples.

In addition to environmental variables, we showed
that biological variables, in the form of bacterial
OTUs or genera, also characterise bloom events.
Differential analysis using ALDEx2 identified Micro-
cystis and Dolichospermum as the top bloom
biomarkers (Supplementary Table 8). These two
bloom-forming genera are associated with lake
eutrophication (O’Neil et al., 2012) and are also
known to produce cyanotoxins (Gorham and
Carmichael, 1979; Carmichael, 1981). We found
additional bloom biomarkers in the genus Pseuda-
nabaena and the family Cytophagacaea, previously
found to be associated with cyanobacterial blooms
(Rashidan and Bird, 2001; O’Neil et al., 2012). The
order Chthoniobacterales (in the phylum Verruco-
microbia) was also found as a bloom biomarker,
consistent with previous studies that observed this
taxon in association with Anabaena blooms (Louati
et al., 2015). Other studies have reported specific
association between Verrucomicrobia and Cyano-
bacteria, suggesting that members of this phylum
might assimilate cyanobacterial metabolites (Parveen
et al., 2013; Louati et al., 2015). We also found N2

-fixing members of Rhizobiales order as bloom
biomarkers. These taxa might be associated with
the non-N2-fixing cyanobacteria Microcystis, poten-
tially supporting its growth.

Using machine learning, we were able to classify
bloom samples with high accuracy based on micro-
bial assemblages, confirming that there is a specific
microbial community associated with blooms. Con-
sistent with the ALDEx2 results, Microcystis and
Dolichospermum were present in all bloom assem-
blages (Supplementary Table 9). Cyanobacterial
blooms have been previously suggested to alter the
local environment and the surrounding microbial
community (Louati et al., 2015). As a result, these
assemblages may include bacteria that are reliant
on cyanobacterial metabolites and biomass. For
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example, we found that bloom assemblages included
potential cyanobacterial predators from the order
Cytophagales and the genus Flavobacterium
(Supplementary Table 9), both associated with
bloom termination (Rashidan and Bird, 2001;
Kirchman, 2002) but also taxa such as Methylophi-
laceae, acI and acIV that have been previously
associated with cyanobacterial blooms (Li et al.,
2015; Woodhouse et al., 2016a). We found that acI
was abundant in early summer, just before the
Microcystis and Dolichospermum blooms of mid-
summer (Figure 3b). While acI might help ‘set the
stage’ for a bloom, acIV might have the capacity to
use metabolites from cyanobacterial decomposition
and Methylophilaceae is a potential microcystin
degrader (Mou et al., 2013; Bogard et al., 2014;
Ghylin et al., 2014).

Finally, we show the potential for bloom events to
be predicted based on amplicon sequence data. We
acknowledge that long-term environmental processes
such as global warming and punctual seasonal events
such as floods and droughts, are major determinants
of whether a bloom will occur in a given year (Paerl
and Huisman, 2008; Paerl and Paul, 2012). For
example, no bloom occurred in 2007, likely due to a
spring drought which dramatically reduced nutrient
run-off into the lake. However, sequence data might
be useful to predict bloom dynamics on shorter time
scales of days, weeks or months. We demonstrated
that it is possible to use pre-bloom sequence data to
predict the number of days until a bloom event, with
errors on the order of weeks (Supplementary Figure 9)
—the best that could be expected, given that sampling
density was also on the order of weeks. Sequence data
appears to be a strong predictor, similar or better than
prediction with environmental variables (Table 2).
These results are consistent with a recent study
suggesting that abiotic environmental factors could
be crucial to initiate blooms, but that biotic interac-
tions might also be important in the exact timing and
dominant members of the bloom (Needham and
Fuhrman, 2016). Similarly, environmental variables
explained relatively little variation in freshwater
bacterial composition, while biotic variables (that is,
phytoplankton) explained more (Kent et al. 2004). It is
possible that measuring more environmental vari-
ables, or using more complex time-lagged environ-
mental variables (beyond the simple trends used in
SR equations) could provide better predictions.
However, microbial variables (OTUs) can be mea-
sured nearly exhaustively in a single sequencing run,
whereas it is hard to know which environmental
variables to measure (for example, temperature, pH,
nitrogen, etc. seem relevant but what about Fe, As, Mg
and so on) and hard to measure them all in high-
throughput.

SR models might be prone to overfitting, which
might explain why better predictive accuracy is
achieved with fewer samples (Table 2). Our samples
were rarely taken more often than weekly,
explaining why prediction error is on the

order of weeks (Supplementary Figure 9). We expect
that more samples taken over shorter time periods
will reduce both overfitting and prediction error. We
also note that the ‘best’ predictive equations found
by SR are not necessarily global optima, because the
space of possible equations is not explored
exhaustively.

Surprisingly, we never found Cyanobacteria as
a bloom predictor in any of the predictive models
(Table 2). This means that the models are not
simply tracking a positive trend in cyanobacterial
abundance, possibly because bloom events are ‘spiky’
(Figure 4) and hence difficult to predict with weekly
sampling. Instead, predictive equations always included
a member of the order Burkholderiales, classified as
Oxalobacteraceae with 67% confidence by Greengenes,
or Polynucleobacter C (PnecC) with 99% confidence by
TaxAss. We acknowledge this taxonomic uncertainty,
but give preference to the higher-confidence PnecC
assignment. PneC tends to be relatively abundant
further ahead of bloom events (Figure 4). This observa-
tion could be explained by an ecological succession
between PnecC and Microcystis/Dolichospermum. The
fact that PnecC was chosen as a better predictor than
Cyanobacteria suggests that PnecC begins to decline
before any detectable increase in Cyanobacteria, provid-
ing a potential early warning sign. Šimek et al. (2011)
showed that some PnecC taxa grow poorly in co-culture
with algae, suggesting that negative interactions could
also occur with cyanobacteria.

We have shown that cyanobacterial blooms contain
highly (but not exactly) repeatable communities of
Cyanobacteria and other bacteria. It appears that the
community begins to change before a full-blown
bloom, suggesting that sequence-based surveys could
provide useful early warning signals. While the
predictions of our models are fairly coarse-grained
(for example, prediction error on the order of weeks),
they suggest that more accurate prediction might
be enabled with increased sampling frequency.
It remains to be seen to what extent bloom and
pre-bloom communities—which show repeatable
dynamics within one lake—are also repeatable across
different lakes and to what extent predictors could be
universal or lake-specific. To improve predictions
going forward, we suggest sampling additional lakes
with dense time-courses, paired with 16S or metage-
nomic sequencing. In order to predict not just blooms
but also the toxicity of blooms, sequencing should be
paired with detailed toxin analyses.
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