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Abstract. An annular beam provides a new laser drilling mechanism,
which we refer to as optical trepanning. A refractive axicon system has
been designed to transform an input Gaussian laser beam into a colli-
mated annular beam. The diffractive effects of the axicon system and a
convex lens focusing the collimated annular beam have been studied
using the Fresnel diffraction integral. The theoretical diffraction patterns
are compared with the patterns measured with a laser-beam analyzer.
The results show that the refractive axicon system can produce
Gaussian-like annular beams with the capability of easily adjusting the
size of the annular beam. © 2006 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2353119�

Subject terms: axicon; optical trepanning; annular beam; geometric optics;
diffraction.
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paper is a revision of a paper presented at the SPIE conference on Laser Beam
Shaping VI, Aug. 2005, San Diego, California. The paper presented there
appears �unrefereed� in SPIE proceedings Vol. 5876.

1 Introduction

Laser drilling is widely used in aerospace industries for
drilling small-diameter cooling holes in combustion rings,
turbine blades, and nozzle guide vanes.1 The drilling pro-
cess involves melting the material with a laser beam and
expelling the melt with an assist gas, or vaporizing the
material. Often oxygen is used as an assist gas to induce
metal burning at the laser-beam–material interaction zone
in order to increase the drilling speed.

Percussion drilling and trepanning are two traditional
laser drilling methods. In percussion drilling, the laser
beam is usually focused to the required hole diameter and
one or more pulses of laser energy are supplied to the
substrate.1 Both the laser beam and the substrate remain
stationary in this process. Trepanning, in contrast, involves
cutting a hole by moving a small laser spot in a larger orbit,
using either an optical element or an x-y galvo scanner.
Trepanning also can be achieved by rotating the workpiece.
These conventional processes are referred to as mechanical
trepanning in this study.

An annular laser beam provides a new drilling mecha-
nism. When an annular beam is focused on the workpiece

surface, the material within the annulus is heated, melted
and possibly vaporized, and removed to drill a hole. This
process, which we refer to as optical trepanning, involves
no rotating optics or any motion of the workpiece.2

Laser beams with annular transverse cross sections have
been investigated for different types of applications such as
atom trapping and guiding,3,4 optical confinement of cold
atoms,5,6 laser machining,7,8 and optical data storage.9 An
annular beam can be generated by a variety of methods.
Conic lenses such as axicon and waxicon lenses are used
most frequently to generate annular beams. Such optical
elements provide flexibility in tailoring the size of the fo-
cused annular laser spot. Annular laser beams with variable
inner and outer radii can be generated using an optical sys-
tem consisting of axicon lenses and a convex lens.10–14

Axicon lenses are usually defined as optical elements
that image a point into a line segment along the optical
axis.10,11 The axicon lens is a conical surface of revolution
capable of blending light from a point source, which is
located on the axis of revolution, by reflection or refraction
or both.15,16 A refractive axicon lens was described by
Mcleod10 in 1954. A glass cone refracts all rays at the same
angle relative to the optical axis. A similar effect can be
obtained using a reflecting cone.1 Flores15 presented a
method for designing spherically symmetric gradient-index
�index of refraction� axicon lenses, which produce a variety0091-3286/2006/$22.00 © 2006 SPIE
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of different irradiance patterns along the optical axis, and
with a boundary refraction index larger than or equal to the
refraction index of the surrounding medium. The diffractive
version of the axicon lens is rather common today.16–19

Sochacki et al.17 employed a ray-tracing technique together
with the conservation of energy in ray bundles to design
diffractive axicon lenses having the optimal phase retarda-
tion function that produces the desired on-axis irradiance.
Lens axicons20 have been proposed as an easier, cheaper,
and more efficient alternative to other types of axicons. The
simplest forward-type lens axicon is composed of a diverg-
ing third-order spherically aberrated lens and a perfect con-
verging lens.

The axicons and their combinations have been used for
many applications. Rioux et al.8,9 combined an axicon lens
and a convex lens to form an optical system producing an
annular beam for drilling good-quality large-diameter holes
using a high-power laser beam. The ring beams have also
attracted increasing interest in the field of laser cooling and
trapping of neutral atoms.3 Axicons have been used to gen-
erate intense nondiffracting beams.21–24 Studies on nondif-
fracting beams by Durnin et al.23,24 drew interest to axicon
optics. It has been shown that an axicon can generate a
Bessel beam, a so-called nondiffracting beam, which means
the irradiance pattern of the beam propagating in free space
remains unchanged in the transverse plane. The central ir-
radiance profile of such a beam can be extremely narrow,
with effective diameter as small as several wavelengths,
and yet possess an infinite depth of field. Such beams can
be applied to imaging, metrology, dispersionless optical
system design, and the production of plasma wave-
guides.21–24

We have designed an axicon refraction system for laser-
beam shaping based on the diffraction theory to transform a
Gaussian circular beam into an annular beam.25 Two refrac-
tive arrangements have been developed that transform a
Gaussian circular laser beam into an annular laser beam
with required irradiance profiles. We also examine a certain
region of the diffraction field from which the light beam
evolves into an annular beam.

2 Diffraction Analysis of an Axicon Refractive
System

2.1 Fresnel Approximation of the Diffraction Field
after the First Axicon Lens

Figure 1 shows the propagation of an arbitrary ray through
a refractive axicon system. The incident ray A1B1 intersects

the optical axis at point D, and then it is collimated to the
ray B2A2 by the second axicon lens. Here �1 and �2 are the
base angles of the first and the second axicon lenses, re-
spectively. The surface constraint for the axicon refractive
system is �1=�2 to achieve collimation. For diffractive
analysis of the beam propagation, we consider an input
Gaussian electric field illuminating the flat surface of the
first axicon. The amplitude of the Gaussian electric field,
U0�r�, can be written as follows in polar coordinates for
rotationally symmetric systems:

U0�r� = �I0 exp�− r2

rw
2 � , �1�

where rw is the radius from the point of maximum irradi-
ance I0 to the point where the irradiance of the input Gauss-
ian laser beam is I0 /e2, and r is the radius of any point on
a transverse plane.

To simplify the calculation of the optical phase function,
the Gaussian beam is assumed to enter the axicon lens as a
plane wave. This assumption is strictly true only if the in-
put plane of the axicon lens coincides with the beam waist
within the Rayleigh zone. As a ray travels from left �A1B1�
to right �B1C1� in Fig. 1, the optical phase delay �1�r�
introduced by the first axicon lens and the air is26,27

�1�r� = kn��1 − r1 tan �1� + kn�r1 − r�tan �1 +
n0kr tan �1

cos �1
,

�2�

where

�1 = arcsin�n sin �1

n0
� − �1, �3�

�1 is the thickness of the first axicon lens along its optical
axis, r1 is the radius of the first axicon lens, k is the wave
number of the incident laser beam, and n and n0 are the
refractive indices of the axicon lens and the surrounding
medium, respectively. So the transmittance function t1�r� of
the first axicon lens is

t1�r� = �exp�i�1�r�� for r � r1,

0 for r � r1.
	 �4�

Neglecting the constant phase factor exp�ikn�1�,28 the dif-
fraction field U1�r ,z� at a distance z� from the axicon tip O1

along the optical axis can be written as follows in polar
coordinates for rotationally symmetric systems by the
Fresnel diffraction integral:28,29

U1�R,z�� =
k exp�ikz��

iz�
exp� ikR2

2z�
�


0

r1

exp�− r2

rw
2 �

�exp� ikr2

2z�
�exp�ikr tan �1� 1

cos �1
− n��

�J0� krR

z�
�r dr . �5�

Fig. 1 Geometrical configuration of an axicon refractive system.
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2.2 Fresnel Approximation of the Diffraction Fields
after the Second Axicon Lens

As a ray travels from left �C2B2� to right �B2A2� in Fig. 1,
the optical phase delay �2�R� introduced by the second
axicon lens and the air is28,29

�2�R� = kn��2 − R1 tan �2� + kn�R1 − R�tan �2

+
kn0R tan �2

cos �2
, �6�

where

�2 = arcsin�n sin �2

n0
� − �2, �7�

�2 is the thickness of the second axicon lens along its op-
tical axis, and R1 is the radius of the second axicon lens. So
the transmittance function t2�R� of the second axicon lens is

t2�R� = �exp�i�2�R�� for R � R1,

0 for R � R1.
	 �8�

Neglecting the constant phase factor exp�ikn�2�,28 the dif-
fraction field U2�� ,Z�� at a distance Z� from the second

axicon tip O2 along the optical axis can be written as fol-
lows in polar coordinates for rotationally symmetric sys-
tems by the Fresnel diffraction integral:28,29

U2��,Z�� =
k exp�ikZ��

iZ�
exp� ik�2

2Z�
�


0

R1

U1�R,z��

�exp� ikR2

2Z�
�exp�ikR tan �2� 1

cos �2
− n��

�J0� kR�

Z�
�R dR . �9�

2.3 Fresnel Approximation of the Diffraction Fields
after the Focusing Lens

As a ray travels from left �B2A2� to right �B3A3� in Fig. 1,
the optical phase delay �3��� introduced by the second axi-
con lens and the air is28

�3��� = kn�3 − kn0
�2

2f
, �10�

where �3 is the thickness of the focusing lens along its
optical axis and f is the focal length of the focusing lens. So

Fig. 2 Irradiance profile of an input Gaussian laser beam before the first axicon lens. �a� Transverse
cross section of the annular beam profile. �b� Laser irradiance profile in the X direction on the trans-
verse plane. �c� Laser irradiance profile in the Y direction on the transverse plane. Radius of the input
Gaussian beam, rw=0.327 mm.
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the transmittance function t3��� of the focusing lens is

t3��� = �exp�i�3���� for � � �1,

0 for � � �1.
	 �11�

Neglecting the constant phase factor exp�ikn�3�,29 the dif-
fraction field, U3�	 ,L� at a distance L from the focusing tip
O3 along the optical axis can be written as follows in polar
coordinates for rotationally symmetric systems by the
Fresnel diffraction integral:29

U3�	,L� =
k exp�ikL�

iL
exp� ik	2

2L
�


0

�1

U2��,Z��

�exp� ik�2

2L
�exp�− ik�2

2f
�J0� k�	

L
�� d� . �12�

3 Laser Irradiance Distributions at Different
Locations of the Axicon Refractive
System

3.1 Laser Irradiance Distributions after the first
Axicon Lens

The laser irradiance profiles are calculated using the previ-
ously mentioned diffraction patterns. As shown in Fig. 1, an
input Gaussian �TEM00� Nd:YAG laser beam of wave-
length 
=1.064 �m is incident on the flat surface of the
first axicon lens with the beam axis lying on the principal
axis of the axicon lens. The waist of the Gaussian beam
was located inside the Nd:YAG laser cavity. A collimated
horizontal beam from the exit of the laser system was
turned to a vertical beam with a 45-deg mirror to direct it to
the first axicon lens. Both axicon lenses and the focusing
lens are made of fused silica of refractive index n=1.46.
The half apex angles of the axicon lenses are �1=�2
=72 deg, and their base angles are �1=�2=18 deg, as
shown in Fig. 1. The focal length of the convex lens is f
=50 mm. The incident beam profiles are shown in Fig. 2.
The annular beam irradiance profiles were measured with a
CCD camera �Laser Cam II, 4.7�5.5-�m pixel size�. To

obtain the diffraction patterns of the annular beam at dif-
ferent axial locations of the axicon lens system, the CCD
camera was placed on a translation stage to adjust its posi-
tion in the optical system.

Figure 3 shows the measured irradiance profile after the
beam passes through the first axicon lens. Several rings are
generated around the annular region, i.e., several low irra-
diance inner diffraction rings are formed near the main
high-irradiance thin outer ring. Most of the laser energy is
focused onto the outer main ring. The performance of this
narrower annulus is actually beneficial for optical trepan-
ning, since the width of the annular beam �i.e., the differ-
ence between the inner and outer annular beam radii� sig-
nificantly influences the drilled hole quality. This effect has
been found to be very important,2 because a wider annular
laser spot increases the growth of melt layer in the radial
direction. A thinner recast layer, smaller taper, and higher
drilling speed are obtained for a fixed outer radius of a
given annular beam with smaller annular width, i.e., with
larger inner radius of the annular beam.

The measured width of the main annular ring is smaller
than that predicted by the Fresnel diffraction integral. The
discrepancy between the experimental and theoretical re-
sults may be due to several reasons: the blunt tip of the
axicon, the imperfect incoming Gaussian beam, and aber-
rations and imperfections of the optical elements. The
phase shift due to optical elements is calculated in this
study by considering the incident beam as a plane wave at
the input plane of each optical element. This approximation
is strictly applicable for the beam waist plane within the
Rayleigh zone. Outside of this plane, the beam involves a
quadratic phase function in the paraxial approach. There-
fore, the existence of a quadratic phase could also be re-
sponsible for the discrepancy between the experimental and
theoretical results.

Figure 4 shows the theoretical longitudinal irradiance
distributions along the z axis for different base angles of the

Fig. 3 A small part of the transverse cross section of a large annular
beam, showing the radial variation of the irradiance profile after
passing through the first axicon lens. Here z�=71 mm, rw
=0.327 mm. Fig. 4 Variations of the theoretical laser irradiance distributions

I�0,z� along the z axis �r=0� after the first axicon lens for different
base angles, to check where the spot of Arago disappears �point A*

in this figure� so that the second axicon lens can be placed there.
Here rw=0.327 mm and I0=1 W/mm2.
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axicon lenses. A spot with high irradiance is formed when
the distance z� is less than 20 mm for the axicon lens with
base angle �1=5 deg. This is because most of the incident
laser energy is focused into the optical axis of the axicon
lens over a certain segment of the axis. Axicon lenses with
small base angles have longer focus lines over which high
irradiance spots are generated. To maximize the laser en-
ergy in the annular region, the second axicon lens should be
placed after this region of focus during optical trepanning.
Axicon lenses with large base angles should be chosen for
a compact optical trepanning system.

It should be noted that the high-irradiance spots on the
optical axis may be the spots of Arago.26 The appearance of
the bright line along the axis could also be due to the
spherical aberration of the system. This bright spot is re-
ferred to as Arago’s spot in this study, although, histori-
cally, Arago’s spot is the one that appears in the geometri-
cal shadow of an obstacle when light is diffracted by the
obstacle.

3.2 Laser Irradiance Distributions after the Second
Axicon Lens

Figure 5 shows the annular profile after the beam passes
through the second axicon lens. As in the case of the first
axicon lens, several inner diffraction rings and a main outer
ring with maximum irradiance are found by the second axi-
con lens as well. The thickness of the main outer ring is
much larger than that of the ring obtained after the first
axicon lens. On the annular cross-sectional plane of the
laser beam, both the experimental and theoretical irradiance
profiles of the main ring are Gaussian-like �i.e., we have a
Gaussian-like beam with maximum irradiance located at
the center of the annulus�.

Figure 6 shows the theoretical development of the annu-
lar beam after the second axicon lens. The width of the
annulus increases and the maximum value of the irradiance
decreases with the increase of the distance Z� between the
first and the second axicon lenses. However, the radius of

the center of the annulus remains almost the same as Z�
increases from 5 to 155 mm, because of the collimation of
the laser beam after the second axicon.

3.3 Development of Imperfect Annular Beams and
the Effect of the Focusing Lens on the
Irradiance Profile

The laser irradiance distributions after the focusing lens are
investigated in this subsection. The blunt tip of an axicon
lens produces an imperfect annular beam, i.e., an annulus
with multiple diffraction rings, as illustrated in Fig. 7. Such
rings are absent in the theoretical result because the model
is based on a perfect axicon lens, i.e., an axicon lens with
pointed vertices, resulting in a perfect annular beam. The
imperfection of the annular beam, i.e., the presence of mul-
tiple rings in the annulus, generates Arago’s spot over a
certain axial length around the focal point although the
theory predicts Arago’s spot only on the focal plane, as
sketched in Fig. 7. The imperfect annular beam, i.e., an
annulus with multiple diffraction rings, reappears after the
focal plane in the experimental results, whereas a perfect
annular beam appears in the theoretical result because the
incident beam on the focusing lens is a perfect annular
beam. These three observations and the laser irradiance
profiles before the focal plane, on the focal plane, and after
the focal plane are analyzed in Figs. 8–10 respectively.

Figure 8�a� shows the annular profile after the beam
passes through the focusing lens. Here again, Arago’s spot
appears after the focusing lens due to the diffraction effect,
even when the incident collimated annular beam does not
contain any energy on the axis of the beam. Several diffrac-
tion rings disappear downstream after being converged by
the focusing lens, leaving only one main outer ring with
maximum irradiance. Figure 8�b� and 8�c� show the laser
irradiance profiles along both the longitudinal direction and
the transverse plane of the annular beam. On the transverse
plane, the irradiance profile is a Gaussian-like distribution.
The outer radius R0 of the annular beam is defined as the
distance between the center of the annular beam and the
point where the irradiance of the laser beam is 1/e2 of the

Fig. 5 A small section of a large annular beam, showing radial
variation of the irradiance profile after passing through the second
axicon lens. Here rw=0.327 mm, z�=95 mm, and Z�=50 mm.

Fig. 6 Propagation of an annular beam after passing through the
second axicon lens, showing the variation of the irradiance in the
radial direction. Here rw=0.327 mm, z�=95 mm, and Z�=110 mm.

Zeng, Latham, and Kar: Characteristic analysis of a refractive axicon system¼

Optical Engineering September 2006/Vol. 45�9�094302-5
Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 27 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



maximum irradiance I0. A laser beam analyzer was used to
plot the irradiance profile of the annular beam on a com-
puter screen, where the irradiance point corresponding to
1/e2 of the maximum irradiance I0 can be selected on the
radial axis and the radius of this point can be determined
using data acquisition software. The value of this radius is
taken as the outer radius R0.

Optical trepanning is expected to provide more flexibil-
ity in controlling the hole quality than traditional circular
beam laser drilling, since an annular beam enables shaping
of the laser irradiance profile to supply laser energy to the
workpiece in a variety of ways. For percussion drilling, the
irradiance profiles are usually either Gaussian or uniform.
In optical trepanning, the geometry of the hole taper can be
modified, viz., convergent or divergent holes can be pro-
duced using different types of irradiance profiles. Different
profiles also can have important effects on the recast layer
thickness, heat-affected zone �HAZ�, and drilling speed.
Figure 8 shows a Gaussian-like annular beam generated
from an input Gaussian beam. Annular beams with various
irradiance profiles can be obtained using axicon lenses with
different curvatures of the conic surface.

It should be noted that the alignment of the optical ele-
ments is critical to obtain a good-quality annular beam. The
elements must be illuminated at exactly normal incidence
with coincident optical and laser-beam axes. Even a slightly
oblique incidence will change the quality of the annular
beam and effect the presence or disappearance of Arago’s
spot. The measured nonuniformly wide annular beam
shown in Fig. 8 is mainly due to the imperfect alignment of
the axicon lens system. Also, the incident laser beam must
be perfectly circular to obtain a good-quality annular beam.

Experimental results show higher irradiance in Arago’s
spot and smaller beam radius than the corresponding theo-
retical results. This may be because the larger rings, which
were considered in the theoretical calculation as the beam
passes through the second axicon lens, do not affect the
performance of the laser beam analyzer significantly, owing
to the insensitivity of the instrument to the low energy con-
tent of the larger rings. The experimental annular ring was
found to contain several narrow rings in the annulus before
the focusing lens. When such multiple rings of the annulus
are focused, some of them may be diffracted to the central
spot. This creates Arago’s spot with high irradiance in a
region around the focal plane. According to the theoretical
model, the annular beam before the focusing lens consists
of a single wide ring. The focusing lens causes diffraction
of this ring and produces Arago’s spot only on the focal
plane.

Figure 9 shows the theoretical diffraction pattern at the
focal plane for an annular beam. The annular ring disap-
pears, and a bright circular spot with very high irradiance
appears at the laser beam center. In experiments, however,
multiple diffraction rings are produced in the annulus after
the second axicon lens, for the reasons mentioned earlier.
These rings disappear after being converged by the focus-
ing lens. Several diffraction rings, however, reappear after
the focal plane, due to the divergence of the beam, as
shown in Fig. 10.

3.4 Effect of Focal Length on the Beam Radius
Figure 11�a� and 11�b� show the variation of the outer ra-
dius of the annular beam with distance L between the fo-

Fig. 7 Development of diffraction patterns the along axial direction in an annular beam shaped with a
refractive axicon system. �a� Experimental diffraction patterns produced by an imperfect refractive
axicon system. The imperfect axicon has a blunt vertex. �b� Theoretical diffraction patterns produced
by a perfect refractive axicon system. The perfect axicon has a pointed vertex.
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cusing lens and the observation plane. Annular beams of
different diameters are obtained by adjusting L. For ex-
ample, the outer radius of the annular beam is R0
=1.02 mm for L=46 mm, and R0=85 �m for L=49 mm.

The importance of this capability is that it provides tremen-
dous flexibility to trepan holes having outer-radius varia-
tions over an order of magnitude, using a single optical
system. Since the outer radius is a very sensitive function
of L, this capability also enables drilling tapered holes by
systematically varying L using a servo system during the
drilling process.

Fig. 11�a� shows that the theoretical and experimental
values of R0 do not match for the nominal focal length f
=50 mm. The discrepancy could be due to the manufactur-
ing tolerance in the focal length of the convex lens. This
type of focal shift is also observed in diffracted converging
spherical waves,27 where the focal shift due to this effect is
given by f =−f / �1+�2N2� and N=a2 /
f for a Gaussian
beam. We have f =1.337 �m for the typical case with a
=14.2 mm, 
=1.064 �m, and f =50 mm in this study. On
the other hand, the specification on the focal length of the
focusing lens was 50 mm±2% due to the manufacturing
tolerance. So theoretical calculations were carried out to
determine the annular beam radius R0 for different values
of the focal length f . The values of R0 were found to be
closer to the experimental results for f =49.3 than for f
=49.5 and 50 mm. The remaining discrepancy between the
experimental and theoretical results may be due to spherical
aberration, which is the most important of all primary ab-
errations, caused by different focal positions for marginal

Fig. 8 Irradiance distributions of an annular beam before the focal plane at L=47 mm for a convex
lens of focal length f=50 mm. �a� Transverse cross section of the annular beam profile. �b� Beam
profile in the X direction on the transverse plane. �c� Beam profile in the Y direction on the transverse
plane. Here R0=0.665 mm, rw=0.327 mm, z�=95 mm, and Z�=110 mm.

Fig. 9 Irradiance distributions along the radial direction at the focal
plane. Here f=50 mm, rw=0.327 mm, z�=95 mm, and Z�=110 mm.
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meridional and paraxial rays. For lenses with spherical sur-
faces, the rays that are parallel to the optical axis but at
different distances from it fail to converge to the same point
after passing through the lens. This effect changes the an-
nular profiles and the corresponding diffraction patterns.
According to the theoretical model, the minimum diameter
of the annular beam is R0=90 �m for an axicon system
with rw=0.327 mm, z�=95 mm, Z�=110 mm, and f
=49.3 mm. This value of R0 is very close to the experimen-
tal radius of 85 �m �Fig. 11�b��.

Smaller-radius annular beams can be achieved with la-
sers having shorter wavelengths. Increasing the diameter of
the input laser beam or decreasing the focal length of the
focusing lens can also decrease the radius. Finally, the ra-
dius decreases as the plane of observation approaches the
focal plane of the focusing lens. However, more and more
laser energy accumulates on the optical axis near the focal
plane, which limits the minimum beam size.

4 Conclusions
An axicon refractive system has been designed to convert
an input Gaussian beam into an annular beam. The diffrac-
tion patterns generated by different optical elements of the
system are investigated by using the Fresnel diffraction in-
tegral. The laser irradiance profiles produced by the system

were measured using a laser-beam analyzer. The following
conclusions can be drawn, based on the numerical solutions
and measured annular profiles:

1. A Gaussian-like annular beam can be produced with
an axicon refractive system. The beam diameter de-
creases as the plane of observation approaches the
focal plane of the focusing lens. However, the mini-
mum beam diameter is limited by the diffraction ef-
fect.

2. A thin outer annulus with maximum irradiance and
several inner diffraction rings with lesser irradiance
were found to form due to diffraction.

3. More and more laser energy accumulates on the op-
tical axis of the axicon lens system over a small re-
gion around the focal plane. The annular ring disap-
pears at the focal plane and reappears after the focal
plane.

4. The optical elements need to be aligned to generate
radially symmetric irradiance profiles, which is im-
portant for drilling circular holes. Optical trepanning
can be applied to drill small holes with low-power
lasers, since relatively high irradiance can be ob-
tained with a small area of the annular beam. A large
area of the annular beam reduces the irradiance for a

Fig. 10 Irradiance distributions of the annular beam at 2 mm after the focal plane �i.e., at L=52 mm�.
�a� Transverse cross section of the annular beam profile. �b� Beam profile in the X direction on the
transverse plane. �c� Beam profile in the Y direction on the transverse plane. Here f=50 mm, L
=52 mm, rw=0.327 mm, z�=95 mm, and Z�=110 mm.

Zeng, Latham, and Kar: Characteristic analysis of a refractive axicon system¼

Optical Engineering September 2006/Vol. 45�9�094302-8
Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 27 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



given laser power. Therefore, high-power lasers
would be necessary for optical trepanning of large
holes in thick samples.
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